
New Partitioning Techniques and Faster
Algorithms for Approximate Interval Scheduling
Spencer Compton #

Stanford University, CA, USA

Slobodan Mitrović #

University of California Davis, CA, USA

Ronitt Rubinfeld #

MIT, Cambridge, MA, USA

Abstract
Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial
optimization. We develop a set of techniques for partitioning and grouping jobs based on their
starting and ending times, that enable us to view an instance of interval scheduling on many jobs
as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating
these techniques in dynamic and local settings of computation leads to several new results.

For (1 + ε)-approximation of job scheduling of n jobs on a single machine, we develop a fully
dynamic algorithm with O(log n/ε) update and O(log n) query worst-case time. Further, we design
a local computation algorithm that uses only O(log N/ε) queries when all jobs are length at least 1
and have starting/ending times within [0, N]. Our techniques are also applicable in a setting where
jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm whose
worst-case update and query time are poly(log n, 1

ε
). Equivalently, this is the first algorithm that

maintains a (1 + ε)-approximation of the maximum independent set of a collection of weighted
intervals in poly(log n, 1

ε
) time updates/queries. This is an exponential improvement in 1/ε over the

running time of a randomized algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020], while
also removing all dependence on the values of the jobs’ starting/ending times and rewards, as well
as removing the need for any randomness.

We also extend our approaches for interval scheduling on a single machine to examine the setting
with M machines.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Approximation algorithms analysis

Keywords and phrases interval scheduling, dynamic algorithms, local computation algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.45

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2012.15002

Funding S. Compton was supported in part by the National Defense Science & Engineering
Graduate (NDSEG) Fellowship Program. S. Mitrović was supported by the Swiss NSF grant
No. P400P2_191122/1, NSF award CCF-1733808, and FinTech@CSAIL. R. Rubinfeld was sup-
ported by the NSF TRIPODS program (awards CCF-1740751 and DMS-2022448), NSF award
CCF-2006664, and FinTech@CSAIL.

Acknowledgements We thank Benjamin Qi (MIT) for helpful discussions.

1 Introduction

Job scheduling is a fundamental task in optimization, with applications ranging from resource
management in computing [21, 22] to operating transportation systems [14]. Given a collection
of machines and a set of jobs (or tasks) to be processed, the goal of job scheduling is to
assign those jobs to the machines while respecting certain constraints. Constraints set on

EA
T
C
S

© Spencer Compton, Slobodan Mitrović, and Ronitt Rubinfeld;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:comptons@stanford.edu
mailto:smitrovic@ucdavis.edu
mailto:ronitt@csail.mit.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://arxiv.org/abs/2012.15002
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Faster Approximate Interval Scheduling

jobs may significantly vary. In some cases a job has to be scheduled, but the starting time of
its processing is not pre-specified. In other scenarios a job can only be scheduled at a given
time, but there is a flexibility on whether to process the job or not. Frequent objectives for
this task can include either maximizing the number of scheduled jobs or minimizing needed
time to process all the given jobs.

An important variant of job scheduling is the task of interval scheduling: here each job
has a specified starting time and its length, but a job is not required to be scheduled. Given
M machines, the goal is to schedule as many jobs as possible. More generally, each job is also
assigned a reward or weight, which can be thought of as a payment received for processing
the given job. If a job is not processed, the payment is zero, i.e., there is no penalty. We
refer to this variant as weighted interval scheduling. This problem in a natural way captures
real-life scenarios. For instance, consider an assignment of crew members to flights, where
our goal is to assign (the minimum possible) crews to the specified flights. In the context of
interval scheduling, flights can be seen as jobs and the crew members as machines [14, 17].
Interval scheduling also has applications in geometrical tasks – it can be seen as a task of
finding a collection of non-overlapping geometric objects. In this context, its prominent
applications are in VLSI design [13] and map labeling [1, 25].

The aforementioned scenarios are executed in different computational settings. For
instance, some use-cases are dynamic in nature, e.g., a flight gets cancelled. Then, in certain
cases we have to make online decisions, e.g., a customer must know immediately whether
we are able to accept its request or not. While in some applications there might be so
many requests that we would like to design extremely fast ways of deciding whether a
given request/job can be scheduled or not, e.g., providing an immediate response to a user
submitting a job for execution in a cloud. In this work, our aim is to develop methods for
interval scheduling that can be turned into efficient algorithms across many computational
settings:

Can we design unified techniques for approximating interval scheduling very fast?

In this paper we develop fast algorithms for the dynamic and local settings of computation.
We also give a randomized black-box approach that reduces the task of interval scheduling on
multiple machines to that of interval scheduling on a single machine by paying only 2 − 1/M

in the approximation factor for unweighted jobs, where M is the number of machines, and e

in approximation factor for weighted jobs. A common theme in our algorithms is partitioning
jobs over dimensions (time and machines). It is well studied in the dynamic setting how to
partition the time dimension to enable fast updates. It is also studied how to partition over
the machines to enable strong approximation ratios for multiple-machine scheduling problems.
We design new partitioning methods for the time dimension (starting and ending times
of jobs), introduce a partitioning method over machines, and examine the relationship of
partitioning over the time dimension and machines simultaneously in order to solve scheduling
problems. We hope that, in addition to improving the best-known results, our work provides
a new level of simplicity and cohesiveness for this style of approach.

1.1 Computation Models
In our work, we focus on the following two models of computation.

Dynamic setting. Our algorithms for the fully dynamic setting design data structures that
maintain an approximately optimal solution to an instance of the interval scheduling problem
while supporting insertions and deletions of jobs/intervals. The data structures also support
queries of the maintained solution’s total weight and whether or not a particular interval is
used in the maintained solution.

S. Compton, S. Mitrović, and R. Rubinfeld 45:3

Local computation algorithms (LCA). The LCA model was introduced by Rubinfeld et
al. [20] and Alon et al. [2]. In this setting, for a given job J we would like to output whether
J is scheduled or not, but we do not have a direct access to the entire list of input jobs.
Rather, the LCA is given access to an oracle that returns answers to questions of the form:
“What is the input job with the earliest ending time among those jobs that start after time x?”
The goal of the LCA in this setting is to provide (yes/no) answers to user queries that ask
“Is job i scheduled?” (and, if applicable, “On which machine?”), in such a manner that all
answers should be consistent with the same valid solution, while using as few oracle-probes
as possible.

1.2 Our Results
Our first result, given in Section 4, focuses on designing an efficient dynamic algorithm for
unweighted interval scheduling on a single machine. Prior to our work, the state-of-the-art
result for this unweighted interval scheduling problem was due to [4], who design an algorithm
with O(log n/ε2) update and query time. We provide an improvement in the dependence on ε.

▶ Theorem 1 (Unweighted dynamic, single machine). Let J be a set of n jobs. For any
ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate unweighted interval
scheduling for J on a single machine performing updates in O

(
log(n)

ε

)
and queries in

O(log(n)) worst-case time.

Theorem 1 can be seen as a warm-up for our most challenging and technically involved
result, which is an algorithm for the dynamic weighted interval scheduling problem on a single
machine. We present our approach in detail in the full version. As a function of 1/ε, our result
constitutes an exponential improvement compared to the running times obtained in [12]. We
also remove all use of randomness, remove all dependence on the job starting/ending times
(previous work crucially used assumptions on the coordinates to bound the ratio of jobs’
lengths by a parameter N), and remove all dependence on the value of the job rewards.

▶ Theorem 2 (Weighted dynamic, single machine). Let J be a set of n weighted jobs. For
any ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate weighted interval
scheduling for J on a single machine performing updates and queries in worst-case time
T ∈ poly(log n, 1

ε). The exact complexity of T is given by

O

(
log12(n)

ε7 + log13(n)
ε6

)
.

1.2.1 Implications in Other Settings
Local Computation Algorithms. We show that the ideas we developed to obtain Theorem 1
can also be efficiently implemented in the local setting, as we explain in detail in the full
version and prove the following claim. This is the first non-trivial local computation algorithm
for the interval scheduling problem.

▶ Theorem 3 (Unweighted LCA, single machine). Let J be a set of n jobs with length at least
1 and ending times upper-bounded by N . For any ε > 0, there exists a local computation
algorithm for (1 + ε)-approximate unweighted interval scheduling for J on a single machine
using O

(
log N

ε

)
probes.

ICALP 2023

45:4 Faster Approximate Interval Scheduling

Multiple machines. By building on techniques we introduced to prove Theorems 1 and 3,
we show similar results in the full version in the case of interval scheduling on multiple
machines at the expense of slower updates. To the best of our knowledge, these results
initiate a study of dynamic and local interval scheduling in the general setting, i.e., in the
setting of maximizing the total reward of jobs scheduled on multiple machines.

1.3 Related Work

The closest prior work to ours is that of Henzinger et al. [12] and of Bhore et al. [4]. [12]
studies (1+ε)-approximate dynamic interval scheduling for one machine in both the weighted
and unweighted setting. Unlike our main result in Theorem 2, they assume jobs have rewards
within [1, W], assume jobs have length at least 1, and assume all jobs start/end within
times [0, N]. They obtain randomized algorithms with O(exp(1/ε) log2 n · log2 N) update
time for the unweighted and O(exp(1/ε) log2 n · log5 N · log W) update time for the weighted
case. They cast interval scheduling as the problem of finding a maximum independent set
among a set of intervals lying on the x-axis. The authors extend this setting to multiple
dimensions and design algorithms for approximating maximum independent set among a set
of d-dimensional hypercubes, achieving a (1 + ε)2d-approximation in the unweighted and a
(4 + ε)2d-approximation in the weighted regime.

The authors of [4] primarily focus on the unweighted case of approximating maximum
independent set of a set of cubes. For the 1-dimensional case, which equals interval scheduling
on one machine, they obtain O(log n/ε2) update time, which is slower by a factor of 1/ε than
our approach. They also show that their approach generalizes to the d-dimensional case,
requiring poly log n amortized update time and providing O(4d) approximation.

The problem of dynamically maintaining an exact solution to interval scheduling on
one or multiple machines is studied by [11]. They attain a guarantee of Õ(n1/3) update
time for unweighted interval scheduling on M = 1 machine, and Õ(n1−1/M) for M ≥ 2.
Moreover, they show an almost-linear time conditional hardness lower bound for dynamically
maintaining an exact solution to the weighted interval scheduling problem on even just M = 1
machine. This further motivates work such as ours that dynamically maintains approximate
solutions for weighted interval scheduling.

The authors of [9] consider dynamic interval scheduling on multiple machines in the
setting in which all the jobs must be scheduled. The worst-case update time of their algorithm
is O(log(n) + d), where d refers to the depth of what they call idle intervals (depth meaning
the maximal number of intervals that contain a common point); they define an idle interval
to be the period of time in a schedule between two consecutive jobs in a given machine. The
same set of authors, in [10], study dynamic algorithms for the monotone case as well, in
which no interval completely contains another one. For this setup they obtain an algorithm
with O(log(n)) update and query time.

In the standard model of computing (i.e. one processor, static), there exists an O(n + m)
running time algorithm for (exactly) solving the unweighted interval scheduling problem
on a single machine with n jobs and integer coordinates bounded by m [8]. An algorithm
with running time independent of m is described in [24], where it is shown how to solve this
problem on M machines in O(n log(n)) time. An algorithm is designed in [3] for weighted
interval scheduling on M machines that runs in O(n2 log(n)) time.

We refer a reader to [14] and references therein for additional applications of the interval
scheduling problem.

S. Compton, S. Mitrović, and R. Rubinfeld 45:5

Other related work. There has also been a significant interest in job scheduling problems
in which our goal is to schedule all the given jobs across multiple machines, with the
objective to minimize the total scheduling time. Several variants have been studied, including
setups which allow preemptions, or setting where jobs have precedence constraints. We
refer a reader to [15, 7, 19, 23, 5, 18, 16] and references therein for more details on these
and additional variants of job scheduling. Beyond dynamic algorithms for approximating
maximum independent sets of intervals or hypercubes, [6] show results for geometric objects
such as disks, fat polygons, and higher-dimensional analogs. After we had published a
preprint of this work, [6] proved a result that captures Theorem 1 with a more general class
of fat objects.

2 Overview of Our Techniques

Our primary goal is to present unified techniques for approximating scheduling problems
that can be turned into efficient algorithms for many settings. In this section, we discuss key
insights of our techniques.

In the problems our work tackles, partitioning the problem instance into independent,
manageable chunks is crucial. Doing so enables an LCA to determine information about a
job of interest without computing an entire schedule, or enables a dynamic data structure to
maintain a solution without restarting from scratch.

2.1 Unweighted Interval Scheduling – Partitioning Over Time
(Section 4)

For simplicity of presentation, we begin by examining our method for partitioning over
time for just the unweighted interval scheduling problem on one machine (i.e., M = 1). In
particular, we first focus on doing so for the dynamic setting.

Recall that in this setting the primary motivation for partitioning over time, is to divide
the problem into independent, manageable chunks that can be utilized by a data structure
to quickly modify a solution while processing an update. In our work, we partition the time
dimension by maintaining a set of borders that divide time into some number of contiguous
regions. By doing so, we divide the problem into many independent regions, and we ignore
jobs that intersect multiple regions; equivalently, we ignore jobs that contain a border. Our
goal is then to dynamically maintain borders in a way such that we can quickly recompute
the optimal solution completely within some region, and that the suboptimality introduced
by these borders does not affect our solution much. In Section 4, we show that by maintaining
borders where the optimal solution inside each region, i.e., a time-range between two borders,
is of size Θ(1

ε), we can maintain a (1 + ε)-approximation of an optimal solution as long as we
optimally compute the solution within each region.

Here, the underlying intuition is that because each region has a solution of size Ω(1
ε), we

can charge any suboptimality caused by a border against the selected jobs in an adjacent
region. Likewise, because each region’s solution has size O(1

ε), we are able to recompute
the optimal solution within some region quickly using a balanced binary search tree. We
dynamically maintain borders satisfying our desired properties by adding a new border when
a region becomes too large, or merging with an adjacent region when a region becomes
too small. As only O(1) regions will require any modification when processing an update,

ICALP 2023

45:6 Faster Approximate Interval Scheduling

this method of partitioning time, while simple, enables us to improve the fastest known
update/query time to O(log(n)/ε).1 In Section 2.2 we build on these ideas to design an
algorithm for the weighted interval scheduling problem.

2.2 Weighted Interval Scheduling

In our most technically involved result, we design the first deterministic (1+ε) approximation
algorithm for weighted interval scheduling that runs in poly(log n, 1

ε) time. In this section we
give an outline of our techniques and discuss key insights. For full details we refer a reader
to the full version.

2.2.1 Job data structure

Let E be the set of all the endpoints of given jobs, i.e., E contains si and fi for each job
[si, fi]. We build a hierarchical data structure over E as follows. This structure is organized
as a binary search tree T . Each node Q of T contains value key(Q) ∈ E , with “1-1” mapping
between E and the nodes of T . Each node Q is responsible for a time range. The root of T ,
that we denote by Qroot, is responsible for the entire time range (−∞, ∞). Each node Q has
at most two children, that we denote by QL and QR. If Q is responsible for the time range
[X, Y], then QL is responsible for [X, key(Q)], while QR is responsible for [key(Q), Y].

Jobs are then assigned to nodes, where a job J is assigned to every node Q such that J

is contained within the Q’s responsible time range.

−∞ ∞

−∞ ∞

−∞ ∞

2 5

7

72 10

7

10

20

2

1 5

4

Figure 1 Visual example for hierarchical decomposition. Consider we are given jobs with the
following ranges of (1, 5), (2, 10), (7, 20), (4, 5). On the left is T , a balanced binary search tree over
the set of all si and fi. On the right is the hierarchical decomposition that corresponds to T . That
is, in each row, the intervals on the right correspond to the [lQ, rQ] for the nodes on the left. For
instance, in the third row, (−∞, 2] corresponds to the node Q with KEY (Q) = 1.

1 The main advantage of this techniques is that it leads to worst-case O(log (n)/ε) update time, as opposed
to only an amortized one. We point out that it is not difficult to obtain such amortized guarantee in
the following way: after each ε · OP T many updates, recompute the optimum solution from scratch.
Given access to the balanced binary tree structure described above, this re-computation can be done in
O(OP T · log n) time.

S. Compton, S. Mitrović, and R. Rubinfeld 45:7

2.2.2 Organizing computation
We now outline how the structure T is used in computation. As a reminder, our main goal is
to compute a (1 + ε)-approximate weighted interval scheduling. This task is performed by
requesting Qroot to solve the problem for the range (−∞, ∞). However, instead of computing
the answer for the entire range (−∞, ∞) directly, Qroot partitions the range (−∞, ∞) into:

a number of ranges over which it is relatively easy to compute approximate solutions,
such ones are called sparse, and
the remaining ranges over which it is relatively hard to compute approximate solutions
at the level of Qroot.

These hard-to-approximate ranges are deferred to the children of Qroot, and are hard to
approximate because any near-optimal solution for the range contains many jobs. On the
other hand, solutions in sparse ranges are of size O(1/ε). As we discuss later, approximate
optimal solutions within sparse ranges can be computed very efficiently; for details, see the
paragraph Approximate dynamic programming below.

In general, a child QC of Qroot might receive multiple ranges from Qroot for which it is
asked to find an approximately optimal solution. QC performs computation in the same
manner as Qroot did – the cell QC partitions each range it receives into “easy” and “hard”
to compute subranges. The first type of subranges is computed by QC , while the second
type if deferred to the children of QC . The same as in Section 2.3, these “hard” ranges have
large weight and allow for drawing a boundary and hence dividing a range into two or more
independent ranges. We now discuss how the partitioning into ranges is undertaken.

2.2.3 Auxiliary data structure
To divide a range into “easy” and “hard” ranges at the level of a node Q, we design an
auxiliary data structure, which relates to a rough approximation of the problem. This
structure, called Z(Q), maintains a set of points (we call these points grid endpoints) that
partition Q into slices of time. We use slice to refer to a time range between two consecutive
points of Z(Q). Recall how for unweighted interval scheduling, we maintained a set of borders
and ignored a job that crossed any border. In the weighted version, we will instead use Z(Q)
as a set of partitions from which we will use some subset to divide time. Our method of
designing Z(Q) reduces the task of finding a partitioning over time Z(Q) within a cell for the
(1 + ε)-approximate weighted interval scheduling problem to finding multiple partitionings
for the (1 + ε)-approximate unweighted problem.

It is instructive to think of Z(Q) in the following way. First, we view weighted interval
scheduling as O(log n) independent instances of unweighted interval scheduling – instance
i contains the jobs having weights in the interval (wmax(Q)/2i+1, wmax(Q)/2i]. Then, for
each unweighted instance we compute borders as described in Section 2.1. Z(Q) constitutes
a subset of the union of those borders across all unweighted instances. We point out that
the actual definition of Z(Q) contains some additional points that are needed for technical
reasons, but in this section we will adopt this simplified view. In particular, as we will see,
Z(Q) is designed such that the optimal solution within each slice has small total reward
compared to the optimal solution over the entirety of Q. This enables us to partition the
main problem into subproblems such that the suboptimality of discretizing the time towards
slices, that we call snapping, is negligible.

However, a priori, it is not even clear that such structure Z(Q) exists. So, one of the
primary goals in our analysis is to show that there exists a near-optimal solution of a desirable
structure that can be captured by Z(Q). The main challenge here is to detect/localize sparse

ICALP 2023

45:8 Faster Approximate Interval Scheduling

and dense ranges efficiently and in a way that yields a fast dynamic algorithm. As an
oversimplification, we define a solution as having nearly-optimal sparse structure if it can be
generated with roughly the following process:

Each cell Q receives a set of disjoint time ranges for which it is supposed to compute
an approximately optimal solution using jobs assigned to Q or its descendants. Each
received time range must have starting and ending time in Z(Q).
For each time range R that Q receives, the algorithm partitions R into disjoint time
ranges of three types: sparse time ranges, time ranges to be sent to QL for processing,
and time ranges to be sent to QR for processing. In particular, this means that subranges
of R are deferred to the children of Q for processing.
For every sparse time range, Q computes an optimal solution using at most 1/ε jobs.
The union of the reward/solution of all sparse time ranges on all levels must be a (1 + ε)-
approximation of the globally optimal solution without any structural requirements.

Moreover, we develop a charging method that enables us to partition each cell with
only |Z(Q)| = poly(1/ε, log(n)) points and still have the property that it contains a (1 + ε)-
approximately optimal solution with nearly-optimal sparse structure. Then, we design an
approximate dynamic programming approach to efficiently compute near-optimal solutions
for sparse ranges. Combined, this enables a very efficient algorithm for weighted interval
scheduling. On a high-level, Z(Q) enables us to eventually decompose an entire solution into
sparse regions.

2.2.4 The charging method
We now outline insights of our charging arguments that enable us to convert an optimal
solution OPT into a near-optimal solution OPT ′ with nearly-optimal sparse structure while
relaxing our partitioning to only need |Z(Q)| = poly(1/ε, log(N)) points. For a visual aid,
see Figure 2.

Q

received rangeR

sparse rangechild subproblem child subproblem

G G GBY Y Y Y Y Y

Figure 2 Visual example for charging argument.

As outlined in our overview of the nearly-optimal sparse structure, each cell Q receives a
set of disjoint time ranges, with each time range having endpoints in Z(Q), and must split
them into three sets: sparse time ranges, time ranges for QL, and time ranges for QR. We
will now modify OPT by deleting some jobs. This new solution will be denoted by OPT ′

and will have the following properties:
(1) OPT ′ exhibits nearly-optimal sparse structure; and
(2) OPT ′ is obtained from OPT by deleting jobs of total reward at most O(ε · w(OPT)).

S. Compton, S. Mitrović, and R. Rubinfeld 45:9

We outline an example of one such time range a cell Q may receive in Figure 2, annotated
by “received range R”. We will color jobs in Figure 2 to illustrate aspects of our charging
argument, but note that jobs do not actually have a color property beyond this illustration.
Since our structure only allows a cell Q to use a job within its corresponding time range, any
relatively valuable job that crosses between QL and QR must be used now by Q putting it
in a sparse time range. One such valuable job in Figure 2 is in blue marked by “B”. To have
“B” belong to a sparse range, we must divide the time range R somewhere, as otherwise our
solution in the received range will be dense. If we naively divide R at the partition of Z(Q)
to the left and right of the job “B”, we might be forced to delete some valuable jobs; such
jobs are pictured in green and marked by “G”. Instead, we expand the division outwards in a
more nuanced manner. Namely, we keep expanding outwards and looking at the job that
contains the next partition point (if any). If the job’s value exceeds a certain threshold, as
those pictured as green and marked by “G” in Figure 2, we continue expanding. Otherwise,
the job crossing a partition point is below a certain threshold, pictured as brown and not
marked in Figure 2, and its deletion can be charged against the blue job. We delete such
brown jobs and the corresponding partition points, i.e., the vertical red lines crossing those
brown jobs, constitute the start and the end of the sparse range. By the end, we decided the
starting and ending time of the sparse range, and what remains inside are blue job(s), green
job(s), and yellow job(s) (also marked by “Y”). Note that yellow jobs must be completely
within a partition slice of Z(Q). Since we define Z(Q) such that the optimal total reward
within any grid slice is small, the yellow jobs have relatively small rewards compared to
the total reward of green and blue jobs that we know must be large. Accordingly, we can
delete the yellow jobs (to help make this time range’s solution sparse) and charge their cost
against a nearby green or blue job. In Figure 2, an arrow from one job to another represents
a deleted job pointing towards the job who we charge its loss against. Finally, each sparse
range contains only green job(s) and blue job(s). If there are more than 1/ε jobs in such a
sparse range, we employ a simple sparsifying step detailed in the full proof.

It remains to handle the time ranges of the received range that were not put in sparse
ranges. These will be time ranges that are sent to QL and QR. In Figure 2, these ranges
are outlined in yellow and annotated by “child subproblem”. However, the time ranges do
not necessarily align with Z(QL) or Z(QR) as is required by nearly-optimal sparse structure.
We need to adjust these ranges such that they align with Z(QL) or Z(QR) so we can send
the ranges to the children. See Figure 3 for intuition on why we cannot just immediately
“snap” these child subproblems to the partition points in Z(QL) and Z(QR). (We say that
a range R is snapped inward (outward) within cell Q if R is shrunk (extended) on both
sides to the closest points in Z(Q). Inward snapping is illustrated in Figure 3.) Instead, we
employ a similar charging argument to deal with snapping. As an analog to how we expanded
outwards from the blue job for defining sparse ranges, we employ a charging argument where
we contract inwards from the endpoints of the child subproblem. In summary, these charging
arguments enabled us to show a solution of nearly-optimal sparse structure exists even when
only partitioning each cell Q with |Z(Q)| = poly(1/ε, log(n)) points.

2.2.5 Approximate dynamic programming
Now, we outline our key advance for more efficiently calculating the solution of nearly-
optimal sparse structure. This structure allows us to partition time into ranges with sparse
solutions. More formally, we are given a time range and we want to approximate an optimal
solution within that range that uses at most 1/ε jobs. We outline an approximate dynamic
programming approach that only requires polynomial time dependence on 1/ε.

ICALP 2023

45:10 Faster Approximate Interval Scheduling

Q

QL
Y QR

YY

denserange

snap snap

Figure 3 This example illustrates why the snapping we perform has to be done with care. The
horizontal segments in this figure represent jobs. We show an initial dense range (outlined in purple)
with endpoints in Z(Q). With dashed vertical lines, we show where these endpoints are in QL.
Importantly, they are not aligned with Z(QL), i.e., the vertical dashed lines do not belong to Z(QL).
However, our structure requires that dense ranges align with Z(Qchild), so we must address this. If
we were to naively snap the endpoints of the dense range inwards to the endpoints of Z(QL), then
we would need to delete some jobs (these deleted jobs are colored in yellow and marked by “Y”),
while some other jobs would not be affected (like the remaining jobs in this example, those colored
in blue). While this naive snapping may be fine in some cases, it will incur significant loss in cases
in which the “Y” jobs have large weight. Notice that naively snapping outward to define a new
region corresponding to the purple one is not a solution neither, as this could cause the dense time
range to overlap with a previously selected sparse time range. Having overlapping ranges can cause
us to choose intersecting jobs, and thus an invalid solution. Thus, we detail a more comprehensive
manner of dealing with snapping.

The relatively well-known dynamic programming approach for computing weighted
interval scheduling is to maintain a dynamic program where the state is a prefix range of
time and the output is the maximum total reward that can be obtained in that prefix range
of time. However, for our purposes, there are too many possibilities for prefix ranges of
time to consider. Instead, we invert the dynamic programming approach, and have a state
referencing some amount of reward, where the dynamic program returns the minimum length
prefix range of time in which one can obtain a given reward. Unfortunately, there are also
too many possible amounts of rewards. We observe that we do not actually need this exact
state, but only an approximation. In particular, we show that one can round this state down
to powers of (1 + ε2) and hence significantly reduce the state-space. In the full version, we
show how one can use this type of observation to quickly compute approximate dynamic
programming for a near-optimal sparse solution inside any time range.

2.2.6 Comparison with Prior Work

The closest to our work is the one of [12]. In terms of improvements, we achieve the
following: we remove the dependence on N and wmax in the running-time analysis; we obtain
a deterministic approach; and, we design an algorithm with poly(1/ε, log n) update/query
time, which is exponentially faster in 1/ε compared the prior work.

S. Compton, S. Mitrović, and R. Rubinfeld 45:11

In this prior work, jobs are assumed to have length at least 1 and belong in the time-
interval [1, N]. To remove the dependence on N and such assumptions, we designed a new
way of bookkeeping jobs. Instead of using a complete binary tree on [1, N] to organize jobs
as done in the prior work, we employ binary balanced search tree on the endpoints of jobs.
A complete binary tree on [1, N] is oblivious to the density of jobs. On the other hand, and
intuitively, our approach allows for “instance-based” bookkeeping: the jobs are in a natural
way organized with respect to their density. Resorting to this approach incurs significant
technical challenges. Namely, the structure of solution our tree maintains is hierarchically
organized. However, each tree update, which requires node-rotations, breaks this structure
which requires additional care in efficiently maintaining approximate solution after an update,
as well as requiring an entirely different approach for maintaining a partitioning of time Z(Q)
within cells. Moreover, we show how to further leverage these ideas to obtain a deterministic
approach.

In our work, we use borders to define the so-called sparse and dense ranges. This idea
is inspired by the work of [12]. We emphasize, though, that one of our main contributions
and arguably the most technically involved component is showing how to algorithmically
employ those borders in running-time only polynomially dependent on 1/ε, while [12] require
exponential dependence on 1/ε.

Our construction of auxiliary data structure Z(Q) enables us to boost an O(log(n))-
approximate solution into a decomposition enabling a (1+ ε)-approximate solution is inspired
by the approach of [12]. They similarly develop Z(Q) to boost an instead O(1)-approximation
that fundamentally relies on the bounded coordinate assumptions of jobs being within [1, N]
and having length at least 1. Our different approach towards Z(Q) enables simplification of
some arguments as well as not relying on randomness, or on length or bounded coordinate
assumptions. Further, we note that the dynamic programming approach for sparse regions
that we develop is significantly faster than the enumerative approach used in the prior work,
that eventually enables us to obtain a poly(1/ε) dependence in the running time. The way
we combine solutions over sparse regions is similar to the way it is done in the prior work.

2.3 Localizing the Time-Partitioning Method
We also show that this method of partitioning over time can be used to develop local
algorithms for interval scheduling. Here, we desire to answer queries about whether a
particular job is in our schedule. We hope to answer each of these queries consistently (i.e.,
they all agree with some approximately optimal schedule) and in less time than it would
take to compute an entire schedule from scratch. Partitioning over time seems helpful for
this setting, because this would enable us to focus on just the region of the job being queried.
However, our previously mentioned method for maintaining borders does so in a sequential
manner that we can no longer afford to do in this model of computation. Instead, we use a
hierarchical approach to more easily compute the locations of borders that create regions
with solutions not too big or too small.

For simplicity, we again focus on the unweighted setting with only one machine. In the
standard greedy algorithm for computing unweighted interval scheduling on one machine,
we repeatedly select the job successor(x): “What is the interval with the earliest endpoint,
of those that start after point x?” (where x is the endpoint of the previously chosen job).
As reading the entire problem instance would take longer than desired, an LCA requires
some method of probing for information about the instance. Our LCA utilizes such successor
probes to do so. For further motivation, see the full version. We outline a three-step approach
towards designing an LCA that utilizes few probes:

ICALP 2023

45:12 Faster Approximate Interval Scheduling

Hierarchizing the greedy. Instead of just repeatedly using successor(x) to compute the
solution as the standard greedy does, we add hierarchical structure that adds no immediate
value but serves as a helpful stepping stone. Consider a binary search tree (BST) like
structure, where the root node corresponds to the entire time range [0, N]. Each node in
the structure has a left-child and a right-child corresponding to the 1st and the 2nd half,
respectively, of that node’s range. Eventually, leaf nodes have no children and correspond to
a time range of length one unit. At a high-level, we add hierarchical structure by considering
jobs contained in some node’s left-child, then considering jobs that go between the node’s
left-child and right-child, and then considering jobs contained in the node’s right-child. This
produces the same result as the standard greedy, but we do so with a hierarchical structure
that will be easier to utilize.

Approximating the hierarchical greedy. Now, we modify the hierarchical greedy so that it
is no longer exactly optimal but is instead an approximation. At first this will seem strictly
worse, but it will yield an algorithm that is easier to localize. When processing each node,
we will first check whether it is the case that both the left-child and the right-child have
optimal solutions of size > 1

ε . A key observation here is that checking whether a time range
has an optimal solution of size > 1

ε can be done by making at most 1 + 1
ε successor probes

(i.e., one does not necessarily need to compute the entire optimal solution to check if it is
larger than some relatively small threshold). If both the left-child and the right-child would
have optimal solutions of size > 1

ε , then we can afford to draw a border at the midpoint of
our current node and solve the left-child and right-child independently. Jobs intersecting a
border are ignored, and we charge the number of such ignored jobs, i.e., the number of drawn
borders, to the size of solution in the corresponding left- and right-child. Ultimately, we show
that the addition of these borders makes our algorithm (1 + ε)-approximate. Moreover, and
importantly, these borders introduce independence between children with large solutions.

Localizing the approximate, hierarchical greedy. Finally, we localize the approximate,
hierarchical greedy. To do so, we note that when some child of a node has a small optimal
solution, then we can get all the information we need from that child in O(1

ε) probes. As
such, if a node has a child with a small optimal solution, we can make the required probes
from the small child and recurse to the large child. Otherwise, if both children have large
solutions, we can draw a border at the midpoint of the current node and only need to recurse
down the child which contains the job the LCA is being queried about.

With these insights, we have used our partitioning method over time for local algorithms
to produce an LCA only requiring O(log(N)

ε) successor probes.

3 Problem Setup

In the interval scheduling problem, we are given n jobs and M machines. With each job
j are associated two numbers sj and lj > 0, referring to “start” and “length” respectively,
meaning that the job j takes lj time to be processed and its processing can only start at
time sj . While prior work such as [12] used assumptions such as sj ≥ 0, lj ≥ 1 and have
an upper-bound N on sj + lj , we utilize such assumptions only in our LCA results. In
addition, with each job j is associated weight/reward wj > 0, that refers to the reward for
processing the job j. The task of interval scheduling is to schedule jobs across machines
while maximizing the total reward and respecting that each of the M machines can process
at most one job at any point in time.

S. Compton, S. Mitrović, and R. Rubinfeld 45:13

4 Dynamic Unweighted Interval Scheduling on a Single Machine

In this section we prove Theorem 1. As a reminder, Theorem 1 considers the case of interval
scheduling in which wj = 1 for each j and M = 1, i.e., the jobs have unit reward and there
is only a single machine at our disposal. This case can also be seen as a task of finding a
maximum independent set among intervals lying on the x-axis. The crux of our approach is
in designing an algorithm that maintains the following invariant:

▶ Invariant 1. The algorithm maintains a set of borders such that an optimal
solution schedules between 1/ε and 2/ε intervals within each two consecutive borders.

We will maintain this invariant unless the optimal solution has fewer than 1/ε intervals, in
which case we are able to compute the solution from scratch in negligible time. We aim for
our algorithm to maintain Invariant 1 while keeping track of the optimal solution between
each pair of consecutive borders. The high level intuition for this is that if we do not maintain
too many borders, then our solution must be very good (our solution decreases by size at
most one every time we add a new border). Furthermore, if the optimal solution within
borders is small, it is likely easier for us to maintain said solutions. We prove that this
invariant enables a high-quality approximation:

▶ Lemma 4. A solution that maintains an optimal solution within consecutive pairs of a
set of borders, where the optimal solution within each pair of consecutive borders contains at
least K intervals, maintains a K+1

K -approximation.

Proof. For our analysis, suppose there are implicit borders at −∞ and +∞ so that all jobs
are within the range of borders. Consider an optimal solution OPT . We will now design a
K-approximate optimal solution OPT ′ as follows: given OPT , delete all intervals in OPT

that overlap a drawn border. Fix an interval J appearing in OPT but not in OPT ′. Assume
that J intersects the i-th border. Recall that between the (i − 1)-st and the i-th border
there are at least K intervals in OPT ′. Moreover, at most one interval from OPT intersects
the i-th border. Hence, to show that OPT ′ is a K+1

K -approximation of OPT , we can charge
the removal of J to the intervals appearing between the (i − 1)-st and the i-th border in
OPT ′. ◀

Not only does Invariant 1 enable high-quality solutions, but it also assists us in quickly
maintaining such a solution. We can maintain a data structure with O(log(n)

ε) updates and
O(log(n)) queries that moves the borders to maintain the invariant and thus maintains an
(1 + ε)-approximation as implied by Lemma 4.

▶ Theorem 1 (Unweighted dynamic, single machine). Let J be a set of n jobs. For any
ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate unweighted interval
scheduling for J on a single machine performing updates in O

(
log(n)

ε

)
and queries in

O(log(n)) worst-case time.

Proof. Our goal now is to design an algorithm that maintains Invariant 1, which by Lemma 4
and for K = 1/ε will result in a (1 + ε)-approximation of Maximum-IS.

On a high-level, our algorithm will maintain a set of borders. When compiling a solution
of intervals, the algorithm will not use any interval that contains any of the borders, but
proceed by computing an optimal solution between each two consecutive borders. The
union of those between-border solutions is the final solution. Moreover, we will maintain the
invariant that the optimal solution for every contiguous region is of size within [1

ε , 2
ε).

In the rest, we show how to implement these steps in the claimed running time.

ICALP 2023

45:14 Faster Approximate Interval Scheduling

Maintained data-structures. Our algorithm maintains a balanced binary search tree Tall of
intervals sorted by their starting points. Each node of Tall will also maintain the end-point
of the corresponding interval. It is well-known how to implement a balanced binary search
tree with O(log n) worst-case running time per insertion, deletion and search query. Using
such an implementation, the algorithm can in O(log n) time find the smallest ending-point
in a prefix/suffix on the intervals sorted by their starting-points. That is, in O(log n) time
we can find the interval that ends earliest, among those that start after a certain time.

In addition, the algorithm also maintains a balanced binary search tree Tborders of the
borders currently drawn.

Also, we will maintain one more balanced binary search tree Tsol that will store the
intervals that are in our current solution.

We will use that for any range with optimal solution of size S, we can make O(S) queries
to these data structures to obtain an optimal solution for the range in O(S · log n) time.

Update after an insertion. Upon insertion of an interval J , we add J to Tall. We make a
query to Tborders to check whether J overlaps a border. If it does, we need to do nothing; in
this case, we ignore J even if it belongs to an optimal solution. If it does not, we recompute
the optimal solution within the two borders adjacent to J . If after recomputing, the new
solution between the two borders is too large, i.e, it has at least 2

ε intervals, then draw/add
a border between the 1

ε -th and the (1 + 1
ε)-th of those intervals.

Update after a deletion. Upon deletion of an interval J , we delete J from Tall. If J was
not in our solution, we do nothing else. Otherwise, we recompute the optimal solution within
the borders adjacent to J and modify Tsol accordingly. Let those borders be the i-th and
the (i + 1)-st. If the new solution between borders i and i + 1 now has size less than 1/ε (it
would be size exactly 1/ε), we delete an arbitrary one of the two borders (thus combining
this region with an adjacent region). Then, we recompute the optimal solution within the
(now larger) region J is in. If this results in a solution of size at least 2/ε, we will need to
split the newly created region by adding a border. Before splitting, the solution will have
size upper-bounded by one more than the size of the solutions within the two regions before
combining them as an interval may have overlapped the now deleted border (one region
with size exactly 1

ε − 1 and the other upper-bounded by 2
ε − 1). Thus, the solution has size

at in range [2/ε, 3
ε). We can add a border between interval 1/ε and 1/ε + 1 of the optimal

solution, and will have a region with exactly 1/ε intervals and another with [1/ε, 2/ε) intervals,
maintaining our invariant.

In all of these, the optimal solution for each region has size O(1/ε), so recomputing takes
O(log(n)/ε) time.

For queries, we will have maintained Tsol in our updates such that it contains exactly the
intervals in our solution. So each query we just need to do a lookup to see if the interval is
in Tsol in O(log n) time. ◀

This result improves the best-known time complexities [4, 12]. Unfortunately, it does not
immediately generalize well to the weighted variant. In the full version, we show our more
technically-challenging result for the weighted variant.

References
1 Pankaj K Agarwal and Marc J Van Kreveld. Label placement by maximum independent set in

rectangles, volume 1998. Utrecht University: Information and Computing Sciences, 1998.

S. Compton, S. Mitrović, and R. Rubinfeld 45:15

2 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1132–1139. Society for Industrial and Applied Mathematics, 2012.

3 Esther M Arkin and Ellen B Silverberg. Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics, 18(1):1–8, 1987.

4 Sujoy Bhore, Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Dynamic geometric
independent set. arXiv preprint, 2020. arXiv:2007.08643.

5 Giorgio C Buttazzo, Marko Bertogna, and Gang Yao. Limited preemptive scheduling for
real-time systems. a survey. IEEE Transactions on Industrial Informatics, 9(1):3–15, 2012.

6 Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-case efficient dynamic geometric
independent set. In 29th Annual European Symposium on Algorithms (ESA 2021), volume
204, page 25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

7 José R Correa and Andreas S Schulz. Single-machine scheduling with precedence constraints.
Mathematics of Operations Research, 30(4):1005–1021, 2005.

8 A FRANK. Some polynomial algorithms for certain graphs and hypergraphs. In Proceedings
of the 5th British Combinatorial Conference, 1975. Utilitas Mathematica, 1975.

9 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
interval scheduling for multiple machines. In International Symposium on Algorithms and
Computation, pages 235–246. Springer, 2014.

10 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
algorithms for monotonic interval scheduling problem. Theoretical Computer Science, 562:227–
242, 2015.

11 Paweł Gawrychowski and Karol Pokorski. Sublinear dynamic interval scheduling (on one or
multiple machines). arXiv preprint, 2022. arXiv:2203.14310.

12 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate maximum
independent set of intervals, hypercubes and hyperrectangles. In 36th International Symposium
on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020.

13 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. Journal of the ACM (JACM), 32(1):130–136, 1985.

14 Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR Spieksma.
Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543, 2007.

15 Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978.

16 Elaine Levey and Thomas Rothvoss. A (1+ epsilon)-approximation for makespan scheduling
with precedence constraints using lp hierarchies. SIAM Journal on Computing, pages STOC16–
201, 2019.

17 Aristide Mingozzi, Marco A Boschetti, Salvatore Ricciardelli, and Lucio Bianco. A set
partitioning approach to the crew scheduling problem. Operations Research, 47(6):873–888,
1999.

18 Michael Pinedo. Scheduling, volume 29. Springer, 2012.
19 Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints.

In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages
491–500, 2008.

20 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
arXiv preprint, 2011. arXiv:1104.1377.

21 Pinal Salot. A survey of various scheduling algorithm in cloud computing environment.
International Journal of Research in Engineering and Technology, 2(2):131–135, 2013.

22 Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, and Prachet Bhuyan. A survey
of job scheduling and resource management in grid computing. world academy of science,
engineering and technology, 64:461–466, 2010.

ICALP 2023

https://arxiv.org/abs/2007.08643
https://arxiv.org/abs/2203.14310
https://arxiv.org/abs/1104.1377

45:16 Faster Approximate Interval Scheduling

23 Martin Skutella and Marc Uetz. Stochastic machine scheduling with precedence constraints.
SIAM Journal on Computing, 34(4):788–802, 2005.

24 Eva Tardos and Jon Kleinberg. Algorithm design, 2005.
25 Bram Verweij and Karen Aardal. An optimisation algorithm for maximum independent set

with applications in map labelling. In European Symposium on Algorithms, pages 426–437.
Springer, 1999.

	1 Introduction
	1.1 Computation Models
	1.2 Our Results
	1.2.1 Implications in Other Settings

	1.3 Related Work

	2 Overview of Our Techniques
	2.1 Unweighted Interval Scheduling – Partitioning Over Time (Section 4)
	2.2 Weighted Interval Scheduling
	2.2.1 Job data structure
	2.2.2 Organizing computation
	2.2.3 Auxiliary data structure
	2.2.4 The charging method
	2.2.5 Approximate dynamic programming
	2.2.6 Comparison with Prior Work

	2.3 Localizing the Time-Partitioning Method

	3 Problem Setup
	4 Dynamic Unweighted Interval Scheduling on a Single Machine

