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Abstract

Recent advances in attention-free sequence models rely on convolutions as alter-
natives to the attention operator at the core of Transformers. In particular, long
convolution sequence models have achieved state-of-the-art performance in many
domains, but incur a significant cost during auto-regressive inference workloads —
naively requiring a full pass (or caching of activations) over the input sequence for
each generated token — similarly to attention-based models. In this paper, we seek
to enable O(1) compute and memory cost per token in any pre-trained long con-
volution architecture to reduce memory footprint and increase throughput during
generation. Concretely, our methods consist in extracting low-dimensional linear
state-space models from each convolution layer, building upon rational interpo-
lation and model-order reduction techniques. Second, we introduce architectural
improvements to convolution layers such as Hyena: by weight-tying the filters
across channels into heads, we obtain models with higher quality that are also
easier to distill. The resulting model achieves 10x higher throughput than Trans-
formers and 1.5x higher than Hyena at 1.3 billion parameters, without any loss in
quality after distillation.

1 Introduction

Attention-free approaches such as long convolution sequence models (LCSMs), e.g., H3 [1]], Hyena
[2[], have shown promise in matching Transformer [3} 4] performance across a wide range of tasks,
with sub-quadratic complexity with respect to sequence length. Despite the improved efficiency
during training on long sequences, unless the convolution filters are either short or admit a low-
dimensional state-state-space realization, LCSMs still need to process the entire growing sequence
at every step of auto-regressive generation, similarly to Transformers.

In this work, we seek to refine LCSMs in both efficiency and quality. First, we study the inference
stage, and propose methods to enable a recurrent mode for auto-regressive generation. Recurrent
modes prescribe the existence of a state encoding the past information of the process in a fixed-
dimension memory, enabling constant per-step time and constant-memory in generation. Then,
we draw upon an analysis of pre-trained models to develop architectural enhancements for the Hyena
block, simultaneously improving model quality and efficiency of the distillation procedure.

Distilling fast recurrences We introduce LaughingHyena, the first distillation approach for LC-
SMs that enables recurrent inference without impacting downstream quality. LaughingHyena seeks
compact recurrences in the form of state-space models (SSMs) [5} 6] as the solution of a nonlin-
ear interpolation problem involving the convolution filters of a pre-trained model. Since the total
memory cost of SSMs grows linearly in the state dimension d, our distillation procedure enables
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high throughput by enabling processing of large batches during generation. We identify and address
three core challenges related to distillation, including the identification of:

¢ Target state dimension: we identify candidate state dimensions of our distilled SSMs by ana-
lyzing the spectrum of the Hankel operator associated with each convolution [7].

e Parametrization: we address issues with naive parametrizations by introducing a factorized
modal form, inspired by barycentric [8]] and Prony-like [9] methods .

* Approximation metric: to ensure compatibility with any downstream task, we choose discrep-
ancy metrics on the convolution filter, rather than model outputs.

In auto-regressive workloads, LaughingHyena-distilled models with state dimension d can generate
K tokens in O(dK) time and with constant O(d) memory — improving over the O(K?) time and
O(K') memory usage of kv-cached Transformers and naively executed long convolutions. At model
sizes above one billion parameters, LaughingHyena achieves 10x higher peak throughput over com-
parable Transformers (Figure[I.1)), and can process larger batch sizes. Constant memory generation
enables larger K for a given a memory constraint e.g., generating 512 tokens with LaughingHyena
requires 3 X less memory than with a Transformer. At smaller batch sizes, latency of LaughingHyena
is also competitive with Transformers, reaching > 2x speedups at longer prompt lengths.

Improving pre-training quality We lever- .  ~__ hayfﬂftiyeﬁg igg ______ iy::;;'iz 3B
age our analysis of the distillation process > 10

to open up new avenues of improvement for 2 1 T T T T

LCSM architectures. Indeed, the high compres- 5 (¢ | |
sion rates achievable through LaughingHyena 3

hint at sub-utilization of the convolution. We 3 0.6 - 7
revisit the multi-headed design of H3 [[1]]; tying E 0.4 S — i
weights across channels pushes long convolu- ' (2enT -

tion filters towards larger effective dimension, -2 021 el *
and as an additional advantage reduces the run- : : : : :
time of post-training distillation and inference E 100200300 400 500

memory footprint. Further, multi-head Hyena Batch Size
models improve on pre-training perplexity over Figure 1.1: Throughput (in generated tokens) of

regular Hyena and GPT [10] architectures on Transformers, H3 and Hyena models. LaughingHyena
the language dataset THE PILE [TT]. is a recurrent model distilled from a pre-trained Hyena.

Workload involves generating 256 tokens given a
prompt of length 512.

2 Preliminaries and Related Work

We discuss convolutions, state spaces and auto-regressive generation workloads for sequence mod-
els.

Convolutions Let * denote the convolution operator. It is defined as the dual operation to point-
wise multiplication under Fourier transform. In signal processing and deep learning alike, one often
encounters the causal linear convolution of a filter & (which may extend indefinitely) with an input
u of length L:

t
(hxu)r => heju;. (2.1)
§=0

Generally, u; € RP where D is the width of the signal — or in deep learning parlance — the number of
channels. Without loss of generality, we specialize our analysis to single input single output layers,
i.e. with D = 1. For the input-output relations of type (2.1, we use the terms convolution layer
and linear system interchangeably. Similarly, the function ¢ — h; is referred to as both the filter and
the impulse response of a linear system. Existing convolution sequence models can be classified in
terms of the parametrization used for their filters. The class of implicit convolutions represent the
filter as a parametric function g : t — hy.



State-space realization One option is to select vy as the impulse response function of a discrete
linear time-invariant system,

Tiy1 Tt + Buy ts hy = {ho t=20 2.2)

Yy = Cxt + hout ’ CAtilB t>0

with state x; € R%, input u; € R, and output y; € R. The matrices A € Réxd B ¢ R4x1
C € R™9, and hg € R are the learnable parameters of the model while the initial state z¢ is usually
set to zero such that u — y is a pure convolution. While linear systems (2.2)) are the staple of
signal processes and control theory, their use as implicit parametrization of convolution filters in
deep neural networks have only recently emerged [[12} |6]]. Other parametrizations [[13] |14} 2] select
v (t) as different flavors of implicit representation neural networks [[15}|16]]. The latter are generally
more powerful in terms of the class of filters they can represent and flexibility during training, at the
cost of losing a fixed state dimension.

2.1 Long Convolution Sequence Models ’ T()

. . u — T(k)
The H-family of convolution sequence models — H3 [[I] and \_} 7
Hyena [2] — relies on a combination of long convolutions and TO = Mg & Ty > Mg By
data-controlled gating to replace attention with sub-quadratic
scaling in sequence length} We use the deep learning conven- Figure 2.1: H-block. T(@, T*),
tion of naming different projections as query g, key k and value T are short-convolution operators.
v. Let M, and My, be the L-by-L diagonal matrices whose respective main diagonal entries are the
respective entries of length-L sequences g and k. A H-block realizes a surrogate attention matrix
with a data-controlled, parameterized decomposition in three terms:

(g, k,v) = H(g, k)v, H(g, k) =M,;T,M (2.3)

where T, €RE*E is the Toeplitz matrix constructed from the learnable long convolution filter h,
ie., Tp=(hi—;) lL]—:10 The gkv-projections are themselves the output of a convolution between the
input sequence and three distinct short filters. The degrees of freedom in H-block design are the
three short ﬁlterﬂ and the long filter h. The long filter can be parameterized using an implicit neural
representation [2], state-space model [/1]], or explicit values [17]. The threefold decomposition of the
attention operator, allows evaluation of (2.3)) in just O(L) := O(Llog, L) time (two convolutionsﬂ
and two element-wise products), y;=q;(h * kv);. The overall operator acts on an input u by con-
structing a third-order multi-variate polynomial of u whose coefficients are controlled (nonlinearly)
by parameters of the block.

2.2 Auto-Regressive Generation

A typical workload for sequence models is auto-regressive generation. Given a length-T' prompt
u € RT, the model is tasked with producing the following K additional outputs — one at a time —
for a resulting output sequence y of length L=T+K.

Convolution sequence models After processing the initial prompt in @(T) time and obtaining
a length-T" output w — yo,...,yr—1, a generic convolution layer can cache the output sequence
and generate any additional outputs using auto-regressively, i.e. yt+1:Z;‘:0 he—;y; for
t=T-1,...,T+K—1. It is important to note that auto-regressive generation with generic long
convolutions is expensive. It comes with a quadratic cost in the number K of tokens to be gener-
ated and require storing a cache of length up to L.

Lemma 2.1. Generating K tokens with a long convolution layer @2.1)) from a length-T prompt
has time complexity O(T logy T + TK + K?) and requires O(L) memory.

’In this work, we consider second-order Hyena blocks [2] to automatically extend our findings to H3 [[1].

3The short filters are explicitly parameterized, see [2].

“The gkv short convolutions can be evaluated in batch with a single pass. The second convolution is the
one with the long filter h and performed via Fast Fourier Transform (FFT), hence the @(L) complexity.



State-space models When the linear system admits a state space realization (2.2), i.e. it is able
to switch between convolution and recurrent mode, the cost of auto-regressive generation can be
dramatically reduced. The memory footprint is O(d): all we need to cache is the state x;, a d-
dimensional vector. With some further machinery that we develop in next section, we can retain
O(T) time and O(T') memory to process the promp and initialize the state z7_;. Each additional
generation step only requires O(d) time.

Lemma 2.2. Generating K tokens with a state-space model 2.2)) from a length-T prompt
has time complexity O(T log, T+dK) and requires O(T + d) memory.

Note that long filters h truncated to length d (i.e. h;=0 for ¢ > d — 1) can also be interpreted as
d-dimensional SSMs (see Appendix [A.7) where the state (a cache) coincides with the last d inputs.

Transformers Self-attention is certainly less efficient than long convolutions in processing the
prompt, coming with a hefty O(T"?) time complexity. However, Transformers can achieve a similar
efficiency in auto-regressive generation by caching the sequences of past keys {k;} and values
{v:}. Specifically, from t=T—1 onward, the new projections (q¢41, kt+1, Vt4+1) are evaluated from
the current output y,, and the new output y;; can be computed in linear time with two reductions

St elaieiks)v;
S o(aerik;)

x

where ¢ : R — R is usually chosen as p(z) = e”.

Yt+1 =

Lemma 2.3. Generating K tokens with self-attention from a length-T' prompt has time com-
plexity O(T?+TK+K?) and requires O(L) memory.

3 The Laughing Hyena Distillery

In this section, we introduce our distillation method. We discuss choosing an approximation objec-
tive, a parametrization for the approximant and setting a target state dimension.

Given any pre-trained LCSM, the objective of the distillation procedure is to convert each pre-trained
convolution filter into a distinct state-space model (2.2)). This should be achieved with the smallest
state dimension d which preserves, up to a certain tolerance, the input-output characteristics of the
convolution layer. Formally, given a filter & the distillation problem is defined as follows.

Given the sequence h1, ..., hr, find a state-space model (2.2) of dimension d < L, whose
input—output behavior approximates the one of the convolution with h over the largest class
of input sequences.

The choice of approximation metrics and assumptions on the input sequences yield different distil-
lation objectives. A distillation algorithm constitutes a systematic procedure for optimally choosing
the systems matrices with respect to a particular objective. In instances where the original filter i
is itself the impulse response of a finite-dimensional state-space model, e.g., when attempting dis-
tillation of H3 or S4 [6] filters, the term distillation becomes analogous to model-order reduction.
Hence, in such cases, the distillation algorithm should yield a state-space representation of a lower
order state-dimension.

There exist several algebraic solutions to the model reduction problem [18},[19} 20, typically seek-
ing low-rank structures of the state space by inspecting some invariant of the system, e.g. the Grami-
ans in balanced truncation [19, Ch. 7]. The lower-order system is then obtained as a projection of
the system dynamics onto the found subspace where the system retains desired characteristics, e.g.,
input-output behavior, stability, etc.

Truncated filters In theory, implicitly parameterized convolution filters can represent arbitrarily
long signals. In practice, these filters are trained on a fixed maximum length L. At inference time
the model can then be evaluated for sequences longer than L. During distillation it is nonetheless
reasonable to treat the pre-trained filters as potentially very long (even beyond L) but finite impulse

5In we show that multiple pre-filling strategies exist, with different trade-offs in time and memory.
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Figure 3.1: The LaughingHyena long convolution sequence model distillation blueprint.

response functions [21}, 22} 23] 24]. We show how this choice is supported by empirical evidence
displaying how pre-trained filters typically decay to zero in finite time (see Appendix [D).

Transfer function representation An alternative description of the system (2.2)) is its transfer
function H, defined as the z-transform of the impulse response H(z)=Y =, hiz~" for all zeC
where the sum converges. The transfer function is a proper rational function of z

biz7l4+ oo by
1+aiz7t+ -+ +agz=®

H(z) =ho+C(zl =A)"'B = hg + (3.1)

In the z-domain, the transfer function defines the input-output map as Y (z) = H(z)U(z).
Here, H (z) is defined outside the C-plane circle of radius p(A), D,a):={z € C: |z]| > p(A)}
where p(A) is the spectral radius of A, i.e. the amplitude of its largest eigenvalue. We can
recover all characteristics of a given system equivalently from either its transfer function or
state-space representations (see Appendix [A.3]for further details and derivations). Notably,
the transfer function is an invariant of the system: if we apply a change of variables to the
state, the transfer function remains unchanged (Lemma[A.3). This alone should discourage
attempts at modeling filters by learning dense state-space matrices A, B, C as such: there are
infinitely many equivalent state-space realizations that map to the same system. Starting from
coefficients (a;) and (b;) of the rational transfer function (3.1)), we can compute the impulse

response in O(L) time (Lemma . Moreover, we can map back the transfer function to a
special state-space realization — the companion canonical form — whose recurrence has time
complexity O(d) (Lemma[A.7), compared to the O(d?) of dense state-space matrices. From
Lemmas [A.3] and we can also prove that any stable state-space model can be converted
by canonicalization into its companion form, and thus can be equipped with an efficient re-
currence (Thm. [AZ§).

The distillation problem presents several challenges:

1. Defining the distillation objective. A primary decision involves selecting a distillation ob-
jective. We are primarily interested in metrics of pure discrepancy between each filter of a
pre-trained deep model and its approximator, rather than the expected input-output loss over a
distribution of inputs.

2. Choosing a state-space parametrization. It is crucial to determine a suitable parametrization
of the distilled state-space realization. Once this is decided, the task is to identify the parameters
that minimize the distillation desiderata, which can involve challenging optimization problems
in itself.

3. Selecting the target state dimension. Lastly, a challenge is to estimate the degree to which the
model’s order can be reduced. In other words, we must select the target state dimension of the
distillation process to identify the right trade-off between efficiency and accuracy.

In the following, we address each of these challenges, and provide a comprehensive approach (sum-
marized in Figure [3.1)) to distill recurrences from convolution-based architectures.



3.1 Data-Free Distillation Objectives

We focus on distillation objectives that are independent of the training data and the overall archi-
tecture of the neural network under consideration. The distillation loss should be chosen as a pure
measure of discrepancy between each convolution filter h; of the model and their finite-dimensional
approximations h, = CA'™!'B. This approach ensures that we do not require a full sequential
inference pass over the pre-trained model at each step of distillation procedure and the distilled
model can be more broadly applied to downstream tasks. This choice is supported by Young’s
convolution inequality [25} |26]], which indicates that the output approximation error has a bound
ly —gll- < ||h — iz||q||u\|p for properly chosen norms’} For maximum numerical stability and
freedom of parametrization for the approximants, we favor modern unconstrained gradient-based
approaches to then solve the resulting distillation prograrrﬂ We design distillation algorithms which
either match filters in time domain minimizing the €5 error (||A|2 = [3,c5, [he]*]'/?) or match their
transfer functions optimally with respect to the Ho norm (||H ||z := [(1/27) [T \H(e’“)|2dw1/2
As the distillation is carried out via gradient methods, /5 is a natural candidate. Ho error minimiza-

tion can instead be used to uniformy bound the worst-case discrepancy as || — hl|s < |[H — H]2
(see Appendix for further details).

3.2 Making Hyena Laugh with Modal Interpolation

Our degrees of freedoms to solve the distillation problem are the matrices A, B, and C of the state-
space realization, which determine the filter for all ¢ > 0. In distilled SSMs, the passthrough
(residual) term cannot be freely assigned: it is simply &g, the value of the original filter at zero. Al-
ternatively, given its appealing invariance properties, we can parametrize a proper rational function

H(z) @31) and fit it to the (truncated) transfer functiorﬁ of the original filter Hy,(z):= Zf:o hez™t
(see Appendix [B.2).

Modal canonical form Optimizing the full transfer function can be numerically challenging for
several reasons e.g., ensuring stability{lﬂ and ill-posedness for high-order polynomials. A natural
solution, inspired by barycentric approaches to rational function approximation [29,|8]], is to assume
d distinct roots \,, in the denominator’s polynomial, \,, € roots(poly(a)).

Proposition 3.1 ([5]). If poly(a) has distinct roots {\,, € C}, then the transfer function of
the system can be factorized as H (z)= 23:1 R, /(2 = An), Vz €Dya) where {R, € C}
is the residue associated with the pole \,,.

Computing the inverse transform of the expanded transfer function via, e.g., the Cauchy residue

theorem [30]], shows that the resulting impulse response h corresponds to a truncated basis of expo-
nentially decaying complex sinusoids

d
hy =Y RuA', Rp A €Ct>0. (3.2)
n=1

In practice, this corresponds to the impulse response of state-space model with diagonal matrix
A = diag(\1, ..., \g) and such that B;C; = R; foralli = 1,. .., d. The distillation problem can be
then defined in terms of the L-point nonlinear least squares interpolation error (squared /) between

hi,...,hy and (3.2) evaluated for t=1,..., L: mingy, g} || — h|2. Note that in case of the target
filter h being real-valued, the objective can be replaced by ||R[h] — h/)3.

®p, g, 7 > 0 should satisfy 1/¢+1/p =1/r + 1. In the case of infinite sequences defined on the all Z, the
norms are taken in a ¢, £4, ¢, sense, respectively. The bound is potentially sharp [27] 28]

"For completeness, we also test balanced and modal truncation techniques on a suite of pre-trained H3 and
Hyena models in Appendix

8Such norms are always well-defined for finite sequences of interest which are in £o.

? As already partially discussed in [6]], the truncation introduces a correction term in the approximant transfer
function. See Appendix[A.4]

19}.e normalizing denominator polynomial coefficients to constrain roots within the unit circle.



Modal Interpolation

Although we find solutions of the distillation
(interpolation) problem via modern gradient-
based optimization techniques, it is worth men-
tioning that Prony showed how the nonlinear
least square solution can be computed solv-
ing two linear problems [9]. However, sim-
ilar to Padé’s method for rational approxi-
‘ ‘ ‘ ‘ ‘ ‘ mation [31]], these techniques can be numer-
0 20 40 60 80 100 120 ically unstable. We opt for a parametriza-

" tion similar to [32} ]33] where each eigenvalue
Figure 3.2: Example of modal interpolation. The is parameterized in polar form M, :=A, e

approximant is a linear combination of exponentially- and the residues in cartesian for Note
decaying complex exponential basis functions with (hat  with this parametrization we have
learned decay rate. s _

Y R[] = 32, AT R(Ry) cos(0n(t — 1)) —

J(R,,)sin(0,(t — 1))]. We can also solve the distillation problem in the Hs sense by evaluating
hiand hy att = 0,..., L — 1 and taking their respective (discrete) Fourier transfor before com-
puting the objective. Efficient evaluation of (3.2)) is crucial for distillation. In particular we show the
following:

Lemma 3.1. Evaluation of (ilt)th_Ol (32) can be done in O(dL) time from its modal form
and in O(L) time from its proper rational form.

3.3 Minimal Distillation Orders

Distilling into lower-dimensional systems is always desirable as they require fewer parameters and
less computation for the optimization problem, and they yield recurrences that are (linearly) more
efficient in terms of time and memory complexity in auto-regressive inference. The dimension of the
smallest possible state-space model with impulse response exactly {h; }+cn is the so-called McMillan
degree [34]:

d* =argmind : 3A € Ccixd B e C C e C*4 with hy = CA'!B, ¥t > 0 (3.3)

Theorem 3.1 (Ho-Kalman [35, Theorem 2, Corollary]). Let S be the (infinite) Hankel matrix
constructed with h, i.e. S := (hi1;){5_;. Then, d* = rank(S).

A lower bound for d* can be estimated from a truncated filter of length L by constructing the L x L
principal sub-matrix Sy, and using the fact that rank(S) > rank(S;). Inspecting how fast the
Hankel singular values (0,,)%_; decay in pre-trained convolution models can be predictive of the
approximation quality at a fixed dimension. As a rule of thumb, d needs to be sufficiently large for
04+1 to be sufficiently smalm Specifically, we can prove that the /ast singular value o4 determines
the upper bound of distillation quality with a SSM of dimension d, in terms of the Hankel norm [|19].
This is a direct consequence of Adamjan-Arov-Krein theorem [7]] and can be informally stated as
follows.

Theorem 3.2 (Informal). Let h be a length-L filter, ha distilled filter of order d < L and let
St, Sy, be the respective Hankel matrices. Then infg IS —SLll2 = oa-

3.4 Deploying the Recurrence

Once all the filters of a pre-trained model have been distilled with the proposed modal interpolation
technique described above, the model unlocks a recurrent mode which allocates a state z; € C4 for
each filter and enables fast auto-regressive inference. Deployment of distilled model involves two
critical steps: the pre-filling and the recurrent update rule itself.

""We report additional details on the nuances of the parametrization in Appendix

2Which is equivalent to evaluating the corresponding transfer functions on the L + 1 roots of unity zj, =
ei2mk/(L+1)

B Formally, this is related to low-rank approximation characteristics of the Hankel operator; rigorous bounds
can be constructed by application of the Eckart—Young—Mirsky theorem [36].



Fast pre-filling During auto-regressive generation, when a length-7" prompt is fed to the model,
we need to compute the state x7 to start generating new tokens. Using the recurrence, the time
complexity of initializing z7 would be O(dT) with a O(d) memory footprint. One can alternatively
distribute the computation on d processors with a parallel scan operation [37,38] to reach a parallel
time complexity O(dlog, T') while incurring in an increased memory requirement of (’)(dT)[ﬂ A

third option is to use a single FFT convolution to obtain 7 in O(T)) time and O(T") memory.

Proposition 3.2. x1 = (vr,...,vr_q) where vy = (g xu); and g is the filter whose transfer
Sfunction is 1/den(H)(z) and can be evaluated in O(T).

Note that, the fast pre-filling algorithm established by this result requires evaluating the denominator

polynomial of H from its roots before deployment. This is equivalent to converting the transfer
function from its factorized representation to its rational form (3.T).

Recurrent step The update rule is diagonal, thus efficiently evaluated in O(d) time and memory:

Proposition 3.3. The filter (3.2) has a state space matrices A = diag(\1,...,\q) €
C™>*d B = (1,...,1)T € C¥*' C = (Ry,...,Rq) € C**? whose step can be evalu-
ated in O(d) time and memory.

As we generally want the output y; to be real-valued, we can simply update the complex state
241 = Axy + Buy and then take the real part of the output, v, = R[Cxy] + hou,.

4 Multi-head Long Convolutions

We can leverage the Hankel spectrum analysis discussed in Section [3.3]to study the dynamics of
the effective dimensionality of each convolution filter during LCSMs pre-training. We find that,
at initialization, filters correspond to high-dimensional SSMs, and gradually converge to lower-
dimensional representations during training. See Appendix for examples on Hyena and H3
models.

This observation leads to the question: is it advantageous to perform independent long convolutions
on each channel, or can we reduce the total number of filters without loss in quality? To answer
this, we adapt the multi-head layer design proposed by H3 [[1] to Hyena [2]:

1. Given the projections ¢, k,v € RL*P  we split them into M chunks of size N=D/M,
qm’ka)m c RLXN.

2. Each chunk is processed by a modified Hyena operator: first, we perform the outer product of
k™ and v™ along the spatial dimension, z™:=k™ ® v™ € REXNXN ‘apply a long convolution
with filter ™ to all N x N_elements independently, then compute y;"=(h™ * 2™ ).q]", y™ €

RE*N as shown in Figure
3. Finally, we compose ', ..., y™ into a single output ¥ € R¥*P via concatenation.
An instance of a MultiHyena is equipped with M < D dis- q
tinct long convolution filters, which leads to (a) faster dis-
tillation, with less filters to approximate, (b) lower memory k™ —» outer — Tj" — dot —
footprint, via a total reduction of the states to cache dur- J
ing generation and (c) faster filter generation, by tying the ™

weights of filter parameters. We note that tying weights of
key-value projections has also been shown to be an effec- Figure 4.1: A single head of a multi-head
tive technique to reduce memory cost in Transformers [39} 4G]yena.

Crucially, the multi-head structure of MultiHyena enables us to prove favorable scaling in the as-
sociative recall synthetic task, which was shown in [2] to be predictive of performance at scale. In
associative recall, the model is given a sequence of key-value pairs and a query, and is tasked with
matching the query to a key in the sequence by returning its associated value. The difficulty of the
task grows with the vocabulary size s: larger vocabularies necessitate wider models.

14This strategy can also be use to evaluate the filter h alternatively to the standard O(dL) method



Theorem 4.1. The MultiHyena layer, with O(log s) heads and model size O(/slog s) can
solve the associative recall problem, where s denotes the vocabulary size.

In Appendix [E.T| we empirically verify improved scaling in vocabulary size with multiple heads.

5 Experiments

¢ Pretraining: We pretrain a suite of MultiHyena language models on The Pile [[11]], investigating
scaling of perplexity with different amounts of total tokens (5, 10, 15 billion), as well as larger
training runs for 300 billion tokens. MultiHyena outperforms Transformers and Hyena.

« Distillation analysis: We investigate the relation between optimal distillation orders, Hankel
spectrum, and errors on the logits of distilled models.

¢ Post-distillation downstreams: We evaluate the downstream impact of distilling long convolu-
tional language models, reporting HELM [41]] and LM-Eval-Harness [42] results.

* Benchmarking: We benchmark latency, throughput and memory along the different axes of
batch size, sequence length, number of generated tokens. We include base models, distilled
models and equivalent Transformers.

5.1 Pretraining

To validate the multi-head formulation, we train 150 and 350 million parameter MultiHyena models
on The Pile [[11]] using 8 heads and otherwise the same architecture as equivalent Hyena models,
following the setup of [2]. Via the multi-head structure introduced in {4, MultiHyena outperforms
both Hyena and Transformers, including on data scaling runs with increasing numbers of tokens
(Table[5.T) and full 300B tokens runs (Table[5.T).

5.2 Distillation Analysis

Next, we verify whether Hankel singular values are predictive of downstream errors, and whether
large models can be distilled without loss in quality. We apply LaughingHyena distillation to pre-
trained MultiHyena, Hyena and H3 of different sizes. Concretely, for each layer and channel of a
model, we parametrize the poles { A, } of the modal canonical forms (Section at different orders
d, and solve for each {5 approximation problem.

Approximation errors and spectrum We investigate the magnitude of approximation errors in-
troduced by LaughingHyena distillation. Given a pretrained MultiHyena model, we compute the
errors between original and distilled filters at each layer, averaged across channels. We repeat this
process for different distillation orders (state dimension of the model form of Section [3.2). Figure
[5.2) visualizes minimum, maximum and average errors, per-layer errors and the distribution of the
singular values of the Hankel operator associated to each filter. We observe distillation orders (> 16)
that yield smalls errors to be predicted by the distribution of singular values.

Thus, analysis of the Hankel operator’s spectrum is verified to be an effective approach to direct
estimation of the optimal distillation order. We also note that the optimal order changes across
layers, offering options for further optimization.

Model 5B 10B 15B

Model ‘PERPLEXITY GPT (125M) 13.3 11.9 11.2

Hyena (153M) |13.3 11.8 11.1

GPT | 93 MultiHyena (153M) | 12.1 110 10.6
Hyena 9.3

/ GPT 355M)  |11.4 98 9.1

MultiHyena 8.7 Hyena (355M) |11.3 9.8 9.2

MultiHyena (355M) | 10.6 9.4 8.9

Table 5.1: [Left] Perplexity of small models on THE PILE, after pretraining for 300 billion tokens. [Right]
Perplexity on THE PILE for models trained until a total number of tokens e.g., 5 billion (different runs for each
token total).
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Figure 5.1: Errors between logits of pretrained and distilled MultiHyena. In blue, we plot (ordered) logits, in
the cumulative distribution function, and in black the relative errors. The green dotted line indicates
the 99.99% percentile. As the errors grow slowly as function of the percentiles, model outputs do not diverge
from the base model.

Model LAMBADA Winogrande PIQA HellaSwag OpenbookQA
acc acc acc  acc norm. acc norm.
Pythia (160M) \ 32.8 53.1 61.6 31.6 29.2
MultiHyena (154M) 43.2 52.7 64.6 34.1 29.0
LaughingHyena-16 43.1 52.6 64.7 34.1 28.9
LaughingHyena-8 0.0 51.8 51.5 32.7 28.2
LaughingHyena-4 0.0 49.6 53.7 26.4 26.4

Table 5.2: Evaluation of LaughingHyena-distilled models pre and post modal distillation. We test on LM-
Eval-Harness [42] and HELM [41]] tasks, reporting Pythia [44] performance as a Transformer baseline trained
on the same data. LaughingHyena-n is a MultiHyena model with each filter distilled with n orders.

Output errors Next, we compute relative ¢; error between output logits of pre-trained and dis-
tilled models to ensure LaughingHyena can be used in generation workloads. The optimal minimal
distillation order estimated via Hankel operators (16) is sufficient to keep the output distribution over
the vocabulary (> 50k entries) close to the pre-trained model, as shown in Figure[5.2] Inspecting the
error profile over logits sorted by magnitude reveals our approach to be robust to different sampling
strategies for generation, including greedy decoding, top-k, top-p [43]. Indeed, the relative errors
are < 1072 up to and including the 99.99% percentile of the distribution, meaning e.g., a top-p sam-
pling strategy with large p can be used on a distilled model without drift in outputs (mis-classified
tokens). We note that the relative errors are maximum on small-norm logits, which are not required
by most sampling strategies.

In Appendix [D.2] we provide a similar distillation error analysis for Hyena and H3 models. We find
that Hyena and can be distilled with less than 32 orders and H3 with less than 8.

5.3 Downstream Evaluation

We check how distillation affects downstream performance on language benchmarks. We apply
distillation of order 8, 16 and 32 to our THE PILE-pretrained MultiHyena language model and
benchmark (Table [5.3)) its performance on a suite of canonical (zero shot) tasks from LM-Eval-
Harness [42]] and HELM [41]]. The results are consistent with our error analysis: distillation orders
equal or greater to 16 introduce little-to-no quality degradation.

5.4 Benchmarking

We measure throughput, latency and memory usage of LaughingHyena for auto-regressive genera-
tion workloads, with initial prompt length 7" and number of generated tokens K. The throughput is
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Figure 5.2: Approximation error profiles (min, max, average) on the filters of MultiHyena model after distil-
lation at different orders. We also visualize the distribution of Hankel singular values: if the spectrum decays
after n singular values, order n distillation yields low errors.

computed as number of generated tokens over latency. For each setting (and additional benchmarks),
we provide details in Appendix[D.4]

Laughing Hyena 1.38 - - - Hyena 1Bgak throughput Distilled models do not need kv-
...... Transformer 1.3B = = = H3 1.38Caches. This reduces memory requirement during
generation, enabling higher peak throughput in large-
batch workloads. We achieve 10x higher through-
put than Transformers at size 1.3 billion parameters
(Figure [T.I). Throughput is higher than Transform-
ers even at fixed batch sizes, indicating lower latency.

2,000 F:

1,000

Throughput [tok/s]

: * SSM state dimension and throughput For typical dis-
512 1,024 1,536 tillation orders (< 100), peak throughput is not greatly
affected. We melasomepa RS6gdduction in throughput from 32 to 64.

Laughing Hyena 1.3B = - --- Hyena 1.3B

Proﬁl&uf&%ﬁi SoplinedBEYARYY of LaughingHyena- ... Transformer .38 - - = H31.3B
distilled models is 4x larger than Transformers at fixed
batch size 64 and prompt length 1536 (Figure[5.3). As
prompt length increases, the runtime gap between pre-
filling via convolutions in LCSMs and pre-filling in
Transformers widens (e.g., O(T) as detailed in Section

compared to O(T?)).

Memory [GBs]
[\
S

64 256 512

Memory footprint Recurrent models do not require Generation Length
kv-caches and use constant memory for generation of

an arbitrary number of tokens (Figure [5.4). Figure 5.4: Peak GPU memory for genera-

tion.
6 Conclusion

We study the efficiency and quality of state-of-the-art long convolutional sequence models. First,
we introduce LaughingHyena, a novel distillation method inspired by rational function approxima-
tion and model-order reduction techniques. LaughingHyena can be applied after training to extract
compact state-space models from each convolutional filter, without loss of quality. Distilled models
achieve higher throughput than equivalently-sized Transformers, and can perform auto-regressive
generation in constant memory by sidestepping the need to cache previous outputs. We theoreti-
cally and empirically investigate the trade-offs of different strategies for fast inference of recurrent
models, and introduce architectural improvements to Hyena that improve pretraining quality.
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Broader Impact
In this work, we focus on advances related to efficient models for long sequences.

Efficiency Our distillation methods for constant-memory, high throughput inference in long con-
volution sequence models (LCSMs) can lead to energy savings during model deployement, enabling
processing of longer-form content at a fraction of the cost and reducing environmental impact. Im-
proved efficiency may also affect other aspects of Al safety, as it may make it easier produce mali-
cious or harmful content.

Accessibility By improving the efficiency of training and generation,LCSMs and LaughingHyena
may contribute to increased accessibility of large language models, lowering the hardware barrier to
entry for individuals and organizations with limited resources.

Steerability New method based on LCSMs enable sequence models to process long-form prompts
previously inaccessible by Transformers, which may lead to increased control over models via e.g.,
conditioning on additional instructions [45].
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A Linear Systems

A.1 Extended Notation and System Theory Preliminaries

We first introduce the notation and some mathematical concepts that will be used throughout the
paper. By Z we denote the set of integers, by R the set of reals, and by C the set of complex numbers.
The variable ¢ stands for time. {,,(Z) denotes the Banach space of complex-valued sequences (z¢) ez
with finite energy, i.e. [|z[l, = [> ez [2¢|P]'/P < oo for some 1 < p < oco. luog(Z) is instead is
the space of sequences for which ||z||c = sup,cy |2¢|] < oco. With S denoting the unit circle
in the complex plane, S == {z € C : |z| = 1} we define #,(S) as the space of functions X
from C to itself such that || X ||, := [(1/27) [T |X(e™)[Pdw]'/? < oo and Hoo(S) the space for
which || X |l = sup,eg|X(z)| < oco. Particularly, Ko(S) is a Hilbert space with inner product
(X,Y) = (1/27) [T_X(e™)Y*(e")dw where “x” denotes complex conjugation. Although we
acknowledge we are using the same notation for norms in both ¢,,(Z) and #,,(S), the correct meaning
will always be made clear by the context. The Z-transform of a sequence x = (x¢)iez is X (2) =
Z[z](2) = Y ez x¢2z~t. We embrace the system theory convention of using capital letters to
identify transformed sequences. The Z-transform is a projection of the sequence onto a basis of
powers e; = 7~ 'e’?!. This basis is not orthogonal unless » = 1. That is the basis of the discrete-
time Fourier transform F. Hence, F is defined as F[z](e™) = X(e™) := >, ., xpe” ™" The
discrete-time Fourier transform is an isometric isomorphism between ¢5(Z) and L (S). We say that
sequences live in the time domain and their Z (or F) transforms in the frequency domain.

A linear system is a linear operator transforming an input sequence u to an output sequence y. If
the sequences have continuous support, i.e. ¢ ranges over a continuous set (e.g. R), we have a
continuous-time system. Conversely, if the sequences have discrete support, i.e. t ranges over a
discrete set (e.g. Z), we have a discrete-time or digital system. In this manuscript we restrict
ourselves to discrete-time systems. Systems can be single-input single-output (SISO) if u and y
are scalar functions or multi-input multi-output if either u or y are vector-valued. We limit our
discussion to SISO systems. The impulse response of a system is the output sequence y when the
input sequence  is the Kronecker delta function d; and is usually denoted by the letter h. The values
h, of the impulse response sequence are also known as the Markov parameters of the system. The
most common mathematical representation of a linear system is its convolution form: y = h * u,
ie. Yy = ZjeZ he—ju; = ZjEZ hjus_j, t € Z. In matrix form the input-output relation is
given by the Toeplitz operator T} corresponding to the (possibly infinitely long) sequence h, i.e.
y = Tpu. Taking the Z-transforms, we can write the input-output relation as Y (z) = H(2)U(2)
(this is just the Fourier convolution theorem extended outside the unit circle). H(z) is called the
transfer function of the system. When z = e, H(e™) is just the discrete-time Fourier transform
of h which is called the frequency response of the system. A linear system is causal if hy = 0 for
t < 0. A system is called stable if the T}, is a bounded operator. If u,y € ¢5(Z), then stability
implies h € /. In the following, we mainly focus on causal stable systems.

A.2 Systems Norms

When quantitatively characterizing linear systems, several norms play a crucial role. These norms
provide measures of various characteristics of the systems, which are essential in both analysis and
filter design.

The /> and H- norms As defined above, the /5 norm represents the energy of a signal h,
1/2
IAlla = [>_Ih]
tez

while H is the energy of the (continuous) spectrum of h,

HH||2 — [i /W |X(eiw)|2dw]1/2

2 J_,

By Parseval’s theorem, the ¢o and H2 norms are equal, ||h||2 = ||H||2. Further these norms are
useful to study the approximation of convolutional filter. The following holds:
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Lemma A.1 (¢, output error). Consider the class of {2 measurable inputs such that ||u|ls <
¢, then forall H H € Ho, X
1y = 9lloe < CIH — Hl2

Proof.

SUP 1y — Ge| = Sup ‘ [Y(eiw) — Y(eiw)} eiwtdw’

—T

1 g ) N
< — Y (e") — Y (e")|dw
2 J_,
L |H(e™) — H(e™)|U(e™)|dw
27
1 (™ , 12 V2 gm - 1/2
< |— Wy w . iw .. .
< [271- [W |H(e™) — H(e")| dw} {2# [W|U(e )| dw} Holder Inequality
1 /7 . o 1/2
= [2/ [H(e™) —H(eW)de} [[ull2 Parseval Theorem
T T
S CHH - ﬁ”’f-&

O

If u is the unit impulse function u; = §; then ( = 1. The results also holds for finite sequences of
length L using the discrete Fourier transform.

Lemma A.2 (Impulse response error on finite sequences). Consider filters h, h with finite
length L. Then, the following holds.

1B — hlloo < |[H — H]j2

where H and H denote the discrete Fourier transforms of h and h, respectively.

Proof.
=
Iy = lloc = sup lye — gl = sup | = 37 [¥ = ¥y | 2t/
t>0 t>0 | 27 pry
L—1

IA
Do
o
Li
=
=

1 )N

n=0

= 1/2 = 1/2
< [% ;(Hn - Hn,)Z] [271’ Z:: U2 Holder Inequality
1 1/2
< ! Z(H - H, ) [l Parseval Theorem
= |or — 2
=|H - H|. using [ullz =1
O

A.3 Transfer Function of State-Space Models

The transfer function (3.I) is derived by taking the z-transform of input and state, U(z) =
Zlu)(z), X (z) = Z[z](2). Plu gmg U(z), X (z) in the state equation (2.2)), it holds

2X(2) =AX(2) +BU(2) & X(z) = (21— A)"'BU(z)
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Substituting in the output equation yields

Y(2) = C(zl — A)"'BU(2) + hoU(2)
The transfer function is then defined as
Y

_ _ —1

Alternative derivation The transfer function can also be derived by direct z-transform of the
impulse response h; of the system. This derivation is useful to highlight the region of convergence
of the transfer function.

H(z)=ho+Y = 'CA™'B ho is pulled out via hoz® = hy

t=1

i Z—tAt—l

t=1

oo
=ho+271C [Z (= Dat—1

t=1

=ho+C B multiplication distributes over sum.

(A.2)
B multiply by z/z

o
=ho+2'C [Z(zlA)t] B change of index and collect like terms
t=0

We look at the convergence of the series Y-, ||z~ *A||5. We have
12 All2 < (127 [2l|A]l2

= |l te™™ |2 | A2 using z = re™ € C, r,w € R

<1 Al =7 p(A)
The series converges to 1/(1 —r~1p(A)) if and only if r~1p(A) < 1i.e. forr > p(A). Thus, in the
exterior of the disk with radius p(A), D,a) = {z € C : |z| > p(A)}, D72 (27 'A)* converges to
(I1—271A)"! and

z2€Dyp) = H(2) =ho+2z'Cl—2"'A)"'B=ho+C(zl —A)"'B

The transfer function H(z) = ho+ C(z1 — A)~!B of a stable lumped discrete-time system is defined
outside the disc in the complex plane that encloses all the eigenvalues of A.

Invariance of the transfer function H(z) as defined in (A.T) is a pmpe rational function of z.
In case hg = 0, H(z) is strictly proper and the denominator is monic:
bzt 4 bgz

S ldaz 4+ agzd
Specifically, the denominator could be derived from A with det(zl—A), and the numerator is det(zl—
A + BC) + det(zl — A). We provide a detailed derivation below in Section While state-space
representation involves the analysis and synthesis of model matrices A, B, C, the transfer function is
entirely characterized by the coefficients a = (a,,)%_;, b = (b,)%_; of numerator and denominator
polynomials. Notably, the transfer function is an invariant of the system: if we apply a change of
variables to the state, the transfer function remains unchanged.

H(z) (A3)

Lemma A.3. Coefficients a, b are invariant under any invertible change of variables.

Proof. The proof can be found in [5, pp.95] and follows from the definition of equivalence trans-
formation. Consider the state-space matrices of under change of variables £ = Kz,

A=KAK™', B=KB, C=CK™ hy=hy.
The resulting transfer function H (z) can then be computed as

H(z) = C(z2l = A)'B + ho = CKTHK(2l = A)KH KB + hg = H(2)

15.e. such that the denominator’s order is not less than the numerator’s one.
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A.4 Truncated Transfer Functions

In the case of generic truncated (finite) impulse response filters, such that h, = 0 for all ¢ greater
than a certain value L (which we refer to as the length of the filter), the transfer function is simply a
polynomial in the complex variable z of order L, i.e.

oo L
H(Z)Zzht«z_t:thz_t=h0+h12_1+--~+hLz_L (A.4)
t=0 t=0
In case the filter is generated by a finite dimensional (lumped parameters) system, i.e. h; = CA*"1B
t=1,..., L, then (A.4) can still be represented exactly by a rational function of order d.

Lemma A.4 (Truncated rational transfer functions). Consider the L-truncated impulse re-
sponse h; € ls(N) of a lumped-parameter filter (A, B, C, hy),

ho t=20
hi ={ CA'""IB 1<t<L.
0 t>1L

Then its truncated transfer function is

Hp(2) = Z{h}(z) = ho + C(I — 27 EAL) (21 = A)7!B

Proof. By definition of z-transform we have

00 L
Hrp(z)=> hz'=hg+» 2 'CA'B
t=0

t=1

(A.5)

L
Z Z—tAt—l

t=1

=ho+C

B=ho+2'C lLZ_l(z—lA)t] B

t=0

The sum Zf;ol (27!A)% is a partial Neumann series and can be manipulated as follows.

L-1 L-1 L-1
SETIA (=T =D A =D (A
t=0 t=0 t=0
=1—(z71A)L
Thus,

L—1

S ETA = (1= PA (-2 A) T

t=0

which plugged in (A23)) gives Hp(2) = ho + C(I — 2~ FAL) (21 — A)~1B, proving the result. O

Because of truncation, evaluating the transfer function Hy,(z) on the L roots of unity z = ek
wy = 2wk/T for k = 0,... L gives the length-L discrete Fourier transform (DFT) of the filter:

L—1
Hy = Hp(e"*) = > hye ™/b k=0, L-1.
t=0

In practice, this means that H e ((_IL is the FFT of h, H = FFT r[h]. If we can find an efficient
and stable algorithm to evaluate H from the system matrices (A, B, C, hg), then the FFT-based

convolution of truncated filter with an input sequence u € R* can be evaluated in O(L) time.

Reparametrization Assume training a LCSM equipped with SSM filters with input/target se-
quences to be all of length L (smaller sequences can be padded with zeros to the maximum length).
Thus, for training purposes, we are only interested in evaluating H for the FFT-based convolution.

The truncated transfer function H7, is equal to the original one with a correction term | — z~“A” on

the numerator polynomial. As already noted in S4 [6], 2~ is conveniently equal to one on the roots
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of unity, z**L = ¢=#27k — 1 forall k = 0,..., L — 1. Hence, the correction term due to truncation
becomes constant: Hy, = C(I — AL)(exp(—i27k/L)l — A)~1'B; in DFT domain the truncated filter
behaves as the infinitely long one with a perturbed C matrix

C=C-CAF
If —as assumed— the SSM is stable p(A) < 1, (i) the transfer function is defined on the unit circle,
term CA” will go to zero exponentially fast as L — oo and C = C (as expected). As advised in [6],
it is desirable to parametrize directly C; the expensive computation of the correction term C(I — A%)
is never carried out during training. Instead, the real C matrix can be retrieved for recurrent inference

by inverting the correction term C = C(I — AL)~1, always invertible for stable systems although
possibly ill conditioned by eigenvalues too close to the stability margin (the unit circle).

A.5 From Transfer Function to State-Space

Suppose the coefficients of the numerator and denominator polynomials of a proper transfer function
H is given:

b+ bz e bz

S l4az 4 o Haged

A state-space representation of the form (2.2) can be rapidly realized in two steps:

H(z) (A.0)

1. Get delay-free path From (A.6) we first notice that the bias term hg is hg = bg. We thus
want to isolate by from the rest of the numerator. This can be obtained via long division

(see JA3.T) and results in

+ b07 Bn = bn - boan (A7)

2. Get state-space matrices Given the transfer function H (z) with the isolated pass-through
coeffient by as in (A.7), we can construct the state-space matrices by companion canonical

realization:
—a; —az -+ —a4g-1 —aq | 1
1 0 cee 0 0 0
0 1 - 0 0 0
{ é ii } - : s ; S (A.8)
0 0 cee 1 0 0
Br B2 o Bac1 Ba | bo

Details on the complete a la [5] derivation can be found in §A.5.2] A linear system with finite-
dimensional state can be equivalently characterized: by its state-space matrices (A, B, C, hg), by its
impulse response function h, or by the coefficients a, b (or ) of the transfer function. A fourth
representation is its linear-constant-coefficients difference equation form

d d
Yi = g bjus_j — E ajYs—j,
7=0 n=1

typically used in signal processing literature in the theory of infinite impulse response filters (see
[46]]) and known, in the context of system identification of error-in-variables models, as auto-
regressive moving-average filters [47, 48|

A.5.1 Isolating the hy-term from Transfer Function by Long division

If the rational transfer function H(z) accounts for the hg term, then it is simply proper (order of
numerator equals the order of denominator), hg is necessarily hg = by (the delay-free path). Given
the transfer function in this form, we can isolate the by term and the strictly rational term of
by long division. We start by expanding the fraction as
Hizy— @2 b0 bzt e Aba
p(z)  p(z) p(2)

23



and
bo bo z d

p(z) 24 aizd 4+ o tay

We then use the long division method to compute by /p(2):

bo
2% fapztt 4 +ad)bozd
boZd + boalzd* + - 4+ boad

—boarz% 1 —-.- —bpay (reminder)
to finally get
b d—1 b bzt biz—9
H(z) = by — 82+ or Foodd | Oz F 0 F0a2
24+ a1zl + - +ay p(2)
by —boar)z"t + -+ 4+ (bg — boag)z~?
gy (b= boa) (ba — boaa)

l+a1z7 '+ -+ +agz—?

Note that the coefficients b,, in (A3) correspond to b,, — boa,, in (A.6), b, < b, — boa,. Itis
indifferent to parameterize the coefficients of the transfer function in either forms. However, if we
choose the simply proper representation (A.6), we need to apply the derived correction factor to the
numerator coefficients when we separate the hg term and strictly proper part of H(z).

A.5.2 Construction of the State-Space from the Transfer Function

Chen’s derivation The derivation is based on the steps reported for the continuous-time multi-
input multi-output case in [5]]. First, we define a pseudo-state v such that

1

p(2)V(z)=U(z) & V(z)=—7=U(z). (A9)
p(2)
Then, we define the state z; .= (z},...,z¢) € R? as
51
Ty = (V—1,0—2, - ,v—q) & Z{z}(z2)=X()=| 1 | V(2). (A.10)
H—d
From (A.9) we have
V(2) +arz ' V(2) + -+ agz"V(2) =U(2) «
V(2) = —a127 WV (2) = —aqz"V(2) + U(2) &
Vp = —A1V4—1 — -+ — AqVt—q + U < time-delay prop. of Z-transform
Tl =—aiTy — o —agxy +up & by def. of state (AI0).

Thus, we have the overall recurrence

1 1 d
Tip1 = —01T; — =+ — Q4T -+ Uyt
2 .1
Tipgp = Ty
d _ d-1
Lip1 = Ty

which can be written in matrix form as

—a; —az -+ —apn 1
1 0 0 0
T4l = 1 0 Tt || ue
: ' 0
0 0 1 0
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The output spectrum is then given by

Y(z) = H)U(z) = ZEE;U(Z) + boU(2)
=q(2)V(z) + boU(2) by def. of V(2).
Therefore,
Sl
52
Y(2) =q(2)V(z) +boU(2) = [61 B2 -+ Bn]| . | V(2) +boU(2)
z;d
=[B1 B2 - Bal X(2)+bU(2)
and the output equation in time-domain is given by
ye=1[61 B2 - Balz+ bous.

yielding state-space matrices (A.8§]).

A.6 From State-Space to Transfer Function

We detail an implementation oriented method to compute the coefficients (a,,)?_;, (b,)%_, of a

SSM’s transfer function. Recall that

CAdj(zl — A)B + det(zl — A)hg
det(zl — A)

H(z) = Clzl — A|"'B+ ho = (A.11)

Hence, the denominator coefficients (a, )2_; are simply the coefficients of the characteristic poly-

nomial of matrix A. They can be easily obtained by 1. computing the eigenvalues of A and 2.
calculating the coefficients of the polynomial whose roots are such eigenvalues. On the other hand,
the numerator apparently involves more complex symbolic manipulation. This can be simplified
recalling a classic matrix-determinant identity:

Lemma A.5 ([49]). Let M, B, and C respectively denote matrices of orders d x d, d x 1, and
1 x d. Then,
det(M + BC) = det(M) + CAdj(M)B.
Applying Lemma([A.5|to (A.TT)) we obtain
B det(zl — A+ BC) + det(zl — A)(hg — 1)

H(z) det(zl — A)

Let poly(r) denote the coefficients of the polynomials with roots » = (ry,...,74). Then a =
poly(eig(A)). Since A and A — BC are of equal dimension, their characteristic polynomials have
equal order and therefore

b = poly(eig(A — BC)) + poly(eig(A))(ho — 1)

Listing 1: State-space — transfer function conversion code

def get _tf_from_ss(A,B,C,h0):
a = poly(eig(A))
b = poly(eig(A — outer(B,C))) + (ho—1)xa
return a, b

A.7 State-Space Representation of Truncated Filters.

A truncated filter hy, ..., hy — as the ones found in any standard convolutional neural network —
can be represented by a L-dimensional companion canonical SSM. The filter’s transfer function
H(z) =ho+ 2V hpz s polynomial, i.e. a rational function with the denominator’s
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coefficients set to zero. Following the canonical realization process detailed in Section [A.5] the
truncated filter has state-space form:

0 0 0 0 1
1 0 0 0 0
Ti41 = 0 1 - 00 Te+ || U
: ' Do 0
0 0 1 0 0
ye=1[h1 he -+ hr]aze+ hous.

If xo = 01, and u; = 0 for negative ¢, then at each ¢ > 0 the state is a shifted copy of the input
sequence zy = (uy_1,...,us_r) € RE. Nonetheless, the asymptotic complexity of computing one
recurrent step is O(L) as it requires only a shift operation and a length-L dot product
:L‘%+1 = U¢
zlh = shift(z,) (A.12)
Yt = (hi.L, 24) + houy.

The memory footprint is also O(L). In [1] it is proposed the use of shift-type SSMs to parametrize
one of the filters of the H3 block.

A.8 Efficient Computation of State-Space Models
A.8.1 Fast Evaluation of the Transfer Function

Computing H(z) at any point z € C concerns the evaluation of the d-order polynomial of numerator
and denominator,
d -n
H(Z) _ q(Z) _ En:dl an
p(z) 1+ Do Gz
In practice, we are mainly interested in a fast algorithm that allows computing H on the L roots of
unity to obtain the DFT of the filter. The DFT of the filter can be then readily used to perform a FFT-

based convolution with a length- L input sequence  or to recover the impulse response function via
inverse DFT. We prove the following:

Lemma A.6. Given the coefficients a, b of the transfer function, the frequency and impulse
response of the filter can be evaluated in O(L) time.

Proof. The result is proven showing that the transfer function can be evaluated in O(L) time
on the L roots of unity. The fastest method to evaluate polynomials on L arbitrary points z
of the complex plane is generally the Horner’s scheme. This method is based on a sequence
of nested multiplications and computes the polynomial from its vector of coefficients, deliver-
ing a time complexity of O(dL). More explicitly, Horner’s scheme determines p(z) as p(z) =
(- ((agz ™t +ag_1)z "t +ag_2) -+ )z~  +az)2~t +a1)z~1 + 1. Each step involves a multipli-
cation and an addition, making a total of 2d operations per evaluation point. Thus, for L points, the
total number of operations amounts to O(dL).

Effectively, Horner’s approach implements the matrix-vector product of an L-by-(d + 1) Vander-

monde matrix V € CL*(4+1) constructed by L evaluation points (2o, . . .,z _1) with the vector of
coefficients a = (1,a1,...,aq)":
-1 —2 —d
p(20) Lz L B, Ao 1
p(z1) 1 27 217 2] ar
= =Va
B - '
(ZL—I) 1 2.7 22, -+ 25254 ad

Significantly, if the polynomial is required to be evaluated at the roots of unity, the Vandermonde
matrix simplifies corresponds to the L x (d + 1) DFT matrix. Further, zero-padding the coefficient
vector to length L, enables the use a single length-L FFT to compute the matrix-vector product in
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O(L) time. Thus, the numerator and denominator polynomials of the transfer function can be eval-

uated, on the roots of unity, in @(L) time by taking the FFT of the padded numerator / denominator
coefficients a, b and subsequently dividing element-wise the two sequences as FFT [b]/FFT[a].

The overall time complexity to obtain the impulse response is also O(L) since h can be recovered
taking an inverse FFT of the frequency response. O

A.8.2 Fast Companion Recurrence

The recurrent step of a generic SSM (2.2) with dense system matrices usually requires O(d?) oper-
ations due to the matrix-vector product Az;. We show how the recurrence of SSMs in companion
canonical form, i.e. with system’s matrices (A.8), requires only O(d) operations.

Lemma A.7. The recurrent step of a state-space model in companion canonical form (A.8)
can be evaluated in O(d) time and memory.

Proof. The companion state matrix A can be broken down into a lower shift matrix Ly and a low-
rank term. Particularly, with e; the first element of the canonical basis of RN and o = (a1y...,an),
we have

A=L N —€1da.

It follows that the recurrent update can be simplified to
Tir1 = (LN —e1 X Oé) xre + But
yr = Cxy + bouy

The peculiarity of this formulation is that we never need to construct the matrices to perform the
recurrence. In particular we have:

1 T
Tigp = U —Q Ty
a7l = shift(z;)
T
yr =B x4 + bouy

Thus, each step only requires two inner products (d multiplications and d sums each) and one shift
operation, totaling O(d) operations. O

The proof of LemmalA.7] yields the practical implementation of the recurrence:

Listing 2: Python implementation of the companion canonical recurrence

def step(x, u, alpha, beta, b0):
y = dot(beta, x) + b0 * u
1lr = u — dot(alpha, x)
X = roll(x)
x[0] = 1r
return x, y

A.8.3 Canonization of State-Space Models

The companion canonical form discussed in Section[A.3]is the ideal representation to deploy SSM-
based convolutional layers: ¢) it comes with a O(d) fast recurrence and i) allows to swiftly switch
between time and frequency domains with a direct mapping between state-space matrices and coef-

ficient of the transfer function (which in turn allow O(L) fast convolutions).

Aside from [50]], which directly parametrizes S4 layers in companion canonical form, all the other
parameterizations [[12} 16l 32, |17} |33]] can be converted (canonized), under mild assumptions.

Lemma A.8 (Canonization of SSMs). Any state-space model (2.2) with proper transfer func-
tion can be converted in companion canonical form.

Proof. The result can be proved following the two-step conversion process.
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1. Get the coefficients of the transfer function: Given the original state-space matrices
(A, B, C, hy), the transfer function is given by H(z) = C(zI — A)"!B + hg. A proper
rational function has the form H (z) = ¢(z)/p(z) where the numerator ¢(z) has coefficients
b= (b,)%_, and the denominator has coefficients a = (a,,)¢_, (ag = 1 since p is monic).
As shown in Section[A.6] the coefficients of the transfer function can be extracted in closed-
form as b = poly(eig(A — BC)) + poly(eig(A))(1 — ho) and a = poly(eig(A) |}

2. Construct companion matrices Given the coefficients a and b a new set of canonical state-

space matrices which realize the transfer function can be obtained following the recipe of
Section

The resulting companion SSM is equivalent the the original one since they share the same transfer
function. O

'Seig(A) contains the eigenvalues of A. poly(r) yields the coefficients of the polynomial whose roots are
the elements of r € C<.
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B LaughingHyena: Further Details

B.1 Parametrization of Modal Interpolators

Complex-conjugate states Assuming even distilling dimension d, we pick poles \,, and residues
R,, in complex-conjugate pairs:

A =diag(A1, -, Agja, AT, -+ a)‘fl/z)

1 . . (B.1)
C - §[R17 e 7Rd/27R17 T 7Rd/2]
which allow partitioning the state-space matrices as
A 1 .
A=t ] =5 R ®2)
where
A= diag(Ay, -, Agje) and R=[Ry,--, Rapal. (B.3)

If we also partition the state as © = (Z, %), T, € C%/2, the resulting recurrence has the form

.i‘t+1 = /\i‘t + ﬂd/2 Ut

. ‘s (B.4)
Tpp1 = NT¢ + Vg uy
We have
t—1 t—1
To= N30+ Y N T Mgpuy, 3 =[N+ Y VT M g0u (B.5)
j=0 7=0

Thus, if g = Z§, then 2, = Z} for all t > 0. Hence, at inference time we only need to propagate
forward half of the state — say & — and then compute the output as

1
Y¢ = Dut + §(th + R*fr)
= D’U,t + %{Ri’t}
= Due + R{R}R™{T } — I{R}I{7:}
This parametrization allows to update only half of the state, reducing the time and memory cost
compared to an unconstrained linear system with complex coefficients. However, the implicitly
achieved realness of the output (assuming D = ko € R and u; € R) comes at a cost of expressivity:

such a system is equivalent to an unconstrained complex linear system of dimension d/2 of which
we only keep the real part of the output.

(B.6)

Poles and residues For the modal interpolation, the parametrization is analogous to the one of a
diagonal state space model [33]]. Poles \,, and residues R, need both to be complex numbers. In
[33]] the authors suggest parametrizing real and imaginary components of B and C matrices while
representing the eigenvalues ), in polar form, A\, = r,e!®" with r,, and «,, being themselves
exponential functions of the actual trainable parameters, r, = e ¢ ", a,, = ¢ leading to

An = eXp{* exp{yn} + ieXp{Cn}}v Un,Cn €ER (B.7)

This ensures stability of the poles |\,,| < 1 and positive-only phases «,. For the purpose of distilla-
tion we propose a simplified parametrization as follows:

1. We only parametrize the C vector. Parametrizing both B and C is redundant and increases
the computational cost of performing each step of the recurrence. The residues R, cor-
respond in fact to R,, = C,,B,, of a diagonal state space model. Setting B = 1, saves
parameters without harming expressivity. Further if B is different from 1y, it needs to be
multiplied to u; at each recurrence step. C,, = R,, = R[R,| + iJ[R,] and R[R,,], I[R,]
are the trainable parameters of the residue.

2. For the purpose of distillation we have no benefit in forcing the eigenvalues of the model to
be stable, i.e. constrained to lie strictly inside the unit circle. Instead, such constrain may
actually harm the expressivity of the approximant. We choose the the simpler parametriza-
tion A\, = rpe’®, 1, apn € R.
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B.2 Distillation as Rational Interpolation

Distillation as rational interpolation Approximating a filter with an SSM can be thus achieved
by fitting a proper rational function to the (truncated) transfer function of the original filter

Hy(2)=Yr  hyz"". Thatis,
Find a, bsuchthat ho + hiz™t + - + hpz~L = ho + Qu(2)/Pa(2). (B.8)

A moderdT_TI way to solve this problem by H, error minimization via gradient descent[]__gl We can
use the Fast Fourier Transform (FFT) to evaluate both the target and distilled transfer functions and
solve:

L
i FFT 1 [hls — ho — FFT L[l JFFT 1 [al4|?- B9
af?éﬁd kZ:O‘ r[h]k = ho L[blk/FFTL[a]x| (B.9)

To ensure stability of the distilled filters and well-conditioned gradient descent dynamics, the roots
of the denominator polynomial must strictly lie inside the unit circle (p(A) < 1). This, in turn,
requires constraining the coefficients a into the region {a : poly(a) is stable} which is by itself an
open research problem [52| |53]]. Experimentally, we observe that standard coefficient normaliza-
tion techniques overly restrict the parameters space and lead to poor distillation performances at
reasonable order.

In the late 19th century, Henri Padé had already proposed a closed-form solution of the above problem
that achieves o(z %) error for z — oo using L=2d samples of the impulse response. His method [31] solves a
L-dimensional linear problem that, however, is known to often become numerically ill-conditioned even with
small d [51]

1311 the case of finite sequences, the H2 norm becomes the standard Euclidean metric evaluated on the L+1

roots of unity,i.e. (Zﬁ:o |H (ei2mR/(L41))2)1/2,
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C Proofs

C.1 Proof of Lemma[2.1]

Generating K tokens with a long convolution layer (Z.I) from a length-T" prompt has time
complexity O(T log, T+T K +K?) and requires O(L) memory.

Proof. We compute the time complexity memory of a length-T" prompt processing (pre-filling) and
subsequent auto-regressive decoding of K tokens. The auto-regressive generation of long convolu-
tion computes the next token as by

t—1
t=T, ., T+K-1= p=> h_jy (C.1)
=0

The pre-filling step is needed to prime this recurrence by computing the first 7" outputs till y7_1
from the length-T" prompt w. This is just a convolution between two length-7" signal and requires
O(T log, T') time and linear memory. The auto-regressive decoding of K tokens requires K steps
(C.I) with the length of the sequences increasing by 1 at each step. Thus we have a total asymptotic
complexity of

K-1 1

S (T+k)=TK + S KK +1). (C.2)

k=0
and requires at worst (k = K — 1) to store the length 7"+ K = L generated output sequence, i.e.
O(L) memory. In the limit we thus have a total time complexity of O(T'log, T+ TK + K?) and
O(L) memory. O

C.2 Proof of Lemma[2.2]

Generating K tokens with a SSM (2.2) from a length-T" prompt has time complexity
O(T log, T+dK) and requires O(d) memory.

Proof. In autoregressive mode, the cost of generating one token is the cost of evaluating the state
recurrence (2.2)). Each step then requires O(d) time and memory for the class of SSMs considered
in this work (see Lemmal[A.8). Hence, generating K tokens costs O(dK) time and constant O(d)
memory (we only need to store the current state).

The recurrence is initialized for autoregressive generation with the post-prompt state x7_; and out-
put yr_1. The latter can be recovered in linear time and memory O(T') by definition yr_; =
Z;‘.F:_Ol hi—;u; (assuming to have the impulse response h available) and state z7_; in O(dT’) time

and d memory through the recurrence. The overall asymptotic cost is therefore O(dL) time and
O(d) memory. O

Note that, for prompts and SSMs of practical sizes we usually have d > log, T'. In such a case the
state zp_1 can be computed in 7" log, 7" time rather than dT" by Proposition[3.2]

C.3 Proof of Lemma[2.3]

Generating K tokens with self-attention from a length-7" prompt has time complexity
O(T?*+TK+K?) and requires O(L) memory.

Proof. The proof is identical to the one of Lemma [2.1] with the only difference of a quadratic
asymptotic cost O(T?) to process the prompt obtain the kv cache. O

Self-attention suffers with long contexts: it is significantly more expensive in prefilling than long
convolutions and SSMs due to its quadratic cost. Nonetheless, in autoregressive mode, self-attention
reaches the same overall asymptotic complexity O(T'K + K?) as long convolutions (with the mem-
ory overhead of having to cache k and v).
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C.4 Proof of Proposition 3.1

If A has semi-simple eigenvalues A,, € C, then the transfer function of the system can be

decomposed as H (z)= ZZ:1 R, /(z — \,) where R,, € C is the residue associated with the
pole \,,.

Proof. If A is semi-simple, then it is diagonalized by a basis V of eigenvectors; it admits an eigen-
value decomposition diag(\) = VAV~! where A = (A, ..., \q) € C contains the eigenvalues of
A. Projecting the state onto the basis of eigenvectors, s := Vz, the state space model is is trans-
formed into modal form:

St+1 = VAV_lst + VBut St+1 = dlag()\)st + éut
= -
yt = Cv_lst yt = CSt

where B := VB = (b,)¢_, and C := CV~! = (&,)%_,. In modal form, the state equations are
decoupled, i.e. R
Siq = Ansy + bpuy

d
Y = Z Cn Sy -
n=1
Taking the z-transform of the output equation and each state equation yields

En
Z— A\p,

Sn(z) = Z[s"|(z) = Uiz) n=1,...,d

d
Y(2) = éSn(2)

Thus, the overall transfer function is

Letting R,, = Enén, proves the result. O

C.5 Proof of Lemma[3.1]

The distilled filter h in modal form (3:2) can be computed in O(dL) time from its modal form
and in O(L) from its rational form.

Recalling (3.2)), hy = 22:1 R Y Ry, N, € Cot > 0, the O(dL) complexity of the impulse
response is apparent: for each of the t = 1,..., L, h; can be computed in O(d) time.

The O(L) cost from the rational form follows by Lemma

C.6 Proof of Theorem

Let h be a length-L filter, h a distilled filter of order d < L and let S L, S 1. be the respective
Hankel matrices. Then infg  [|Sr — Sill2 = 0a.

Proof. The theorem characterizes the best-case scenario in terms of approximation error of the

distilled SSMs or a certain order d where it is clear that rank S < d. This theorem is a di-
rect application of the Adamyan-Arov-Krein (AAK) theory of infinite Hankel operators [7]]. Let

St = arg infg [ISr — S.|l2; the AAK theorem says that every causal system can be optimally
approximated by another causal system of lower dimension. Optimal here means

inf ||Sy, — S|l = inf Sz — K|
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where the first infimum is taken over all Hankel matrices S} and the second over all arbitrary matri-
ces K (see [19}, Chapter 8] and [54]] for further details and references).

O

C.7 Proof of Proposition 3.3

The filter (3.2) has a state space matrices A = diag(A1,...,\qg) € C™*4 B=(1,...,1)T €

Ca*1, C = (Ry,...,Rq) € C'*4 D = hg whose step can be evaluated in O(d) time and

memory.
D is set to hg by default. The result is proven showing that (3.2) can be written in the form hy =
CA!=1B for t > 0. If we choose A = diag()) then the impulse response becomes

d d
hy =Y  RuA, ' = Cldiag(\))' 'B =) CuBuAL!
n=1 n=1

The choice B,, = 1 foralln =1,...,d, B = 15 and C,, = R, finalizes a modal canonical state-

space realization of the distilled filter. The O(d) time complexity of the corresponding recurrent
step is guaranteed by the decoupling of each state equation from another,

TP = Ay Fuy n=1,...,d
d
Y = ZRnxf—i—hout.
n=1

Each of the d state equations can be computed (in parallel) in O(1) time. The output equation is
a dot product requiring d multiplications and d additions, hence the O(d) time compexity of the
recurrence.

C.8 Proof of Proposition3.2]

xr = (vp,...,vp_q) Where v = g * u and g is the filter whose transfer function is
1/den(H)(z) and can be evaluated in O(T).

Without loss of generality, let us assume to have converted the distilled filter in canonical form (i.e.
we have unrestricted access to the coefficients of the rational transfer function) and let D = 0. We
use the notation of Section[A.5] In z-domain, the state-to-input relation is given by

Y(2)=CX(2) =[5 - BaX(2)
On the other hand Y (2) = H(2)U(z) = q(z)/p(2)U(2). Therefore,
_ 1)
[B1 Bd] X (2) = p(Z)U( )
° B AXC=B 8| SV
P 1
& X(z)= ire) (2)

Let V(2) = U(z)/p(z). From the shift property of the z-transform it holds,
—1
z

Zla}(z)=X(z)=| : | V(2) & x=(v—1,0—2,"" ,0—q) Yt >0.

v can be obtained in @(L) time via an FFT-convolution of the input w and g, the filter resulting from
inverse transforming 1/p(z). The proof is convoluded setting t = L
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C.9 Proof of Theorem

Notation. We will be denoting the all 1 row vector of size k, givenby [1 1 ... 1 1], and
the all 0 row vector of size k, given by [0 0 ... 0 0], as 1% and 0%, respectively. We will
also construe the standard basis vector e¢; as a column vector in these notes. Next, we will adhere
to the following matrix indexing convention: A;; is the entry in the ith row and the jth column,
Ali,:] € F'*" denotes the ith row, and A[:, j] € F™*! denotes the jth column of A € F™*n,
Here, we also use 0"*™ € R™*" and |,, to denote the matrix of all zeros and the identity matrix
of dimension n, respectively. Moreover, we extend the outer product between two vectors to a
tensor product using the symbol ®, the computation of which is carried out batch-wise with some
dimension of one or both of the input tensors. Finally, we express the binary encoding of ¢ € [n] in

a row vector form, given by B; € Zg " where P, is the closest power of 2 to n.

Language and Model Description. The language A has s keys and s values: Ly :=
{k1,...,ks}, Ly := {v1,...,vs}. Formally, the language A consists of sequences = €
(Lx x Ly)® x Ly, where there is an associated mapping f, : Lx — Ly . For each sequence,
the odd indices in [L] belong to L, for x1, 3, ...z, and we define

T = fa(w2.-1) (C.3)

The last item =1, € {21, 3,...,21-1}, called the query, must be one of the keys that has appeared
in z already. Our goal is to produce f,(xr) at the end of the sequence, which we refer as the
associated value. This problem is termed as the associative recall problem [55]).

We will now outline the Hyena layer [2] with multiple heads as follows.

Algorithm 1 Hyena

Require: Input sequence u € RE*P from the previous layer, long convolution filter T,, number of
heads M.

1: ¢, k™, v™ < Projection(u) for m € [M].

2: form=1,...,M do

3: Perform the outer product 2™ «+ k™ @ v™ € REXNXN 'where N := D/M.
4: Apply the convolution independently and compute " < T, (2")gm € REXN
5: Average the output j < (3> ) y™ /M
6: Retrieve the value f(kr) of the key ky, from F[L, :].

In order to prove Theorem[d.1] we need the following technical statement concerning sparse recovery
of a heavy-hitter.

Proposition C.1 (Heavy-Hitter Recovery). Let x € R® be a vector with one entry bounded by

1+ 3%\%—referred as the heavy-hitter—and the rest of the entries bounded by :I:%. Then, there

exists a matrix SU) € Rs*OW351085) gych that the position of the heavy-hitter in © can be inferred
from the average of M measurements with SU™) given by (Zm xS(m)) /M with probability of error

<1
— s .
Before presenting the proof of Proposition|[C.T} we use it to prove Theorem[4.T]as follows.

Proof of Theorem @1}, We take D = O(y/slog”s) and M = 243 - log s so that N = O(+/slog s)
and use the same projections and filters for each head. We will start by describing the projections of
the input. To this end, let E : [L] — 2s define a map from the row indices of « to the keys k; and
values f,(k;) given by

i todd, x; = k;
E — b ) 19 '4
*) {z +s, teven, x;_1 =k, €4

Here, we note that we also have

Et)=FE(t—1)+s, teven (C.5)
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as the even indices are defined as z; = f,(z;—1) for t even (C3), whence x;_1 € L ast —11is
odd.

Next, we can separate the keys ¢, queries ¢ and values v from the input sequence u. For keys and
queries, we will be using the Johnson-Lindenstrauss embedding [56]. We state its guarantee here.

For a set of points P C R*, let e, > 0 with & > 21In (%) /€%, and f : R* — RF
be the randomly constructed linear map from [56]], then with probability of error
< 4, we have

‘(f(x)mf(y» - <$,y>‘ <e
forall z,y € P.

More precisely, we take R € RO(V51085)Xs (o be the matrix representation of f with € := ﬁ and
§ := L for some ¢ > 1 so that R[:,i] = f(e;). Thus, we define

RLLE(t-1), BEt—1)<s

q"[t,:] = (C.6)
0, otherwise.

For values, we use the heavy-hitter recovery matrix as described in Proposition [C.T]so that we have

SMIE(t),:], E(t)>s
o™ty ] = (C.7)
0, otherwise,

Further, using 1DConv (equivalently, in terms of polynomials, h(X) := X), we can shift the queries

to get the projection for keys k& so that we have k™[t,:] = ¢™[t — 1,:]
The Hyena filters, along with the specific convolution being performed by T, are specifically de-
scribed in terms of polynomial multiplications, for all m € 1, ..., M, as follows.
L
Th(X) =) X"

i=0
Here, we note that T, (u) takes the cumulative sum over the input. That is, for all 4, we have
i
T(uw)li,:] =Y ulj:]
§=0
We will now compute 2™ as follows

2P =E"x0™

Further, applying the convolution, we get
Tu(z") = D k"] @ o™i, ]

For inference, it suffices to show that the last row of the output y recovers the output with high
probability. Indeed, let ¢’ € [L] denote the row index of the value associated to the query such that
the corresponding key has the following relation

Uy —1 = UL, (CS)
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Finally, we multiply by the query g across L. Specifically, we now look at the computation of the
Lth row of y:

=2 (" = 107"t = 1:]) o™ [t ] (C9)
=0
= 37 ((RE B( = D) TRE B(t - 1)]) S™([E(), ] (C.10)
te[L]
t even
L
= Z (Reg(t,il) ReE(tfl)) S(m) [E(t), :] (C.l 1)
te[L]
t even
Here, we are using the fact that k[t — 1,:] = ¢™[L,:] due to (C.8) in (C9). We then change

the indexing from (C.9) and (C.I1) by observing that all the odd entries corresponding to values

are zeroed out in K (cf. [C.6). Finally, we simply substitute (C.6) and (C.7) in (C.I0) and (C.I1),
respectively.
Next, we define z € R*T! with

;= Rep_ 1 Re; (C.12)

where j =t — 1 with ¢t € [L] and ¢ even. Here, z € R"*! is a vector of size s + 1 as there are s + 1
such even numbers in [L]. Note that z is the Vector with a heavy- hitter from Proposition To
see this, observe that we have |xE(f/ H—1 < 7975 and || < f forall j # E(t' —1). Using

(CTT), with probability > 1 — =, we then have
y™[L,:] = xS, (C.13)

By Proposition we can then infer the position of the key at ¢’ with probability of error % By the
union bound, we can then retrieve the corresponding value with probability at least 1 — (% + S%) O

We will now prove[C.I]as follows.

Proof of[C.1} We will assume that s is a power of 2 for the sake of simplicity. We first specify how
we will construct such an S € R*O(Vs1og5) et h : [s] — [/5] be a hash function. We define
S e R**V* to be

Z €j.

J:h(g)=i

That is, each column i of S is the sum of the standard basis vectors e; such that j is mapped
by h to ¢. In other words, the locations of the non-zero entries in column ¢ correspond to the
preimage of ¢ under h. We then multiply each non-zero entry of S independently at random by
+1. Next, we replace the kth row in S by multiplying all non-zero £1 entries at index 7 with the
binary representation of i to get a matrix S(") ¢ R®*(vsxlogs)  That is, for a non-zero entry at
index ¢ in row k, we replace the ¢th entry with £1 - B;. Note here that each column still has at most
\/s non-zero entries. Finally, we stack 243 - log s-many copies of S(") as heads so that each copy
produces independent measurements 2:S("™). Here, we want to emphasize that each such copy uses
fresh randomness for multiplying the non-zero entry of S independently at random by 1.

Now, we will show that the average of the measurements with matrices S(™) e Rs*Vslogs cap
locate the heavy-hitter in x, where z is the vector of inner products from (C.12). For this purpose,
we first specify the algorithm for decoding the heavy-hitter.
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Algorithm 2 Decoder
Require: The vector y such that y = zS.
1: Split y into 243 - log s blocks (™ € RV*1°85 each of which is a result of multiplying = by
Stm) m € [243 - logn).
2: Take the average 7 < m ok y(m),
3. b« I([7]) € RV®1o85 cf. (C.14).
4: Retrieve b by isolating the binary representation of the position of the heavy-hitter in z.

Here, we define the function [, : RVslogs Zf 185 o [2S],, that rounds each entry of its input
to the nearest integer:

I ([2S],m) = S"™1i, :]. (C.14)

That is, in both cases, we retrieve the row in S(") that corresponds to the heavy-hitter in 2. Since

the rows in S("™) are distinct, we can also infer the position of the heavy-hitter in 2 with probability
L.

We now show that y = 'S, which consists of 243 -log n many independent copies of ym = 2S8(m),

Instead, notice that we can analyze § = xS since each ¢ is the replacement of non-zero entries of S
with the binary representation of their indices times y. We will drop the superscript for now to avoid
cluttering the notation. We can then make the following claim:

55| = 1+ O(e- ¥/3) and, for j # i, |§;] = O(e - /5). (C.15)

For the above claim, we note that the first part follows from the latter as it suffices to show that all

the non-zero heavy-hitters contribute O(e+/s) to the sum §; = (x,S[:,4]). Since each column in S
only interacts with /s sized sub-vector of z, each g; for non-heavy hitters can be expressed as

yj = <f, §]> with T, gj S R\/g,

where §j € RV* contains the non-zero entries of S ; and T is obtained by extracting the entries with
corresponding indices from x. Here, we have ||Z|, < e/s since each entry associated with the

non-heavy hitter is bounded as x; < ¢, and thus, ||Z||, = />, 27 < />, 2 = /V/5- 2 = ey/s.

Consequently, as S ; 18 independently random +1, we then must have
(z.5;)| < % (C.16)
with constant probability for j # i. To see this, note that
E[(Z,5,)°] = > E[S;r-Sj - T - T;
k¢
= |lzll3,

where the last equality follows since E[S;, - S;¢] = 0y,¢ by the distribution on entries of S;. Now,
we use Jensen’s inequality [57] to get the following bound on the expectation of |<E, S;) |

E[|(®,S;)]] < \VE[Z.S;)?] < evs. (C.17)

We then use the expectation above to bound the relevant probability as follows:

Pr [|<$a5j>| < ﬂ >1-Pr [|<x75j>’ > 1}

3
>1-3E[|(z,S;)]] (C.18)
Z 1—3e- \4/§7

where we apply Markov’s inequality [57] in (C.I8). That is, we have shown that ; is bounded by
1/3 with constant probability for j # i, and g; is thus bounded by 1 + % Note here that each of the

m-copies g}fm) will have identical guarantees.
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Now, define the average §j = m Yom 7™ so that y; (line 3 in Decoder) is the correspond-
ing replacement of the non-zero entries with the binary representation of their indices. We now
claim that this average 7, < 4/9 < 1/2 with high probability for j # i. To this end, we em-

ploy the multiplicative Chernoff bound [[57]] on the independent random variables {g§h) }1[0, 1] with
E {Zm g}](-m)} < 81 - log s to get

_ 4 m 1\ 1
Pr [gjj > 9} =Pr [ZQJ( ) > (1+3) 3-243-10gs]
m

m 1
<Pr [Zyj( ) > (1+3> 81~10gs] ,

m

1
< exp (— (32 -81-logs> /3) ,

53
Therefore, we have shown that the average ﬂj is less than 1/2 with probability at least 1 — %3 for

j # i. Consequently, we will have ¢, bounded by 1 & % Using the union bound over each j # i
and the log s bits in the binary representation of j, we can then show thaty,,,, <1 /2 for each

j #i,m € [0,log s] with probability 1 — 1982 > 1 — i O

S
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D Experimental Details

D.1 Pretraining

To verify the effect of introducing heads to Hyena as described in Section [d] we train a series of
models on THE PILE [11]. All MultiHyena models are set to 8 heads, and otherwise use the same
hyperparameters of Hyena models of equivalent size. We set weight decay of Hyena filter parameters
to 0, and lower the frequency of sine activations in the implicit MLP to 4. We follow the setup of
[2]], and first train models for 5, 10 and 15 billion tokens, adjusting the learning rate scheduler
accordingly. Then, we train for 300 billion tokens. The results are reported in Tables and[5.1]

D.2 Distillation Analysis

Distilling pretrained long convolution sequence models (LCSM) with LaughingHyena can introduce
errors on the convolution filter, which then propagate to the outputs.

Setup We perform a series of extensive experiments on all variants of LCSM, including pretrained
H3 models of sizes 125 million, 355 million, 1.3 billion and 2.7 billion parameters; Hyena of size
153 million parameters, and MultiHyena of size 153 million parameters. For H3 models, we re-
port approximation errors on both shift as well as diagonal SSMs (reported as IIR and FIR). Each
point corresponds to distillation carried out at a particular order, using LaughingHyena modal inter-
polation. To optimize the parameters of the modal form, we use gradient-based optimization and
minimize the /5 discrepancy between filters in time domain. In particular, we use the AdamW [58]]
optimizer with learning rate 3 - 10~%, and a cosine annealing decay schedule down to 10~ after 30
thousand iterations. Each individual filter of every layer is distilled in the same way.

Discussion The errors are shown in Figures and We observe H3

filters to be easier to distill into recurrences with small state without introducing significant errors,
whereas Hyena variants learn filters with larger effective dimensions. This provides further evidence
that training with implicit convolutions may yield in general more expressive filters.

Distillation Error of H3 125M

IIR ¢, Error .
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_0.0020 1 1.5 0.008 1
d 0.2
& 0.0015 4 1.0 0.006 1
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Order Order Order Singular Value Index

Figure D.1: Mean, lower and upper bounds across channels and layers of the distillation errors on 125M H3
model for both its IIR and FIR filters.
D.2.1 Pretrained Filters: Effective Dimension

Visualizations We qualitatively investigate LCSM filters at initialization and after pretraining.
This visual inspection (Figures and complements the distillation error analysis of
Section [D.2)

Distribution of Hankel singular values We further compute the distribution of Hankel singular
values of each long convolution filter in different models. The decay in the spectrum quantifies how
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Distillation Error of H3 355M

‘ IIR (5 Error .
IIR ¢4 Error x10~7 IIR £ Error IIR Hankel Singular Values
0.010
0.00010 4 61
0.008 0.10 4
. 0.00008 19
2 0.006
w B
0.00006 \ N oot 0.05 1
0.00004 ’
. 0 . 0.002 4 . . :
21 2v5 21 23 21 25 2U 2‘2 2‘1
FIR ¢, Error .
FIR ¢ Error «10-5 FIR ¢ Error FIR Hankel Singular Values
5 0.25
o5 0.012 4
0.0025 4 2.0 .
0.0020 L5 00101 1
5 2 0.15
5 . 0.008 4
0.0015 1.0 1 0.10
0.006
0.0010 4 0.5 1 0.05
0.004 4
T T T T
2] «23 27) -21 23 25 21 25 25 2U 2!
Order Order Order Singular Value Index

Figure D.2: Mean, lower and upper bounds across channels and layers of the distillation errors on 355M H3
model for both its IIR and FIR filters.

Distillation Error of H3 1.3B
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Figure D.3: Mean, lower and upper bounds across channels and layers of the distillation errors on 1.3B H3
model for both its IIR and FIR filters.

easy it is to find a compact modal form with LaughingHyena, and serves as a proxy measure of
effective dimension of the convolution. The results are shown in Figures[D.9)and [D.10]

D.3 Downstream Evaluation

We benchmark the downstream performance of MultiHyena and distilled MultiHyena on standard
language modeling tasks from the LM-Eval-Harness [42]] and HELM [41]] suites. As a reference
baseline, we evaluate Pythia [44] 160M.

Our objective is to quantify the absolute performance of MultiHyena and the downstream impact of
distillation. We use the same procedure outlined in Section to distill MultiHyena.

D.4 Benchmarking

To demonstrate the superior performance of Laughing Hyena for autoregressive generation, we
conduct a series of experiments to benchmark its latency, throughput, and memory usage for
autoregressive generation with initial prompt length 7' and number of generated tokens K. For
each experiment, we compare the performance of Laughing Hyena against a Transformer, a hybrid
H3-attention model with 2 attention layers and a Hyena model. The latter two have been shown to
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Distillation Error of H3 2.7B

, IIR (5 Error .
IIR ¢4 Error x10~°¢ IIR £ Error IIR Hankel Singular Values
0.00025
0.0125 4
0.00020 10 0.10
5 0.0100 +
& 0.00015
’ KH"\‘\‘ 0.5 0.0075 0.05 1
0.00010 + 0.0050 4
T T T 0.00 T T
21 25 -21 23 21 25 2U 2‘2 2‘1
FIR ¢, Error .
FIR ¢ Error «10-5 FIR ¢ Error FIR Hankel Singular Values
39 0.012
0.0030 4
0.010 1 4
0.0025 5] 0-10
& ) 0.008 A
5 0.0020 1 -
0.0015 1 k“’\‘\J 0.006 1 0051
0.0010 4
T T T T
2] «23 23 -21 23 25 21 25 25 2U 2!
Order Order Order Singular Value Index

Figure D.4: Mean, lower and upper bounds across channels and layers of the distillation errors on 2.7B H3
model for both its IIR and FIR filters.

Distillation Error of Hyena 155M (150B tokens)
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Distillation Error of MultiHyena 155M (300B tokens)
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Figure D.5: Mean, lower and upper bounds across channels and layers of the distillation errors on Hyena and
MultiHyena models.

match or achieve lower perplexity than Transformers on standard datasets (WIKITEXT103 and THE
PILE). All experiments are carried out on a NVIDIA A100 with 80GB in float16 precision. Missing
measurements for any model indicate Out of Memory (OOM) errors while doing autoregressive
inference for that particular model.

Peak throughput We first evaluate the throughput (number of tokens generated per second)
across different batch sizes, using a typical generation workload consisting of a prompt of length
512 and generating 256 tokens. Figure [I.T] measures peak throughput of different models. Since
Laughing Hyena does not require caching intermediate kv-projections during generation, reduced
memory requirements at a fixed model size allow it to process larger batch sizes.

Prompt length Autoregressive generation in Laughing Hyena is achieved through a two-step pro-
cess: an initial prefill step that uses the length—T7" prompt to initialize the state z7 and that generates
all K tokens. In Figure [5.3|we demonstrate how the prefill step scales for different prompt lengths,
keeping batch sizes fixed at 64. Since prefilling in Laughing Hyena is carried out efficiently via con-
volutions (as described in Section [3.4), throughput scales more favorably than Transformers. Other
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FIR Filters of H3 125M
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Figure D.6: Initialized and pre-trained convolution filters of H3.

models capable of prefilling via convolutions also achieve higher throughputs than Transformers but
are ultimately slower than Laughing Hyena during the generation phase.

State throughput We measure the impact of SSM state dimension on the throughput of
Laughing Hyena. Keeping batch sizes fixed reveals minimal impact for all dimensions smaller
than 100, which are sufficient to distill all models discussed in this work. All other measurements
provided in this Section are carried out with a standard order 16. We note that it may be possible to
further increase peak throughput by leveraging reduced memory footprints achieved by extremely
small SSMs.

Latency over sequence length We benchmark the time taken to generate a variable number of
tokens, starting from a prompt of length 512 tokens at batch size 1 (Figure[D.TI)). Laughing Hyena
tracks highly optimized Transformers. We note that Laughing Hyena is asymptotically more
efficient than Transformers; however, this regime is bottlenecked by hardware-specific imple-
mentation details and optimizations. We expect optimized, platform-specific implementations of
Laughing Hyena to outperform Transformers even at batch size 1. When the prompt is long, the
prefilling step becomes the bottleneck, and all convolutional models outperform Transformers.

Parameter scaling To better understand how the performance of Laughing Hyena scales, we
benchmark its latency, throughput, and peak memory utilization for autoregressive generation and
125M, 355M, 1.3B, 2.7B and 6.7B parameters. We compare the performance to that of Transform-
ers, Hybrid-H3, and Hyena at the same number of parameters and report the results in Figure
For the latency measurement, we use a batch size of 1 and benchmark the time taken to generate
128 tokens, starting from a prompt of length 512 tokens. For throughput and peak memory scal-
ing against the number of parameters, we use a batch size of 64 and measure the throughput for
generating 256 tokens starting with a prompt of length 512.
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Figure D.7: Initialized and pre-trained long convolution filters of MultiHyena.

43



Normalized Filters h;/||h||o. Normalized Filters /;/||h||~. Normalized Filters h;/||h||. Normalized Filters f,/[|h]~ Normalized Filters h,/||h||~ Normalized Filters h;

Filters of Hyena 355M (200B tokens)

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
1 1 1 1 1
Initialization
Pre-trained A
0 e V | 0 0 | 0 = 0 0 =
L
—1 w‘ T -1 L T -1 r T -1 r T -1 L T —1 L T
0 2000 0 2000 0 2000 0 2000 0 2000 0 2000
Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11
1 1 l 1 1 1 1
L ! ﬂ|
0 0 ot 0 0 0 4 0 =
-1 r T -1 L T -1 r T -1 r T -1 L T -1 L T
0 2000 0 2000 0 2000 0 2000 0 2000 0 2000
Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17

1

k&u‘.__.; |

-

L
0 0 2
i
-1 \" T -1 T
0 2000 0 2000
Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23
1 1 14 1
o 2 0 - 0 - 0 |
i ! “ 1
A /
-1 F T -1 F T -1 F T -1 F T
0 2000 0 2000 0 2000 0 2000
Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29
1 1 1 1 1 1
m\“* A M Ty —
0 Ww— S 0 omted 0 Wu: 0 TSITRR 0 S 0 -
—1 L T -1 L T -1 r T -1 L T -1 L T -1 L T
0 2000 0 2000 0 2000 0 2000 0 2000 0 2000
Layer 30 Layer 31 Layer 32 Layer 33 Layer 34 Layer 35
1 1 1 1 1 1
0 W sl 0 M““L‘\ 0 0 0 %";ﬁ 0 S
-1 L T -1 L T -1 L T -1 L T -1 L T -1 r T
0 2000 0 2000 0 2000 0 2000 0 2000 0 2000
t t t t t t

Figure D.8: Initialized and pre-trained long convolution filters of Hyena (355 M).
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Hankel Singular Values of Hyena and MultiHyena Filters
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Figure D.9: Distribution of Hankel singular values for Hyena and MultiHyena long convolution
filters. MultiHyena filters have larger effective dimension, as evidenced by slower decay.

Hankel Singular Values of H3 (125M) FIR Filters
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Figure D.10: Distribution of Hankel singular values for H3 long convolution filters. The values
decay rapidly.
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E Additional Experiments

E.1 Associative Recall with MultiHyena

We follow the setup of [2] and train 2-layer Hyena and MultiHyena (with 8 heads) to solve asso-
ciative recall via a standard next-token prediction objective. We focus on the sequence length 64k,
high vocabulary size setting, and push vocabulary sizes past the maximum values considered in [2].
At vocabulary size 60, a difference between MultiHyena and Hyena can be observed (Table , as
experimental support for Theorem [.1]

Model Accuracy
Hyena 65
MultiHyena 98

Table E.1: Associative recall accuracy, sequence length 64k, vocabulary size 60.

E.2 Analysis of Hankel Singular Values of Pretrained Large Convolution Sequence Models
E.3 Model Order Reduction of H3

The H3 model is constructed with a combination of diagonal SSMs and shift SSMs. There exists
various classical model order reduction techniques for these different types of SSMs. The following
sections aim to present the formulation and effectiveness of two classical approaches on obtaining
the compressed representation of a H3 model. More specifically, we study modal truncation and
balanced truncation for compressing diagonal SSMs and shift SSMs respectively.

E.3.1 Modal Truncation
A discrete diagonal SSM (A = diag(\1,...,\q), B € C¥!, and C € C'*?) can be directly
converted into a residue-pole transfer function as follows:

d

(A,B,C) —» H(z) =)

=1

T

Z_>\7,"

(E.1)

where residue r; = B;C;. Modal truncation aims to compress such a transfer function by essentially
reducing the summation over d to n < d, of the n most influential modes. The influence from each
node can be isolated by expressing it using the ., norm of the system as follows:

d

1H ()l =

=1

T

Z—>\1‘

d
I
< _— E2
ST 2

Each mode 7 can be ranked using the bound formulated above. Subsequently, the d — n lowest
modes could be discarded to form a reduced order model. Figure [E.T|illustrates the monotonically
decreasing [, error with the increase in system order. However, this model reduction approach is
only suitable for diagonalizable SSMs.

E.3.2 Balanced Truncation

A balanced SSM realization is one in which the observability P and controllability () gramians are
equal and diagonal. Such a realization can be formulated with the following Lyapunov equations
[24]:

AYAT +BBT =%,

ATSA4+CTC=3, (E3
where P = Q = ¥ = diag(o1,...,04) and 0; > 0;41.
Results from [59] shows that the n—order model reduction error is bounded by:
d
Ey = [ H(s) = Hu(s)][oo <2 Z 0. (E4)

i=d—n
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Modal Truncation Model Reduction Error of H3
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Figure E.1: Modal truncation model reduction error (||h(t) — hy (t)||o0) across all diagonal SSM layers of the
trained H3 125M model.

Therefore, an n—order partition of the full balanced realization can be chosen, such that the dis-
carded orders are the d — n lowest contributor to the error. The steps taken by [24], computes the
n—order partition of the balanced realization as follows:

1. Form a Hankel matrix S4 from the impulse response hy.,, of the shift SSM.

2

2. Obtain the eigenvector matrix V' € C?¥9, and the eigenvalues A\ = o via the eigen-

decomposition of S,.
3. Choose the truncated model’s order n < d, based on the bound in Equation
4. Compute the state-space matrices as follows:

A= VgTd,l;nVLd—LLn, B=Viim, C=h{4Vidin, D =ho. (E.5)

This model reduction technique was applied to a trained 125 million parameter H3, MultiHyena,
and Hyena models as shown in Figures [E.2] [E3] and [E4] respectively. It could be noted that the
all models encountered an undesirable non-monotonic error reduction with the increase in order.
Moreover, order reduction configurations such as the one in Figure [E.3] layer 15 display signs of
numerical instability.

Balanced Truncation Model Reduction Error of H3
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Figure E.2: Balanced truncation model reduction error (||h(t) — h,(t)||s) across all shift SSM
layers of the trained H3 125M model. Note that Layer 6 is an Attention layer, therefore balanced
truncation model order reduction is not possible.
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Balanced Truncation Model Reduction Error of MultiHyena

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
S 1.0 1.0 4 1.0 1.0 1.0 4 1.0 4
& —e— Mean
2
K
B 05 0.5 4 0.5 4 054 % 0.5 4 0.5 9
N N\,
< \
g N - .
2 - — — &——,— L——,_
Z 0.0 T T 0.0 + v ' 0.0 y u 0.0 + 0.0 4 0.0+
2 24 27 2! 24 27 2! 24 27 2! 24 27 2! 24 27 2! 24 27
Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11
S 1.0 1.0 1.0 4 1.0 1.0 4 1.0 4
i
2
K
E 0.5 4 0595\ 0.5 4 0.5 4 0.5 4 0.5 4
2
E
S ;—.,_ ,L,h,_ = &—,—
Z 0.0 4 0.0 0.0 4 0.0 0.0 4 0.0
2! 24 27 2! 24 27 2! 24 27 2! 24 27 2! 24 27 2! 24 27
Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17
S 1.0 1.0 1.0 4 1.0 1.0 4 1.0 4
i
2
R
E 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4
2 — S =SS —
Z 0.0 4 u 0.0 T " 0.0 +—— ' 0.0 T T 0.0 ' 0.0 T
2\ 24 27 2] 24 27 2| 24 27 2| 24 27 2] 24 27 91 24 27
Order Order Order Order Order Order

Figure E.3: Balanced truncation model reduction error (||h(t) — hy,(t)||c0) across all convolutional

layers of the trained MultiHyena 155M model.

Balanced Truncation Model Reduction Error of Hyena
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Figure E.4: Balanced truncation model reduction error (||h(t) — h,,(t)||) across all convolutional

layers of the trained Hyena 155M model.
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