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ABSTRACT: It has been recognized recently that the considerable difference between photon
correlation (PCS) and dielectric (BDS) susceptibility spectra arises from their respective
association with single-particle and collective dynamics. This work presents a model that
captures the narrower width and shifted peak position of collective dynamics (BDS), given the
single-particle susceptibility derived from PCS studies. Only one adjustable parameter is
required to connect the spectra of collective and single-particle dynamics. This constant
accounts for cross-correlations between molecular angular velocities and the ratio of the first-
and second-rank single-particle relaxation times. The model is tested for three supercooled
liquids, glycerol, propylene glycol, and tributyl phosphate, and is shown to provide a good
account of the difference between BDS and PCS spectra. Because PCS spectra appear to be
rather universal across a range of supercooled liquids, this model provides a first step toward
rationalizing the more material-specific dielectric loss profiles.

The dynamics of supercooled liquids has been the subject of
intense research for over a century. Common observations

regarding these glass-forming liquids are their super-Arrhenius
temperature dependence of viscosity and relaxation time
constants as well as the non-exponential decay correlation of
the corresponding time correlation functions associated with
structural relaxation, equivalent to asymmetrically broadened
susceptibility profiles in the frequency domain.1 However, the
extent of broadening and shape of these profiles are material-
specific, which complicates a unified description of structural
relaxation in viscous materials.
A common experimental approach to the dynamics of

supercooled liquids is by broadband dielectric spectroscopy
(BDS) , p r o v i d i n g a c c e s s t o t h e p e rm i t t i v i t y

= + i( ) ( ) ( ), also denoted ε*(ω).2 The widths of
such dielectric loss spectra, ε″(ω), vary with the temperature
and are material-specific even if compared at a common loss
peak frequency (ωmax) or average relaxation time. In fact, a
recent study has shown that the loss peak width near the glass
transition temperature, Tg, narrows systematically with an
increasing dielectric constant, εs.3 This feature is not observed in
all experimental approaches to the dynamics of structural
relaxation. Recent experiments have demonstrated that the
susceptibility spectra, χ″(ω), derived from photon correlation
spectroscopy (PCS) display a rather universal appearance, even
across those liquids for which the dielectric ε″(ω) profiles vary
considerably.4 For frequencies not too far from ωmax, the PCS
results can be approximated by a Cole−Davidson-type function,

[ ]i( ) Im (1 )CD , with γ ≈ 0.5.
The two experimental approaches to rotational dynamics

differ in the rank of the reported relaxation time: BDS reports
the dynamics of the first-order Legendre polynomial ·P u e( )1
for the projection of the unit dipole vector u on the field

direction e versus the second-order Legendre polynomial
·P u e( )2 reported by PCS. Because rotation in viscous liquids

involves large jump angles,5 the ratio = /s
(1)

s
(2) of first-rank,

s
(1), to second-rank, s

(2), rotational relaxation times falls below
the diffusive limit of κ = 3, reaching the value of κ ≃ 1.57 for
large-amplitude rotational jumps.6 The more significant and
qualitative difference between ( )PCS and ( )BDS has been
rationalized by the PCS technique being mostly sensitive to
single-particle dynamics, whereas ( ) derived from the BDS
approach is associated with collective dynamics.7,8 As may be
expected, the difference between PCS and BDS spectral shapes
disappears for weakly polar liquids (dielectric increment of
≲0.2).4
On the basis of approximations detailed below, Keyes9

derived the relation

= gM K s (1)

which connects the average collective relaxation time, τM, of the
macroscopic dipole momentM to its single-particle counterpart,
=s s

(1), via the Kirkwood correlation factor gK. Comparing τM
from BDS to s

(2) from PCS reveals that the ratio /M s
(2) near Tg

exceeds gK by far, assuming values of up to 20 reported for
propylene glycol.10 Moreover, the temperature dependence of
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τM and s
(2) differs by more than can be explained by gK(T) alone.

Therefore, Keyes’s approximation in eq 1 does not correctly
capture the difference between collective and single-particle
dynamics in viscous liquids.
In an extension of Keyes’s approach, Kivelson and Madden

added a dynamical correlation parameter11,12 JK, resulting in the
Keyes−Kivelson−Madden (KKM) relation9,13−15

= =g J g J( / ) ( / )M K K s K K s
(2)

(2)

The dynamical correction parameter JK is often found to be close
to unity for high-temperature liquids,12,16−19 thus yielding the
simplified result of eq 1. However, we show below that adopting
JK/κ ≠ 1 is essential for translating single-particle into collective
loss spectra, i.e., ( ) ( )PCS BDS , which is the aim of the
present work. Calculations based on experimental PCS spectra
will then be shown to compare favorably to measured BDS loss
profiles. Moreover, experimental evidence shows larger
separations between single-particle and collective relaxation
times at lower temperatures, consistent with JK/κ decreasing
with reducing the temperature.
The dielectric function for polar materials with ( ) is

determined by the equation20,21

= [ + ]i( ) 1 ( )M (3)

whereΔε = εs − ε∞ is the dielectric increment, i.e., the difference
between low- and high-frequency limits of permittivity.
Functions with tildes are used to denote Laplace−Fourier
transforms of time correlation functions22

= t t( ) d e ( )i t
a 0 a (4)

where a = M and s specifies either the normalized time
autocorrelation function of the total dipole moment M(t) (a =
M) or single-particle dipole orientations (a = s; see below). The
dipole moment autocorrelation function entering eq 3 is given as

= ·
·

t
tM M

M M
( )

( )
M (5)

Here, the angular brackets denote an equilibrium ensemble
average, and the deviation from the average dipole δM(t) =M(t)
− ⟨M⟩ is dropped in eq 5, given that ⟨M⟩ = 0 in an isotropic
material. Equation 5 also utilizes the notationM(0) =M, and we
do not specify t = 0 for all dynamic variables used below; e.g.,
A(0) = A. The time correlation function allows one to define the
average (integral) relaxation times in eqs 1 and 2

= t td ( )a
0 a (6)

with a =M and s. For both cases, τM and τs, this relaxation time is
the ω = 0 value of the corresponding ( )a of eq 4.
The rotational relaxation time of a single dipole in the liquid is

associated with the time autocorrelation function of the
molecular dipole moment μ(t). By defining the unit vector
specifying the dipole orientation =t tu( ) ( )/ , one obtains

= ·t tu u( ) ( )s (7)

The average (integral) single-particle relaxation time in eqs 1
and 2 follows from the time integral of ϕs(t) in eq 6, for which
= (0)s s holds.

To build a connection between the correlation functions
ϕM(t) and ϕs(t), we make use of the corresponding memory
functions. The time correlation functionsϕa(t), where a =M and
s, satisfy the memory equation23 with the memory function
Ka(t)

+ =t K t( ) d ( ) ( ) 0
t

a 0
a a (8)

These memory functions describe the dynamics of local,
microscopic interactions (collisions in the gas phase), which
add up through the time convolution integral in eq 8 to produce
the dynamics represented by the time correlation function. The
memory integral equation becomes a linear algebraic equation
upon Laplace−Fourier transform

= [ + ]i K( ) ( )a a
1

(9)

The time-domain memory functions satisfy the following
equations:19,23

= ·
·

K t f t
M M
M M

( ) ( )M M (10)

and

= ·K t f tu u( ) ( )s

. .

s (11)

where · = =u u (0)
. .

s
2

s . The normalized functions fM(t)
and fs(t) with fM(0) = fs(0) = 1 are the time-dependent
components of the corresponding memory functions. The
variance of the sample dipole moment ⟨M·M⟩ = gKμ2N in the
denominator in eq 10 is the product of the squared molecular
dipole μ, the number of dipoles N in the sample, and the
Kirkwood factor

= + ·g u u1
i

iK
1

1
(12)

where ui is the unit directional vector of dipole moment i.
The variance of the time derivative of the sample dipole

moment in the numerator of eq 10 becomes

· = N JM M 2
s
2 (13)

where the angular velocity cross-correlations vanish in the
canonical ensemble, i.e.,

= + · =J u u1 1
i

is
2

1

.

1

.

(14)

Combining these results in eq 10, one obtains

=K t
g

f t( ) ( )M
s
2

K
M

(15)

In contrast to J in eq 14, the dynamic correlation factor in the
KKM equation does not reduce to a trivial value. It is given
as11,14 (see the Supporting Information for derivation)

= +J
t t

t t
1

d ( )

d ( )K
0 c

0 s (16)

where ψc(t) describes cross-correlations of angular rotational
velocities of distinct molecules

= · †t tu u( ) ( )
i

ic
1

.

1

.

(17)
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Here, ⟨...⟩† denotes the correlation function propagated in the
orthogonal space of Mori’s24 projection operator technique,23,25

· = ·†tu u u u( ) ei
i P t

i

.

1

. .

1
(1 )

.
, with being the Liouville

operator and P being the projection operator. In contrast,
ψs(t) is the single-particle correlation function of angular
velocities

= · †t tu u( ) ( )s

. .
(18)

satisfying the initial condition = = k T I(0) 2 /s s
2

B for a
symmetric top with the moment of inertia I.
The derivation thus far does not involve any approximations

and can be viewed as the definition of the unknown time-
dependent functions fM(t) and fs(t). Given that they specify the
time decay of the corresponding memory functions, they are
expected to relax faster23,26 than the respective correlation
functions, ϕM(t) and ϕs(t). Following Keyes,9 one can adopt a
simple approximation assuming that the integral relaxation times
of thememory functionsKM(t) andKs(t) are equal to a common
value τK, which implies

= =f f(0) (0)K M s (19)

This approximation, used for the ω = 0 limit in eq 9, leads to eq
1.
In what follows, the constraint of eq 19 will be dropped, thus

allowing for distinct integral relaxation times of the two memory
functions, KM(t) and Ks(t). Equation 19 puts a single-value
constraint on the ω = 0 values of f ( )M and f ( )s but does not
specify these two functions. An approximation consistent with
the first relation in eq 2 is to assume =f J f( ) ( )M K s . This
approximation leads to the following connection between the
memory functions

=K g J K( ) ( / ) ( )M K K
1

s (20)

To account for the second rank of PCS, we replace the
retardation parameter gK/JK with ζK that follows from the second
KKM relation in eq 2

= g J( / )K K K (21)

Given that ( )M and ( )s are now related through the
corresponding f ( )a functions, one obtains the equation for the
dielectric permittivity ( ) in terms of the single-particle
correlation function ( )s and the retardation parameter ζK

=
+

i

i

( )

(1 ) ( )
s K

K s
1

(22)

We note that simple proportionality between f ( )M and f ( )s
cannot be correct in the whole range of frequencies because it
would violate the normalization condition fM(0) = fs(0) = 1
upon inverse Laplace−Fourier transform. It should instead be
viewed as an approximation applied to the range of frequencies
near the peaks of dielectric and single-particle loss spectra. For
instance, if f ( )M and f ( )s are Debye functions with the

relaxation times K
a , one would anticipate = =J JK

M
K K

s
K K

s,(2)

and 1K
a in the frequency range applicable to experimental

conditions. Both static and dynamic cross-correlations affect the
relation between the single-particle and collective dynamics, but
they can both be reduced to numerical scaling factors at

sufficiently small peak frequencies characteristic of low-temper-
ature (supercooled) liquids.
The single-particle autocorrelation function ( )s can be

related to experimental data reporting the imaginary part of the
susceptibility function ( )s derived from PCS measurements,
with the connection between the two functions being provided
by the standard Kubo linear response formalism.23 Note that,
like the single-particle autocorrelation function ϕs(t), the
response function χs(t) is normalized by the condition χs(0) =
1. This condition is typically not met by experimental data
reporting ( )s spectra in arbitrary units. In the calculations
presented here, ( )s was fitted to a linear combination of
Debye functions with the requirement of the relaxation
amplitudes summing up to unity

=
+

=a a( )
1

, 1
i

i
i

i i
is 2 2

(23)

With the employment of eq 23 for fitting the experimental result,
Kubo’s relation23

= + i( ) 1 ( )s s (24)

was used to calculate ( )s . This function was used to produce
( ) in eq 22 by adopting the experimental values for Δε.
This procedure was applied to generate ( ) curves for

glycerol at T = 210 K (Figure 1), propylene glycol (PG) at T =

190 K (Figure 2), and tributyl phosphate (TBP) at T = 147 K
(Figure 3) from corresponding loss spectra ( )s . The
Kirkwood factors for three liquids were calculated from
Wertheim’s theory27,28 (Table 1; see the Supporting Informa-
tion for more details). This mean-field theory calculates the
condensed-phase molecular dipole moment μ′ and molecular
polarizability α′ from the corresponding gas-phase values μ and
α (Table 1). These two parameters are used to specify the
effective mean-field polarity parameter

Figure 1. Experimental results for the dielectric loss spectrum ε″(ω)
(BDS, diamonds) and the photon correlation susceptibility χ″(ω)
(PCS, circles) of glycerol at T = 210 K, taken from Gabriel et al.10 The
orange dotted line is a fit to the PCS data, and the red solid line is based
on eq 22 with JK/κ = 1.00, using gK = 2.49 calculated from Wertheim’s
theory (Table 1).
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= [ + ]y k T( /9 ) ( ) /( ) 3eff 0
2

B (25)

where ε0 is the vacuum permittivity and ρ is the liquid number
density. The polarity parameter enters the Kirkwood−Onsager
equation28

+ = y g( 1)(2 1) 9s s eff s K (26)

from which gK is calculated.
The ratio JK/κ in eqs 21 and 22 remains unspecified and was

used to fit eq 22 to the experimental ε″(ω). The resulting values
are listed in Table 1. The comparison between the theory and
experiment regarding ε″(ω) in Figures 1−3 demonstrates that
the present approach leads to a good account of the frequency-
dependent collective dynamics based solely on the single-
particle dynamics and a single constant ζK that contains the
Kirkwood correlation factor gK (eq 21). Uncertainties in the
reported values of the liquid dipole moment, polarizability, and
hard-sphere diameter might affect the calculation of gK in
Wertheim’s formalism (see the Supporting Information). The
theory, however, requires only ζK, and gK is calculated here only
to estimate JK/κ. While data for only one temperature per
material have been analyzed, studies comparing BDS and PCS
spectra reveal that the relaxation time ratio τM/τs increases with a
decreasing temperature. For instance, the value of τM/τs for
propylene glycol increases by 50% when changing the
temperature from T = 190 to 175 K.29 This implies larger
values for the memory function dynamic correlation factor JK
(eq 16) at higher temperatures, consistent with the notion of JK
≈ 1 in the fluid state.
The decades-long inquiry9,13−15,26 addressed here in

application to BDS of low-temperature liquids is the relation
between the collective and single-particle dynamics in liquids.
Collective relaxation is universally slowed down relative to
single-particle dynamics, and the common wisdom30 in the field
suggests that collective dynamics, involving dynamic cross-
correlations, are fundamentally distinct from single-particle
dynamics. The simplified form of the KKM equation adopting JK
= 1 (eq 1) opposes this assessment. The limit JK = 1 implies that
slowing down of collective dynamics is achieved exclusively by
accounting for local static correlations between the liquid
dipoles in terms of the Kirkwood factor. A good performance of
this assumption for liquids at normal (opposed to supercooled)
conditions12,16−19 supports this view. However, BDS of low-
temperature liquids requires stronger retardation than given
solely by the Kirkwood factor, and adopting JK/κ < 1 is required
(Figures 2 and 3). This simple extension has allowed us to
convert the single-particle correlation function into the
collective function by utilizing a single retardation parameter
ζK (eq 21).
As mentioned above, a simple proportionality between

frequency domain single-particle and collective memory
functions can only hold in a limited range of frequencies.
Development of practical functionalities for the single-particle
memory function remains a challenge for the theory develop-
ment. This function is directly related to the experimentally

Figure 2. Experimental results for the dielectric loss spectrum ε″(ω)
(BDS, diamonds) and the photon correlation susceptibility χ″(ω)
(PCS, circles) of propylene glycol at T = 190 K, taken from Böhmer et
al.29 The orange dotted line is a fit to the PCS data, and the gray dashed
line and red solid line are based on eq 22 with JK/κ = 1.00 and JK/κ =
0.38, respectively, using gK = 4.76 calculated from Wertheim’s theory
(Table 1).

Figure 3. Experimental results for the dielectric loss spectrum ε″(ω)
(BDS, diamonds) and the photon correlation susceptibility χ″(ω)
(PCS, circles) of tributyl phosphate at T = 147 K, taken from Pabst et
al.7 The orange dotted line is a fit to the PCS data, and the gray dashed
line and red solid line are based on eq 22 with JK/κ = 1.00 and JK/κ =
0.38, respectively, using gK = 1.55 calculated from Wertheim’s theory
(Table 1).

Table 1. Liquid Parameters Used To Calculate ( ) from ( )s and Kirkwood Factors gK

liquid T (K) μ (D) σ (Å)a α (Å3) ρ (g/cm3) ε∞ εs μ′ (D)b gK JK/κc

glycerol 210 2.67 5.15 8.17 1.314 2.25 68.6 3.71 2.49 1.00
PG 190 2.0 5.12 8.81 0.998 2.17 63.7 2.55 4.76 0.38
TBP 147 2.9 7.97 27.6 1.114 2.23 20.0 3.76 1.55 0.38

aHard-sphere diameter. bCalculated from Wertheim’s theory (see the Supporting Information). cAdjusted as a fitting parameter.
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observable single-particle response function. One obtains by
substituting eq 9 to eq 24

= [ ]i K( ) 1 ( )s s
1 1

(27)

It has been recently suggested that ( )s universally follows the
scaling ∝ ω−1/2 at large frequencies.4,31 Such a scaling requires
K ( )s

1/2 in eq 27. This functionality, however, contradicts
the interpretation26 of normalized Ks(t) as the characteristic
function of the probability density P(ω)

=K t K P( ) (0) d ( )e i t
s s (28)

The power spectrum =P K K( ) ( (0)) ( )s
1

s is expected to
produce an infinite sequence of spectral moments

= Pd ( )n n2 2
(29)

It is obvious that K ( )s
1/2 does not allow any frequency

moments to exist and a more general functional form should be
sought.
In summary, the aim of this work is to provide a rationale for

the relation between collective (BDS) and single-particle (PCS)
dynamics in supercooled liquids. Applying ideas from the KKM
approach to the memory function formalism facilitates the
calculation of the frequency-dependent collective dynamics
from the single-particle susceptibility, thus going beyond a
model that relates only the integral time constants. The
approach is tested on the basis of BDS and PCS spectra
reflecting the collective and single-particle dynamics, respec-
tively. The theory provides a good account of the collective
dynamics for three glass-forming materials, each based on two
constants, the Kirkwood correlation factor gK and an adjustable
parameter JK/κ (Table 1) that quantifies the retardation of the
collective memory function KM(t) relative to its single-particle
counterpart Ks(t) and accounts for the different ranks of BDS
and PCS relaxation times. This retardation effect is negligible for
high-temperature fluids but becomes enhanced in viscous
materials as the temperature is lowered toward the glass
transition temperature Tg.
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