
Improved Frequency Estimation Algorithms with and
without Predictions

Anders Aamand
MIT

aamand@mit.edu

Justin Y. Chen
MIT

justc@mit.edu

Huy Lê Nguyễn
Northeastern University

hu.nguyen@northeastern.edu

Sandeep Silwal
MIT

silwal@mit.edu

Ali Vakilian
TTIC

vakilian@ttic.edu

Abstract

Estimating frequencies of elements appearing in a data stream is a key task in large-
scale data analysis. Popular sketching approaches to this problem (e.g., CountMin
and CountSketch) come with worst-case guarantees that probabilistically bound
the error of the estimated frequencies for any possible input. The work of Hsu
et al. (2019) introduced the idea of using machine learning to tailor sketching
algorithms to the specific data distribution they are being run on. In particular, their
learning-augmented frequency estimation algorithm uses a learned heavy-hitter
oracle which predicts which elements will appear many times in the stream. We
give a novel algorithm, which in some parameter regimes, already theoretically
outperforms the learning based algorithm of Hsu et al. without the use of any pre-
dictions. Augmenting our algorithm with heavy-hitter predictions further reduces
the error and improves upon the state of the art. Empirically, our algorithms achieve
superior performance in all experiments compared to prior approaches.

1 Introduction

In frequency estimation, we stream a sequence of elements from [n] := {1, . . . , n}, and the goal is to
estimate fi, the frequency of the ith element, at the end of the stream using low-space. Frequency
estimation is one of the central problems in data streaming with a wide range of applications from
networking (gathering important monitoring statistics [31, 62, 46]) to machine learning (NLP [33],
feature selection [3], semi supervised learning [58]). CountMin (CM) [20] and CountSketch (CS)
[14] are arguably the most popular and versatile of the algorithms for frequency estimation, and are
implemented in many popular packages such as Spark [63], Twitter Algebird [10], and Redis.

Standard approaches to frequency estimation are designed to perform well in the worst-case due to
the multitudinous benefits of worst-case guarantees. However, algorithms designed to handle any
possible input do not exploit special structure of the particular distribution of inputs they are used
for. In practice, these patterns can be described by domain experts or learned from historical data.
Following the burgeoning trend of combining machine learning and classical algorithm design, [36]
initiated the study of learning-augmented frequency estimation by extending the classical CM and CS
algorithms in a simple but effective manner via a heavy-hitters oracle. During a training phase, they
construct a classifier (e.g. a neural network) to detect whether an element i is “heavy” (e.g., whether
fi is among the most frequent items). After such a classifier is trained, they scan the input stream,
and apply the classifier to each element i. If the element is predicted to be heavy, it is allocated a
unique bucket, so that an exact value of fi is computed. Otherwise, the stream element is inputted
into the standard sketching algorithms.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



The advantage of their algorithm was analyzed under the assumption that the true frequencies follow
a heavy-tailed Zipfian distribution. This is a common and natural reoccurring pattern in real world
data where there are a few very frequent elements and many infrequent elements. Experimentally,
[36] showed several real datasets where the Zipfian assumption (approximately) held and useful
heavy-hitter oracles could be trained in practice. Our paper is motivated by the following natural
questions and goals in light of prior works:

Can we design better frequency estimation algorithms (with and without predic-
tions) for heavy-tailed distributions?

In particular, we consider the setting of [36] where the underlying data follow a heavy-tailed distri-
bution and investigate whether sketching algorithms can be further tailored for such distributions.
Before tackling this question, we must tightly characterize the benefits–and limitations–of these
existing methods, which is another goal of our paper:

Give tight error guarantees for CountMin and CountSketch, as well as their
learning-augmented variants, on Zipfian data.

Lastly, any algorithms we design must possess worst case bounds in the case that either the data does
not match our Zipfian (or more generally, heavy-tailed) assumption or the learned predictions have
high error, leading to the following ‘best of both worlds’ goal:

Design algorithms which exploit heavy tailed distributions and ML predictions but
also maintain worst-case guarantees.

We addresses these challenges and goals and our contributions can be summarized as follows:

• We give tight upper and lower bounds for CM and CS, with and without predictions, for heavy
tailed distributions. A surprising conclusion from our analysis is that (for a natural error metric)
a constant number of rows is optimal for both CM and CS. In addition, our theoretical analysis
shows that CS outperforms CM, both with and without predictions, validating the experimental
results of [36].

• We go beyond CM and CS based algorithms to give a better frequency estimation algorithm for
heavy tailed distributions, with and without the use of predictions. We show that our algorithms can
deliver up to a logarithmic factor improvement in the error bound over CS and its learned variant.
In addition, our algorithm has worst case guarantees.

• Prior learned approaches require querying an oracle for every element in the stream. In contrast,
we obtain a parsimonious version of our algorithm which only requires a limited number of queries
to the oracle. The number of queries we use is approximately equal to the given space budget.

• Lastly, we evaluate our algorithms on two real-world datasets with and without ML based predic-
tions and show superior empirical performance compared to prior work in all cases.

1.1 Preliminaries

Notation and Estimation Error The stream updates an n dimensional frequency vector and
every stream element is of the form (i,∆) where i ∈ [n] and ∆ ∈ R denotes the update on the
coordinate. The final frequency vector is denoted as f ∈ Rn. Let N =

∑︁
i∈[n] fi denote the sum of

all frequencies. To simplify notation, we assume that f1 ≥ f2 ≥ . . . ≥ fn. f̃ i denotes the estimate
of the frequency fi. Given estimates {f̃ i}i∈[n], the error of a particular frequency is |f̃ i − fi|. We
also consider the following notion of overall weighted error as done in [36]:

Weighted Error: =
1

N

∑︂
i∈[n]

fi · |f̃ i − fi|. (1)

The weighted error can be interpreted as measuring the error with respect to a query distribution
which is the same as the actual frequency distribution. As stated in [36], theoretical guarantees of
frequency estimation algorithms are typically phrased in the traditional (ε, δ)-error formulations.
However as argued in there, the simple weighted objective (1) is a more holistic measure and does
not require tuning of two different parameters, and is thus more natural from an ML perspective.

2



Zipfian Stream We also work under the common assumption that the frequencies follow the Zipfian
law, i.e., the ith largest frequency fi is equal to A/i for some parameter A. Note we know A at the
end of the stream since the stream length is A ·Hn. By rescaling, we may assume that A = 1 without
loss of generality. We will make this assumption throughout the paper.

CountMin (CM) For parameters k and B, which determine the total space used, CM uses k
independent and uniformly random hash functions h1, . . . , hk : [n]→ [B]. Letting C be an array of
size [k]× [B] we let C[ℓ, b] =

∑︁
j∈[n][hℓ(j) = b]fj . When querying i ∈ [n] the algorithm returns

f̃ i = minℓ∈[k] C[ℓ, hℓ(i)]. Note that we always have that f̃ i ≥ fi.

CountSketch (CS) In CS, we again have the hash functions hi as above as well as sign functions
s1, . . . , sk : [n]→ {−1, 1}. The array C of size [k]× [B] is now tracks C[ℓ, b] =

∑︁
j∈[n][hℓ(j) =

b]sℓ(j)fj . When querying i ∈ [n] the algorithm returns the estimate f̃ i = medianℓ∈[k] sℓ(i) ·
C[ℓ, hℓ(i)].

Learning-Augmented Sketches [36] Given a base sketching algorithm (either CM or CS) and
a space budget B, the corresponding learning-augmented algorithm (learned CM or learned CS)
allocates a constant fraction of the space B to the base sketching algorithm and the rest of the space
to store items identified as heavy by a learned predictor. These items predicted to be heavy-hitters are
stored in a separate table which maintains their counts exactly, and their updates are not sent to the
sketching algorithm.

1.2 Summary of Main Results and Paper Outline

Our analysis, both of CM and CS, our algorithm, and prior work, is summarized in Table 1.

Algorithm Weighted Error Uses Predictions? Reference

CountMin (CM) Θ
(︂

logn
B

)︂
No Theorem B.1

CountSketch (CS) Θ
(︁
1
B

)︁
No Theorem C.4

Learned CountMin Θ
(︂

log(n/B)2

B logn

)︂
Yes [36]

Learned CountSketch Θ
(︂

log(n/B)
B logn

)︂
Yes Theorem D.1

Our (Without predictions) O
(︂

logB+poly(log logn)
B logn

)︂
No Theorem 2.1

Our (Learned version) O
(︂

1
B logn

)︂
Yes Theorem 3.1

Table 1: Bounds are stated assuming that the total space is B words of memory. Weighted error
means that element i is queried with probability proportional to 1/i. Moreover, the table considers
normalized frequencies, so that fi = 1/i.

Summary of Theoretical Results We interpret Table 1. B denotes the space bound, which is the
total number of entries used in the CM or CS tables. First note that CS achieves lower weighted
error compared to CM, proving the empirical advantage observed in [36]. However, the learned
version of CS only improves upon standard CS in the regime B = n1−o(1). While this setting does
appear sometimes in practice [33, 36] (referred to as high-accuracy regime), for CS, learning gives
no asymptotic advantage in the low space regime.

On the other hand, in the low space regime of B = poly(log n), our algorithm, without predictions,
already archives close to a logarithmic factor improvement over even learned CS. Furthermore, our
learning-augmented algorithm achieves a logarithmic factor improvement over classical CS across
all space regimes, whereas the learned CS only achieves a logarithmic factor improvement in the
regime B = n1−o(1). Furthermore, our learned version outperforms or matches learned CS in all
space regimes.

3



Our learning-augmented algorithm can also be made parsimonious in the sense that we only query
the heavy-hitter oracle Õ(B) times. This is desirable in large-scale streaming applications where
evaluating even a small neural network on every single element would be prohibitive.

Remark 1.1. We remark that all bounds in this paper are proved by bounding the expected error
when estimating the frequency of a single item, E[|f̃ i−fi|], then using linearity of expectation. While
we specialized our bounds to a query distribution which is proportional to the actual frequencies in
(1), our bounds can be easily generalized to any query distribution by simply weighing the expected
errors of different items according to the given query distribution.

Summary of Empirical Results We compare our algorithm without prediction to CS and our
algorithm with predictions to that of [36] on synthetic Zipfian data and on two real datasets corre-
sponding to network traffic and internet search queries. In all cases, our algorithms outperform the
baselines and often by a significant margin (up to 17x in one setting). The improvement is especially
pronounced when the space budget is small.

Outline of the Paper Our paper is divided into roughly two parts. One part covers novel and
tight analysis of the classical algorithms CountMin (CM) and CountSketch (CS). The second part
covers our novel algorithmic contributions which go beyond CM and CS. The main body of our
paper focuses on our novel algorithmic components, i.e. the second part, and we defer our analysis
of the performance of CountMin (CM) and CountSketch (CS), with and without predictions, to the
appendix: in Section B we give tight analysis of CM for a Zipfian frequency distribution. In Section
C we give the analogous bounds for CS. Lastly, Section D gives tight bounds for CS with predictions.
Section 2 covers our better frequency estimation without predictions while Section 3 covers the
learning-augmented version of the algorithm, as well as its extentions.

1.3 Related Works

Frequency Estimation While there exist other frequency estimation algorithms beyond CM and
CS (such as [51, 48, 21, 40, 49, 11] ) we study hashing based methods such as CM [20] and CS [14]
as they are widely employed in practice and have additional benefits, such as supporting insertions
and deletions, and have applications beyond frequency estimation, such as in machine learning
(feature selection [3], compressed sending [13, 25], and dimensionality reduction [61, 18] etc.).

Learning-augmented algorithms The last few years have witnessed a rapid growth in using
machine learning methods to improve “classical” algorithmic problems. For example, they have
been used to improve the performance of data structures [42, 52], online algorithms [47, 56, 32,
5, 60, 43, 1, 6, 4, 22, 34], combinatorial optimization [41, 7, 43, 53, 23, 16], similarity search and
clustering [59, 24, 30, 54, 57]. Similar to our work, sublinear constraints, such as memory or sample
complexity, have also been studied under this framework [36, 38, 39, 19, 27, 28, 15, 44, 57].

2 Improved Algorithm without Predictions

We first present our frequency estimation algorithm which does not use any predictions. Later, we
build on top of it for our final learning-augmented frequency estimation algorithm.

The main guarantees of of the algorithm is the following:

Theorem 2.1. Consider Algorithm 1 with space parameter B ≥ log n updated over a Zipfian stream.
Let {f̂ i}ni=1 denote the estimates computed by Algorithm 2. The expected weighted error (1) is

E
[︂

1
N ·
∑︁n

i=1 fi · |fi − f̂ i|
]︂
= O

(︂
logB+poly(log logn)

B logn

)︂
.

Algorithm and Proof intuition: Let B′ = B/ log log n. At a high level, we show that for every
i ≤ B′, we execute line 10 of Algorithm 2 and the error satisfies |1/i − f̂ i| ≈ 1/B′ (recall
in the Zipfian case, the ith largest frequency is fi = 1/i). On the other hand, for i ≥ B′, we
show that (with sufficiently high probability) line 8 of Algorithm 2 will be executed, resulting in
|1/i− f̂ i| = |1/i− 0| = 1/i.

4



Algorithm 1 (Not augmented) Frequency update algorithm

1: Input: Stream of updates to an n dimensional vector, space budget B
2: procedure UPDATE
3: T ← Θ(log log n)
4: for j = 1 to T − 1 do
5: Sj ← CountSketch table with 3 rows and B

6T columns
6: end for
7: ST ← CountSketch table with 3 rows and B

6 columns
8: for stream element (i,∆) do
9: Input (i,∆) in each of the T CountSketch tables Sj

10: end for
11: end procedure

Algorithm 2 (Not augmented) Frequency estimation algorithm

1: Input: Index i ∈ [n] for which we want to estimate fi
2: procedure QUERY
3: for j = 1 to T − 1 do
4: f̂

j

i ← estimate of the ith frequency given by table Sj

5: end for
6: f̃ i ← Median(f̂

1

i , . . . , f̂
T−1

i )

7: if f̃ i < O((log log n))/B then
8: Return 0
9: else

10: Return f̂
T

i , the estimate given by table ST

11: end if
12: end procedure

It might be perplexing at first sight why we wish to set the estimate to be 0, but this idea has solid
intuition: it turns out the additive error of standard CountSketch with B′ columns is actually of the
order 1/B′. Thus, it does not make sense to estimate elements whose true frequencies are much
smaller than 1/B′ using CountSketch. A challenge is that we do not know a priori which elements
these are. We circumvent this via the following reasoning: if CountSketch itself outputs ≈ 1/B′ as
the estimate, then either one of the following must hold:

• The element has frequency 1/i≪ 1/B′, in which case we should set the estimate to 0 to obtain
error 1/i, as opposed to error 1/B′ − 1/i ≈ 1/B′.

• The true element has frequency ≈ 1/B′ in which case either using the output of the CountSketch
table or setting the estimate to 0 both obtain error approximately O(1/B′), so our choice is
inconsequential.

In summary, the output of CountSketch itself suggests whether we should output an estimated
frequency as 0. We slightly modify the above approach with O(log log n) repetitions to obtain
sufficiently strong concentration, leading to a robust method to identify small frequencies. The proof
formalizes the above plan and is given in full detail in Section E.

By combining our algorithm with predictions, we obtain improved guarantees.

3 Improved Learning-Augmented Algorithm

Theorem 3.1. Consider Algorithm 3 with space parameter B ≥ log n updated over a Zipfian stream.
Suppose we have access to a heavy-hitter oracle which correctly identifies the top B/2 heavy-hitters
in the stream. Let {f̂ i}ni=1 denote the estimates computed by Algorithm 4. The expected weighted

error (1) is E
[︂

1
N ·
∑︁n

i=1 fi · |fi − f̂ i|
]︂
= O

(︂
1

B logn

)︂
.

5



Algorithm 3 (Learning-augmented) Frequency update algorithm

1: Input: Stream of updates to an n dimensional vector, space budget B, access to a heavy-hitter
oracle which correctly identifies the top B/2 heavy-hitters

2: procedure UPDATE
3: T ← O(log log n)
4: for j = 1 to T − 1 do
5: Sj ← CountSketch table with 3 rows and B

12T columns
6: end for
7: ST ← CountSketch table with 3 rows and B

12 columns
8: for stream element (i,∆) do
9: if i is a top B/2 heavy-hitter then

10: Maintain the frequency of i exactly
11: else
12: Input (i,∆) in each of the T CountSketch tables Sj

13: end if
14: end for
15: end procedure

Algorithm 4 (Learning-augmented) Frequency estimation algorithm

1: Input: Index i ∈ [n] for which we want to estimate fi
2: procedure QUERY
3: if i is a top B/2 heavy-hitter then
4: Output the exact maintained frequency of i
5: else
6: Return f̂ i ← output of Alg. 2 using the CountSkech tables created in Alg.3
7: end if
8: end procedure

Algorithm and Proof Intuition: Our final algorithm follows a similar high-level design pattern
used in the learned CM algorithm of [36]: given an oracle prediction, we either store the frequency of
heavy element directly, or input the element into our algorithm from the prior section which does not
use any predictions.

The workhorse of our analysis is the proof of Theorem 2.1. First note that we obtain 0 error for
i < B/2. Thus, all error comes from indices i ≥ B/2. Recall the intuition for this case from
Theorem 2.1: we want to output 0 as our estimates as this results in lower error than the additive error
from CS. The same analysis as in the proof of Theorem 2.1 shows that we are able to detect small
frequencies and appropriately output an estimate from either the T th CS table or output 0.

3.1 Parsimonious Learning

In Theorem 3.1, we assumed access to a heavy-hitter oracle which we can use on every single stream
element to predict if it is heavy. In practical streaming applications, this will likely be infeasible.
Indeed, even if the oracle is a small neural network, it is unlikely that we can query it for every single
element in a large-scale streaming application. We therefore consider the so called parsimonious
setting with the goal of obtaining the same error bounds on the expected error but with an algorithm
that makes limited queries to the heavy-hitter oracle. This setting has recently been explored for other
problems in the learning-augmented literature [37, 9, 26].

Our algorithm works similarly to Algorithm 3 except that when an element (i,∆) arrives, we only
query the heavy-hitter oracle with some probability p (proportional to ∆). We will choose p so that
we in expectation only query Õ(B) elements, rather than querying the entire stream. To be precise,
whenever an item arrives, we first check if it is already classified as one of the top B/2 heavy-hitters
in which case, we update its exact count (from the point in time where was classified as heavy).
Otherwise, we query the heavy-hitter oracle with probability p. In case the item is queried and is
indeed one of the top B/2 heavy-hitters, we start an exact count of that item. An arriving item which

6



is not used as a query for the heavy-hitter oracle and was not earlier classified as a heavy-hitter is
processed as in Algorithm 3.

Querying for an element, we first check if it is classified as a heavy-hitter and if so, we use the
estimate from the separate lookup table. If not, we estimate its frequency using Algorithm 4. With
this algorithm, the count of a heavy-hitter will be underestimated since it may appear several times in
the stream before it is used as a query for the oracle and we start counting it exactly. However, with
our choice of sampling probability, with high probability it will be sampled sufficiently early to not
affect its final count too much. We present the pseudocode of the algorithm as well as the precise
result and its proof in Appendix G.

3.2 Algorithm variant with worst case guarantees

In this section we discuss a variant of our algorithm with worst case guarantees. To be more precise,
we consider the case where the actual frequency distribution is not Zipfian. The algorithm we discuss
is actually a more general case of Algorithm 2 and in fact, it completely recovers the asymptotic error
guarantees of Theorem 2.1 (as well as Theorem 4 if we use predictions).

Recall that Algorithm 2 outputs 0 when the estimated frequency is below T/B for T = O(log log n).
This parameter has been tuned to the Zipfian case. As stated in Section 2, the main intuition for
this parameter is that it is of the same order as the additive error inherent in CountSketch, which we
discuss now. Denote by fP the frequency vector where we zero out the largest P coordinates. For
every frequency, the expected additive error incurred by a CountSketch table with B′ columns is
O(∥fB′∥2/

√
B′). In the Zipfian case, this is equal to O

(︂
∥f

B′∥2√
B′

)︂
= O

(︁
1
B′

)︁
, which is exactly the

threshold we set1. Thus, our robust variant simply replaces this tuned parameter O(T/B) with an
estimate of O(∥fB′∥2/

√
B′) where B′ = B/T . We given an algorithm which efficiently estimates

this quantity in a stream. Note this quantity is only needed for the query phase.
Lemma 3.2. With probability at least 1− exp (Ω (B)), Algorithm 6 outputs an estimate V satisfying

Ω
(︂
∥f3B′∥22 /B

′
)︂
≤ V ≤ O

(︃⃦⃦⃦
f
B′/10

⃦⃦⃦2
2
/B′

)︃
.

The algorithm and analysis are given in Section H. Replacing the threshold in Line 7 of Algorithm
2 with the output of Algorithm 6 (more precisely the square root of the value) readily gives us the
following worst case guarantees. Lemma 3.3 states that the expected error of the estimates outputted
by Algorithm 2 using B, regardless of the true frequency distribution, is no worse than that of a
standard CountSketch table using slightly smaller O(B/ log log n) space.

Lemma 3.3. Suppose B ≥ log n. Let {f̂ i}ni=1 denote the estimates of Algorithm 2 using B/2 space
and with Line 7 replaced by the square root of the estimate of Algorithm 6, also using B/2 space.
Suppose the condition of Lemma 3.2 holds. Let {f̂

′
i}ni=1 denote the estates computed by a CountSketch

table with cB
log logn columns for a sufficiently small constant c. Then, E[|f̂ i − fi|] ≤ E[|f̂

′
i − fi|].

Remark 3.1. The learned version of the algorithm automatically inherits any worst case guarantees
from the unlearned (without predictions) version. This is because we only set aside half the space to
explicitly track the frequency of some elements, which has worst case guarantees, while the other half
is used for the unlearned version, also with worst case guarantees.

4 Experiments

We experimentally evaluate our algorithms with and without predictions on real and synthetic
datasets and demonstrate that the improvements predicted by theory hold in practice. Comprehensive
additional figures are given in Appendix J.

Algorithm Implementations In the setting without predictions, we compare our algorithm to
CountSketch (CS) (which was shown to have favorable empirical performance compared to CountMin
(CM) in [36] and better theoretical performance due to our work). In the setting with predictions, we
compare the algorithm of [36], using CS as the base sketch and dedicated half of the space for items

1Recall B′ = B/T in Algorithm 2.

7



100 101 102 103 104 105 106

Sorted Elements

101

103

105

Fr
eq

ue
nc

y

CAIDA Log-Log Frequencies

100 101 102 103 104 105

Sorted Elements

100

101

102

103

Fr
eq

ue
nc

y

AOL Log-Log Frequencies

Figure 1: Log-log plots of the sorted frequencies of the first day/minute of the CAIDA/AOL datasets.
Both data distributions are heavy-tailed with few items accounting for much of the total stream.

500 1000 1500 2000 2500 3000
Space

2

4

6

8

W
ei

gh
te

d 
Er

ro
r

1e11 CAIDA Day #20
CS
CS (nonneg)
Ours (C=1.0)
Ours (C=2.0)
Ours (C=5.0)

0 10 20 30 40 50
Minute

1.5

2.0

2.5

3.0

3.5

4.0

4.5

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 750.0
CS
CS (nonneg)
Ours (C=5)

Figure 2: Comparison of weighted error without predictions on the CAIDA dataset. The left plot
compares the performance of various algorithms (including our algorithm with different choices
of C) for a fixed dataset and varying space. The right plot compares algorithms over time across
separate streams for each minute of data for a specific choice of space being 750.

which are predicted to be heavy by the learned oracle. For all implementations, we use three rows in
the CS table and vary the number of columns. We additionally augment each of these baselines with a
version that truncates all negative estimated frequencies to zero as none of our datasets include stream
deletions. This simple change does not change the asymptotic (ε, δ) classic sketching guarantees but
does make a big difference when measuring empirical weighted error.

We implement a simplified and practical version of our algorithm which uses a single CS table. If the
median estimate of an element is below a threshold of Cn/w for domain size n, sketch width w (a
third of the total space), and a tunable constant C, the estimate is instead set to 0. As all algorithms
use a single CS table as the basic building block with different estimation functions, for each trial we
randomly sample hash functions for a single CS table and only vary the estimation procedure used.

We evaluate algorithms according the weighted error as in Equation (1) but also according to
unweighted error which is simply the sum over all elements of the absolute estimation error, given by∑︁

i |fi − f̃ i|. Space is measured by the size of the sketch table, and all errors are averaged over 10
independent trials with standard deviations shown shaded in.

Datasets We compare our algorithm with prior work on three datasets. We use the same two real-
world datasets and predictions from [36]: the CAIDA and AOL datasets. The CAIDA dataset [12]
contains 50 minutes of internet traffic data. For each minute of data, the stream is formed of the IP
addresses associated with packets going through a Tier1 ISP. A typical minute of data contains 30
million packets accounted for by 1 million IPs. The AOL dataset [55] contains 80 days of internet
search queries with a typical day containing ≈ 3 · 105 total queries and ≈ 105 unique queries. As
shown in Figure 1, both datasets approximately follow a power law distribution. For both datasets, we
use the predictions from prior work [36] formed using recurrent neural networks. We also generate
synthetic data following a Zipfian distribution with n = 107 elements and where the ith element has
frequency n/i.

Results Across the board, our algorithm outperforms the baselines. On the CAIDA and AOL
datasets without predictions, our algorithm consistently outperforms the standard CS with up to 4x
smaller error with space 300. This gap widens when we compare our algorithm with predictions

8



500 1000 1500 2000 2500 3000
Space

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
ei

gh
te

d 
Er

ro
r

1e12 CAIDA Day #20
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1.0)
Ours (C=2.0)
Ours (C=5.0)

0 10 20 30 40 50
Minute

1

2

3

4

5

6

7

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 750.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

Figure 3: Comparison of weighted error with predictions on the CAIDA dataset.

500 1000 1500 2000 2500 3000
Space

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d 
Er

ro
r

1e7 AOL Day #50
CS
CS (nonneg)
Ours (C=1.0)
Ours (C=2.0)
Ours (C=5.0)

0 10 20 30 40 50 60 70 80
Day

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 750.0
CS
CS (nonneg)
Ours (C=1)

Figure 4: Comparison of weighted error without predictions on the AOL dataset.

to that of [36] with a gap of up to 17x with space 300. In all cases, the performance of CS and
[36] is significantly improved by the simple trick of truncating negative estimates to zero. However,
our algorithm still outperforms these “nonneg” baselines. The longitudinal plots which compare
algorithms over time show that our algorithm consistently outperforms the state-of-the-art with and
without predictions.

In the case of the CAIDA dataset, predictions do not generally improve the performance of any
of the algorithms. This is consistent with the findings of [36] where the prediction quality for the
CAIDA dataset was relatively poor. However, for the AOL which has a more accurate learned oracle,
our algorithm in particular is significantly improved when augmented with predictions. Intuitively,
the benefit of our algorithm comes from removing error due to noise for low frequency elements.
Conversely, good predictions help to obtain very good estimates of high frequency elements. In
combination, this yields very small total weighted error.

In Appendix J, we display comprehensive experiments of the performance of the algorithms across
the CAIDA and AOL datasets with varying space and for both weighted and unweighted error as
well as results for synthetic Zipfian data. In all cases, our algorithm outperforms the baselines. On
synthetic Zipfian, the gap between our algorithm and the non-negative CS for weighted error is
relatively small compared to that for the real datasets. While we mainly focus on weighted error in
this work, the benefits of our algorithm are even more significant for unweighted error as setting
estimates below the noise floor to zero is especially impactful for this error measure. In general, we
see the trend, matching our theoretical results, that as space increases, the gap between the different
algorithms shrinks as the estimates of the base CS become more accurate.

Acknowledgements

We are grateful to Piotr Indyk for insightful discussions. Anders Aamand is supported by DFF-
International Postdoc Grant 0164-00022B from the Independent Research Fund Denmark and a
Simons Investigator Award. Justin Chen is supported by an NSF Graduate Research Fellowship under
Grant No. 174530. Huy Nguyen is supported by NSF Grants 2311649 and 1750716.

9



500 1000 1500 2000 2500 3000
Space

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d 
Er

ro
r

1e7 AOL Day #50
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1.0)
Ours (C=2.0)
Ours (C=5.0)

0 10 20 30 40 50 60 70 80
Day

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 750.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

Figure 5: Comparison of weighted error with predictions on the AOL dataset.

References
[1] Anders Aamand, Justin Y. Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching with

Degree Information. In Advances in Neural Information Processing Systems, volume 35, 2022.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 20–29, 1996.

[3] Amirali Aghazadeh and Ryan Spring and Daniel LeJeune and Gautam Dasarathy and Anshumali
Shrivastava and Richard G. Baraniuk. Mission: Ultra large-scale feature selection using count-
sketches. In International Conference on Machine Learning, pages 80–88. PMLR, 2018.

[4] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ml predictions for online
algorithms. In International Conference on Machine Learning, pages 303–313, 2020.

[5] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc Renault. Online
computation with untrusted advice. In 11th Innovations in Theoretical Computer Science
Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[6] Antonios Antoniadis, Christian Coester, Marek Eliáš, Adam Polak, and Bertrand Simon. Online
metric algorithms with untrusted predictions. ACM Transactions on Algorithms, 19(2):1–34,
2023.

[7] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In International Conference on Machine Learning, pages 353–362, 2018.

[8] George Bennett. Probability inequalities for the sum of independent random variables. Journal
of the American Statistical Association, 57(297):33–45, 1962.

[9] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Logarithmic regret from
sublinear hints. In Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, pages 28222–28232, 2021.

[10] Oscar Boykin, Avi Bryant, Edwin Chen, ellchow, Mike Gagnon, Moses Nakamura, Steven
Noble, Sam Ritchie, Ashutosh Singhal, and Argyris Zymnis. Algebird. https://twitter.
github.io/algebird/, 2016.

[11] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and
David P Woodruff. Bptree: an l2 heavy hitters algorithm using constant memory. In Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 361–376, 2017.

[12] CAIDA. Caida internet traces, chicago. http://www.caida.org/data/monitors/passive-equinix-
chicago.xml, 2016.

[13] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information. IEEE Transactions on
information theory, 52(2):489–509, 2006.

10

https://twitter.github.io/algebird/
https://twitter.github.io/algebird/


[14] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
In International Colloquium on Automata, Languages, and Programming, pages 693–703.
Springer, 2002.

[15] Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld,
Sandeep Silwal, Tal Wagner, David P. Woodruff, and Michael Zhang. Triangle and four cycle
counting with predictions in graph streams. In 10th International Conference on Learning
Representations, ICLR, 2022.

[16] Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph
algorithms via learned predictions. In International Conference on Machine Learning, ICML,
volume 162 of Proceedings of Machine Learning Research, pages 3583–3602, 2022.

[17] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Annals of Mathematical Statistics, 23(4):493–507, 1952.

[18] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input
sparsity time. Journal of the ACM (JACM), 63(6):1–45, 2017.

[19] Edith Cohen, Ofir Geri, and Rasmus Pagh. Composable sketches for functions of frequencies:
Beyond the worst case. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

[20] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[21] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Frequency estimation of internet
packet streams with limited space. In Esa, volume 2, pages 348–360. Citeseer, 2002.

[22] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and Nikos Zarifis. Learning
online algorithms with distributional advice. In International Conference on Machine Learning,
pages 2687–2696, 2021.

[23] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvit-
skii. Faster matchings via learned duals. Advances in neural information processing systems,
34:10393–10406, 2021.

[24] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning sublinear-time indexing
for nearest neighbor search. arXiv preprint arXiv:1901.08544, 2019.

[25] David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–
1306, 2006.

[26] Marina Drygala, Sai Ganesh Nagarajan, and Ola Svensson. Online algorithms with costly
predictions. In Proceedings of The 26th International Conference on Artificial Intelligence
and Statistics, volume 206 of Proceedings of Machine Learning Research, pages 8078–8101.
PMLR, 2023.

[27] Elbert Du, Franklyn Wang, and Michael Mitzenmacher. Putting the “learning" into learning-
augmented algorithms for frequency estimation. In Proceedings of the 38th International
Conference on Machine Learning, pages 2860–2869, 2021.

[28] Talya Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, and Tal Wagner.
Learning-based support estimation in sublinear time. In 9th International Conference on
Learning Representations, ICLR, 2021.

[29] Paul Erdős. On a lemma of littlewood and offord. Bulletin of the American Mathematical
Society, 51(12):898–902, 1945.

[30] Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. In 10th International Conference on Learning Representations,
ICLR, 2022.

11



[31] Cristian Estan and George Varghese. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Transactions on Computer Systems (TOCS),
21(3):270–313, 2003.

[32] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In Proceedings of the 36th International Conference on Machine Learning, pages
2319–2327, 2019.

[33] Amit Goyal, Hal Daumé III, and Graham Cormode. Sketch algorithms for estimating point
queries in nlp. In Proceedings of the 2012 joint conference on empirical methods in natural
language processing and computational natural language learning, pages 1093–1103, 2012.

[34] Anupam Gupta, Debmalya Panigrahi, Bernardo Subercaseaux, and Kevin Sun. Augmenting
online algorithms with ε-accurate predictions. Advances in Neural Information Processing
Systems, 35:2115–2127, 2022.

[35] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963.

[36] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[37] Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Purohit. Parsimonious learning-augmented
caching. In International Conference on Machine Learning, pages 9588–9601. PMLR, 2022.

[38] Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. In
Advances in Neural Information Processing Systems, pages 7400–7410, 2019.

[39] Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. Learning-augmented
data stream algorithms. In International Conference on Learning Representations, 2020.

[40] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Systems (TODS),
28(1):51–55, 2003.

[41] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6348–6358, 2017.

[42] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
pages 489–504, 2018.

[43] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1859–1877. SIAM, 2020.

[44] Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David Woodruff. Learning the positions in
countsketch. In 11th International Conference on Learning Representations, ICLR, 2023.

[45] John Edensor Littlewood and Albert C Offord. On the number of real roots of a random
algebraic equation. ii. In Mathematical Proceedings of the Cambridge Philosophical Society,
volume 35, pages 133–148. Cambridge University Press, 1939.

[46] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman.
One sketch to rule them all: Rethinking network flow monitoring with univmon. In Proceedings
of the 2016 ACM SIGCOMM Conference, pages 101–114, 2016.

[47] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In International Conference on Machine Learning, pages 3302–3311, 2018.

[48] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams.
In VLDB’02: Proceedings of the 28th International Conference on Very Large Databases, pages
346–357. Elsevier, 2002.

12



[49] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of frequent
and top-k elements in data streams. In International Conference on Database Theory, pages
398–412. Springer, 2005.

[50] Gregory T Minton and Eric Price. Improved concentration bounds for count-sketch. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
669–686. Society for Industrial and Applied Mathematics, 2014.

[51] Jayadev Misra and David Gries. Finding repeated elements. Science of computer programming,
2(2):143–152, 1982.

[52] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems, pages 464–473, 2018.

[53] Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[54] Thy Nguyen, Anamay Chaturvedi, and Huy Le Nguyen. Improved learning-augmented algo-
rithms for k-means and k-medians clustering. 2023.

[55] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In Proceedings of the
1st international conference on Scalable information systems, pages 1–es, 2006.

[56] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

[57] Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran,
and Seyed Mehran Kazemi. Kwikbucks: Correlation clustering with cheap-weak and expensive-
strong signals. In The Eleventh International Conference on Learning Representations, 2023.

[58] Partha Talukdar and William Cohen. Scaling graph-based semi supervised learning to large
number of labels using count-min sketch. In Artificial Intelligence and Statistics, pages 940–947.
PMLR, 2014.

[59] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big data -
a survey. Proceedings of the IEEE, 104(1):34–57, 2016.

[60] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. Advances in Neural Information Processing Systems, 33:8042–
8053, 2020.

[61] David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

[62] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with opensketch.
In NSDI, volume 13, pages 29–42, 2013.

[63] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave,
Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. Apache spark:
a unified engine for big data processing. Communications of the ACM, 59(11):56–65, 2016.

13



A Organization of the Appendix

In Section B, we give tight bounds for CM with Zipfians, as well as tight bounds for CS (in Section
C) and its learning augmented variants (in Section D). Our results for CM and CS, with and without
predictions, can be summarized in Table 2. We highlight the results of these sections are presented
assuming that we use a total of B buckets. With k hash functions, the range of each hash functions is
therefore [B/k]. We make this assumption since we wish to compare the expected error incurred by
the different sketches when the total sketch size is fixed.

Sections E and F contain the proofs of Theorems 2.1 and 3.1, respectively. Section H contains omitted
proofs of Section 3.2.

In Section J, we include additional experimental results.

Notation We use the bracket [·] notation for the indicator function. a ≲ b denotes a ≤ Cb for some
fixed positive constant C.

k = 1 k > 1

Count-Min (CM) Θ
(︂

logn
B

)︂
[36] Θ

(︂
k·log( kn

B )

B

)︂
Learned Count-Min (L-CM) Θ

(︂
log2( n

B )

B logn

)︂
[36] Ω

(︂
log2( n

B )

B logn

)︂
[36]

Count-Sketch (CS) Θ
(︂

logB
B

)︂
Ω
(︂

k1/2

B log k

)︂
and O

(︂
k1/2

B

)︂
Learned Count-Sketch (L-CS) Θ

(︂
log n

B

B logn

)︂
Ω
(︂

log n
B

B logn

)︂
Table 2: This table summarizes our and previously known results on the expected frequency estimation
error of Count-Min (CM), Count-Sketch (CS) and their learned variants (i.e., L-CM and L-CS) that
use k functions and overall space k × B

k under Zipfian distribution. For CS, we assume that k is odd
(so that the median of k values is well defined).

B Tight Bounds for Count-Min with Zipfians

For both Count-Min and Count-Sketch we aim at analyzing the expected value of the variable∑︁
i∈[n] fi · |f̃ i − fi| where fi = 1/i and fĩ is the estimate of fi output by the relevant sketching

algorithm. Throughout this paper we use the following notation: For an event E we denote by [E] the
random variable in {0, 1} which is 1 if and only if E occurs. We begin by presenting our improved
analysis of Count-Min with Zipfians. The main theorem is the following.
Theorem B.1. Let n,B, k ∈ N with k ≥ 2 and B ≤ n/k. Let further h1, . . . , hk : [n] → [B]

be independent and truly random hash functions. For i ∈ [n] define the random variable fĩ =

minℓ∈[k]

(︂∑︁
j∈[n][hℓ(j) = hℓ(i)]fj

)︂
. For any i ∈ [n] it holds that E[|f̃ i − fi|] = Θ

(︃
log( n

B )
B

)︃
.

Replacing B by B/k in Theorem B.1 and using linearity of expectation we obtain the desired bound
for Count-Min in the upper right hand side of Table 2. The natural assumption that B ≤ n/k simply
says that the total number of buckets is upper bounded by the number of items.

To prove Theorem B.1 we start with the following lemma which is a special case of the theorem.
Lemma B.2. Suppose that we are in the setting of Theorem B.1 and further that2 n = B. Then

E[|fĩ − fi|] = O

(︃
1

n

)︃
.

Proof. It suffices to show the result when k = 2 since adding more hash functions and corresponding
tables only decreases the value of |f̃ i−fi|. Define Zℓ =

∑︁
j∈[n]\{i}[hℓ(j) = hℓ(i)]fj for ℓ ∈ [2] and

2In particular we dispose with the assumption that B ≤ n/k.

14



note that these variables are independent. For a given t ≥ 3/n we wish to upper bound Pr[Zℓ ≥ t].
Let s < t be such that t/s is an integer, and note that if Zℓ ≥ t then either of the following two events
must hold:

E1: There exists a j ∈ [n] \ {i} with fj > s and hℓ(j) = hℓ(i).

E2: The set {j ∈ [n] \ {i} : hℓ(j) = hℓ(i)} contains at least t/s elements.

To see this, suppose that Zℓ ≥ t and that E1 does not hold. Then

t ≤ Zℓ =
∑︂

j∈[n]\{i}

[hℓ(j) = hℓ(i)]fj ≤ s|{j ∈ [n] \ {i} : hℓ(j) = hℓ(i)}|,

so it follows that E2 holds. By a union bound,

Pr[Zℓ ≥ t] ≤ Pr[E1] + Pr[E2] ≤
1

ns
+

(︃
n

t/s

)︃
n−t/s ≤ 1

ns
+
(︂es

t

)︂t/s
.

Choosing s = Θ( t
log(tn) ) such that t/s is an integer, and using t ≥ 3

n , a simple calculation yields

that Pr[Zℓ ≥ t] = O
(︂

log(tn)
tn

)︂
. Note that |fĩ − fi| = min(Z1, Z2). As Z1 and Z2 are independent,

Pr[|fĩ − fi| ≥ t] = O

(︃(︂
log(tn)

tn

)︂2)︃
, so

E[|fĩ − fi|] =
∫︂ ∞

0

Pr[Z ≥ t] dt ≤ 3

n
+O

(︄∫︂ ∞

3/n

(︃
log(tn)

tn

)︃2

dt

)︄
= O

(︃
1

n

)︃
.

We can now prove the full statement of Theorem B.1.

Proof of Theorem B.1. We start out by proving the upper bound. Let N1 = [B] \ {i} and N2 =
[n] \ ([B]∪{i}). Let b ∈ [k] be such that

∑︁
j∈N1

fj · [hb(j) = hb(i)] is minimal. Note that b is itself
a random variable. We also define

Y1 =
∑︂
j∈N1

fj · [hb(j) = hb(i)], and Y2 =
∑︂
j∈N2

fj · [hb(j) = hb(i)].

Then, |f̃ i − fi| ≤ Y1 + Y2. Using Lemma B.2, we obtain that E[Y1] = O( 1
B ). For Y2 we observe

that

E[Y2 | b] =
∑︂
j∈N2

fj
B

= O

(︄
log
(︁
n
B

)︁
B

)︄
.

We conclude that

E[|f̃ i − fi|] ≤ E[Y1] + E[Y2] = E[Y1] + E[E[Y2 | b]] = O

(︄
log
(︁
n
B

)︁
B

)︄
.

Next we prove the lower bound. We have already seen that the main contribution to the error
comes from the tail of the distribution. As the tail of the distribution is relatively “flat” we can
simply apply a concentration inequality to argue that with probability Ω(1), we have this asymptotic
contribution for each of the k hash functions. To be precise, for j ∈ [n] and ℓ ∈ [k] we define
X

(j)
ℓ = fj ·

(︁
[hℓ(j) = hℓ(i)]− 1

B

)︁
. Note that the variables (X(j)

ℓ )j∈[n] are independent. We also
define Sℓ =

∑︁
j∈N2

X
(j)
ℓ for ℓ ∈ [k]. Observe that |X(j)

ℓ | ≤ fj ≤ 1
B for j ≥ B, E[X(j)

ℓ ] = 0, and
that

Var[Sℓ] =
∑︂
j∈N2

f2
j

(︃
1

B
− 1

B2

)︃
≤ 1

B2
.

15



Applying Bennett’s inequality(Theorem I.1 of Appendix I), with σ2 = 1
B2 and M = 1/B thus gives

that

Pr[Sℓ ≤ −t] ≤ exp (−h (tB)) .

Defining Wℓ =
∑︁

j∈N2
fj · [hℓ(j) = hℓ(i)] it holds that E[Wℓ] = Θ

(︃
log( n

B )
B

)︃
and Sℓ = Wℓ −

E[Wℓ], so putting t = E[Wℓ]/2 in the inequality above we obtain that

Pr[Wℓ ≤ E[Wℓ]/2] = Pr[Sℓ ≤ −E[Wℓ]/2] ≤ exp
(︂
−h
(︂
Ω
(︂
log

n

B

)︂)︂)︂
.

Appealing to Remark I.1 and using that B ≤ n/k the above bound becomes

Pr[Wℓ ≤ E[Wℓ]/2] ≤ exp
(︂
−Ω

(︂
log

n

B
· log

(︂
log

n

B
+ 1
)︂)︂)︂

= exp(−Ω(log k · log(log k + 1))) = k−Ω(log(log k+1)). (2)

By the independence of the events (Wℓ > E[Wℓ]/2)ℓ∈[k], we have that

Pr

[︃
|f̃ i − fi| ≥

E[Wℓ]

2

]︃
≥ (1− k−Ω(log(log k+1)))k = Ω(1),

and so E[|f̃ i − fi|] = Ω(E[Wℓ]) = Ω

(︃
log( n

B )
B

)︃
, as desired.

Remark B.1. We have stated Theorem B.1 for truly random hash functions but it suffices with
O(logB)-independent hashing to prove the upper bound. Indeed, the only step in which we require
high independence is in the union bound in Lemma B.2 over the

(︁
n
t/s

)︁
subsets of [n] of size t/s. To

optimize the bound we had to choose s = t/ log(tn), so that t/s = log(tn). As we only need to
consider values of t with t ≤

∑︁n
i=1 fi = O(log n), in fact t/s = O(log n) in our estimates. Finally,

we applied Lemma B.2 with n = B so it follows that O(logB)-independence is enough to obtain
our upper bound.

C (Nearly) Tight Bounds for Count-Sketch with Zipfians

In this section we proceed to analyze Count-Sketch for Zipfians either using a single or more hash
functions. We start with two simple lemmas which for certain frequencies (fi)i∈[n] of the items
in the stream can be used to obtain respectively good upper and lower bounds on E[|f̃ i − fi|] in
Count-Sketch with a single hash function. We will use these two lemmas both in our analysis of
standard and learned Count-Sketch for Zipfians.
Lemma C.1. Let w = (w1, . . . , wn) ∈ Rn, η1, . . . , ηn Bernoulli variables taking value 1 with
probability p, and σ1, . . . , σn ∈ {−1, 1} independent Rademachers, i.e., Pr[σi = 1] = Pr[σi =
−1] = 1/2. Let S =

∑︁n
i=1 wiηiσi. Then, E[|S|] = O

(︁√
p∥w∥2

)︁
.

Proof. Using that E[σiσj ] = 0 for i ̸= j and Jensen’s inequality E[|S|]2 ≤ E[S2] =
E
[︁∑︁n

i=1 w
2
i ηi
]︁
= p∥w∥22, from which the result follows.

Lemma C.2. Suppose that we are in the setting of Lemma C.1. Let I ⊂ [n] and let wI ∈ Rn be
defined by (wI)i = [i ∈ I] · wi. Then

E[|S|] ≥ 1

2
p (1− p)

|I|−1 ∥wI∥1.

Proof. Let J = [n] \ I , S1 =
∑︁

i∈I wiηiσi, and S2 =
∑︁

i∈J wiηiσi. Let E denote the event that S1

and S2 have the same sign or S2 = 0. Then Pr[E] ≥ 1/2 by symmetry. For i ∈ I we denote by Ai

the event that {j ∈ I : ηj ̸= 0} = {i}. Then Pr[Ai] = p(1− p)|I|−1 and furthermore Ai and E are
independent. If Ai ∩ E occurs, then |S| ≥ |wi| and as the events (Ai ∩ E)i∈I are disjoint it thus
follows that E[|S|] ≥

∑︁
i∈I Pr[Ai ∩ E] · |wi| ≥ 1

2p (1− p)
|I|−1 ∥wI∥1.

With these tools in hand, we proceed to analyse Count-Sketch for Zipfians with one and more hash
functions in the next two sections.

16



C.1 One hash function

By the same argument as in the discussion succeeding Theorem B.1, the following theorem yields
the desired result for a single hash function as presented in Table 2.
Theorem C.3. Suppose that B ≤ n and let h : [n]→ [B] and s : [n]→ {−1, 1} be truly random
hash functions. Define the random variable fĩ =

∑︁
j∈[n][h(j) = h(i)]s(j)fj for i ∈ [n]. Then

E[|f̃ i − s(i)fi|] = Θ

(︃
logB

B

)︃
.

Proof. Let i ∈ [n] be fixed. We start by defining N1 = [B] \ {i} and N2 = [n] \ ([B] ∪ {i}) and
note that

|fĩ − s(i)fi| ≤

⃓⃓⃓⃓
⃓⃓ ∑︂
j∈N1

[h(j) = h(i)]s(j)fj

⃓⃓⃓⃓
⃓⃓+
⃓⃓⃓⃓
⃓⃓ ∑︂
j∈N2

[h(j) = h(i)]s(j)fj

⃓⃓⃓⃓
⃓⃓ := X1 +X2.

Using the triangle inequality E[X1] ≤ 1
B

∑︁
j∈N1

fj = O( logB
B ). Also, by Lemma C.1, E[X2] =

O
(︁
1
B

)︁
and combining the two bounds we obtain the desired upper bound. For the lower bound we

apply Lemma C.2 with I = N1 concluding that

E[|fĩ − s(i)fi|] ≥
1

2B

(︃
1− 1

B

)︃|N1|−1 ∑︂
i∈N1

fi = Ω

(︃
logB

B

)︃
.

C.2 Multiple hash functions

Let k ∈ N be odd. For a tuple x = (x1, . . . , xk) ∈ Rk we denote by medianx the median of the
entries of x. The following theorem immediately leads to the result on CS with k ≥ 3 hash functions
claimed in Table 2.
Theorem C.4. Let k ≥ 3 be odd, n ≥ kB, and h1, . . . , hk : [n] → [B] and s1, . . . , sk : [n] →
{−1, 1} be truly random hash functions. Define fĩ = medianℓ∈[k]

(︂∑︁
j∈[n][hℓ(j) = hℓ(i)]sℓ(j)fj

)︂
for i ∈ [n]. Assume that3 k ≤ B. Then

E[|fĩ − s(i)fi|] = Ω

(︃
1

B
√
k log k

)︃
, and E[|fĩ − s(i)fi|] = O

(︃
1

B
√
k

)︃
The assumption n ≥ kB simply says that the total number of buckets is upper bounded by the number
of items. Again using linearity of expectation for the summation over i ∈ [n] and replacing B by
B/k we obtain the claimed upper and lower bounds of

√
k

B log k and
√
k

B respectively. We note that
even if the bounds above are only tight up to a factor of log k they still imply that it is asymptotically
optimal to choose k = O(1), e.g. k = 3. To settle the correct asymptotic growth is thus of merely
theoretical interest.

In proving the upper bound in Theorem C.4, we will use the following result by Minton and Price
(Corollary 3.2 of [50]) proved via an elegant application of the Fourier transform.
Lemma C.5 (Minton and Price [50]). Let {Xi : i ∈ [n]} be independent symmetric random variables
such that Pr[Xi = 0] ≥ 1/2 for each i. Let X =

∑︁n
i=1 Xi and σ2 = E[X2] = Var[X]. For ε < 1

it holds that Pr[|X| < εσ] = Ω(ε)

Proof of Theorem C.4. If B (and hence k) is a constant, then the results follow easily
from Lemma C.1, so in what follows we may assume that B is larger than a sufficiently large
constant. We subdivide the exposition into the proofs of the upper and lower bounds.

3This very mild assumption can probably be removed at the cost of a more technical proof. In our proof it
can even be replaced by k ≤ B2−ε for any ε = Ω(1).

17



Upper bound Define N1 = [B] \ {i} and N2 = [n] \ ([B] ∪ {i}). Let for ℓ ∈ [k], X(ℓ)
1 =∑︁

j∈N1
[hℓ(j) = hℓ(i)]sℓ(j)fj and X

(ℓ)
2 =

∑︁
j∈N2

[hℓ(j) = hℓ(i)]sℓ(j)fj and let X(ℓ) = X
(ℓ)
1 +

X
(ℓ)
2 .

As the absolute error in Count-Sketch with one pair of hash functions (h, s) is always upper bounded
by the corresponding error in Count-Min with the single hash function h, we can use the bound
in the proof of Lemma B.2 to conclude that Pr[|X(ℓ)

1 | ≥ t] = O( log(tB)
tB ), when t ≥ 3/B. Also

Var[X
(ℓ)
2 ] = ( 1

B −
1
B2 )

∑︁
j∈N2

f2
j ≤ 1

B2 , so by Bennett’s inequality (Theorem I.1) with M = 1/B

and σ2 = 1/B2 and Remark I.1,

Pr[|X(ℓ)
2 | ≥ t] ≤ 2 exp (−h(tB)) ≤ 2 exp

(︃
−1

2
tB log (tB + 1)

)︃
= O

(︃
log(tB)

tB

)︃
,

for t ≥ 3
B . It follows that for t ≥ 3/B,

Pr[|X(ℓ)| ≥ 2t] ≤ Pr[(|X(ℓ)
1 | ≥ t)] + Pr(|X(ℓ)

2 | ≥ t)] = O

(︃
log(tB)

tB

)︃
.

Let C be the implicit constant in the O-notation above. If |fĩ − s(i)fi| ≥ 2t, at least half of the
values (|X(ℓ)|)ℓ∈[k] are at least 2t. For t ≥ 3/B it thus follows by a union bound that

Pr[|fĩ − s(i)fi| ≥ 2t] ≤ 2

(︃
k

⌈k/2⌉

)︃(︃
C
log(tB)

tB

)︃⌈k/2⌉

≤ 2

(︃
4C

log(tB)

tB

)︃⌈k/2⌉

. (3)

If α = O(1) is chosen sufficiently large it thus holds that∫︂ ∞

α/B

Pr[|fĩ − s(i)fi| ≥ t] dt = 2

∫︂ ∞

α/(2B)

Pr[|fĩ − s(i)fi| ≥ 2t] dt

≤ 4

B

∫︂ ∞

α/2

(︃
4C

log(t)

t

)︃⌈k/2⌉

dt

≤ 1

B2k
≤ 1

B
√
k
.

Here the first inequality uses Equation (3) and a change of variable. The second inequality uses that(︂
4C log t

t

)︂⌈k/2⌉
≤ (C ′/t)2k/5 for some constant C ′ followed by a calculation of the integral. Now,

E[|fĩ − s(i)fi|] =
∫︂ ∞

0

Pr[|fĩ − s(i)fi| ≥ t] dt,

so for our upper bound it therefore suffices to show that
∫︁ α/B

0
Pr[|fĩ − s(i)fi| ≥ t] dt = O

(︂
1

B
√
k

)︂
.

For this we need the following claim:

Claim C.6. Let I ⊂ R be the closed interval centered at the origin of length 2t, i.e., I = [−t, t].
Suppose that 0 < t ≤ 1

2B . For ℓ ∈ [k], Pr[X(ℓ) ∈ I] = Ω(tB).

Proof. Note that Pr[X(ℓ)
1 = 0] ≥ Pr[

⋀︁
j∈N1

(hℓ(j) ̸= hℓ(i))] = (1 − 1
B )N1 = Ω(1). Secondly

Var[X
(ℓ)
2 ] = ( 1

B −
1
B2 )

∑︁
j∈N2

f2
j ≤ 1

B2 . Using that X(ℓ)
1 and X

(ℓ)
2 are independent and Lemma C.5

with σ2 = Var[X
(ℓ)
2 ], it follows that Pr[X(ℓ) ∈ I] = Ω

(︂
Pr[X

(ℓ)
2 ∈ I]

)︂
= Ω(tB).

Let us now show how to use the claim to establish the desired upper bound. For this let 0 < t ≤ 1
2B

be fixed. If |fĩ − s(i)fi| ≥ t, at least half of the values (X(ℓ))ℓ∈[k] are at least t or at most −t.
Let us focus on bounding the probability that at least half are at least t, the other bound being
symmetric giving an extra factor of 2 in the probability bound. By symmetry and Claim C.6,
Pr[X(ℓ) ≥ t] = 1

2 − Ω(tB). For ℓ ∈ [k] we define Yℓ = [X(ℓ) ≥ t], and we put S =
∑︁

ℓ∈[k] Yℓ.

18



Then E[S] = k
(︁
1
2 − Ω(tB)

)︁
. If at least half of the values (X(ℓ))ℓ∈[k] are at least t then S ≥ k/2.

By Hoeffding’s inequality (Theorem I.3) we can bound the probability of this event by

Pr[S ≥ k/2] = Pr[S − E[S] = Ω(ktB)] = exp(−Ω(kt2B2)).

It follows that Pr[|fĩ − s(i)fi| ≥ t] ≤ 2 exp(−Ω(kt2B2)). Thus∫︂ α/B

0

Pr[|fĩ − s(i)fi| ≥ t] dt ≤
∫︂ 1

2B

0

2 exp(−Ω(kt2B2)) dt+

∫︂ α/B

1
2B

2 exp(−Ω(k)) dt

≤ 1

B
√
k

∫︂ √
k/2

0

exp(−t2) dt+ 2α exp(−Ω(k))
B

= O

(︃
1

B
√
k

)︃
.

Here the second inequality used a change of variable. The proof of the upper bound is complete.

Lower Bound Fix ℓ ∈ [k] and let M1 = [B log k] \ {i} and M2 = [n] \ ([B log k] ∪ {i}). Write

S :=
∑︂
j∈M1

[hℓ(j) = hℓ(i)]sℓ(j)fj +
∑︂
j∈M2

[hℓ(j) = hℓ(i)]sℓ(j)fj := S1 + S2.

We also define J := {j ∈M1 : hℓ(j) = hℓ(i)}. Let I ⊆ R be the closed interval around sℓ(i)fi of
length 1

B
√
k log k

. We now upper bound the probability that S ∈ I conditioned on the value of S2. To
ease the notation, the conditioning on S2 has been left out in the notation to follow. Note first that

Pr[S ∈ I] =

|M1|∑︂
r=0

Pr[S ∈ I | |J | = r] · Pr[|J | = r]. (4)

For a given r ≥ 1 we now proceed to bound Pr[S ∈ I | |J | = r]. This probability is the same as
the probability that S2 +

∑︁
j∈R σjfj ∈ I , where R ⊆M1 is a uniformly random r-subset and the

σj’s are independent Rademachers. Suppose that we sample the elements from R as well as the
corresponding signs (σi)i∈R sequentially, and let us condition on the values and signs of the first
r − 1 sampled elements. At this point at most B log k√

k
+ 1 possible samples for the last element in R

can cause that S ∈ I . Indeed, the minimum distance between distinct elements of {fj : j ∈M1} is
at least 1/(B log k)2 and furthermore I has length 1

B
√
k log k

. Thus, at most

1

B
√
k log k

· (B log k)2 + 1 =
B log k√

k
+ 1

choices for the last element of R ensure that S ∈ I . For 1 ≤ r ≤ (B log k)/2 we can thus upper
bound

Pr[S ∈ I | |J | = r] ≤
B log k√

k
+ 1

|M1| − r + 1
≤ 2√

k
+

2

B log k
≤ 3√

k
.

Note that µ := E[|J |] ≤ log k so for B ≥ 6, it holds that

Pr[|J | ≥ (B log k)/2] ≤ Pr

[︃
|J | ≥ µ

B

2

]︃
≤ Pr

[︃
|J | ≥ µ

(︃
1 +

B

3

)︃]︃
≤ exp (−µh(B/3)) = k−Ω(h(B/3)),

where the last inequality follows from the Chernoff bound of Theorem I.2. Thus, if we assume
that B is larger than a sufficiently large constant, then Pr[|J | ≥ B log k/2] ≤ k−1. Finally,
Pr[|J | = 0] = (1− 1/B)B log k ≤ k−1. Combining the above, we can continue the bound in (4) as
follows.

Pr[S ∈ I] ≤Pr[|J | = 0] +

(B log k)/2∑︂
r=1

Pr[S ∈ I | |J | = r] · Pr[|J | = r]

+

|M1|∑︂
r=(B log k)/2+1

Pr[|J | = r] = O

(︃
1√
k

)︃
, (5)

19



which holds even after removing the conditioning on S2. We now show that with probability
Ω(1) at least half the values (X(ℓ))ℓ∈[k] are at least 1

2B
√
k log k

. Let p0 be the probability that

X(ℓ) ≥ 1
2B

√
k log k

. This probability does not depend on ℓ ∈ [k] and by symmetry and (5), p0 =

1/2−O(1/
√
k). Define the function f : {0, . . . , k} → R by

f(t) =

(︃
k

t

)︃
pt0(1− p0)

k−t.

Then f(t) is the probability that exactly t of the values (X(ℓ))ℓ∈[k] are at least 1
B
√
k log k

. Using that

p0 = 1/2 − O(1/
√
k), a simple application of Stirling’s formula gives that f(t) = Θ

(︂
1√
k

)︂
for

t = ⌈k/2⌉, . . . , ⌈k/2 +
√
k⌉ when k is larger than some constant C. It follows that with probability

Ω(1) at least half of the (X(ℓ))ℓ∈[k] are at least 1
B
√
k log k

and in particular

E[|fĩ − fi|] = Ω

(︃
1

B
√
k log k

)︃
.

Finally we handle the case where k ≤ C. It follows from simple calculations (e.g., using Lemma C.2)
that X(ℓ) = Ω(1/B) with probability Ω(1). Thus this happens for all ℓ ∈ [k] with probability Ω(1)

and in particular E[|fĩ − fi|] = Ω(1/B), which is the desired for constant k.

D Learned Count-Sketch for Zipfians

We now proceed to analyze the learned Count-Sketch algorithm. In Appendix D.1 we estimate the
expected error when using a single hash function and in Appendix D.2 we show that the expected
error only increases when using more hash functions. Recall that we assume that the number of
buckets Bh used to store the heavy hitters that Bh = Θ(B −Bh) = Θ(B).

D.1 One hash function

By taking B1 = Bh = Θ(B) and B2 = B −Bh = Θ(B) in the theorem below, the result on L-CS
for k = 1 claimed in Table 2 follows immediately.

Theorem D.1. Let h : [n] \ [B1] → [B2] and s : [n] → {−1, 1} be truly random hash functions
where n,B1, B2 ∈ N and4 n−B1 ≥ B2 ≥ B1. Define the random variable fĩ =

∑︁n
j=B1+1[h(j) =

h(i)]s(j)fj for i ∈ [n] \ [B1]. Then

E[|f̃ i − s(i)fi|] = Θ

(︄
log B2+B1

B1

B2

)︄

Proof. Let N1 = [B1+B2]\([B1]∪{i}) and N2 = [n]\([B1+B2]∪{i}). Let X1 =
∑︁

j∈N1
[h(j) =

h(i)]s(j)fj and X2 =
∑︁

j∈N2
[h(j) = h(i)]s(j)fj . By the triangle inequality and linearity of

expectation,

E[|X1|] = O

(︄
log B2+B1

B1

B2

)︄
.

Moreover, it follows directly from Lemma C.1 that E [|X2|] = O
(︂

1
B2

)︂
. Thus

E[|f̃ i − s(i)fi|] ≤ E[|X1|] + E[|X2|] = O

(︄
log B2+B1

B1

B2

)︄
,

4The first inequality is the standard assumption that we have at least as many items as buckets. The second
inequality says that we use at least as many buckets for non-heavy items as for heavy items (which doesn’t
change the asymptotic space usage).

20



as desired. For the lower bound on E
[︂⃓⃓⃓
fĩ − s(i)fi

⃓⃓⃓]︂
we apply Lemma C.2 with I = N1 to obtain

that,

E
[︂⃓⃓⃓
fĩ − s(i)fi

⃓⃓⃓]︂
≥ 1

2B2

(︃
1− 1

B2

)︃|N1|−1 ∑︂
i∈N1

fi = Ω

(︄
log B2+B1

B1

B2

)︄
.

Corollary D.2. Let h : [n]\ [Bh]→ [B−Bh] and s : [n]→ {−1, 1} be truly random hash functions
where n,B,Bh ∈ N and Bh = Θ(B) ≤ B/2. Define the random variable fĩ =

∑︁n
j=Bh+1[h(j) =

h(i)]s(j)fj for i ∈ [n] \ [Bh]. Then E[|f̃ i − s(i)fi|] = Θ(1/B).
Remark D.1. The upper bounds of Theorem D.1 and Corollary D.2 hold even without the assumption
of fully random hashing. In fact, we only require that h and s are 2-independent. Indeed Lemma C.1
holds even when the Rademachers are 2-independent (the proof is the same). Moreover, we need h to
be 2-independent as we condition on h(i) in our application of Lemma C.1. With 2-independence the
variables [h(j) = h(i)] for j ̸= i are then Bernoulli variables taking value 1 with probability 1/B2.

D.2 More hash functions

We now show that, like for Count-Sketch, using more hash functions does not decrease the expected
error. We first state the Littlewood-Offord lemma as strengthened by Erdős.
Theorem D.3 (Littlewood-Offord [45], Erdős [29]). Let a1, . . . , an ∈ R with |ai| ≥ 1 for i ∈ [n].
Let further σ1, . . . , σn ∈ {−1, 1} be random variables with Pr[σi = 1] = Pr[σi = −1] = 1/2 and
define S =

∑︁n
i=1 σiai. For any v ∈ R it holds that Pr[|S − v| ≤ 1] = O(1/

√
n).

Setting B1 = Bh = Θ(B) and B2 = B −B2 = Θ(B) in the theorem below gives the final bound
from Table 2 on L-CS with k ≥ 3.
Theorem D.4. Let n ≥ B1 + B2 ≥ 2B1, k ≥ 3 odd, and h1, . . . , hk : [n] \ [B1] → [B2/k] and
s1, . . . , sk : [n] \ [B1] → {−1, 1} be independent and truly random. Define the random variable

fĩ = medianℓ∈[k]

(︂∑︁
j∈[n]\[B1]

[hℓ(j) = hℓ(i)]sℓ(j)fj

)︂
for i ∈ [n] \ [B1]. Then

E[|f̃ i − s(i)fi|] = Ω

(︃
1

B2

)︃
.

Proof. Like in the proof of the lower bound of Theorem C.4 it suffices to show that for each i
the probability that the sum Sℓ :=

∑︁
j∈[n]\([B1]∪{i})[hℓ(j) = hℓ(i)]sℓ(j)fj lies in the interval

I = [−1/(2B2), 1/(2B2)] is O(1/
√
k). Then at least half the (Sℓ)ℓ∈[k] are at least 1/(2B2) with

probability Ω(1) by an application of Stirling’s formula, and it follows that E[|f̃ i − s(i)fi|] =
Ω(1/B2).

Let ℓ ∈ [k] be fixed, N1 = [2B2] \ ([B2] ∪ {i}), and N2 = [n] \ (N1 ∪ {i}), and write

Sℓ =
∑︂
j∈N1

[hℓ(j) = hℓ(i)]sℓ(j)fj +
∑︂
j∈N2

[hℓ(j) = hℓ(i)]sℓ(j)fj := X1 +X2.

Now condition on the value of X2. Letting J = {j ∈ N1 : hℓ(j) = hℓ(i)} it follows by Theorem D.3
that

Pr[Sℓ ∈ I | X2] = O

⎛⎝ ∑︂
J′⊆N1

Pr[J = J ′]√︁
|J ′|+ 1

⎞⎠ = O
(︂
Pr[|J | < k/2] + 1/

√
k
)︂
.

An application of Chebyshev’s inequality gives that Pr[|J | < k/2] = O(1/k), so Pr[Sℓ ∈ I] =

O(1/
√
k). Since this bound holds for any possible value of X2 we may remove the conditioning and

the desired result follows.

Remark D.2. The bound above is probably only tight for B1 = Θ(B2). Indeed, we know that it
cannot be tight for all B1 ≤ B2 since when B1 becomes very small, the bound from the standard
Count-Sketch with k ≥ 3 takes over — and this is certainly worse than the bound in the theorem.
It is an interesting open problem (that requires a better anti-concentration inequality than the
Littlewood-Offord lemma) to settle the correct bound when B1 ≪ B2.

21



E Proof of Theorem 2.1

In this section we give the complete proof of Theorem 2.1. We need the following special case of a
result about the behaviour of CountSketch, proved in the prior sections.

Theorem E.1 (Theorem C.4). Let f̂ i be the estimate of the ith frequency given by a 3 × B/3
CountSketch table. There exists a universal constant C such that the following two inequalities hold:

Pr

(︃
|fi − f̂

j

i | ≥
C

B

)︃
≤ 1

2
, (6)

∀t ≥ 3/B, Pr
(︂
|fi − f̂

j

i | ≥ t
)︂
≤ C

(︃
log(tB)

tB

)︃2

. (7)

Proof of Theorem 2.1. Case 1: i > B/ log log n. Recall that f̂
j

i denotes the estimate of the ith

frequency given by table Sj in Algorithm 2. Furthermore, f̃ i ← Median(f̂
1

i , . . . , f̂
T−1

i ) denotes the
median of the estimates of the first T − 1 tables in Algorithm 2. From Theorem E.1, we have that for
every fixed j,

Pr

(︃
|fi − f̂

j

i | ≥
2C log log n

B

)︃
≤ 1

4

and so it follows that

Pr

(︃
|fi − f̃ i| ≥

2C log log n

B

)︃
≤ exp(−Ω(T )) ≤ 1

(log n)100
(8)

by adjusting the constant in front of T . We let 2C be the constant for the O notation in line 7 of
Algorithm 2. Now consider the expected value of |f̂ i − 1/i|, where the expectation is taken over the
randomness used by the CountSketch tables of Algorithm 2. By conditioning on the event that we
either output 0 or output the estimate of the T th table, we have

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲ Pr(We output 0) · 1

i2
+ Pr(We output estimate of table T ) · 1

iB

where we have used the first inequality in Theorem E.1 in the above inequality and ≲ denotes
inequality up to a constant factor. We have bounded the second probability in Equation (8) which
gives

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲

1

i2
+

1

iB · (log n)99
. (9)

Case 2: i ≤ B/(log log n)4. We employ the more refined tail bound for Count Sketch stated in the
second inequality of Theorem E.1.

For any i smaller than B/(log log n)4, we have that for any fixed j,

Pr

(︃
f̂
j

i ≤
2C log log n

B

)︃
≤ Pr

(︃
|fi − f̂

j

i | ≥
1

2i

)︃
≲

(︃
log(B′/i) · i

B′

)︃2

where B′ = B/(4T ) = Θ(B/ log log n). It follows that

Pr

(︃
f̃ i ≤

2C log log n

B

)︃
≤ T · Pr

(︃
|fi − f̂

1

i | ≤
2C log log n

B

)︃
≲ T ·

(︃
log(B′/i) · i

B′

)︃2

.

Therefore, for i ≤ B/(log log n)4, we again have

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲ Pr(We output 0) · 1

i2
+ Pr(We output estimate of table T ) · 1

iB

≲ (log log n)3 ·
(︃
log(B/i)

B

)︃2

+
1

iB
.

22



We can summarize this case as:

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲ (log log n)3 ·

(︃
log(B/i)

B

)︃2

+
1

iB
. (10)

Putting everything together. Equation (9) gives us

1

log n
·

∑︂
i>B/ log logn

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲

1

log n

∑︂
i>B/ log logn

1

i2
+

1

B · (log n)100
n∑︂

i=1

1

i

≲
log log n

B log n
.

Equation (10) gives us

1

log n
·

∑︂
i≤B/(log logn)4

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲

1

log n

∑︂
i≤B/(log logn)4

(︄
(log log n)3 ·

(︃
log(B/i)

B

)︃2

+
1

iB

)︄

≲
(log log n)3

B2 log n

∫︂ B/(log logn)4

1

log(B/x)2 dx+
logB

B log n

≲
(log log n)3

B2 log n
· B(log2(log log n))

(log log n)4
+

logB

B log n

≲
logB

B log n

where the second to last inequality follows from the indefinte integral
∫︁
log2(c/x) dx = x log2(c/x)+

2x log(c/x) + 2x+ Constant.

Finally, we deal with the remaining case: i between B/ log log n and B/(log log n)4. For these i’s,
the worst case error happens when we set their estimates to 0, incurring error 1/i, as opposed to
incurring error O(1/B) if we used the estimate of table T :

1

log n
·

∑︂
B/(log logn)4≤i≤B/ log logn

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲

1

log n

∑︂
B/(log logn)4≤i≤B/ log logn

1

i2

≲
(log log n)4

B log n
.

Combining our three estimates completes the proof.

F Proof of Theorem 3.1

Proof of Theorem 3.1. We summarize the intuition and give the full proof. Recall the workhorse of
our analysis is the proof of Theorem 2.1. First note that we obtain 0 error for i < B/2. Thus, all our
error comes from indices i ≥ B/2. Recall the intuition for this case from the proof of Theorem 2.1:
we want to output 0 as our estimates. Now the same analysis as in Case 1 of Theorem 2.1 gives us
that the probability we use the estimate of table T can be bounded by say 1

(logn)100 . Thus, similar to
Equation (9), we have

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲ Pr(We output 0) · 1

i2
+ Pr(We output estimate of table T ) · 1

iB

≲
1

i2
+

1

iB · (log n)99
.

23



Thus, our total error consists of only one part of the total error calculation of Theorem 2.1:

1

log n
·
∑︂
i>B

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲

1

log n

∑︂
i>B

1

i2
+

1

B · (log n)100
n∑︂

i=1

1

i

≲
1

B log n
,

as desired.

Algorithm 5 Parsimonious frequency update algorithm

1: Input: Stream of updates to an n dimensional vector, space budget B, access to a heavy hitter
oracle which correctly identifies the top B/2 heavy hitters.

2: procedure UPDATE
3: T ← O(log log n)
4: for j = 1 to T − 1 do
5: Sj ← CountSketch table with 4 rows and B

16T columns
6: end for
7: ST ← CountSketch table with 4 rows and B

16 columns
8: for stream element (i,∆) do
9: if i is already classified as a top B/2 heavy hitter then

10: Maintain the count of i exactly (from the point of time it was detected as heavy).
11: else
12: Query the heavy hitter oracle with probability p = min

(︁
1, CB(log n)2∆

)︁
13: if i gets queried and is classified as a top B/2 heavy hitter then
14: Maintain the count of i exactly (from this point of time).
15: else
16: Input (i,∆) in each of the T CountSketch tables Sj

17: end if
18: end if
19: end for
20: end procedure

G Parsimonious learning

In this appendix, we state our result on parsimonious learning precisely. We consider the modification
to Algorithm 3 where whenever an element (i,∆) arrives, we only query the heavy hitter oracle with
probability p = min

(︁
1, γB(log n)2∆

)︁
for γ a sufficiently large constant5. To be precise, when an

item i arrives, we first check if it is already classified as a top B/2 heavy hitter. If so, we update
its exact count (from the first point of time where it was classified as heavy). If not, we query the
heavy hitter oracle with probability p. In case i gets queried and classified as one of the top B/2
heavy hitters, we store its count exactly (from this point of time). Otherwise, we input it to the
CountSketch tables Sj similarly to Algorithm 1 and Algorithm 3. Algorithm 5 shows the pseudocode
for the update procedure of our parsimonious learning algorithm. The query procedure is similar
to Algorithm 4. We now state our main result on our parsimonious learning algorithm, namely that it
achieves the same expected weighted error bound as in Theorem 3.1.

Theorem G.1. Consider Algorithm 5 with space parameter B ≥ log n updated over a Zipfian
stream. Suppose the heavy-hitter oracle correctly identifies the top B/2 heavy hitters in the stream.
Let {f̂ i}ni=1 denote the estimates computed by Algorithm 4. The expected weighted error (1) is

E
[︂

1
N ·
∑︁n

i=1 fi · |fi − f̂ i|
]︂

= O
(︂

1
B logn

)︂
. The algorithm makes O(B(log n)3) queries to the

heavy hitter oracle in expectation.

5This sampling probability depends on the length of the stream which is likely unknown to us. We will
discuss how this assumption can be removed shortly.

24



Proof of Theorem G.1. Introducing some notation, we denote the stream ((x1,∆1), . . . , (xm,∆m)).
Letting Si = {j ∈ [m] | xj = i}, we then have that

∑︁
j∈Si

∆j = fj = 1/j. Then, whenever
an element (xj ,∆j) arrives, the algorithm queries the heavy hitter oracle with probability pj =
min

(︁
1, CγB(log n)2∆j

)︁
.

Let us first consider the expected error when estimating the frequency of a heavy hitter i ≤ B/2. Let
j0 ∈ Si be minimal such that

∑︁
j∈Si,j≤j0

∆j ≥ 1
B logn . Since i is a heavy hitter with total frequency

fi ≥ 2/B, such a j0 exists. If there exists j ∈ Si with j ≤ j0 such that pj = 1, then i will be
classified as a heavy hitter by time j0 with probability 1. Otherwise, the probability that i is not
classified as a heavy hitter by time j0 is upper bounded by

∏︂
j∈Si,j≤j0

(1− pj) ≤ exp

⎛⎝− ∑︂
j∈Si,j≤j0

pj

⎞⎠ = exp

⎛⎝−γB(log n)2
∑︂

j∈Si,j≤j0

∆j

⎞⎠
≤ exp(−γ log n) = n−γ .

Union bounding over the B/2 top heavy hitters we find that with high probability in n they are indeed
classified as heavy at the first point of time where they have appeared with weight at least 1

B logn . In
particular, with the same high probability the error when estimating each of the top B/2 heavy hitters
is at most 1

B logn and so,

E

⎡⎣ 1

N
·
B/2∑︂
i=1

fi · |fi − f̂ i|

⎤⎦ = O

(︃
1

B log n

)︃
.

Let us now consider the light elements i > B/2. Such an element is never classified as heavy and
consequently is estimated using the CountSketch tables Sj as in Algorithm 2. Denoting by E the
event that we output 0 (that is, the median of the first T − 1 CountSketch tables is small enough) and
by Ec the event that we output the estimate from table T , as in Appendix F, we again have

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲ Pr(E) · 1

i2
+ Pr(Ec) · 1

iB
≤ 1

i2
+ Pr(Ec) · 1

iB
.

Here, the bound of O(1/B) on the expected error of table T holds even though the B/2 heavy hitters
might appear in table T . The reason is with high probability, these heavy hitters appear with weight at
most 1

B logn and conditioned on this event, we can plug into Lemma C.1 to get that the expected error
is still O(1/B). It remains to bound Pr(Ec). Again, from Lemma C.1, it follows that the expected
error of each of the first T − 1 tables is at most C 2 log logn

B for a sufficiently large constant C (even
including the contribution from the heavy hitters), and so by Markov’s inequality,

Pr

(︃
|fi − f̂

j

i | ≥
2C log log n

B

)︃
≤ 1

4

and again,

Pr

(︃
|fi − f̃ i| ≥

2C log log n

B

)︃
≤ exp(−Ω(T )) ≤ 1

(log n)100
.

Thus, we can bound,

E
[︃
1

i
·
⃓⃓⃓⃓
f̂ i −

1

i

⃓⃓⃓⃓]︃
≲

1

i2
+ · 1

(log n)100iB
.

Recalling that N = Hn and summing over i ≥ B/2 we get that

E

⎡⎣ 1

N
·

n∑︂
i=B/2+1

fi · |fi − f̂ i|

⎤⎦ = O

(︃
1

B log n
+

log(n/B)

B(log n)100

)︃
= O

(︃
1

B log n

)︃
,

as desired. The expected number of queries to the heavy hitter oracle is
m∑︂
j=1

pj ≤
n∑︂

i=1

∑︂
j∈Si

γB(log n)2∆j =

n∑︂
i=1

γB(log n)2fi = O(B(log n)3).

25



Remark G.1. We note that Algorithm 5 makes use of the length of the stream to set p. Usually we
would not know the length of the stream but at the cost of an extra log-factor in the number of queries
made to the oracle, we can remedy this. Indeed, the query probability is p = min

(︂
1, γB(logn)3

m

)︂
where m is the length of the stream. If we instead increase the query probability after we have seen j

stream elements to pj = min
(︂
1, γB(logn)3

j

)︂
, we obtain the same bound on the expected weighted

error. Indeed, we will only detect the heavy hitters earlier. Moreover, the expected number of queries
to the oracle is at most

m∑︂
j=1

γB(log n)3

j
= O

(︁
B(log n)3 logm

)︁
.

H Omitted Proofs of Section 3.2

In this section, we discuss a version of our algorithm using a worst case estimate of the tail of the
distribution, generalizing the value O(AT/B) designed for Zipfian distributions. The algorithm
Basic-Tail-Sketch is essentially the classic AMS sketch [2] with c = O(1) counters for the
elements whose hash value is 1. It is easy to see that the final algorithm, Algorithm 6 uses O(B)
words of space.

Algorithm 6 Estimating the tail of the frequency vector f

1: Input: Stream of updates to an n dimensional vector f , space budget O(B)
2: procedure TAIL-ESTIMATOR
3: Initialize B independent copies of Basic-Tail-Sketch
4: Update each copy of Basic-Tail-Sketch with updates from the stream
5: for 1 ≤ i ≤ B do
6: Vi ← value outputted by ith copy of Basic-Tail-Sketch after stream ends
7: end for
8: Return V ← the B/3-th largest value among {Vi}Bi=1
9: end procedure

Algorithm 7 Auxilliary algorithm for Algorithm 6

1: Input: Stream of updates to an n dimensional vector f
2: procedure BASIC-TAIL-SKETCH
3: T ← Θ(log log n)
4: B′ ← Θ(B/T )
5: h : [n]→ [B′] (4-wise independent hash function)
6: c← 32
7: for 1 ≤ j ≤ c do
8: sj : [n]→ {±1} (4-wise independent hash function)
9: end for

10: Keep track of the sum 1
c

∑︁c
j=1

(︂∑︁
i:h(i)=1 fisj(i)

)︂2
11: end procedure

We now show that V , the output of Algorithm 6, satisfies V ≈ ∥f
Θ(B′)

∥22/B′, which is of the same
order as the threshold value used in line 7 of Algorithm 4, generalizing the Zipfian case.

Proof of Lemma 3.2. We analyze one copy of the sketch V1, starting with the upper bound.

Let a be the number of elements i ∈ [B′/10] such that h(i) = 1. Because E[a] = 1/10, by Markov’s
inequality, we have a ≤ 9/10 with probability at least 8/9. Next, let Wj =

∑︁
i>B′/10:h(i)=1 fisj(i).

We have

26



E[W 2
j ] =

∑︂
i≥B′/10

f2
i · [h(i) = 1] =

⃦⃦⃦
f
B′/10

⃦⃦⃦2
2
/B′

By Markov’s inequality, we have 1
4

∑︁
j W

2
j ≤ 9

⃦⃦⃦
f
B′/10

⃦⃦⃦2
2
/B′ with probability 8/9. By the union

bound, V 2
1 ≤ 9

⃦⃦⃦
f
B′/10

⃦⃦⃦2
2
/B with probability at least 7/9.

Next, we show the lower bound. Let X1 =
∑︁

i:h(i)=1 min
(︁
f2
i , f

2
3B′

)︁
and Y1 =

∑︁
i:h(i)=1 f

2
i .

Observe that X1 ≤ Y1. We have

E
h
[X1] = ∥f3B′∥22 /B

′ + 3f2
3B′

V ar (X1) =
B′ − 1

B′2

(︄ ∑︂
i>3B′

f4
i + 3Bf4

3B′

)︄

By Chebyshev’s inequality,

Pr
[︂
X1 ≤ ∥f3B′∥22 /(3B

′)
]︂
≤

B′−1
B′2

(︁∑︁
i>3B′ f4

i + 3B′f4
3B′

)︁(︂
2 ∥f3B′∥22 /(3B′) + 3f2

3B′

)︂2
≤

(B′ − 1)
(︁∑︁

i>3B f4
i + 3B′f4

3B′

)︁
4 ∥f3B′∥42 /9 + 9B′2f2

3B′ + 4B′ ∥f3B′∥22 f
2
3B′

≤ 1

3
.

Thus, with probability at least 2/3, we have Y1 ≥ ∥f3B′∥22 /(3B
′). Next we can bound V1 in terms

of Y1 using the standard analysis of the AMS sketch. Let Zj =
∑︁

i:h(i)=1 fisj(i).

E
s

[︁
Z2
j |h
]︁
= Y1

E
s

[︁
Z4
j |h
]︁
=

∑︂
i:h(i)=1

f4
i + 6

∑︂
i<j:h(i)=h(j)=1

f2
i f

2
j = 3Y 2

1 − 2
∑︂

i:h(i)=1

f4
i .

By the Chebyshev’s inequality, Pr [V1 ≤ Y1/2] ≤ 2Y 2
1 /c

Y 2
1 /4
≤ 8

c ≤
1
4 . By the union bound, we have

V1 ≥ ∥f3B∥
2
2
/(6B′) with probability at least 5/12.

The lemma follows from applying the Chernoff bound to the independent copies V1, . . . , VB .

Given the estimator V , we can output 0 for elements whose squared estimated frequency is below V .
Lemma H.1. Let E be the event that V is accurate, which holds with probability 1− exp (Ω (B)). If
f2
i ≤ ∥f3B′∥22 /(12B

′) then with probability 1− exp (Ω (B))−1/polylog(n), the algorithm outputs
0. If f2

i ≥ ∥f3B′∥22 /(12B
′) then with constant probability,⃦⃦⃦

f2
i − f̂

2

i

⃦⃦⃦
≤ O

(︃⃦⃦⃦
f
Ω(B′)

⃦⃦⃦2
2
/B′

)︃
Proof. Observe that the error in the comparison between the threshold V and f̃ i is bounded by
V plus the estimation error of f̃ i. By the standard analysis of the CountSketch, with probability
1− exp (Ω (T )), ⃓⃓⃓

f2
i − f̃

2

i

⃓⃓⃓
≤ O

(︃⃦⃦⃦
f
Ω(B′)

⃦⃦⃦2
2
/B′

)︃

27



Thus, if f2
i ≤ ∥f3B′∥22 /(12B

′) then with probability 1 − exp (Ω (B)) − 1/polylog(n), we have
V ≥ f̃ i and the algorithm outputs 0.

On the other hand, consider f2
i ≥ ∥f3B′∥22 /(12B

′). First, consider the case when the algorithm
outputs 0. Except for a failure probability of exp (Ω (B)) + 1/polylog(n), it must be the case that
f2
i = O

(︂
∥f3B′∥22 /(12B

′)
)︂

so we have |f2
i − 0| = O

(︂
∥f3B′∥22 /(12B

′)
)︂

. Next, consider the case
when the algorithm outputs the answer from ST . The correctness guarantee of this case follows from
the standard analysis of CountSketch, which guarantees that for a single row of CountSketch with B

columns, with constant probability,
⃓⃓⃓
f2
i − f̃

2

i

⃓⃓⃓
≤ O

(︃⃦⃦⃦
f
Ω(B)

⃦⃦⃦2
2
/B

)︃
.

Proof of Lemma 3.3. Note that we are assuming Lemma 3.2 is satisfied, which happens with
probability 1 − 1/poly(n). For elements with true frequencies less than O(∥fB′∥2/

√
B′) for

B′ = O(B/ log log n), we either we either use the last CS table in Algorithm 2 or we set the
estimate to be 0. In either case, the inequality holds as O(∥fB′∥2/

√
B′) is the expected error of a

standard 1×B′ CS table.

For elements with frequency larger than O(∥fB′∥2/
√
B′), we ideally want to use the last CS table in

Algorithm 2. In such a case, we easily satisfy the desired inequality since we are using a CS table
with even more columns. But there is a small probability we output 0. We can easily handle this
as follows. Let fi = ℓ∥fB′∥2/

√
B′ be the frequency of element i for ℓ ≥ C for a large constant C.

Any fixed CS table with B′ columns gives us expected error ∥fB′∥2/
√
B′, so the probability that it

estimates the frequency of fi to be smaller than ∥fB′∥2/
√
B′ is at most 1/Ω(ℓ) by a straightforward

application of Markov’s inequality. Since we take the median across Θ(log log n) different CS tables
in Algorithm 2, a standard Chernoff bound implies that the probability the median estimate is smaller
than O(|fB′∥2/

√
B′) is at most (1/ℓ)Ω(log logn). In particular, the expected error of our estimate is

at most≪
(︂
ℓ∥fB′∥2/

√
B′
)︂
· 1/ℓ = O(∥fB′∥2/

√
B′), which can be upper bounded by the expected

error of CS table with cB/ log log n columns for a sufficiently small c, completing the proof.

I Concentration bounds

In this appendix we collect some concentration inequalities for reference in the main body of the
paper. The inequality we will use the most is Bennett’s inequality. However, we remark that for
our applications, several other variance based concentration result would suffice, e.g., Bernstein’s
inequality.
Theorem I.1 (Bennett’s inequality [8]). Let X1, . . . , Xn be independent, mean zero random variables.
Let S =

∑︁n
i=1 Xi, and σ2,M > 0 be such that Var[S] ≤ σ2 and |Xi| ≤M for all i ∈ [n]. For any

t ≥ 0,

Pr[S ≥ t] ≤ exp

(︃
− σ2

M2
h

(︃
tM

σ2

)︃)︃
,

where h : R≥0 → R≥0 is defined by h(x) = (x+ 1) log(x+ 1)− x. The same tail bound holds on
the probability Pr[S ≤ −t].
Remark I.1. For x ≥ 0, 1

2x log(x+1) ≤ h(x) ≤ x log(x+1). We will use these asymptotic bounds
repeatedly in this paper.

A corollary of Bennett’s inequality is the classic Chernoff bounds.
Theorem I.2 (Chernoff [17]). Let X1, . . . , Xn ∈ [0, 1] be independent random variables and
S =

∑︁n
i=1 Xi. Let µ = E[S]. Then

Pr[S ≥ (1 + δ)µ] ≤ exp(−µh(δ)).

Even weaker than Chernoff’s inequality is Hoeffding’s inequality.
Theorem I.3 (Hoeffding [35]). Let X1, . . . , Xn ∈ [0, 1] be independent random variables. Let
S =

∑︁n
i=1 Xi. Then

Pr[S − E[S] ≥ t] ≤ e−
2t2

n .

28



J Additional Experiments

In this section, we display figures for synthetic Zipfian data and additional figures for the CAIDA and
AOL datasets.

500 1000 1500 2000 2500 3000
Space

0

1

2

3

4

5

W
ei

gh
te

d 
Er

ro
r

1e11 Zipfian Data (n=1000000)
CS
CS (nonneg)
Ours (C=1.0)
Ours (C=2.0)
Ours (C=5.0)

500 1000 1500 2000 2500 3000
Space

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e10 Zipfian Data (n=1000000)
CS
CS (nonneg)
Ours (C=1.0)
Ours (C=2.0)
Ours (C=5.0)

Figure 6: Comparison of weighted and unweighted error without predictions on Zipfian data.

0 10 20 30 40 50
Minute

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
ei

gh
te

d 
Er

ro
r

1e12 Space: 150.0
CS
CS (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

2

3

4

5

6

7

8

9

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 300.0
CS
CS (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

1.5

2.0

2.5

3.0

3.5

4.0

4.5

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 750.0
CS
CS (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

1.0

1.5

2.0

2.5

3.0

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 1500.0
CS
CS (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0.8

1.0

1.2

1.4

1.6

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 3000.0
CS
CS (nonneg)
Ours (C=5)

Figure 7: Comparison of weighted errors without predictions on the CAIDA dataset

29



0 10 20 30 40 50
Minute

0.5

1.0

1.5

2.0

W
ei

gh
te

d 
Er

ro
r

1e12 Space: 150.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0.2

0.4

0.6

0.8

1.0

1.2

W
ei

gh
te

d 
Er

ro
r

1e12 Space: 300.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

1

2

3

4

5

6

7

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 750.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

1.0

1.5

2.0

2.5

3.0

3.5

4.0

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 1500.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0.75

1.00

1.25

1.50

1.75

2.00

2.25

W
ei

gh
te

d 
Er

ro
r

1e11 Space: 3000.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

Figure 8: Comparison of weighted errors with predictions on the CAIDA dataset

30



0 10 20 30 40 50
Minute

0

1

2

3

4

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 150.0
CS
CS (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 300.0
CS
CS (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 750.0
CS
CS (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0.2

0.4

0.6

0.8

1.0

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 1500.0
CS
CS (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

2

3

4

5

6

Un
we

ig
ht

ed
 E

rro
r

1e9 Space: 3000.0
CS
CS (nonneg)
Ours (C=5)

Figure 9: Comparison of unweighted errors without predictions on the CAIDA dataset

31



0 10 20 30 40 50
Minute

0

2

4

6

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 150.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0

1

2

3

4

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 300.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0.0

0.5

1.0

1.5

2.0

2.5

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 750.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 1500.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

0 10 20 30 40 50
Minute

2

4

6

8

Un
we

ig
ht

ed
 E

rro
r

1e9 Space: 3000.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=5)

Figure 10: Comparison of unweighted errors with predictions on the CAIDA dataset

32



0 10 20 30 40 50 60 70 80
Day

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
Er

ro
r

1e8 Space: 150.0
CS
CS (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

1

2

3

4

5

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 300.0
CS
CS (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 750.0
CS
CS (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.25

0.50

0.75

1.00

1.25

1.50

1.75

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 1500.0
CS
CS (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.2

0.4

0.6

0.8

1.0

1.2

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 3000.0
CS
CS (nonneg)
Ours (C=1)

Figure 11: Comparison of weighted errors without predictions on the AOL dataset

33



0 10 20 30 40 50 60 70 80
Day

0

2

4

6

8

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 150.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0

1

2

3

4

5

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 300.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 750.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 1500.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.2

0.4

0.6

0.8

1.0

1.2

W
ei

gh
te

d 
Er

ro
r

1e7 Space: 3000.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

Figure 12: Comparison of weighted errors with predictions on the AOL dataset

34



0 10 20 30 40 50 60 70 80
Day

0

1

2

3

4

5

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 150.0
CS
CS (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 300.0
CS
CS (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 750.0
CS
CS (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.0

0.2

0.4

0.6

0.8

1.0

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 1500.0
CS
CS (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0

1

2

3

4

5

6

Un
we

ig
ht

ed
 E

rro
r

1e6 Space: 3000.0
CS
CS (nonneg)
Ours (C=1)

Figure 13: Comparison of unweighted errors without predictions on the AOL dataset

35



0 10 20 30 40 50 60 70 80
Day

0

1

2

3

4

5

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 150.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 300.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 750.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0.0

0.2

0.4

0.6

0.8

1.0

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 1500.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

0 10 20 30 40 50 60 70 80
Day

0

1

2

3

4

5

6

7

Un
we

ig
ht

ed
 E

rro
r

1e6 Space: 3000.0
Hsu et al.
Hsu et al. (nonneg)
Ours (C=1)

Figure 14: Comparison of unweighted errors with predictions on the AOL dataset

36


	Introduction
	Preliminaries
	Summary of Main Results and Paper Outline
	Related Works

	Improved Algorithm without Predictions
	Improved Learning-Augmented Algorithm
	Parsimonious Learning
	Algorithm variant with worst case guarantees

	Experiments
	Organization of the Appendix
	Tight Bounds for Count-Min with Zipfians
	(Nearly) Tight Bounds for Count-Sketch with Zipfians
	One hash function
	Multiple hash functions

	Learned Count-Sketch for Zipfians
	One hash function
	More hash functions

	Proof of Theorem 2.1
	Proof of Theorem 3.1
	Parsimonious learning
	Omitted Proofs of Section 3.2
	Concentration bounds
	Additional Experiments

