MONARCH MIXER: A Simple Sub-Quadratic
GEMM-Based Architecture

Daniel Y. Fu', Simran Arora*!, Jessica Grogan*2, Isys Johnson*2, Sabri Eyuboglu*',
Armin W. Thomas*3, Benjamin Spector', Michael Poli', Atri Rudra2, Christopher Ré!
*Equal Contribution. *Department of Computer Science, Stanford University.
2Department of Computer Science and Engineering, University at Buffalo, SUNY.
3Department of Psychology, Stanford University.
danfu@cs.stanford.edu, simarora@stanford.edu,
{jrgrogan,isysjohn}@buffalo.edu, {eyuboglu,athms,bfs,poli}@stanford.edu,
atri@buffalo.edu, chrismre@cs.stanford.edu

Abstract

Machine learning models are increasingly being scaled in both sequence length
and model dimension to reach longer contexts and better performance. However,
existing architectures such as Transformers scale quadratically along both these
axes. We ask: are there performant architectures that can scale sub-quadratically
along sequence length and model dimension? We introduce MONARCH MIXER
(M2), a new architecture that uses the same sub-quadratic primitive along both
sequence length and model dimension: Monarch matrices, a simple class of ex-
pressive structured matrices that captures many linear transforms, achieves high
hardware efficiency on GPUs, and scales sub-quadratically. As a proof of concept,
we explore the performance of M2 in three domains: non-causal BERT-style lan-
guage modeling, ViT-style image classification, and causal GPT-style language
modeling. For non-causal BERT-style modeling, M2 matches BERT-base and
BERT-large in downstream GLUE quality with up to 27% fewer parameters, and
achieves up to 9.1 x higher throughput at sequence length 4K. On ImageNet, M2
outperforms ViT-b by 1% in accuracy, with only half the parameters. Causal
GPT-style models introduce a technical challenge: enforcing causality via masking
introduces a quadratic bottleneck. To alleviate this bottleneck, we develop a novel
theoretical view of Monarch matrices based on multivariate polynomial evaluation
and interpolation, which lets us parameterize M2 to be causal while remaining
sub-quadratic. Using this parameterization, M2 matches GPT-style Transformers
at 360M parameters in pretraining perplexity on The PILE—showing for the first
time thlat it may be possible to match Transformer quality without attention or
MLPs.

1 Introduction

Machine learning models in natural language processing and computer vision are being stretched to
longer sequences and higher-dimensional representations to enable longer context and higher quality,
respectively [6, 10, 62, 84]. However, existing architectures exhibit time and space complexities that
grow quadratically in sequence length and/or model dimension—which limits context length and
makes scaling expensive. For example, attention and MLP in Transformers scale quadratically in
sequence length and model dimension [15]. In this paper, we explore a natural question: can we find
a performant architecture that is sub-quadratic in both sequence length and model dimension?

!Code is available at https://github.com/HazyResearch/m2.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/HazyResearch/m2

P -
def M2_layer(X): N
M — P P # mix sequence
i ; 0 Z=M@((k* M@X)+—>»d

i=1
Subquadratic: O(pN®+"7)
Hardware-Efficient (GEMMs)

Expressive (generalizes FFT)

mix channels N
Y=M@o(Me@Z.T)) S1—gy

return Y) .
. J Efficient Mixing on

Order-p Monarch Matrices Simple Layers Sequence, Dimension

Figure 1: Monarch matrices are a simple, expressive, and hardware-efficient class of sub-quadratic
structured matrices. MONARCH MIXER (M2) uses Monarch matrices to mix inputs first along
the sequence dimension and then along the model dimension. See the Appendix for PyTorch
implementation of an M2 layer.

In our exploration, we seek a sub-quadratic primitive for both the sequence length and model
dimension. Our framing takes inspiration from work such as MLP-mixer [73] and ConvMixer [74],
which observed that many machine learning models operate by repeatedly mixing information along
the sequence and model dimension axes, and used a single operator for both axes. Finding mixing
operators that are expressive, sub-quadratic, and hardware-efficient is challenging. For example, the
MLPs in MLP-mixer and convolutions in ConvMixer are expressive, but they both scale quadratically
in their input dimension [73, 74]. Several recent studies have proposed sub-quadratic sequence mixing
with long convolutions or state space models [27, 64, 77]—both computed using the FFT—but these
models have poor FLOP utilization (3-5% [28]) and maintain quadratic scaling in model dimension.
Meanwhile, there has been promising work in sparsifying dense MLP layers without losing quality,
but some of the models can actually be slower than their dense counterparts, due to low hardware
utilization [7, 8, 14, 26, 35].

We turn to an expressive class of sub-quadratic structured matrices called Monarch matrices [14]
(Figure 1 left) to propose MONARCH MIXER (M2). Monarch matrices are a family of structured
matrices that generalize the fast Fourier transform (FFT) and have been shown to capture a wide class
of linear transforms including Hadamard transforms, Toeplitz matrices [32], AFDF matrices [57],
and convolutions. They are parameterized as the products of block-diagonal matrices, called monarch
factors, interleaved with permutation. Their compute scales sub-quadratically: setting the number of
factors to p results in computational complexity of O(pN P+1/P) in input length N, allowing the
complexity to interpolate between O(N log N) at p = log N and O(N3/2) at p = 2.”

M2 uses Monarch matrices to mix information along the sequence and model dimension axes. It
is both simple to implement and hardware-efficient: the block-diagonal Monarch factors can be
computed efficiently on modern hardware using GEMMs (generalized matrix multiply algorithms).
Our proof-of-concept implementation of an M2 layer, written in less than 40 lines of pure PyTorch
(including imports), relies only on matrix multiplication, transpose, reshape, and elementwise products
(see pseudocode in Figure 1 middle) and achieves 25.6% FLOP utilization® for inputs of size 64K
on an A100 GPU. On newer architectures such as the RTX 4090, a simple CUDA implementation
achieves 41.4% FLOP utilization at the same size.

Non-Causal Settings As a first proof of concept of M2, we evaluate how it compares to Trans-
formers in terms of speed and quality in non-causal settings such as BERT-style masked language
modeling [21] and ImageNet classification. We introduce M2-BERT, which replaces the attention
blocks in BERT with bidirectional gated convolutions implemented using Monarch matrices and
replaces the dense matrices in the MLP with Monarch matrices. M2-BERT reduces parameter count
but maintains quality—matching BERT-base and BERT-large in downstream GLUE quality with
27% and 24% fewer parameters, respectively. Sub-quadratic scaling in sequence length enables
high throughput at longer sequences—up to 9.1x higher throughput at sequence length 4K than

*Monarch matrices were originally [14] parameterized with p = 2, but the general p case is a natural
extension.

3For context, the most optimized attention implementations achieve 25% FLOP utilization, while unoptimized
implementations of attention can have as low as 10% FLOP utilization [15].

HuggingFace BERT, and 3.1 x higher throughput at sequence length 8K than BERT optimized with
FlashAttention [15].

For image classification, we adapt HyenaViT-b [64], an attention-free vision transformer based on
gated convolutions. We replace the convolution operation with M2 primitives and replace the MLP
layers with an M2 block as well. These changes reduce the parameter count compared to a ViT-b [22]
model with the same model width and depth by a factor of 2. Surprisingly, despite this parameter
reduction, we find that M2 slightly outperforms ViT-b and HyenaViT-b baselines, achieving 1%
higher accuracy on ImageNet [18].

Causal Settings Causal settings such as GPT-style [65] auto-regressive language modeling present
a technical challenge: masking out the upper triangular elements in an attention matrix (or equivalent
structure) introduces a quadratic bottleneck. To alleviate this quadratic bottleneck with Monarch
matrices, we develop new theory to characterize which parameterizations of Monarch matrices
maintain causality. To do so, we take a view of p-order Monarch matrix multiplication as p-variate
polynomial evaluation and interpolation (e.g., p = 2 factors corresponds to bivariate polynomials,
Figure 2 left). Using this view, we show that the M2 convolution shown in Figure 1 (middle) can
be viewed as manipulation of modular polynomial multiplication. This result allows us to develop
conditions (Theorem 3) under which M2 is causal. We can use this causal parameterization to
outperform GPT-style language models on causal language modeling by 0.2 PPL points on the PILE
at model size 360M-without using either attention or MLP blocks.

Summary Overall, our results present a potential path to building machine learning models with
sub-quadratic primitives. We hope our work can serve as a starting point to explore models that are
more efficient in both sequence length and model dimension.

2 Preliminaries

In this section, we provide some background on the key components behind the cost of operations
on GPUs, and then discuss the scaling characteristics of some common primitives used to mix
information across the sequence dimension and model dimension in modern machine learning
models.

GPU Accelerator Cost Model We provide a brief discussion of relevant factors affecting runtime
performance of deep learning operations on GPUs. Depending on the balance of computation and
memory accesses, operations can be classified as either compute-bound or memory-bound [44]. In
compute-bound operations, the time accessing GPU memory is relatively small compared to the time
spent doing arithmetic operations. Typical examples are matrix multiply with large inner dimension,
and short convolution kernels with a large number of channels.

The speed of these operations is determined by the FLOP/s available on compute units, and the
number of FLOPs necessary to complete the operation. In our paper, we exploit fast matrix multiply
units such as tensor cores. On the A100, tensor cores can achieve 312 TFLOP/s in half-precision
matrix multiply operations, while non-matrix multiply operations are limited to 19 TFLOP/s [59].
This trend began with tensor cores in the V100 [58], and is continuing into the next-generation H100
chips [60].

In memory-bound operations, the time taken by the oper- Table 1: FLOP cost and utilization of
ation is determined by the number of memory accesses, various mixer layers, input dimension
while time spent in computation is much smaller. Exam- 64K on an RTX 4090.

ples include most elementwise operations (e.g., activation, -
dropout) and reductions (e.g., sum, softmax, batch norm, Layer FLOP Cost Uil
layer norm). MLP N2 95.5%

The runtime of memory-bound operations is determined by FlashAttn N? 24.0%
the memory bandwidth of different layers of the memory FFT ~ NlogN 3.0%
hierarchy. GPU memory is large but relatively slow—up M2 Conv N3/2 41.4%
to 80 GB on A100, but with bandwidth of 2 TB/s [59].
Higher levels of the memory hierarchy such as caches are
much smaller (20 MB) but an order of magnitude faster (19 TB/s).

Common Mixer Primitives To help contextualize our work, we provide scaling and hardware
utilization characteristics for a few common operations that are used to mix information in machine
learning models, summarized in Table 1.

Transformers [75] use attention to mix information across the sequence dimension, and MLP blocks to
mix information across the model dimension. Both of these blocks scale quadratically in input length.
MLP layers are compute-bound, so they have high FLOP utilization out of the box. Attention blocks
are memory-bound, so even the most optimized implementations such as FLASHATTENTION [15]
have relatively lower FLOP utilization.

Recent work has made progress towards attention-free models by replacing attention layers with
long convolution layers, interleaved with elementwise gating [27, 28, 36, 54, 64, 67-09]. These
layers are computed using FFT operations using the FFT convolution theorem: y = K « X =
FFT-YFFT(X) «+ FFT(K)). While the FFT scales asymptotically well in O(N log N), it is
often memory-bound and thus has low FLOP utilization. In our work, we aim to construct a mixer
that has both sub-quadratic scaling and high FLOP utilization.

3 MONARCH MIXER

In this section, we recall Monarch matrices, introduce how M2 uses Monarch matrices to mix
along the sequence and model dimensions, and benchmark a M2 convolution in terms of hardware
utilization.

3.1 Monarch Matrices

Monarch matrices [14] are a sub-quadratic class of structured matrices that are hardware-efficient
and expressive. They can represent many linear transforms, including convolutions, Toeplitz-like
transforms, low-displacement rank transforms, and orthogonal polynomials. Directly implementing
these different structured transforms on GPUs as dense matrices can be inefficient. In contrast,
their Monarch decompositions can be computed by interleaving matrix multiplications with tensor
permutations.

A Monarch matrix M € RY*¥ of order p is defined by the following:

P
M = (H P,-B,;) Py, (1)
=1

where each P; is related to the ‘base {/ N’ variant of the bit-reversal permutation, and B; is a
block-diagonal matrix with block size b. Setting b = {/N achieves sub-quadratic compute cost. For
example, for p = 2,b = +/N, Monarch matrices require O(NN3/2) compute in sequence length V.

In this paper, we use Monarch matrices to construct architectures that are sub-quadratic in both
sequence length N and model dimension d. We will often parameterize order-2 Monarch matrices,
written as M = PLPRP, where L and R are block-diagonal matrices (for “left” and “right”), and
P =P, =P, = Py is a permutation that reshapes the input to 2D, transposes it, and flattens it to
1D. A common caseistosetL = R = (I\/ﬁ ® F\/ﬁ), where F\/ﬁ is a /N DFT matrix, and ® is
the Kronecker product.

3.2 MONARCH MIXER Architecture

We describe how MONARCH MIXER uses Monarch matrices and elementwise operations to construct
sub-quadratic architectures (Figure | middle). We take a mixer view of model architectures, where
each layer is a sequence of mixing operations across the sequence and the model dimension axes.
Each layer takes as input a sequence of embeddings X € R™ >4 and outputs a sequence Y € RV >4
where NV is the sequence length, and d is the model dimension. For simplicity, we show the order-2
case here, though we can use higher-order blocks to scale to longer sequences and larger model
dimensions.

Let M;, My € RY*N and M3, My € R%*? be order-2 Monarch matrices, let K; € RV*4 let o
be an optional point-wise non-linearity (e.g. ReLU), and let ® be elementwise multiplication. M2

s

Table 2: FLOP cost and utilization of M2 compared to dense MLP at different input sizes [NV, with
block size v/N, on an A100 and RTX 4090.

N 4K 16K 64K 256K

Dense Matmul TFLOP Cost 0.025 0412 6.60 106.0
M2 TFLOP Cost 0.002 0.013 0.103 0.824

Dense FLOP Utilization (A100) 63.0% 78.0% 80.0% OOM
M2 FLOP Utilization (A100) 4.78% 12.7% 25.6% 42.8%
Wall-Clock Speedup (A100) 1.2 51x 20.6x >55.0x

Dense FLOP Utilization (4090) 74.6% 96.7% 98.0% OOM
M2 FLOP Utilization (4090) 11.1% 32.1% 41.4% 53.7%
Wall-Clock Speedup (4090) 2.2x 10.5x 27.0x >69.1x

uses Monarch matrices to construct expressive architectures. For example, a convolutional block with
a sparse MLP can be expressed as follows:

1. Mix along sequence axis:

X = M;(K; © M;X) 2
2. Mix along embedding axis:
YT = Myo(M3X) 3)

When M; is set to the DFT and M, is set to the inverse DFT, Equation 2 exactly corresponds
to a convolution with kernel K; parameterized in frequency space. Equation 3 corresponds to an
MLP with the dense matrices replaced by Monarch matrices. More expressive layers are also easily
expressible; for example, replacing Equation 2 with V. © My (K; © M;(Q @ K)), where Q, K,V
are linear projections of X, reproduces a gated convolution block, as in [27, 28, 64].

The basic M2 layer is simple to implement; pseudocode is shown in Figure | (middle), and the
Appendix gives an efficient implementation of M2 in under 40 lines of pure PyTorch (including
imports). The convolution case with Monarch matrices fixed to DFT and inverse DFT matrices also
admits implementations based on FFT algorithms [11].

3.3 Architecture Benchmarks

We benchmark the efficiency of the M (K ® MX) convolution operator (Equation 2) implemented in
a simple CUDA kernel (calling standard cuBLAS sub-routines [61]), as the dimension [V increases.
Equation 3 scales similarly, as dimension d increases. We keep the block size b fixed to v/N.

Table 2 shows the FLOP cost and utilization of a M2 operator as a function of the input size on an
A100 as well as on an RTX 4090. On the A100, the operator is more dominated by the data movement
costs of the permutation operations (see the Appendix for a roofline analysis). For longer inputs,
the sub-quadratic scaling allows MONARCH MIXER to outperform dense matrix multiplication. On
the RTX 4090, which has a larger and faster L2 cache than the A100, we can manually optimize an
implementation to amortize data movement costs.

4 Theoretical Analysis: M2 as Polynomial Multiplication

In this section, we develop theory to make the M2 layer causal in the input X—e.g., ensure that an
output Y; of the M2 should only depend on X7, ..., X;. Our approach involves interpreting Monarch
matrix multiplication as multivariate polynomial evaluation and interpolation. We then show that an
M2 convolution is equivalent to modular polynomial manipulation in a univariate basis.

7

The challenge is controlling the degrees of the resulting univariate polynomials, to prevent “underflow’
under modular multiplication (see Figure 2 for an overview). Our key result is deriving sufficient
conditions on the degrees of the bivariate polynomials defining the Monarch factors to prevent such
underflow. We focus on the bivariate case (order p = 2) in the body, and give the general multivariate
case in the Appendix. We present proof sketches in the main body, and leave proofs and additional
results for the Appendix.

P[/P[B]P— M (MuoMK)

X, Y) r(Y) —» f(Z) g(Z) mod ZN ——
Conditions on Bivariate Univariate Multiplication
Polynomial Degrees deg(f), deg(g) <N /2 Causal Map

Causal
Parameterization

Figure 2: Monarch multiplication can be interpreted as polynomial evaluation and interpolation. We
derive sufficient conditions on the polynomial formulation of Monarch matrices for M2 to be causal.

Monarch Multiplication as Polynomial Evaluation First, we show that order-2 Monarch matrix-
vector multiplication M - u is equivalent to bivariate polynomial evaluation.

Fix a Monarch matrix M € RY*Y = PLPRP, for two block-diagonal matrices L and R with
blocks of size b = v/N. We can interpret Monarch matrices as bivariate polynomial evaluation by
setting A = {wp,...,wp_1} as a set of evaluation points (e.g., the bth roots of unity), and letting
{(X,Y), .., b1 (X,)}, {ro(Y),...,7nv—1(Y)} be sets of basis polynomials with individual
degrees of X,Y being < +/N. The values of {{;(X,Y),...,¢,_1(X,Y)} evaluated on A? deter-
mine the entries of L, and the values of {r¢(Y),...,rn_1(Y)} evaluated on A determine the entries
of R. We give the mapping from ¢, r, and A to L and R in the Appendix.

Then, matrix-vector multiplication between M and a vector u is equivalent to polynomial evaluation
of the basis functions ¢, r on the evaluation points A?:

Theorem 1. Let m(j) = j mod v/N. For any vector u € RN, Mu is a bivariate poly-
nomial u(X,Y) evaluated at A% with uw(X,Y) = Z;.V:_Ol u; f;(X,Y), where f;(X,Y) =
gm(j)(X, Y)T](Y)

Monarch Inverse as Polynomial Interpolation Next, we exploit the fact that Monarch inverse
multiplication M~! - u is equivalent to polynomial interpolation in the basis polynomials of M.

Theorem 2. Let My, My, My be Monarch matrices, and let A be the set of /N roots of unity. Then,
the operation
f =M (Mik) © (Mau)).)

is equivalent to representing the polynomial
hX,Y) = k(X,V)u(X,Y) mod (XVN —1,YVN _1)
in terms of the basis polynomials {,r corresponding to My, and where k(X,Y) and uw(X,Y) are

the polynomials corresponding to M1k and Mo, respectively.

The above follows from Theorem | and the fact that Monarch matrix-vector multiplication with an
inverse Monarch matrix is equivalent to polynomial interpolation in a given basis. The mod part

comes from the fact that A is the set of roots of the polynomial Z VN _1.

Causal Monarch Maps Now, we give a class of Monarch matrices from which we can build a
causal map. First, we define a polynomial with minimum degree j:

Definition 1. A polynomial of minimum degree j (and maximum degree N — 1) is defined as
_ N—1_ a
Qj(Z) = Ea:j qj[a]Z .

To ensure causality, we first convert the bivariate polynomial basis into a univariate basis, and then we
expand the degree of the univariate polynomial. The resulting univariate polynomial multiplication is
naturally causal (exploiting similar properties as the causal FFT convolution).

We use the Kronecker substitution (X < Z)Y «+ Z ‘/ﬁ) to convert the bivariate polynomial basis
into a univariate basis:

0(2) = tuii)(2)r; (277,)

where m(j) is defined as in Theorem 1.

Then, the following class of Monarch matrices (with the conversion to univariate polynomial basis as
above) forms a causal map:

Theorem 3. Let u,k € R"™, where n < N/2. Let m(j) be as in Theorem 1, and k(j) = [J/\/NJ

Then define the basis polynomials £, ;) to have minimum degree m(j), basis polynomials r; to have
minimum degree k(j), and all polynomials q;(Z) to have maximum degree < N/2 for all j < N/2
and for N/2 < j < N have maximum degree N — 1. Let My be defined by such basis polynomials
via (5) where the evaluation points are now the Nth roots of unity. Then, we have that

u— (My' (Mp(k,0n_p) © Mpy(u,0n_5))) [0: 7 — 1] (©6)
gives a causal map in u.

Theorem 3 gives a causal map that can be computed entirely using Monarch matrices — enforcing
causality with sub-quadratic scaling. The main technical ingredient in proving the above result is that
the product ¢;(Z)q;/(Z) can be written as a linear combination of ¢, (Z) for j + j* < a < N (this
uses the above specified properties on the minimum and maximum degrees of ¢;(Z)). This in turn
implies that the term k; u;q;(Z)q; (Z) only contributes to the coefficients of “higher order” basis
polynomials g, (Z) for a > j + j' in the product k(Z)u(Z), which is needed for causality. Figure 2
gives an example of restricted polynomials generating a causal map.

S Experiments

We compare MONARCH MIXER to Transformers on three
tasks where Transformers have been dominant: BERT-
style non-causal masked language modeling, ViT-style
image classification, and GPT-style causal language mod-
eling. In each, we show that we can match Transformers
in quality using neither attention nor MLPs. We addition-
ally evaluate wall-clock speedups against strong Trans-
former baselines in the BERT setting. Additional exper-
iments on speech and alternative architectures are given
in Appendix B, and experimental details are given in Ap-
pendix C.

Monarch
long conv

5.1 Non-Causal Language Modeling Sequence Dimension

Mixer Mixer
We introduce M2-BERT, an M2-based architecture for Fjoure 3: M2-BERT uses Monarch ma-

non-causal language modeling. M2-BERT acts as a drop- (rices to create a bidirectional gated long
in replacement for BERT-style language models [21], .onvolution in the sequence mixer, and
which are a workhorse application of the Transformer
architecture [1, 39, 40, 45, 48, 49, 52, 56, 85, 89]. We
train M2-BERT using masked language modeling over
C4 [66] with the bert-base-uncased tokenizer.

uses Monarch matrices to replace the lin-
ear layers in the dimension mixer.

M2-BERT starts with a Transformer backbone and replaces the attention and MLPs with M2 layers,
shown in Figure 3. In the sequence mixer, we replace attention with bidirectional gated convolutions
with a residual convolution (Figure 3 left). To recover convolutions, we set the Monarch matrices to
DFT and inverse DFT matrices. Following [27, 64], we also add short depthwise convolutions after
the projections. In the dimension mixer, we replace the two dense matrices in MLPs with learned
block-diagonal matrices (Monarch matrix of order 1, b = 4). We pretrain two M2-BERT-base models,
at 80M and 110M, and two M2-BERT-large models, at 260M and 341M. These are equivalent to
BERT-base and BERT-large, respectively.

Downstream GLUE Scores First, we evaluate M2-BERT models on downstream fine-tuning
compared to BERT-base and BERT-large from [20]. We take the pretrained models and fine-tune
them on BERT, following the procedure in [38]. Table 3 shows performance for BERT-base equivalent
models, and Table 4 shows performance for BERT-large equivalent models. M2-BERT-base can

Table 3: Average GLUE Score for M2-BERT-base compared to BERT-base [20], along with change
in parameters and GLUE score.

Model GLUE Score A Params A GLUE Score

BERT-base (110M) 79.6 -0% +0.0
M2-BERT-base (80M) 79.9 -27% +0.3
M2-BERT-base (110M) 80.9 -0% +1.3

Table 4: Average GLUE Score for M2-BERT-large compared to BERT-large [20], along with change
in parameters and GLUE score.

Model GLUE Score A Params A GLUE Score

BERT-large (340M) 82.1 -0% +0.0
M2-BERT-large (260M) 82.2 -24% +0.1
M2-BERT-large (341M) 82.8 +0.2% +0.7

match BERT-base in GLUE quality with 27% fewer parameters—or outperform BERT-base in
quality by 1.3 points when parameter matched. M2-BERT-large matches BERT-large with 24% fewer
parameters, and outperforms by 0.7 points when parameter matched.

GPU Throughput by Sequence Length Next, we evaluate throughput of M2-BERT models
by sequence length, compared to HuggingFace implementations of BERT, as well as optimized
implementations of BERT running FlashAttention [15]. Table 5 shows forward throughput for BERT-
base equivalent models, and the appendix shows throughput for BERT-large (where the performance
trends are similar). Inference times are reported in tokens/ms on an A100-40GB GPU. M2-BERT-
base achieves higher throughput than even highly-optimized BERT models, and up to 9.1 x faster
throughput than a standard HuggingFace implementation at sequence length 4K.

CPU Inference Latency Finally, we report CPU inference latency for M2-BERT-base (80M)
compared to BERT-base, running direct PyTorch implementations for both. In short sequences, the
impacts of data locality still dominate the FLOP reduction, and operations such as filter generation
(which are not present in BERT) pay a higher cost. Starting at sequences 1K and longer, M2-BERT-
base starts to have speedup over BERT-base, up to 6.5x at sequence length 8K. We believe further
optimization and applying IO-aware principles can further improve CPU performance.

5.2 Image Classification

To validate that our methods generalize to images as well as language for non-causal modeling, we
next evaluate M2 on image classification. We compare M2 to ViT-style models and recent work,
HyenaViT-b [64], which uses gated long convolutions to replace the attention layers in ViT-b. In our
work, M2-ViT builds off HyenaViT-b and replaces the long convolutions with the M2 operator in
Equation 2 (again setting the Monarch matrices to the DFT and inverse DFT). We replace the MLP
blocks in HyenaViT-b with block-diagonal matrices, similarly to M2-BERT. Appendix B additionally
compares M2 to the Swin-family of architectures [50, 51].

Table 7 shows the performance of MONARCH MIXER against ViT-b, HyenaViT-b, and ViT-b-
Monarch (which replaces the MLP blocks of standard ViT-b with Monarch matrices) on ImageNet-1k.
MONARCH MIXER outperforms the other models with only half the parameters of the original ViT-s
model. Surprisingly, MONARCH MIXER also outperforms ResNet-152, with fewer parameters—even
though the latter was explicitly designed for ImageNet performance.

5.3 Causal Language Modeling

GPT-style causal language modeling is a critical application for Transformers [6, 31, 43]. We
introduce M2-GPT, a M2-based architecture for causal language modeling. For the sequence
mixer, M2-GPT combines the convolutional filter from Hyena [64], the state-of-the-art attention-free

Table 5: Throughput in tokens/ms by context length for M2-BERT-base (80M) compared to BERT-
base.

Model 512 1024 2048 4096 8192

HF BERT-base (110M) 206.1 130.8 71.3 39.0 OOM
FlashAttention BERT-base (110M) 367.4 350.1 257.2 179.1 1024
M2-BERT-base (80M) 386.3 380.7 378.9 3539 320.1

M2 Speedup over HF BERT-base (110M) 19x 29x 52x 9.0x -

Table 6: CPU inference latency in milliseconds with a batch size of 1 at varied input sequence lengths.
Measurements averaged over 10 examples on a 48 vCPU, 96 GB RAM instance from the GCP
n2-standard-48 series, which runs Intel Cascade Lake processors. This is based on the protocol in
[29].

Model 512 1024 2048 4096 8192

BERT-base (110M) 182 389 918 2660 11820
M2-BERT-base (80OM) 289 361 651 948 1820

Speedup 0.6x 1.1x 14x 28x 6.5%

language model, with parameter sharing across multiple heads from H3 [27]. We use the causal
parameterization of Equation 2 to replace the FFT in these architectures, and we remove the MLP
layers entirely. The resulting architecture is entirely attention- and MLP-free.

We pretrain M2-GPT on the PILE, a standard dataset for causal language modeling. Following prior
work [28, 64], we train models at two model sizes, with varying amounts of training data—decaying
the learning rate appropriately for each experiment. Table 8 shows the results. Even though our model
is attention- and MLP-free, it outperforms both Transformers and Hyena in perplexity on pretraining.
These results suggest that radically different architectures than Transformers may be performant on
causal language modeling.

6 Related Work

Long Convolutions Recent work proposes to use long convolution layers as a replacement for the
Transformer attention layers in sequence modeling [28, 64, 67—69]. Many of these models rely on
the FFT convolution theorem to compute the long convolutions. We build on the insights in many of
these architectures in constructing our M2 architectures, and additionally replaces the FFT operations
with Monarch matrices.

Our work is also related to a rich literature in convolutions in other bases, such as Chebyshev
bases [82] or orthogonal polynomial bases [34]. These approaches have analogues in our multivariate
analysis; replacing the basis polynomials of the Monarch matrices in MONARCH MIXER may be
able to approximate some of these operations. An interesting question for future work would be to
study how well our techniques and concerns about causality and hardware utilization translate to
these alternative convolution bases.

Optimization of deep learning primitives There is a rich history of the optimization of deep
learning primitives, as accelerating their performance can yield substantial savings in compute and
cost for large models. There are many approaches to speed up these operations, but they usually
either reduce data movement or compute.

Reducing data movement: In many applications, the major bottleneck is the storage and movement
of large amounts of memory. One popular approach to reducing data movement is checkpointing,
wherein one stores fewer intermediate results and recomputes the others on-the-fly where they
are needed, trading additional compute for memory [46, 78]. Another approach is kernel fusion,
wherein algorithms initially described as sequential steps can often be fused in ways that improve
their properties. For example, it is generally faster to implement a dot-product through a multiply-

Table 7: Accuracy on ImageNet-1k. ResNet-152 provided for reference.

Model Top-1% Top-5% Description
ResNet-152 (60M) 78.6 94.3 ConvNet, MLP
ViT-b (87M) 78.5 93.6 Attention, MLP
ViT-b + Monarch (33M) 78.9 94.2 Attention, MLP-Free
HyenaViT-b (88M) 78.5 93.6 Attention-Free, MLP
M2-ViT-b (45M) 79.5 94.5 Attention-Free, MLP-Free

Table 8: Perplexity on the PILE when trained for different numbers of tokens.

Model 5B 10B 15B Description

Transformer (125M) 133 119 11.2 Attention, MLP
Hyena (155M) 13.1 11.8 11.1 Attention-Free, MLP
M2-GPT (145M) 129 11.6 10.9 Attention-Free, MLP-Free

Transformer (355M) 114 9.8 9.1 Attention, MLP
Hyena (360M) 11.3 9.8 9.2 Attention-Free, MLP
M2-GPT (360M) 11.0 9.6 9.0 Attention-Free, MLP-Free

accumulate rather than first multiplying and then accumulating. Recently, libraries such as PyTorch
2.0 [63] have added kernel fusion capabilities, although the very best performance usually still arises
from handwritten kernels. Third, in order to better exploit memory locality, it is often fastest to
load small blocks of memory, do intensive computation on them, and then write the results a tile at
a time [83]. Finally, many algorithms also have hand-optimizations that can remove unnecessary
computation or memory accesses [55].

Efficient algorithms usually make use of a combination of these techniques. For example, FlashAt-
tention [15] uses all four to dramatically decrease both the latency and memory consumption of
multi-head attention. Though we have made a modest effort to implement MONARCH MIXER
efficiently, we think it likely that MONARCH MIXER could be further optimized by these techniques.

Reducing flops: A first target for optimization is the multi-layer perceptron (MLP), owing to its
ubiquity. A variety of structured sparse factorizations exist, many of which we draw on in this work
[7, 11, 14,16, 17,19, 26, 91]. Attention is also a popular target for optimization. Recently, a plethora
of sub-quadratic approximations of attention have emerged, that aim to approximate attention to
reduce its quadratic complexity. Some methods rely on sparsification, relying on the fact that the
attention matrix is extremely sparse at long sequence lengths [2, 23, 24, 42, 53]. Others use low-rank
approximations of the attention matrix [13, 79, 91] or kernel methods instead [9, 41]. A subset use a
combination of these techniques, such as [8, 72]. Finally, a third category of methods [27, 64] aim to
replace attention entirely, relying on state-space models [33].

7 Discussion and Conclusion

We explore MONARCH MIXER (M2), a new architecture that is sub-quadratic in both sequence
length and model dimension and is hardware-efficient on modern accelerators. We motivate M2
from both theoretical and systems performance perspectives and conduct a preliminary proof-of-
concept investigation into performance on masked language modeling, image classification, and
causal language modeling.

While our initial results are promising, our work is only a first step in this direction. The M2 layer
can likely be further optimized with systems optimization techniques such as kernel fusion. Our work
has also not been optimized for inference like more well-established models such as Transformers, or
even more recent models such as state space models. It also remains to be seen whether M2 layers
can have as widespread applicability as Transformers. We hope that these can be fruitful directions
for future work.

A discussion of broader impacts can be found in the Appendix.

10

Acknowledgments

We gratefully acknowledge the support of DARPA under Nos. FA86501827865 (SDH) and
FA86501827882 (ASED); NIH under No. U5S4EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); ONR under No.
NO000141712266 (Unifying Weak Supervision); the Moore Foundation, NXP, Xilinx, LETI-CEA,
Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm,
Analog Devices, the Okawa Foundation, American Family Insurance, Google Cloud, Microsoft
Azure, Swiss Re, Brown Institute for Media Innovation, Department of Defense (DoD) through
the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program, Fannie
and John Hertz Foundation, National Science Foundation Graduate Research Fellowship Program,
Texas Instruments Stanford Graduate Fellowship in Science and Engineering, and members of the
Stanford DAWN project: Teradata, Facebook, Google, Ant Financial, NEC, VMWare, and Infosys.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily reflect the
views, policies, or endorsements, either expressed or implied, of DARPA, NIH, ONR, or the U.S.
Government. JG and AR’s work is supported by NSF grant# CCF-2247014. 1J’s work is supported
by an NSF Graduate Fellowship.

References

[1] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific
text. arXiv preprint arXiv:1903.10676, 2019.

[2] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[3] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, FAccT °21, page 610-623,
New York, NY, USA, 2021. Association for Computing Machinery.

[4] Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-
1k. arXiv preprint arXiv:2205.01580, 2022.

[5] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[7] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher
Ré. Pixelated butterfly: Simple and efficient sparse training for neural network models. 2021.

[8] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. In Advances in Neural Information Processing Systems
(NeurlIPS), 2021.

[9] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[11] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297-301, 1965.

11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 702-703, 2020.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. Funnel-transformer: Filtering out
sequential redundancy for efficient language processing. Advances in neural information
processing systems, 33:4271-4282, 2020.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander
Liu, Aniruddh Rao, Atri Rudra, and Christopher R€. Monarch: Expressive structured matrices
for efficient and accurate training. In International Conference on Machine Learning. PMLR,
2022.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with I0-awareness. In Advances in Neural Information
Processing Systems, 2022.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algo-
rithms for linear transforms using butterfly factorizations, 2020.

Tri Dao, Nimit S. Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski,
Atri Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all
structured linear maps, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248-255. Ieee, 2009.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without
losing performance. arXiv preprint arXiv:1907.04840, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In arXiv:1810.04805, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of
language models with mixture-of-experts. In International Conference on Machine Learning,
pages 5547-5569. PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. The Journal of Machine Learning Research,
23(1):5232-5270, 2022.

Wikimedia Foundation. Wikimedia downloads.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.

Hungry hungry hippos: Towards language modeling with state space models. International
Conference on Learning Representations, 2023.

12

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Daniel Y. Fu, Elliot L. Epstein, Eric Nguyen, Armin W. Thomas, Michael Zhang, Tri Dao, Atri
Rudra, and Christopher Ré. Simple hardware-efficient long convolutions for sequence modeling.
International Conference on Machine Learning, 2023.

Morgan Funtowicz. Scaling up bert-like model inference on modern cpu - part 1, 2021.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in
one day. arXiv:2212.14034v1, 2022.

Google. Bard, https://bard.google.com/. 2023.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends® in
Communications and Information Theory, 2(3):155-239, 2006.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Nicholas Hale and Alex Townsend. An algorithm for the convolution of legendre series. SIAM
Journal on Scientific Computing, 36(3):A1207-A1220, 2014.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

Peter Izsak, Moshe Berchansky, and Omer Levy. How to train bert with an academic budget. In

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 10644-10652, 2021.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really robust? a strong
baseline for natural language attack on text classification and entailment. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 8018-8025, 2020.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. Transactions of the
Association for Computational Linguistics, 8:64-77, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International Conference on
Machine Learning, pages 5156-5165. PMLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

Jan Kocon, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydto, Joanna
Baran, Julita Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz, et al. Chatgpt: Jack
of all trades, master of none. arXiv preprint arXiv:2302.10724, 2023.

Elias Konstantinidis and Yiannis Cotronis. A practical performance model for compute and
memory bound gpu kernels. In 2015 23rd Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, pages 651-658. IEEE, 2015.

MYV Koroteev. Bert: a review of applications in natural language processing and understanding.
arXiv preprint arXiv:2103.11943, 2021.

13

https://bard.google.com/

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]
[60]
[61]
[62]
[63]

[64]

Mitsuru Kusumoto, Takuya Inoue, Gentaro Watanabe, Takuya Akiba, and Masanori Koyama. A
graph theoretic framework of recomputation algorithms for memory-efficient backpropagation.
Advances in Neural Information Processing Systems, 32, 2019.

Lagrange polynomial. Lagrange polynomial — Wikipedia, the free encyclopedia, 2005. https:
//en.wikipedia.org/wiki/Lagrange_polynomial.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234—-1240, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up capacity and

resolution. In International Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Xiaofei Ma, Zhiguo Wang, Patrick Ng, Ramesh Nallapati, and Bing Xiang. Universal text
representation from bert: An empirical study. arXiv preprint arXiv:1910.07973, 2019.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke
Zettlemoyer. Luna: Linear unified nested attention. Advances in Neural Information Processing
Systems, 34:2441-2453, 2021.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: moving average equipped gated attention. arXiv preprint
arXiv:2209.10655, 2022.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv
preprint arXiv:1805.02867, 2018.

Derek Miller. Leveraging bert for extractive text summarization on lectures. arXiv preprint
arXiv:1906.04165, 2019.

Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. Acdc: A structured
efficient linear layer. arXiv preprint arXiv:1511.05946, 2015.

NVIDIA. Nvidia Tesla V100 GPU architecture, 2017.
NVIDIA. Nvidia A100 tensor core GPU architecture, 2020.
NVIDIA. Nvidia H100 tensor core GPU architecture, 2022.
NVIDIA. cuBLAS, 2023.

OpenAl. Gpt-4 technical report, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua

Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. International Conference on Machine Learning, 2023.

14

https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Lagrange_polynomial

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

David W Romero, R Bruintjes, Erik J Bekkers, Jakub M Tomczak, Mark Hoogendoorn, and
JC van Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel sizes. In
10th International Conference on Learning Representations, 2022.

David W Romero, David M Knigge, Albert Gu, Erik J Bekkers, Efstratios Gavves, Jakub M
Tomczak, and Mark Hoogendoorn. Towards a general purpose cnn for long range dependencies
in {N} d. arXiv preprint arXiv:2206.03398, 2022.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub Mikolaj Tomczak, and Mark Hoogen-
doorn. Ckconv: Continuous kernel convolution for sequential data. In International Conference
on Learning Representations, 2021.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision
transformers. arXiv preprint arXiv:2106.10270, 2021.

G. Szegd. Orthogonal Polynomials. Number v.23 in American Mathematical Society colloquium
publications. American Mathematical Society, 1967.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Computing Surveys, 55(6):1-28, 2022.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-

mixer: An all-mlp architecture for vision. Advances in neural information processing systems,
34:24261-24272, 2021.

Asher Trockman and J Zico Kolter. Patches are all you need? Transactions on Machine
Learning Research, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. volume 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv:1804.07461, 2018.

Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining without
attention. arXiv preprint arXiv:2212.10544, 2022.

Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin Jin, Gang Huang,
Yunxin Liu, and Xuanzhe Liu. Melon: Breaking the memory wall for resource-efficient on-
device machine learning. In Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services, pages 450-463, 2022.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of
harm from language models. arXiv preprint arXiv:2112.04359, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, 2020.

15

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Kuan Xu and Ana F. Loureiro. Spectral approximation of convolution operators. SIAM Journal
on Scientific Computing, 40(4):A2336-A2355, 2018.

Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind Sukumaran-Rajam, and
P Sadayappan. Training of deep learning pipelines on memory-constrained gpus via segmented
fused-tiled execution. In Proceedings of the 31st ACM SIGPLAN International Conference on
Compiler Construction, pages 104—116, 2022.

Lili Yu, Déniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers, 2023.

Shanshan Yu, Jindian Su, and Da Luo. Improving bert-based text classification with auxiliary
sentence and domain knowledge. IEEE Access, 7:176600-176612, 2019.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay,
Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
on imagenet. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 558-567, 2021.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 6023-6032,
2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13001-13008, 2020.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in Neural Information Processing Systems, 34:17723-17736, 2021.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In The IEEE International Conference on Computer Vision
(ICCV), December 2015.

16

Author Contributions

D.Y.F. Conceptualized the research; coordinated collaborations; developed M2
architectures; led experimental and implementation efforts; assisted in development
of theoretical results; coordinated writing.

S.A. Worked on developing M2 architectures; worked on implementing and conducting
BERT experiments; worked on implementing and performing CPU experiments;
assisted in writing and framing the work.

J.G. Led development of theory and causal algorithms; wrote Appendix D.
LJ. Led development of theory and causal algorithms; wrote Appendix D.
S.E. Worked on writing and framing the work; assisted in development of M2 architectures;

assisted in the optimized M2 implementation; conducted mixer benchmarks;
assisted with BERT experiments; conducted Swin ImageNet experiments.
AW.T. Conducted ViT experiments; assisted in writing.
B.S. Assisted in optimized M2 implementation; conducted mixer benchmarks;
assisted in writing.
M.P. Assisted in development of M2-GPT architecture.
A.R. Supervised theory development; developed proofs; reviewed manuscript.
C.R. Supervised research; reviewed manuscript.

Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, and Armin Thomas contributed equally
to this work.

Appendix

Appendix A discusses broader impacts of our work. Appendix B presents additional experiments.
Appendix C gives details for the experiments, including model architectures and hyperparameters.
Appendix D gives missing details and proofs for the theoretical analysis, as well as generalizations to
broader results. Appendix E gives a PyTorch code listing of an M2 layer.

A Broader Impacts

Our work seeks to understand the fundamental capabilities and limitations of newly-emerging model
architectures. As the amount of data and model size grows, we also seek to understand how to make
training these models more efficient, both in terms of the amount of training context and the model
size. This potentially connects to energy savings during model development and deployment, as well
as making machine learning models accessible to a larger population of people.

However, as with any machine learning models, developing new techniques may impact a wide range
of applications, each with potential benefits and harms. Making language model training cheaper and
longer context may make it cheaper to spread disinformation. Similarly, improving the efficiency
of model training may not reduce the overall environmental footprint of training, since the same
resources may be used to train more models, or train the same models for longer. While our work
makes partial progress on the fronts of efficiency and understanding, it does not explicitly address the
issues of fairness and bias in language models. In addition, our work demonstrates a proof-of-concept;
it has error modes, and we recognize the inherent risks of training and using machine learning models,
including language models. Detailed discussions of these risks are in [3, 5, 80].

B Additional Experiments

B.1 Per-Task GLUE Numbers

We report full GLUE numbers for M2-BERT-base and M2-BERT-large in Table 9.

B.2 Additional Throughput Results

We report the throughput of M2-BERT-base (§0M) compared to BERT models of the same size
(BERT-base with fewer parameters), as well as the throughput of M2-BERT-large (260M) compared
to BERT-large.

17

Table 9: Fine-tuning performance on GLUE [76]. We report the standard metrics — F1 scores for
QQP and MRPC, Matthew’s correlation for CoLA, Spearman’s correlation for STS-B, and accuracy
for the remaining tasks, following the procedure from [38].

Model MNLI(m/mm) RTE QNLI QQP SST2 STS-B CoLA MRPC Average

M2-BERT-base (80M) 78.4/78.6 68.5 84.6 86.7 92.0 86.3 53.0 89.8 79.9
M2-BERT-base (110M) 79.6/80.5 69.3 86.0 87.0 92.3 86.9 56.0 89.2 80.9
M2-BERT-large (260M) 81.7/81.9 72.8 84.7 87.8 93.3 88.0 59.2 90.0 82.2
M2-BERT-large (341M) 82.2/82.3 75.0 87.0 87.7 92.4 88.3 59.6 90.1 82.8

Table 10: Throughput in tokens/ms by context length for M2-BERT-base (80M) compared to 80M
BERT models.

Model 512 1024 2048 4096 8192

HF BERT (79M) 2484 1573 86.0 468 OOM
FlashAttention BERT (79M) 433.3 425.1 3352 2174 122.6
M2-BERT-base (80M) 386.3 380.7 378.9 3539 320.1

M2 Speedup over HF BERT (80M) 1.6x 24x 44x 7.5x% -

Table 10 compares the performance of M2-BERT-base (80M) to BERT models parameter-matched to
80M parameters. M2 is slower than FlashAttention for sequence lengths 512 and 1K, but outperforms
FlashAttention starting at sequence length 2K. We believe further optimization of the M2 kernel can
close the gap to FlashAttention for short sequences.

Table |1 compares M2-BERT-large (260M) to BERT-large. Trends are mostly similar to comparisons
against BERT-base; M2 nearly matches FlashAttention at sequence length 512, and outperforms it
for sequence length 1K and longer. We also see up to 4.3 x speedup over HuggingFace BERT-large
at sequence length 2K.

B.3 ImageNet Comparison against Swin

Table 12 reports the results of replacing attention and MLP in Swin-V2 using M2 as a drop-in replace-
ment. Surprisingly, Swin-M2 outperforms Swin-MLP-B, is competitive with Swin-V1-B, and comes
within 1 point of Swin-V2-B, even without any hyperparameter tuning or architecture adjustment
from the ViT formula. We expect that performance may improve further with hyperparameter tuning
specific to M2.

B.4 Speech Applications

Table 13 presents the performance of M2 on Speech Commands-10, a speech classification task over
raw 1-second clips sampled at 16 kHz. M2 is competitive with state-of-the-art architectures on this
task.

B.S CIFAR10

Table 14 shows the performance of MONARCH MIXER on CIFAR10. The trends are largely the same
as on ImageNet.

B.6 Learnable Monarch Matrices in Sequence Mixer

In most of our models, we have used fixed Monarch matrices for the sequence mixer, and learnable
Monarch matrices for the dimension mixer. Table 15 presents an experiment evaluating using
learnable Monarch matrices for the sequence mixer on the sequential CIFAR task. We use a non-
gated convolutional architecture based off long convolutions, as presented in [28]. Learning the
Monarch matrices in the sequence mixer yields 1.5 points of lift.

18

Table 11: Throughput in tokens/ms by context length for M2-BERT-large (260M) compared to
BERT-large.

Model 512 1024 2048 4096 8192

HF BERT-large (340M) 754 47.1 252 OOM OOM
FlashAttention BERT-large (340M) 125.0 111.9 91.6 54.5 OOM
M2-BERT-large (260M) 122.5 118.6 1094 94.5 75.0

M2 Speedup over HF BERT-large (340M) 1.6x 2.5x 4.3X - -

Table 12: ImageNet accuracy of Swin models.
Model ImageNet (acc@1) ImageNet (acc@5)

Swin-MLP-B 81.3 95.3
Swin-V1-B 83.5 96.5
Swin-V2-B 84.2 96.9

M2-Swin-B 83.5 96.7

B.7 Roofline Analysis

Figure 4 shows a Roofline analysis of a simple PyTorch implementation of a single M2 operator
M~!(Mu ® Mk on an A100 GPU, with 4K input length. The operation is more dominated by the
data movement operations, which helps explain why performance is higher on newer architectures
like RTX 4090 (which have faster and larger L2 cache).

B.8 Associative Recall

In Table 16, we present a simple experiment demonstrating the causal parameterization of M2 on
associative recall, a synthetic language designed to test in-context learning. The model demonstrates
in-context learning abilities in sequences up to 128K tokens, but Transformers do not scale past 8K.

B.9 BERT Experiments with Alternative Architecture

Here, we report results using an older version of the M2-BERT architecture, that uses non-gated
convolutions and is trained on English Wikipedia [25] and English Bookcorpus [92]. For clarity, we
refer to this model as M1-BERT.

We found that M1-BERT could match Transformers on MLM quality, but underperformed on down-
stream fine-tuning. We attribute this gap in performance to sub-optimal training hyperparameters
(optimized for throughput using NVIDIA MLPerf hyperparameters) as well as a sub-optimal archi-
tecture. We report results here for completeness, but refer to the gated convolution architecture in the
main body as the proper M2-BERT model.

These models followed the reference implementations and hyperparameters from Hugging Face
Transformers examples [81] and Nvidia Deep Learning examples (https://github.com/NVIDIA/
DeepLearningExamples). In particular, we use the LAMB optimizer with a learning rate of 5e — 3.
For each sequence length, we use as large a minibatch size as possible that fits on the GPU (A100-
80GB in Table 17 and V100 in Table 18). We set the gradient accumulation to reach a global batch
size of 65, 536 sequences. To investigate the effect of sequence length, each model is trained for a
fixed sequence length in a single phase of training (in contrast to some training protocols, which train
the model in multiple phases, each at different sequence lengths).

Time to a Fixed Pretraining Quality on 8xA100 We compare time to a fixed pretraining quality,
training M1-BERT-base on English Wikipedia [25] and English Bookcorpus [92]. We compare
against BERT-base trained with FLASHATTENTION [15], as well as the Monarch-BERT-base imple-
mentation from the original Monarch paper [14]. We measure wall-clock time for M1-BERT and the
base Transformer to reach 50% in masked language modeling accuracy on 8xA100 Nvidia GPUs
with 80GB memory each. Table 17 summarizes results. In short sequence lengths, M1-BERT is

19

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples

g9

Table 13: Accuracy on Speech-Commands 10. An “x” means that the model did not fit in memory.
M2 S4 WaveGan-D Transformer Performer CKConv

979 975 96.3 X 30.8 71.7

Table 14: Accuracy on CIFAR-10.

Model Top-1% Description
ViT (1.2M) 78.6 Attention + MLP
ViT + Monarch (607K) 79.0 Attention, MLP-Free
HyenaViT (1.3M) 80.6 Attention-Free + MLP

HyenaViT-M2 (741K) 80.8 Attention-Free + MLP Free

comparable to FLASHATTENTION, even without using a heavily-optimized fused kernel. In longer
sequence lengths, the FLOP savings make M1-BERT more efficient—up to 2.4 x faster than BERT
with FLASHATTENTION at sequence length 4096.

BERT in Half a Day Inspired by recent work focusing on training under limited resource constraints
[30], we measure how far we can get when training on a single V100 GPU in 12 hours. In Table 18,
we report the masked language modeling accuracy achieved by the same set of models and sequence
lengths (except for the FLASHATTENTION baseline, which is not supported on V100). We observe
M1-BERT both achieves higher accuracy within the time limit and can be trained at longer sequence
lengths than the baseline architectures.

Downstream Fine-Tuning We evaluate the quality of M1-BERT-base models on the GLUE
benchmark [76]. Table 19 shows fine-tuning performance on the GLUE tasks, using the same
hyperparameters and 5 epochs for all tasks and both models. M1-BERT-base is competitive with
Transformers trained using MLPerf hyperparameters on Bookcorpus and Wikitext, but underperforms
fully-trained transformers and M2-BERT-base.

C Experiment Details

C.1 Model Architectures

In this section, we describe the exact model architectures we used for each task, including the design
of the block (residuals and gating). We additionally release our code for reproducibility,

BERT Language Modeling The M2-BERT architectures use a standard BERT backbone, but
replace the attention with bidirectional gated convolutions and replace the linear layers in the MLPs
with block-diagonal matrices. All the M2-BERT architectures use an expansion factor of four.
M2-BERT-base (80M) has a model width of 768 and 12 layers; M2-BERT-base (110M) has a model
width of 960 and 12 layers; M2-BERT-large (260M) has a model width of 1536 and 12 layers; and
M?2-BERT-large (341M) has a model width of 1792 and 12 layers. We train all these models on C4
for 70,000 steps, with sequence length 128, and global batch size 4096 sequences. For all the models,
we use decoupled AdamW with learning rate 8e-4 and decoupled weight decay le-5. We use linear
learning rate decay with a warmup of 6% of the steps, and we use MLM masking percentage of 30%.

For GLUE fine-tuning, we do a small search of learning rate, weight decay, and number of epochs.
Following [38], we fine-tune RTE, MRPC, and STS-B from the MNLI checkpoint. We fine-tune all
tasks with sequence length 128. For some tasks, we also pool the embeddings of all the non-padding
tokens instead of using the CLS token.

The final hyperparameters for M2-BERT-base (80M) are decoupled AdamW with learning rate Se-5
and weight decay 5e-6 for 3 epochs for MNLI; AdamW with learning rate Se-5 and weight decay 0.01
for 6 epochs for RTE; AdamW with learning rate 3e-5 and weight decay 0.01 for 10 epochs on QQP;
AdamW with learning rate Se-5 and weight decay le-5 for 10 epochs with average pooling for QNLI;
decoupled AdamW with learning rate 3e-5 and weight decay 3ed-6 for 3 epochs for SST-2; AdamW

20

Table 15: Accuracy on sequential CIFAR for fixed vs. learnable Monarch in the sequence mixer.
Model sCIFAR Accuracy

M2, Fixed Monarch 91.0
M2, Learnable Monarch 92.5

M2 PyTorch performance vs Roofline
(A100 GPU with FP16 Tensor Cores)

—— A100 Reofline
® M2 PyTorch Implementation

101

1003

Perfarmance (FLOPs/s)

1012 4

10° 10! 10? 10° 104
Arithmetic Intensity (FLOPs/Byte)

Figure 4: Roofline plot of a PyTorch implementation of a single M2 operator M ~!(IMu © Mk).

with learning rate 7e-5 and weight decay 0.01 for 10 epochs for STS-B; AdamW with learning rate
Se-5 and weight decay 0.01 for 10 epochs for MRPC; and decoupled AdamW with learning rate 5e-5
and weight decay 5e-6 for 10 epochs for COLA.

For M2-BERT-base (110M), the hyperparameters are decoupled AdamW with learning rate 5e-5 and
weight decay Se-6 for 3 epochs for MNLI; decoupled AdamW with learning rate le-5 and weight
decay le-6 for 3 epochs for RTE; decoupled AdamW with learning rate 3e-5 and weight decay 3e-6
for 5 epochs on QQP; decoupled AdamW with learning rate Se-5 and weight decay le-5 for 10
epochs with average pooling for QNLI; decoupled AdamW with learning rate 3e-5 and weight decay
3ed-6 for 3 epochs for SST-2; decoupled AdamW with learning rate 8e-5 and weight decay 3e-6
for 10 epochs for STS-B; decoupled AdamW with learning rate 8e-5 and weight decay 8e-5 for 10
epochs for MRPC; and AdamW with learning rate 8e-5 and weight decay 5e-6 for 10 epochs for
COLA.

For M2-BERT-large (260M), the hyperparameters are decoupled AdamW with learning rate Se-5 and
weight decay Se-6 for 3 epochs for MNLI; decoupled AdamW with learning rate le-5 and weight
decay le-6 for 3 epochs for RTE; decoupled AdamW with learning rate 3e-5 and weight decay 3e-6
for 5 epochs on QQP; decoupled AdamW with learning rate Se-5 and weight decay le-5 for 10
epochs for QNLI; decoupled AdamW with learning rate 3e-5 and weight decay 3ed-6 for 3 epochs for
SST-2; decoupled AdamW with learning rate 7e-5 and weight decay 3e-6 for 10 epochs for STS-B;
decoupled AdamW with learning rate 8e-5 and weight decay 8e-6 for 10 epochs for MRPC; and
AdamW with learning rate 5e-5 and weight decay 5Se-6 for 10 epochs for COLA.

For M2-BERT-large (341M), the hyperparameters are decoupled AdamW with learning rate Se-5
and weight decay 5e-6 for 3 epochs for MNLI; AdamW with learning rate Se-5 and weight decay
le-6 for 2 epochs for RTE; decoupled AdamW with learning rate 3e-5 and weight decay 3e-6 for 5
epochs on QQP; decoupled AdamW with learning rate 5e-5 and weight decay le-6 for 10 epochs for
QNLI; decoupled AdamW with learning rate 3e-5 and weight decay 3ed-6 for 3 epochs for SST-2;
decoupled AdamW with learning rate 8e-5 and weight decay 3e-5 for 8 epochs for STS-B; decoupled
AdamW with learning rate 8e-5 and weight decay 8e-6 for 10 epochs for MRPC; and decoupled
AdamW with learning rate Se-5 and weight decay le-6 for 10 epochs for COLA.

ViT We use a standard ViT model architecture as base [22]. In line with recent improvements to
the ViT architecture [4, 70, 86], we use sinusoidal position embeddings and global average-pooling
(GAP) instead of a class token.

21

Table 16: In-context learning performance on associative recall at various sequence lengths, vocab
size 20. X indicates the Transformer did not finish in a week.

Model 0.5K 2K 8K 32K 128K

Transformer 100.0 100.0 100.0 X X
MONARCH MIXER 98.7 99.4 994 994 994

Table 17: Time in hours to reach 50% masked language modeling validation accuracy on 8xA100
with different sequence lengths.

Model 512 1024 2048 4096 Architecture Details

BERT-base-FLASHATTENTION (110M) 2.7 3.8 5.7 13.2 Attention, MLP
BERT-base-HuggingFace (110M) 3.3 5.6 13.1 26.7 Attention, MLP
BERT-Monarch-base (§0M) 3.1 4.7 10.3 22.1 Attention, MLP-free
M1-BERT-base (55M) 2.5 3.5 4.0 5.5 Attention-Free, MLP-free

Speedup 1.Ix 1.Ix 13x 24x

We adapt the ViT architecture by replacing its MLP and/or attention components with Monarch
Matrices (similar to our adaptation of BERT):

We replace the MLP with randomly initialized Monarch Matrices of the same dimension as the dense
matrices of the MLP and learn those matrices during training, setting the number of blocks in the
block-diagonal matrices to 4.

We replace attention with the recently introduced Hyena operator [64]. The Hyena operator represents
a recurrence of two efficient sub-quadratic primitives, an implicit long convolution and multiplicative
element-wise gating of the projected input. Hyena operators apply the FFT algorithm to achieve fast
long convolutions in sub-quadratic time. We further adapt the Hyena operator by replacing its long
convolutions with the M2 operator and setting the Monarch Matrices to the DFT and inverse DFT.

ViT for ImageNet-1k In line with other work [4, 14, 64, 70], we use a ViT-base architecture
with 12 layers, a hidden size of 768, 12 attention heads per layer, an intermediate size of the MLP
projection of 3,072, and a patch size of 16 x 16 pixels. For optimization, we follow the training
procedure of T2T-ViT [86], including augmentations such as RandAugment [12] (magnitude =
9, magnitude-std = 0.5, layers = 2), Mixup [88] (a = 0.8), CutMix [87] (o« = 1.0), Random erasing
[90] (rate = 0.25), and AugMix [37]. See Table 20 for all other training settings.

ViT for CIFAR-10 We use a ViT architecture with 6 layers, a hidden size of 128, 8 attention heads
per layer, an intermediate size of the MLP projection of 512, and a patch size of 4 x 4 pixels. We
further tune weight decay (0 or 0.1), stochastic depth rate (0 or 0.1), and base learning rate (le — 4
or 3e — 4 or le — 3) and report the test performance for the model variant that achieved the highest
accuracy in a separate held-out validation dataset (randomly selected 10% of training data). We
also apply an early stopping rule such that training is stopped if the model’s validation loss does not
improve for 10 training epochs. See Table 20 for all other training settings.

GPT Causal Language Modeling Similarly to our ViT approach, we also replace attention with
the Hyena operator, using the same architecture as in [64] as a starting point. The Hyena architecture
has two convolutions, which can be computed using the FFT convolution theorem. In our architecture,
we additionally replace these FFT operations with causal Monarch matrices.

In addition, we re-use the heads extension from the H3 architecture [27]. The heads extension groups
the model dimension into heads, ties together the long convolution parameters in each head, and
then computes the outer product between different input projections. An algorithmic listing adapted
from the H3 paper [27] is provided in Listing |, with updates to replace the SSM layers with Hyena
convolutions. We use a head dimension of 16. Setting the head dimension to be 1 and replacing the
Monarch matrices with FFT is equivalent to the Hyena layer.

22

Table 18: Masked language modeling validation accuracy achieved on a single V100 in 12 hours with
different sequence lengths. X indicates the model does not fit on device with a batch size of 1.

Model 512 1024 2048 4096 8192 Architecture Details

BERT-base (110M) 11.5 7.8 6.8 X X Attention, MLP
BERT-Monarch-base 6.9 8.5 6.8 X X Attention, MLP-Free
MI-BERT-base 20.2 20.2 20.1 17.1 12.9 Attention-Free, MLP-Free

Table 19: Fine-tuning performance on the GLUE benchmark [76], after pretraining on Wikipedia and
Bookcorpus. We report the standard metrics — F1 scores for QQP and MRPC, Matthew’s correlation
for CoL A, Spearman’s correlation for STS-B, and accuracy for the remaining tasks [21].

Model MNLI(m/mm) RTE QNLI QQP SST2 STS-B CoLA MRPC Architecture Details
BERT no pretrain 34.1/34.1 473 50.0 68.6 79.9 17.8 0.0 77.9 Attention, MLP
BERT-base 74.5/74.7 55.6 69.3 81.8 83.9 19.8 12.1 74.2 Attention, MLP
M1-BERT-base 69.9/70.5 53.1 73.2 81.4 85.2 68.1 33.6 75.4 Attention-free, MLP-free

Algorithm 1 M2 Hyena Layer with Heads

Input: Input sequence v € RY*? from the previous layer, weight matrices W x1, W x2, Wy, Wo € R3*4,
causal Monarch matrix M, short convolution kernels K1, K2, K3, a Hyena convolution kernel Kjqyg, head
dimension dj,.

Output: Output sequence y € RV <4
Compute X; = uWix1,Xs = uWxa, V = uWy € RV*?,

Pass X, X2,V each through the short convolution using the causal Monarch matrices: X71, TQ,V =
M '(MX; © MK;), M~} (MX: ® MK:2), M™'(MV & MK3).
Split X1, X2, V into H “heads” (Xil(m,Xig(h),v(h) forh =1,..., H), each a sequence of N vectors of
size dr, = d/H.
for1 < h < H do

Take the batched outer product x; ™ (V(m)T € RN *n*dn (batched in the N-dimension) and pass it

through the long convolution using the causal Monarch: XV® = M‘%MZW (V(m)T © MKjong) €
RN Xdp Xdp, .

Batch-multiply by X;: O = [X; "XV X, WXV{P] € RY*% (batched in the N-

dimension).
Concatenate the output O™ of each head, and multiply by the output projection matrix Wo € R,

Finally, we remove the MLP layers entirely (equivalent to replacing the layer with an identity),
and make the model wider to compensate (the depths match the equivalent Hyena models). The
small model has a model width of 1160 with 18 layers and uses a learning rate of 0.0006, and the
medium model has model width of 1344 with 40 layers and uses a learning rate of 0.0008. All other
hyperparameters match the Hyena models [64].

D Missing details from Section 4

This section contains all the missing details (including proofs) from Section 4.

In Appendix D.1, we review some definitions and results on multi-variate polynomials and set some
notation needed for this section. In Appendix D.2, we explicitly connect Monarch matrices for p = 2
and bivariate polynomial evaluation. Specifically, we prove Theorem | and Theorem 2. Then in
Appendix D.3 we show how to instantiate the bivariate basis polynomials so that we get a causal
map. This includes converting the bivariate polynomials to univariate polynomials (with evaluations
over the Nth roots of unity) and this proves Theorem 3. We then show how this causal map can be
implemented only using GEMMs (and O (N3/2) FLOPs) in Appendix D.4.

Next, we note that while our evaluations points are over complex numbers, our input and output to
the Monarch convolution layers are over reals. Hence, it is natural to wonder if we can implement
the entire layer just with operations over real numbers. One potential advantage of this is that
we theoretically only have to keep N real numbers for intermediate results (instead of 2N reals

23

Table 20: ViT training settings.

ImageNet-1k CIFAR-10
Optimizer AdamW
Optimizer momentum 81,82 = 0.9,0.999
Learning rate schedule ~ Cosine decay w/ linear warmup
Dropout rate 0
Label smoothing 0.1
Image size 224 x 224 32x32
Base learning rate le-3 {le-4, 3e-4, 1e-3}
Batch size 1024 512
Training epochs 300 up to 500
Warmup epochs 10 5
Stochastic depth rate 0.1 {0,0.1}
Weight decay 0.05 {0,0.1}

numbers when we keep track of vectors in CV). This can reduce the data movement costs. Further,
multiplication of two complex numbers requires six operations over real numbers (four multiplication
and two addition). Thus, moving to an implementation that only uses real numbers could potentially
lead to wall clock time speedup. We propose one such scheme in Appendix D.5 that proves a version
of Theorem 3 just over reals by moving to the Chebyshev basis (instead of the standard monomial
basis). This creates new technical challenges, which we also address.

Finally, we generalize our results to arbitrary p > 2 in Appendix D.6. We would like to point out that
to get a causal map (in Theorem 17) we need to ‘embed’ input vectors of size n into vectors of size
N=2P.n4+0 (nlfl/”). For p = 2, we avoided the blowup of 22 = 4 with a blowup of 2 instead
(via Theorem 3). Whether this is possible to do (i.e. have a blowup of 2 instead of 27) for p > 2 is an
interesting direction for future work. Further, the matrices that lead to causal map can be represented
with O (pN 2/p) parameters while the matrices in Theorem 3 use more parameters. Extending the

1
causal map for p > 2 that uses O (N Hi) parameters is an exciting direction for future work.

D.1 Background and Notation

We collect known facts and definitions about multi-variate polynomials in Appendix D.1.1 and recall
some notation from [14] in Appendix D.1.2. These will be needed throughout this appendix section.

D.1.1 Multi-variate Polynomials

Basic Definitions Let p > 1 be an integer. We recollect some definitions on p-variate polynomials
(over R) in variables Xo,...,X,—1. When p € {1,2}, we will use variables in {X,Y, Z} for
notational simplicity.

We will use X to denote the vector of variables (X, ..., X,_1). Further for j € Z% ;, we use the
notation B

p—1
X3 = [T xi.
a=0

X is a (standard basis) monomial, where j = (jo, . . . 2 Jp—1)-

A generic p-variate polynomial is defined as (with standard monomial representation)

¢(X)= > ¢-XI,

jGZgo

where the coefficient q; € R.

We will need the following notion of degrees:

24

Definition 2 (Degree). Let 0 < a < p. The degree of X, in X3 (with j = (jo, .- -, jp—1)) is ja. The
degree of X, of q(X), denoted by degy_(q) is the maximum degree of X, over all monomials X3
with g; # 0.

Note that for p = 1 the above coincides with the usual notion of degree of a univariate polynomial
q(Z), in which case we just use deg(q(Z)) to denote deg,(q(Z)).

We will need the notion of taking mod of a p-variate polynomial with p-tuple of polynomials. The
notion of mod is well defined for a univariate polynomial (which we will assume as a given below)
but in general for arbitrary p-variate polynomials ¢(X) and ¢’(X), the operation ¢(X) mod ¢'(X)
is not well defined. However, we will only need the following restricted operation:

Definition 3. Letr p > 1. Fix a p-tuple of polynomials Ry(Xo), ..., Rp—1(X,—1). Then for any
j € ZE,, we define

X3 mod (Ro(Xo),..., Rp-1 (Xp-1)) = [[(X7 mod (Rq (X))
a=0

For a general polynomial p(X),
p(X) mod (Ro (Xo) g ey Rp,1 (prl))
is defined by extending the definition for X3 by linearity.

Polynomial Evaluation Given a p-variate polynomial ¢(X) and an point a € RP, the evaluation of
q at a denoted by ¢(a) is evaluation of ¢ as a function at a.

Given subsets S, C C, we define ¢(X) evaluated at x?_; S, as the vector of values ¢(a) overall
acxP;S,.

In this paper, we will in many cases evaluate polynomials at the appropriate roots of unity. Specifically

for an integer N, we will define
_ 2m /N
Wy = €

and note that the N'th roots of unity is the set {w4;|0 <i < N}.

Polynomial Interpolation We now recall univariate and bivariate polynomial interpolation results
(proved via the Lagrange basis), which we will use in later subsections.

Theorem 4. Let D > 1 be an integer. Given y; for 0 < i < D and «; for 0 < i < D there exists a
unique univariate polynomial P(X) with deg(P) < D, such that for all 0 < i < D,

Proof. This proof is based on the Wikipedia entry for Lagrange polynomials [47].

Given a sequence of values «; for 0 < ¢ < Ds.t. a; # «j , @ # 7, the Lagrange basis for polynomials
of degree < D for these values is the set of each polynomials {po(X),p1(X),...pp—1(X)} each
of degree D — 1. Each basis polynomial are defined as:

X—ao X—ai, X—ail X—OéD, X —o;
pi(X) = L +1.. 1_ H J (8)

a; — Qg o — Qj—1 O — Qi1 Qi —Qp-1 oo, G Qg

G
By definition,
1 forj=1

i) = . 9
pi(a) {0 otherwise ©)

The Lagrange interpolating polynomial for those nodes through the corresponding values y; for
0 <17 < D is the linear combination:

D—1
P(X) = i pi(X). (10)
=0

25

By (9), forall0 <i < D:
P(a;) = yi. (1)

Finally, the interpolating polynomial is unique. Assume there is another polynomial M (X)) of degree
< D such that M (a;) = y; forall 0 < ¢ < D. Then the difference M (X) — P(X) is 0 at D distinct
points «; for 0 < 7 < D. And the only polynomials of degree < D with more than D — 1 roots is
the 0 polynomial. So, M (X) = P(X).

O
Theorem 5. Let Dx, Dy > 1 be integers. Given values y;; for 0 <+ < Dx,0 < j < Dy and Dx
distinct points (v, . . ., apy —1), Dy distinct points (B, . . ., Sy —1) there exists a unique bivariate
polynomial P(X,Y") with degx(P) < Dx , degy(P) < Dy , such that for all 0 < i < Dx,
0<j7<Dy:
P(ai, Bj) = yij- (12)
Proof. Define
m n
PX,Y) =3 wij - pi(X) -, (V), (13)
§=0i=0

where p; and p; are Lagrange basis polynomials defined in the proof of Theorem 4 such that for
0 <1,k < Dy,

1 fori=k
i =) 14
pi(ax) {0 otherwise 14
and for 0 < j, ¢ < Dy
1 fork=/¢
D = . 1
B(e) {0 otherwise (15)
From above, we have for all i, j, k, £
_ 1 fori=~Fkandj="/{
pile) - p;(Be) = {0 otherwise ’ (16)
Then, forall0 < i< Dx ,0 < j < Dy:
P(ai, Bj) = yij- (17)

By definition of Lagrange basis polynomials, degy (P) < Dx and degy (P) < Dy-.

Finally, the interpolating polynomial is unique. Assume there is another polynomial M (X,Y") with
degx (M) < Dx and degy (M) < Dy such that M(c;,3;) = yi; forall 0 < i < Dy and
0 < j < Dy. Then the difference M (X,Y) — P(X,Y) is 0 at Dx - Dy distinct points, (c;, 3;) for
0 <4< Dx,0<j < Dy. And the only polynomial with degy < Dx and degy,- < Dy that has
Dx - Dy roots is the 0 polynomial. O

D.1.2 Notation

Here we recall notation we will use from [14].

1. The class of Monarch matrices is defined in appendix C of [14] as M (™) which are N x N

matrices with block size b for any integer 0 < b < N that divides N. When b = v/N we
drop b from the notation giving (i1, 40) and (j1, jo). For example, this is used in Proof of
Corollary 2.

2. Row index ¢ can be represented as (i1, %o),. Which gives ¢ = i1b + .

3. Similarly, column index j can be represented as (j1, jo),. Which gives j = jib + jo. Note

that when b = V' N, j; = k(j) and jo = m(j). We choose to use the (j1, jo) notation here
since that notation is easier to generalize for p > 2.

4. LeDB®N isan N x N matrix with b x b blocks that are all diagonal matrices.

26

5. R e Bp®&N) meaning it’s a block diagonal N x N matrix with block size b x b.

6. We have a class of permutation matrices defined as o,) (i) = 4o - % + 41. This can be
denoted by an N x N matrix, 3 n), where the i row is €5 (b,N) (i)

7. We’ll use ¢ or pair notation (i1, %), to denote the rows, and j or pair notation (ji, jo), to
denote columns. It should be clear from context which one we’re using.

For any 0 < j; < /N, let £;,(X,Y) be an arbitrary bivariate polynomial with degy (¢;,),
degy (¢,) < V.
For any 0 < j1,jo < VN, let 71,5, (Y') be an arbitrary univariate polynomial of degree < VN.

Let A = (ao, - - -, O‘W—1)’ B = (o, - - - ’ﬁ\/ﬁ_1) each be a sequence of distinct eval points. Note
that A and B need not be disjoint.

From the proof of Theorem 3 in the Appendix C of the Monarch paper [14] we get,

L=Pun)-L-Pl

B
Therefore,

f:P(Tb,N)-L-P(b’N)

Define DB and BD as set of all such L and R matrices over RN > where if iy # ko

Ly ks lios ko] & (i1, i0) s (k1 ko)] = 0 (18)
and]f k}]_ 7é jl
. 1 def . .
R, . [ko, jo] = R[(k1, ko) v, (415 Jo) 5] = 0 (19)

Pictorially, L and R look as follows:
Ll‘ ky =j

p ko =Jo ’—'j“

) !

l\u -

k-

L =PLP R

In [14], Monarch matrices with block size b = v/N, M’ = L - R, and thus for all 0 < 11,90, J1, Jo <

VN:

M'[(i1,90) /57> (415 J0)) = Liiy 4u lios o] - Ry, [0, Jo]- (20)

We note that our definition of Monarch matrix M in Section 3 is slightly different in that M = M'P
with M’ as defined in [14].

27

D.2 Monarch Matrices and Bivariate Polynomial Evaluation

Given polynomials ¢;, (X,Y) for 0 < j; < v/N, polynomials r;, ;,(Y) for 0 < ji,50 < VN,
evaluation points A = (g, ..., /5_1) B = (Bo," -+, B,/5_1) (as in Appendix D.1.2), define the

matrices T € DBYYN and R € BDYNN as:

e Forevery 0 < ji,41,%0 < VIV:

Li, gy [i0, 0] <= €5, (viy, Big)- (21)

* Forevery 0 < ji1, jo, %0 < VIV:

thjl [io, JO] < Tj10 (ﬂio)' (22)

Note that all entries of L and R not specified above are set to 0.

Let f be the above function that maps coefficients of ¢;, (X, Y") (which are coefficients of monomials
XY forall 0 < iy,i9 < v/N and hence represented by a matrix in RVNX ‘/ﬁ) and coefficients of
741 4o (Y) (which are coefficients of monomials Y for all 0 < i < V/N and hence represented by a
vector in R‘/N) for all 0 < ji, jo < VN to pairs of matrices in DBVNN BDVNN,

Theorem 6. Let f be as defined above. Then f is a bijection.

Proof. To prove f is bijection we must show f is one-to-one and f~! is one-to-one (and exists).

To show f is one to one means each set of polynomials’ coefficients given to f, will output a unique
set of matrices (L, R) € DBYNN « BDYNN | This follows from (21), (22) and the known fact that
polynomial evaluation is a function.

Now, to show f~! exists and is one-to-one, we must show that there is a map from any pair

(L,R) € DBYNN « BDYNN o unique sets of polynomials, £, 7, with parameters as defined in
Appendix D.1.2. Further, we need

Li, j, lio, i0] = €5, (v, Biy) (23)
and
le-,jl [io,jo] = thjo (ﬂlo) (24)

We will use Theorems 5 and 4 to show the existence of Zjl and 7;, ;, polynomials, giving us the
mapping from the matrices to unique polynomials.

We first show the existence of the unique polynomials in (24). Fix 0 < j1, jo < v/N. Then consider
the values 0 < 79 < VN:
Yio < Ry lio, Jol- (25)

Then by Theorem 4, there exists a unique polynomial of degree < /N (call it 7 1,30 (Y)) such that
forall 0 <ip < V'N,

Tj1,j0 (ﬂlo) = Yo
which by (25) shows (24).

Next we show the existence of the unique polynomials in (23). Fix 0 < j; < v/N. Consider the
ValuesO§i17i0<\/ﬁ: .
Yirsio < Liy i, [0, %0]- (26)

Then by Theorem 5, there exists a unique bi-variate polynomial of degy < v/N and degy < v N
(call it £;, (X, Y)) such that for all 0 < 4,49 < VN,

éjl (aiwﬁio) = Yiy,io> (27)
which by (26) shows (23).
Therefore f is a bijection. O

28

‘We can now conclude:

Corollary 1. For every matrix M as defined in (20), there exists unique polynomials ¢;, (X,Y) and
7510 (Y), such that for all 0 < iy, 49, j1,jo < VN,

M/[(ilv iO)\/ﬁa (]17]0)\/ﬁ] = €j1 (041'1 ’ 6%) *Tj1,5o (ﬂio)' (28)
Proof. Follows from (20), (21), (22) and Theorem 6. O]

D.2.1 Proof of Theorem 1

We begin with an immediate consequence of Corollary 1:

Corollary 2. Let A, B C C such that |A| = |B| = \/N. Then the jth column of M is the evaluation
of the polynomial L;, (X,Y') - rj, ;,(Y) over A x B.

Proof. Observe that for fixed jo, ji the right hand side of (28) is £;, (X,Y) - rj, ;,(Y') evaluated
atall (o,) € A x B. Thus, (j1, jo) column is evaluation of £;, (X,Y) - r;, , (Y') over points in
A x B, as desired.

O

Next, we state a generalization of Theorem | that follows from Corollary 2:

Corollary 3. Let A and B be as in Corollary 2. For any vector u, M - u is u(X,Y) evaluated at
A x B. Further,

u(X,Y) = Z Ujy jo iy (X,Y)- Tj1.50 (Y), (29)
0<j1.jo<VN

where { and r are defined by M’ as in Corollary 1.
Proof. Follows from Corollary 2 and definition of matrix vector multiplication. O

In Theorem | and the following sections, we consider the polynomial evaluated over the basis
polynomials defined by

M=MP

Corollary 4. Let A and B be as in Corollary 2. For any vector u, and M - wis uw(X,Y) evaluated
at A X B. Further,

u(X7 Y) = Z Ujo,51 Ejo (Xv Y) *Tjo,51 (Y)v (30
0<j1,50<vVN

where { and r are defined by M’ as in Corollary 1.
Proof. Follows from Corollary 3 and definition of M. O

Specifically, Theorem 1 is a special case of Corollary 4 where £;,(X,Y) = £;,;(X,Y) and
ri(Y) = 1o (Y).

D.2.2 Proof of Theorem 2

By Corollary 4, for all 0 < 71,41 < VN,

Kjo (X7Y)7 Tjo,41 (Y)7£jo (X7Y)7 T o1 (Y)

29

are the basis polynomials corresponding to M; and Ms. For the coefficient vector k =
(Kj1.j0)o< i, jo< v and similarly for u = (uj, 5,)o<, j, <&+ W€ can construct two polynomials

k(X7Y) = Z kjhjo 'Ejo(Xv Y) *Tjo, g1 (Y)
0<41,50<VN

u(X7 Y) = Z Ujy,jo Z]40 (X’ Y) “Tjo.g1 (Y)
0<j1,J0<VN

2L
whose evaluation over (a;,, 3;,) = (w',w™) where recall as in Appendix D.1.1lw = eVN, by
Theorem 1 is equivalent to the products M - k and M - u, respectively. Taking the component-wise
product, y=(M; - k) ® (M3 - u), the entry at ¢ = (iy,4g) is given by

yl(in,i0)] = h(w", ™) - u(w™, w').
Noting that the element of A, i.e. the v/N-th roots of unity, satisfy Z¥N = 1 means that the above
are evaluations of
WX,Y)=k(X,Y) u(X,Y) mod (XVN —1,YVN _1)

at A x A. Finally, Theorem | and the fact that M ! exists implies M - y is polynomial interpo-
lation into basis polynomials corresponding to M. (Here we use the well known fact polynomial
interpolation is the inverse of polynomial evaluation).

D.3 Proof of Theorem 3

We review some concepts in Appendix D.3.1. In Appendix D.3.2, we discuss square matrices and
causality in terms of operations on univariate polynomials. This allows us to define a general class
of operators for causal 1D convolution. In Appendix D.3.3, we give a class of matrices suitable for
perform causal Monarch convolution. Specifically, we prove Theorem 3.

D.3.1 Review

Consider the linear operation on an input vector u:
y=A-u

We say that the map is causal to mean the entry y[i] only depends on u[0], u[1], ... u[i]. This will
be the case when A is a lower triangular matrix (we index the top left entry of A as (0, 0)). When
A is a lower triangular Toeplitz matrix with entries corresponding to some coefficient vector k, this
operation is exactly the 1D convolution

y=kxu= (Fy, - (Fa, kK)o (Fa, u)))[0:n—1],

where k' = (k,0,), u’ = (u,0,), and F,, is the n X n DFT matrix.
Definition 4. For a matrix Ml € R™"*", let us define the map
y=M-'(M-koM-u) (31)

as matrix convolution. When M is a Monarch matrix, (31) is called Monarch convolution.

In this section, we are interested in determining large subclasses of matrices M such that for any
coefficient vector k, (31) is causal in u. We provide a class of matrices for which Monarch convolution
is causal.

We note that for general Monarch matrix M, (31) is not causal in u. By Theorem 2, we have
y(X,Y) = k(X,Y) - u(X,Y) mod (XVN-1 yVN-1)
This is not causal because the mod (X vN-1 Y‘/ﬁ_l) term condenses higher order terms into

lower order terms, hence the y[i] wouldn’t just depend on input information up to value 1.

30

D.3.2 Univariate Matrix Convolutions

We start with a couple of notation assumptions.
Assumption 1. N is a perfect square.

Assumption 2. We will not use pair notation for this subsection since throughout we have i =
1WVN +igand j =7+ 1V N + jo.

In order to discuss square matrices in terms of univariate polynomials, we give univariate analogs
of Theorem | and Theorem 2 for general univariate basis. With an eye toward towards performing
causal convolution, we restrict our analysis to certain classes of univariate polynomials.

We first define matrices whose j columns are the evaluation of a minimum degree j (and maximum
degree N — 1) polynomial (recall Definition 1). We generalize Theorem 3 to such matrices.

Lemma 1. For sequence of points A = {1,wy, - - ~w§,{_1} where wy is the N™ root of unity, let Ml
be defined as

Mi, j] = g;(wy) (32)
where c‘]j(Z) is defined as in Definition 1. Then for any vector v € RN, M - v is equivalent to

evaluating the polynomial
N—

v(Z) =" v;-q,(Z) (33)

0

—

<

at {1,wy, Wy '}

Proof. By our definition of M, the column ML:, j] is exactly the evaluation of the polynomial g;(Z)
at each point in A. The claimed result comes from the definition of matrix vector multiplication and
(33). O

Note that M or any M’s in this sub-section are not necessarily Monarch matrices.
Next, we state the following intermediate result:
Proposition 1. Let A be the set of the N-th roots of unity. Then for My, My defined as in (32)
y = (M - k)© (M; - u)
is the same as evaluating the polynomial
p(Z):=k(Z)-u(Z) mod (ZN —1)

over A where k(Z), u(Z) are of the form (33), corresponding to M and Mo, respectively. In other
words, forany 0 < i < N,

yli) =p (wy) -
Proof. This result follows from Lemma | and the definition of the Hadamard product. O

Next, we state a re-interpretation of Mfly:

Proposition 2. Let M be a full rank matrix whose columns are the evaluations of the basis polyno-
mials Z]j(Z)from Definition | for0 < j < N, and let'y € RN be an arbitrary vector. If u = M~ 'y,
then forall0 <1 < N

yli] = u(w’)
where u(Z) is the same as in Lemma | for M. In other words, M~y is the polynomial interpolaton
problem for the polynomial basis q;(Z) for 0 < j < N.
Proof. This follows from Lemma | and the fact that M is invertible. O

From Propositions | and 2, we get the following generalization of Theorem 2:

31

Theorem 7. For matrices M, M1, My as defined above, the operation
f=M;" (M; k)o(M,-u))
is equivalent to representing the polynomial
f(Z)=k(Z) w(Z) mod (ZN —1)
in terms of the basis polynomials
q;(Z) for j=0,...,N—1
where k(Z),u(Z) are defined as in Lemma I in terms of the basis polynomials corresponding to My

and Mo, respectively, and ((}j(Z))O<j<N corresponds to M.

Proof. Follows from Propositions | and 2. O

Now we give the class of matrices from which we can build a causal map. Specifically we prove a
generalization of Theorem 3:

Theorem 8. Letn > 1, let N = [\/ Qn] 2. Then define the basis polynomial Z]j(Z) to have minimum
degree j and maximum degree n — 1 for 0 < j < n, and forn < j < N, E]j(Z) has minimum degree
7 and maximum degree N — 1.

For all M with basis columns defined by (Z]j (Z)) as above, the operation

0<j<N
u— (My'(My - (k,0n_p,) oMy - (0,0n_5,))) [0:n — 1] (34)
gives a causal map.
Proof. To prove this is causal means each entry, f[i] is dependent only on u[0], u[1], ... u[i], where

f=(My' (My - (k,0n—y,) oMy - (u,0n5_,))). By Theorem 7 , we have
1(2) = K(Z) - u(Z) mod (Z¥ — 1),

where

n—1 n—1
k(Z):ij% (Z2) u(Z2)= Z“j’@j/ (Z)-
=0 5'=0

Since deg(k(Z) - u(Z)) < 2n — 2 < N — 2, this is equivalent to

= > kj-u-3;(2) - 3;(2).

7,3'=0

By our choice of g;, we ensure that g; - ¢, has minimum degree j+ ;" and deg(g;-q;/) < 2n—2 < N
forany 0 < j,j < n. Then by Lemma 2 (see below), there exists coefficients ¢,/ ;+ such that,

n—1 N-—1

F2)=3 kyouj - D) ey 00(2)
J,3'=0 i'=j+j’
—1 n—1

ZZ > ki) | a,(2).

32

If we define

N-1
i=0
then for 0 < ¢ < n, we get:
n—1
fi= D ajiji-ky-ug

3:3'=0

J+i'<i
Note that f; only depends on u[0], u[1], ... u[i], as desired. O

We used the following lemma in the proof of Theorem 8.
Lemma 2. Let q;(Z) be defined as in Theorem 8. Then for any 0 < j,j" <mn,

N—-1
G(2) 4(2)= Y o 0(2). (35)
i=j+j’

for some set of coefficients ojyj ;.

Proof. We first note that by our choice of g;, the minimum degree of q,;(Z) - q;,(Z) is j + j,
and deg(q;(Z) - g;,(Z)) < 2n —2 < N — 1. Our claim follows from that fact that any polyno-
mial pg(Z) of minimum degree d and deg(pq) < N can be expressed as a linear combination of

Z]d(Z)aZ]d-t,-l(Z)v--~7QN—1(Z)‘4 O
D.3.3 Causal Monarch Convolutions

In this section we will prove Theorem 3. We will do so by showing that the basis polynomials g;(Z)
as defined in Theorem 3 are a special case of the basis polynomials g; (Z) as defined in Theorem 8.

We start with a couple of notation assumptions.

Assumption 3. [n this sub-section we will using block size b = \/ N therefore, we are dropping the
block size from index notation. For example, (i1, 1), /5 becomes (i1, o) for this section.
Assumption 4. Permutation matrices in this subsection are all the same P (VN,N) SO we drop the
subscript and just use P.
Definition 5. Define
def
WD) 2 45,(2) 75,5, (27F). (36)

0, (Z) has minimum degree ji, and 5, j,(Z) has minimum degree jo. All polynomials qE Z)

have maximum degree < N — 1.

j11j0)(

Next we argue that the above basis polynomials have a specific minimum degree.
Lemma 3. Polynomial qul o) (Z) as defined in equation (36) has minimum degree jov/ N + ji.

Proof. We need to show that qé J1.70) (Z) is a minimum degree joV'N + j; polynomial. Note that

_ VN1 7 1 VN-1)VN = 1
=27 lyma, <Z> Z! N1, (M)

“This claim can be shown using downward inductionond = N —1,N — 2,

33

where z\/ﬁqul () has degree VN —1—j; and T N_1_j, (+) has degree VN —1— jo. Simplifying

we get

Wi 2) = 2" Uy, (;) TR -1 (Z\1/N> :
This claim follows since z\/ﬁ—lfjl (Y) 7140 (Y\/ﬁ) has degree = (\/]V —1—j1)+ (\/ﬁ 1
jo) - VN = (N =1) = (joV'N + ji). -

Note that the polynomial qg i ju)(Z) has minimum degree joVVN + j1. This is not j1v/N + jo as in

defined in equation (1), we will talk more about this soon.

Next, we observe that the polynomials in (36) define a matrix that satisfies (20).
Lemma 4. Let g/, (Z) for 0 < j1vV'N + jo < n be as in (36). Define

(41,J0)
M’[(ila ZO) ’ (jl;]0)] = qE]l,]o)(wj\lf\/ﬁ-i_Zo)
Then M satisfies (20).

Proof. If we evaluate the polynomials qE 1230 (Z) atwhy for 0 < i < N, we get
q(jl;jo)(wji\/') = éjl (w}v) Ty o (wﬁ\/\/ﬁ)

Since wiY N = it NFVN _ VN o e get
N N N VN

M [(in,70) , (G o)) = €5, (i V7)1 (w0,
The above corresponds to how we define (20) since we have

M'[(i1,40) , (j1,J0)] = Li, j, [i0, do] - Ry 4, [i0, o]
with
Li, .o, io] = 45, (wiyV™)
and ‘
Rjy . [0, jo] = 7510 (W%) :
]

Recall from Lemma 3 that qul jo) has minimum degree jo v/ N +j1. For causality we need q(;, j,) (2)

to have degree minimum j;v N + jo (then the polynomials will satisfy the minimum degree require-
ments from (1)). Therefore, we permute the columns of M,

M=MP (37

Note that the above M = PLPRP and is indeed a Monarch matrix as defined in Section 3.
Note that the basis polynomials of M are defined as,

Ur,jo) (Z) = 4o (Z) - Tjo 5 (Zm) : (38)
We note that the above is same as ¢;(Z) defined in (5) where j = j1V'N + jo with the correction in
(5) that ¢;(Z) = Ly - 75(ZVN) where 75(Y) = 7, 4, (Y).
We are finally ready to prove Theorem 3.
Corollary 5 (Theorem 3 restated). Let N = {\/ﬁ 2. Define My by q(;, j,) as in (38). Then,

u— (My' (My - (k,0n—y) oMy - (u,0n5_y))) [0: 72 — 1]

gives a causal map.

Proof. Due to using g polynomials as in (38), by Lemma 3 the degree of the (ji, jo)lh column is

a polynomial with minimum degree j;v/N + jo.” This implies that these basis polynomials are a
subset of the more general causal maps in Theorem 8, which proves the claim. O

’It can also be verified that g, ;,) has maximum degree < N — 1.

34

D.4 Block Algorithms for Complex Numbers and Block Size v N

In the following subsections we restate the results in Section D.3.3 in terms of block operations. As
mentioned earlier, this is so that we can do computations on Monarch matrices using only GEMM
operations (and simple data movement operations like permutations).

In Appendix D.4.1 we consider arbitrary Monarch matrices and in Appendix D.4.2 we consider the
sub-class of Monarch matrices corresponding to Theorem 3.

D.4.1 General Block Monarch Convolution
In this subsection we re-state general Monarch convolutions in terms of block operations.

Recall from equation (22) we defined the block diagonal matrix R as follows (0 < i, 71, jo < VN):
R, i [io; Jo] = T4y jo (w%) ; 39)

where deg (7, j,) < VN.

To do so, we will first work with My, such that My = M/, - P. We want to express Monarch
matrices, My, as univariate polynomial evaluation over {1, wy, ... ,w%il}. Towards that end,

define
T'j1.40 (Z) = T4, (Z\/N> .

(\/7+l0)\/>_ iovV N
=wy

By simple observation that wy, we have

— 0

= w\/ﬁ’
VN+ioy _ 5. o

51,50 (wN) = Tivgo (w /N) .

In other words we have, _
R, ji[io, jo] = 75,30 (i) -

Fix 0 < j1,jo < V/N so we’re looking at the j&" column of block R;, j,, going down the column

C . VN-1 L . .
we evaluate the polynomial 7, ;, at points (1, WyNs Wy) Which is equivalent to a matrix

multiplication of Fourier matrix of size v/ /N and a matrix of the coefficients of the 7 polynomials.

Rj. = F \/N . Ti1.90 [a] <« a

I

Jo

So we can think of the blocks of R as a Fourier matrix times a coefficient matrix. In other words,

let us define a matrix R € RY*VN which will hold V/N coefficient blocks Ro, Rl, ..R JN-1 €
RVNXVN guch that, B

R; [a, jo] = 75, 5al;
where

Tj ,Jo E le Jo

Then we define _
Rj ;, =F xRy

35

Next, we restate the above as product of two block diagonal matrices:

F & R, R
=R
F\/N ﬁm—l R\? 1, -1
In other words, we have
R = diag (F 5, ..,F /5) -diag(Ro, ..., R x_,). (40)
—_——

V' N times

Equation (21) defined L as evaluation of bivariate polynomials. We now wish to do the same with
univariate polynomials.

Recall that L = PLP. We define the iéh diagonal block (0 < i1, 49, j1 < V/N) for L as:
Ligsolin] = £, (w3Y70), @41
where deg(¢;,) < N.

Let us define a matrix L € RN >V that will hold the coefficients of polynomials ¢;, (Z) i.e.

L{a, j1] = ¢;,[a]
where
N-1
g]l (Z) = éjl [a} Za
a=0

We can multiply this matrix with the Fourier matrix of size N x N to get the blocks of L (which we
will need to diagonalize). Specifically define

L’ =Fy - L.

The rows of L” and the rows of M’ are both indexed by i. Meaning they’re ordered in lexicographic
ordering (i1, %9), which is a problem for the following reason. The block diagonal matrix L made
from L” needs to be in lexicographic ordering (4o, 1) (see (41)) since it gets permuted on the left
M = PLP and right allowing M to be ordered by (i1, 7). Therefore, when composing L from L”
we must permute the rows by P. So we get,

L'=P.-L".
Let ,
Ly
L = .
=
LW -1
Then
L = diag(Ly, . .. le/ﬁq)' 42)
Pictorially:
I~J[) L:J L’O
P Fy . — — =L
Ev'ﬁ—l L,\V—l L’\/ﬁ—l

36

Let f be the function that maps coefficient matrices LR e RV*VN (o (L,R) where L and R are
defined by (42) and (40).

Theorem 9. Let f be as defined above. Then f is a bijection.

Proof. To prove f is a bijection we must show f is one-to-one and f ! is one-to-one (and exists).

To show f is one-to-one means both Land R given to f will output a unique pair (L, R). This
follows from (42) and (40), and the fact that polynomial evaluation is a function.

Now to show f~! exists and is one-to-one, we must show that there’s a map for any (L, R) to unique
L,.R cRY xV'N Then for any pair (L, R) where both L and R are block diagonal matrices, there’s
a map to unique sets of polynomials, £, 7 where each coefficient is an entry of L, R (thus giving a
unique mapping from (L, R)’s to (L, R)’s).
We need to show the existence of ¢;, (Z) and 7, ;, (Y') such that:
Limio [il ’ jl] = ﬂjl (wj\(}\/ﬁ+il)
and)
thjl [iOMjO} = ,Fjl,jn (w%)'
Fix 0 < j1,jo < V/N. Then consider the values 0 < ig < v/N:
Yio < Ry j, [i07j0]'
Then by Theorem 4 there exists a unique polynomial of degree < /N (call it T1.5,) such that for all
0 <ip < VN: .
72]_1ij (wi;ﬁ) = Yig-
There will be N polynomials with V/N coefficients each, meaning there’s unique sets of coefficients
to make up the indices of R.

Now to get the entries of L from L fix0<j; < +/N. Then consider the values 0 < 11,20 < VN:
Yirsio < Lig.ioli1, 1]

Then by Theorem 4 there exists a unique polynomial of degree < N (call it £;,) such that for all

0 <i1,i0 < VN:

Kjl (wj\(;\/ﬁJril) = Yiy,io-
There will be v/N polynomials with IV coefficients each, meaning there’s unique sets of coefficients

to make up the indices of L. O

Algorithm 2 is pseudo code for the map from i, R € RV*VN (0 block diagonal matrices L, R.

Algorithm 2 BLOCKY MONARCH(L, R)

Input: L, R € RVXVN
Output: Block diagonal matrices L, R € CN*V

> First, compute L from L

1: Let F'y be the Fourier transform Monarch matrix PLFrPR P > See Corollary 6
2L «P-Fy-L
3: for a < 0to /N — 1 do
4: L, + L'[a N:a\/]v—i—\/ﬁ—l,:]
. s / /
5: L «+ diag(Ly, . .. L\/ﬁ—l)

> Now compute R from R

6: fora + 0to /N — 1do

7: RG%FW-R[a\/N:a\/N—l—W—l,:]
8: R « diag (Ro,...,R /x_;)

9: return L, R

37

Lemma 5. Algorithm 2 uses O(N®/2) FLOPs and 3v/N GEMMs of two /N x /N matrices.
Proof. Lines | and 2 are multiplying a monarch matrix representing the Fourier transform times a
N x v/N matrix in block fashion again, giving O(N?/2) FLOPs.

Similarly, lines 6 and 7 have two v/N matrices multiplied /N times. Giving O(N?/2) FLOPs.
Lines 3, 4, 5, 8, and 9 don’t count towards FLOPs

Therefore we have O (N 3/ 2) FLOPS and 3v/ N GEMMs of two v/N x /N matrices. O

Now that we have the operations in terms of blocks, we will make them causal in the following
sub-section.

D.4.2 Causal Block Monarch Convolution
Recall that a Monarch matrix is defined as
M = PLPRP,

then per equation (37) we have
M’ = PLPR. (43)

Then if q(;, ;,)(Z) is the basis polynomial corresponding to the (j1, jo)th column of M, by (38) the
basis polynomial corresponding to M is

U515 (Z) = 6o (Z) - Tjo 12 (Z2VV) (44)

with the minimum degree of j;v/ IV + jo (recall that we pick £, and 7, ;, to have minimum degree
jo and j; respectively) as desired.

Theorem 10. Ler L, R < BLOCKY MONARCH(f;, ﬁ) Let M be as in (37). Then for every 0 < 1,
7 < N, we have:

M((i1,70) , (1, J0)] = 4(j1.50) (w?/mﬂo) ,

where q(j, ;o) is as in (44).

Proof. To prove this we need to show the (ji, jo)th column of M is the basis polynomial q(;, ;)

evaluated at the N*? roots of unity, where q(;, ;,) is as defined in (44). Note we have

i ‘ ‘ i) . i1V N+io)VN
Qi) @RV = 4, (wl\llm+ O) “To.ga (wJ(v1 o)

= L, (R YVE0) T, (w5) (45)
By definition we have,

M'((i1,70) , (j1,J0)] = L, 4, [0, io] - Ry, 5, [i0, Jo]-
By (39) we have

and by (41) and the fact that
we have
Li, ju lio, io] = £j, (wﬁ\l,\/ﬁﬂﬂ) ,
Thus, we have
M'[(i1,i0) , (1, 4o)] = 45, (w;wmo) o (wm) .
Since

M-P =M,

38

we have
M|(i1,40) , (j1, jo)] = M'[(41,0) » (Jo, J1)]
= 30 (WY 1o (95) = 0610 (R VVE),
where the last equality follows from (45).

O

Corollary 6. The DFT is M as in Theorem 10 when all blocks of R and the top block of L are the
identity matrix of size VN x /N (the rest of L is all 0’s).

Proof. Since only the diagonal of the top block of L will contain any non-zero values we only index
the first 0, ...,+/N — 1 rows. And since all blocks of R are the identity matrix we get

Liji,51] = AMES!

and

Rj1 [jO;jO] = 77j1-,jo []0] =1L
All other entries of L and R are 0. Thus, we have
INVAE WAL
and
?‘jldo (Z) = 7.
As per Theorem 10,
q(jhjo)(Z) = gjo (Z) : ’;;j07j1 (Z\/ﬁ>
— gJo . Zj1\/ﬁ — Zjo+j1\/ﬁ — 77
Then by Theorem 10 note
41,0 (W) = W = Ml(i1,d0) , (1, Jo)],
which implies M is F y as desired.
O

Algorithm 3 is pseudo code for the Monarch convolution algorithm. It maps an input space of f,, R
matrices, a kernel vector k, and input vector u to a vector f.

Algorithm 3 BLOCKMONARCHCONV(f,, f{, k,u)
Input: i,f{ €]RNX\/N, k,uc RN
Output: f ¢ RV

I: L, R + BLOCKY MONARCH(L, R)
2: M + PLPRP > Get M’ from BLOCKY MONARCH
> Compute k¢, uy from M

3: kf(—M-k
4:up < M-u

s £+« M1 (ky©uy) > Compute f
6: return f

We next outline how to make the map in Algorithm 3 causal. Towards that end, we observe:

39

Lemma 6. For any fixed n > 1, let N = [\/ 2n 2. Define i, R € RN*VN gquch that for every
0<ji <VN,

Lo Ry
L= and R = :
Lm—l R\/ﬁ—l

n/

Define i'7 R’ € RVXVN yith corresponding coefficient blocks (i;) o<k (Rk) o<k<vN a

\)

i R;
- 0 - R/
o= | VYN e = |
OvmxvN R %y
where
Srrre o fl[iojﬂ ifiy = 0and iy > ji =
L — Hol0; -0 k=1.--- VN—1
O[(Zl;ZO)m?l] {0 otherwise ’ k VNxVN fOr s ’\/7

R ifio < Jo or ((io > | %3* 0 < |
R o= {0 Fio<dvortoz [Fh e Go< [F) e
R, [io, jo| otherwise

Further, we require that ﬁ;l [90 Jo], I~16 [j1, 1] are all non-zero entries for all 0 < jy,j; < V/'N.
Then for jov'N + j1 < VN {\/TNJ the basis polynomial qéjl,jo)(Z) = U (Z2)r] (Zx/ﬁ)

J1,Jo

of M/ = PLPR has minimum degree jo/N + j1 and maximum degree < % — 1, and for

VN {@J < joV'N + j1 < N, the basis polynomial qul,jO)(Z) has minimum degree jo/N + 71

and maximum degree < N — 1.

Note that in M = M'P the (41, jo) basis polynomial ¢, ;,(Z) (Z) has the required degree

_ /
= o5
bound.

Proof. Let L', R’ < BLOCKY MONARCH(L/, R’), and denote their corresponding polynomials
as 0 (Z),7% J. (Z\/N>, respectively for every 0 < ji,jo0 < v/N. By our definition, for all
0 < jo,j1 < VN, 7}
Then it follows that the basis polynomial q(;, ;1 (Z) = £}, (Z)r}, (Z W) has minimum degree
J1+ joVN.

We now look at the degrees of each basis polynomial. From our definition of R;d’ all entries

Rg-l [i0, jo] = 0 for jo < {QJ and ig > {QJ This implies that for 0 < jp < {QJ, and

(Z ‘/N) has minimum degree jov/N and ¢, (Z) has minimum degree j;.

1,70

0 < j1 < VN, we have deg(r}, ;) < {‘/Q—NJ . Since we are only looking at L{;(Z), note that degree

40

deg(#},) < VN — 1. Then it follows that
— vN —
deg (%&Jo)) SVN -1+ (\‘2J o 1) N

]

2
v N
SVN—= -1
N
=— -1
2

(Note that in the above jox/ﬁ + 71 < VN L\/TNJ — 1 by same calculations above as needed.)

For {QJ <jo<VNand0 < j; <N, deg(r5, ;,) = VN — 1, and 0 (Z) degree VN -1
Then it follows that

deg (4(;, 1)) < VN -1+ (VN - 1) VN
—N-1,

as desired. (Note that jov/N + j; > {‘/Q—WJ VN as needed.) O

Finally, we use Lemma 6 and Theorem 8 to conclude the following:

Theorem 11. For any fixedn > 1, let N = [/2n ’ Let L', R’ € RYN*N with corresponding
coefficient blocks (i;)

0<k<vN' <R;“)ogk<\/ﬁ

BLOCKMONARCHCONV (f/, R/, K/, u’) [0:n—1], wherek’ = (k,On_p,), 0 = (u,0n_p), is
causal in u.

be defined as in Lemma 6. Then for any k,u € R",

Proof. Note that this is the same setting as Theorem 8. If N = [v/2n 2, then | 4| > n. Then
by Lemma 6, the basis polynomials g;, j,(Z) of M = PLPR have deg(q(;, j,)) < & for 0 <

VN +jo < VN || < [5].¢

Then (34) computes BLOCKMONARCHCONV (f/, R, K, u’). Since Algorithm 3 performs the
same operation as (34), the result follows from Lemma 6 and Theorem 8. O

D.5 Bivariate Polynomials with Kronecker Substitution Over Reals

Our earlier results pertain to complex evaluation points. In this section we define causal convolution
over real evaluation points. To do this, we redefine our basis polynomials in terms of the Chebyshev
polynomials of the first kind.

In Appendix D.5.1 we recover Theorem 8 for univariate polynomials defined over real evaluation
points. This identifies a class of matrices that we use to define to define a structured subclass in
Appendix D.5.2. We show that these matrices can be used to perform (31). Finally, in Appendix D.5.3
we give the analog of Theorem 11 over real evaluation points. However, the resulting matrices are
not Monarch matrices but they are close. In Appendix D.5.4 and Appendix D.5.5 we discuss how we
can exploit this closeness, and compute (3 1) more efficiently.

%Recall that Lemma 6 is stated for basis polynomials ¢}, ;,(Z) for M’ = PLPR where g;, j,(Z) =
/
9o, (Z)

41

D.5.1 Univariate Evaluation over Real Numbers

For any integer a > 0, the Chebyshev polynomial of the first kind with degree a is denoted as T, (Z)
and is defined as

T, (cos) &ef cos(ab), (46)
and has the property
To(—cosf) = (—1)% cos(ab). 47
To parallel Appendix D.3.2, we consider the class of basis polynomials with the form
N—j-1
0 (2)=) 4l Tu(2), (48)
a=0
evaluated over (Wn i)y, y Where
(i + &
wns & cos <(N2)> . (49)
Let us consider the class of matrices defined over (48) and (49).
Lemma 7. For sequence of points A = {wn.0, . ..,wN,N—1}, let M be defined as
M[i, j] = g5’ (wn.i) (50)

where q;V(Z) and wy,; are defined as in (48) and (49), respectively. Then for any vector u, M - u is
equivalent to evaluating the polynomial

2

wZ) =Y u;-qy(2) (51)

<.
I
o

at each point in A.

Proof. By our definition of M, the column ML, j] is exactly the evaluation of the polynomial g7 (Z)
at each point in A. The claimed result comes from the definition of matrix vector multiplication and
Gh. O

This leads to the following analog of Theorem 7.
Theorem 12. For matrices My, M1, Mo, each of form as in Lemma 7, the operation
f=My' (M- k)© (M- u)). (52)
is equivalent to representing the polynomial
F(2) = k(Z)-u(Z) mod Ty(Z)
in terms of the basis polynomials
a (Z) for j=0,...,N—1
where k(Z),u(Z) are defined in terms of the respective basis polynomials corresponding to M, and
M, as in Lemma 7, and (q;V(Z)) ~ corresponds to M.
0<j<N

Proof. For A = {WN,i}OSi<N, define
9(Z) = [[(Z -). (53)

Then (52) follows since for
f(Z)=k(Z) - u(Z) mod ga(2),
we have the following for any o € A:
fla) =k(a) - u(a).
The claim follows from Lemma 7, (52), the invertibility of My, and the known fact that Ty (Z) =
qa(2). O

42

We also utilize the following result:

N
Lemma 8. Let Z]]L 7 (Z) be defined as in (48). Then for any 0 < j,j' < N,

N N N-1
e dH o= Y g o oY
i=j+j’

for some set of coefficients o4 ;.

Proof. From (48), we have

N N I-%J —It
e dHe = S gune.
a=0

L5

]
S gl T (2).
a’=0

Recall that within a m dimensional vector space of polynomials, we can define a basis by choosing any

A

set of polynomials with degrees 0, . .., m — 1. Because deg (Z]j G) <2 L%J —(+75) -2,

it can be written as a linear combination of any set of 2 L%J — (j 4+ J) — 1 polynomials where for
0<a<?2 L%J — (j +4') — 2, the a-th polynomial has degree a. In other words we can choose the
a-th polynomial as g% _,_,(Z). Thus we have

5] 5] 2| ¥ |-(G+i")-2
a;°°(2)-q;°-(Z) = > Qjtjra AN-a-1(Z)
a=0
for some set of coefficients ;1 ;. o. Then after reindexing ¢ <~ N — a — 1 we have
. N—1
e dHo= Y s o
i=(N=2| 5 |)+it+i+1

The claim follows by sqtting Qjyjriti+1 =0, and if IV is odd, Qg1 jrii+2 =0, and Qjtjr i =
Oj4+j, N—i—1 for other 7. O

This allows us to prove the following causality result for convolutions over real evaluation points.

Theorem 13. Fix a family of basis polynomials @i\ ,qY ... ,(j{?,l1 as defined in (48). Let N > 1

be a perfect square, n < L%J, k,u € R™ and My defined by basis (q;V(Z))O<j<N. Let k" =
(k, OL%J _n) and u” = (u, OL%J—") Then the operation

u s (M;v1 (MN . (0[%1 : k”) oMy - (0(%1 , u”))) 0:n—1] (55)
defines a causal map in u.
Proof. Let

£ (M;Vl (MN . (0[%1,1{") oMy - (0(%1 , u”))) 0:n—1]. (56)

In order to prove that (55) is actually causal in the input u € R™, we must show that forall0 < i < N,
f[i] is dependent only on u[0], u[l],...ufé]. Let k' = (0(%1’1{//) and u’ = (0[%1’11”)' By

Lemma 7, M -k’ and My - u’ correspond to the evaluations of the polynomials

N-—-1 N—-1
K(Z2)=> K -q)(2), and u/'(2)=Y_ uj-q}(2). (57)
jZO j/:0

43

Let us define

n—1

n—1 N
Zk qJ), and u(Z)zzuj-q]L,ﬂ(Z). (58)
j'=0

Note that for 0 < j < {%1 , the coefficients kj = u; = 0. Then (57) becomes

N-1
Z Kp-qY(Z), and u/(Z)= > uj-qN(Z)

=[] =51
which is equivalent to
3 3] N
; Koyl Gury(@), and w/(2) = ;0 Wy @ ().

For 0 < j < [/, deg (qJLIZVJ) = |

1 = [&] —j — 1. This implies that qu

J—j—l,anddeg<qj1\;[m) — N[N -

oz |z
| I—

(Z) and q (Z) are both linear combinations of

N

+
| 5| —j — 1 Chebychev polynomials. Then we can set g J (Z) = (j;\; 1y (Z). Similarly, note
2
(

2
that for 0 < j < n, kl+[N] = k;. Then it follows that &
u(Z) = u/(Z). Then by Theorem 12 we have
[(2) =k(Z)-u(2)
=k(Z) u(Z) (59)

J
Z) = K/ (Z), and by a similar argument,

where the last statement follows since deg (k(Z)) ,deg (u(Z)) <n—1 < |4 |, implying that their
product has deg (k(Z) - 4(Z)) < deg (Tn(Z)) = N. We want to write f(Z) in the form

for some set of coefficients set of coefficients f;. From (58), (59) becomes

— S S kyuy-ab)).
§=0 j/=0

Then by Lemma 8 we have

N-—1 n—1 N-—-1
a2 =) kpwe Y el (2)
1=0

3.4'=0 i=j+3’
We show that for all 0 < ¢ < N, f; is a function of (u;)0 <i7<;- Then note from the above that each
k; and u; appears in terms of gy where i > j + j'. Then we have

E , Qjpjri - ko ug,

J,j=0
J+i'<i

as desired.

44

D.5.2 Structured Causal Matrices

In this section we narrow our scope from the general class of matrices defined in Appendix D.5.1 to a
particular structured subclass. Now let us define the class of structured causal matrices over the real
numbers.

Definition 6. Define

J1 Jo
(2) LY 0,10 T(2), 75030(2) D 75 0[] Ta(2) 60)
a=0 a=0
where
?jlajo [CL} =0 l‘f(j() - a) is Odd, (61)

We define structured causal (SC) matrix polynomials as
N -
q(jujo)m(z) =lm-i-1(Z) TR i1 VR —jo—1 (Tyx(2)) - (62)
A N x N SC matrix is defined over the set of real evaluation points as

L N
M'[i, (jo, j1)] = q/(jl,jo)\/ﬁ(wN,i) = Q(I}(OJI)\/N(WNJ) (63)

We note that in (63) we deviate from the usual ordering of indices (j1, jo) to (jo, j1). We show that
the SC matrix falls under the category of matrices defined by (50).

Lemma 9. Let M denote the set of all matrices deﬁned by of (50), and M3C denote the set of all
matrices defined by Definition 6. Then M>¢ c M%

Proof. To show that MS¢ < M, then it is sufficient to show that for j = jov/N + ji1, any
q’gl »jO)\/ﬁ(Z) is equivalent to some Z];V(Z) as in (48). From (63) we have
N -
4 Grgo) o (Z) = Lym—jo1(Z) T yi_jy-1.vw——1 (Lyw(2)) - (64)

Note that
deg((J1J0)\/*) :\/N—jo—l‘f‘(\/ﬁ—]l—l)\/ﬁ
=N—-VNji—jo—1

=N-j5—-1
From the fact that deg (T,) = a, we can use T, as a polynomial basis. Then ¢’ (J1.d0) s €D be

represented as a linear combination of Ty, (Z) like so:

N—j—1

N
q/(jlvjﬂ)\/ﬁ(Z) = Z q(jhjo)[a]Ta(Z)a
a=0
which is exactly the form of (48).

O

Lemma 9 allows us to apply the causality result from Appendix D.5.1.
Corollary 7. Fix a family of basis polynomials qé\fo,qé\fl,...,q%_lﬁ\/ﬁ_l as defined in
(62). For any perfect square N > 1, n < L%J k,u € R" and My defined by basis
N . . . ’
i (2)) 63). Then th tion (55) with My « My d
(q (]MO)W() 0 i/ as in (63) en the operation (55) wi N 'v defines a

causal map in u.

Proof. Follows from Theorem 13 and Lemma 9. O

45

D.5.3 Block Operations on Structured Causal Matrices

In this section we show how to build structured causal matrices through block operations.

Constructing M

Recall that in Appendix D.4.1, we defined L, R in terms of coefficient matrices f{, L € RVNxVN
with blocks Ry, Li for 0 < k < VN, noting that for each block R ;

1~,j1’

Rjujl - F\/ﬁ : Rj1,j1a
and for L € RNxVN

L' =PFy L.

These matrices are then diagonalized into L, R. We use Definition 6 to similarly define L, R, €
NXN)
R with blocks {Lj, jo bocj, o< - {Rio Yo<, o<y Where:

Liy g liosio] = €x_j 1 (wna) Ry jilio jol <= T ym_j, 1 vN—jo—1 (WN,i), (65)

and all other entries are zero. Let the coefficient matrices i, R € RV *VN be defined with respect to
blocks as follows:

Lla,j1] = g\/ﬁ—jl—l[a’] Rj, [a, jo] = %Jﬁ_jl_l,\/ﬁ_ju_l[a]a

where the entries of ¢ VN—j1—1 and 7 VN —j1—1,VN—jo—1 ar€ defined as in (60) and (61). Now let

Cy € RYXN where
Cnli, j] = Tj(wn.i) (66)

be the Chebyshev transform. Then analogous to Appendix D.4.1, we define
Rj17j1 = C\/N'le,jl LIZPCN~L.

This allows us to give an algorithm the following construction algorithm for L and R.

Algorithm 4 BLOCKSC(L, R)

Input: f, R € RVXVN
Output: Block diagonal matrices L, R € RV*N

B > First, computeLfromf
L'—~P-Cy-L
fora<—03\/ﬁ—1d0
L+ LJa N:a\/N—F\/N—L:]
L(—diag(L{),...L’\/N_l)

e

> Now compute R from R

5: forae()tox/ﬁildo

6: Ra<—C\/ﬁ~R[a\/ﬁza\/ﬁ+\/ﬁ—l,:]
7: Redmg (Ro,...,R\/ﬁ_l)

8: return L, R

We use Algorithm 4 to specify another type of matrix M € RVXV,

Lemma 10. Let
M = PLPRP

where L and R are outputs from BLOCKSC. Then each entry in M is defined as

Mi, j] = Eym—jo-1(WN0) TR —jo—1,VF—j1—1 (w\/ﬁ»io) ©67)

46

Proof. Let My = PLPR, then M = MP. Then we have
Mo [(i1,70), (41, J0)] = £ ym—j, —1 (WNi) - T /iy —1, VR —jo—1 (WNio) -
Then we get
Mi, j] = MoP/[(i1,%0), (j1, jo)] = Mol(i1, i0), (jo, j1)]-

This gives us
M[(i1,i0), (715 d0)] = L yw—jo—1(WN) TR jo—1,vN—ji—1 (WN,io) -

as desired. O

Next we will discuss the relation between matrices that we get from Lemma 10 and SC matrices.

D.5.4 Constructing M’ from M

Since Cy ¢ M®¢ 7, Algorithm 4 is not a proper analog of Algorithm 2. In this section, we show
how to convert M produced from Algorithm 4 into a matrix with a block decomposible form. Recall
from (63) that

. N -

M/[%J] = q/(jhjo)m(wN,i) = g\/ﬁ—jo—l(z) T/ N—jo—1,/N—ji—1 (T\/N(Z)) : (68)

We note the distinction between the above and (67). Specifically, we note that M is evaluated on
two sets of evaluation points— the ¢ VN—j1—1 (Z) and 7 VN1 =1V N—jo—1 polynomials are evaluated

over the NV roots and v/IN roots of unity while M’ is only evaluated the N-th roots of unity. However,
they are close due to the following property:

Lemma 11. Let T,, be a Chebyshev polynomial of the first kind of degree a, and define wy ; as in
(49). Then

Ty (wn) = (=1 - w oy

Proof.

T /5 (wn,i) = cos (m(il\/NN+ o+ éh)

. ﬂ'(io—i-%)
= Cos <217T+ 7\/N)

(1)t s [L0 £ 3)
=(-1) cos< i)

- (_1)“ ’ w\/ﬁ,io'
In the above the first equality follows from (46). O

Analogous to how we utilized roots of unity, Lemma 11 allows us to express our basis polynomials in
terms of two related sets of evaluation points, w5, and wy ;. The following lemma demonstrates

how to translate between M’ and M.

Lemma 12. For all i, j,

M'[i, j] = (~1)s(VF=1) (—1yha . M3, j]. (69)

"We do not have a proof of this claim, but to us it seems unlikely that C € M5¢

47

Proof. By (68) we have
M/[i’j] = K\/N—jo—l(wNvi) ’ ’F\/N—jo—l,\/ﬁ—jl—l (T\/N(WNJ))
=L yN—jo1(WN) TN jo1 VN —ji—1 ((_l)ilwx/ﬁ,io)

where the second statement follows from Lemma 1 1. Then from (60) and (47) we get

VN—j1—1
M'[i, j] = ¢) - G T, (-1t
[, 7] = Cym—jy—1(wni) Z TN —jo—1,vN—js—118] Ta ((=1)" Wy,
a=0
VN—j1—1

- gﬁfj"*l(w]v’i) ' Z .’F\/N*J'O*L\/N*jlfl[a}(_l)ila Ta (w\/ﬁ,io) '
a=0

Note from (61) that ?ﬁ—jg—l.ﬁ—jl—l[a] = 0if (VN — j; — 1 —a) is odd. Then equivalently we
get '

M[i, 5] = £y (@) - (—1) (V= 7D)
VN—ji1—1 (VN
o F 1Vl (-, (w\/ﬁﬂb)
a=0
N VN—j1—1
= ymojpron) - (DR ST E g e gldl T (”\/ﬁ’io)
a=0

_ i1(VN—j1—1 =

=(-1) o 7)fx/ﬁ—joq(wN,i) T/ N—jo—1,VN—ji—1 (W\/ﬁ,f,o> :
Then from (67) we have

M'[i,] = (~1)" VN M,]
= (-1 N (M)
O

Block Matrix Multiplication for Structured Causal Matrices [emma 12 shows us how to
compute M’ from M. However, this does not mean that the matrix vector multiplication problem
for M’ can be implemented efficiently. In this section we show how to perform matrix vector

multiplication of M’ with any u € R from two matrix-vector multiplications of M (and so these
operations are indeed efficient).

The key to our approach involves considering the parity of each block index 0 < i; < v/N. Let us
define a map MIX : RLZ) x RIZT 5 RY such that Mix(up, u;) = u where

ufi] = W, mod 2[i/2].

We use this map to show that M’u and u” M’ can be computed efficiently.

Lemma 13. For any u € RY and M € RVN*N, M'u can be computed via two matrix-vector
multiplications: M - MIX (ug, 0) and M - Mix (0, uy).

Proof. For 0 <i=1i;v/N +iyg < N,0<j=j1vVN+jo < N,let D € RV*N be the diagonal
matrix defined such that D[i,] = (—1)i1(‘/ﬁ*1). Lemma 12 implies that
DM[i, j] if ¢ is even
M'[i, j] = { DM]i, j] if 41 is odd, j; is even
— (DM, j]) otherwise.

We want to shift the (—1) to u. Compute zg = M - (MIX (ug, 0) + Mix (0,uy)), z; = M -
(MiX (ug,0) — MIX (0,uy)). Define y’ such that
iiq fzolg] if jiiseven
yll= {zl[j] if jy is odd
It can be verified that D - y’ = M’u, which completes the proof. O

We now give the analogous result for u' M’.

Lemma 14. For any u € RY and M € RVN*N uTM’ can be computed via two matrix-vector
multiplications: MIX (ug, 0)" M and MIx (0, ul)—r M.

Proof. For0 <i=i1vV/N +iy < N,0<j=7jVN+jo<N,letD e RN*N be the diagonal
matrix defined such that D[é, 7] = (—1)i1(‘/ﬁ_1), and ' = u'D = Mix (u),u}). Lemma 12
implies that
DM, j] if ¢ is even
M'[i, j] = { DM[i, j] if i1 is odd, j; is even
— (DM, j]) otherwise.

We want to shift the (—1) to u’. Compute z; = (MIX (u},0)" + Mix (O,u’l)T> ‘M, z; =
(MIX (ug, 0)" — Mix (0, u’l)T> - M. If y = M'u, then one can check that

) zol7] if 71 is even
ylil { ?M o

z1[j] if jyisodd’
which completes the proof. O

Lemma 13 implies that computing M yk and M yu in (55) can be done efficiently. However, we do
not know how to compute M;,ly for any arbitrary y. We address this partially in the next section.

D.5.5 Inverse of Chebyschev Transform
In this subsection we show how computing Cj}l can be done efficiently.

Lemma 15. Let Cy € RY*N pe defined as (66). Then
Cy' = CJ -diag(1/N,2/N,...,2/N).

Proof. Follows since Cy(Cy) " = diag(N, N/2, N/2,...,N/2) [71]. O

Given the above, the goal then is to compute CJ; - u or equivalently u' Cy for any u € RY. Note
that is sufficient to show that

Cny =Cn + Sy

for Cn,Sy € RY*N such that u' Cy and u' Sy can be computed with two invocations of
Lemma 14. Indeed we have

Cifi.j] = cos ((i - %)(hj\v/ﬁJrjo)?T)

(70)

49

We use this to define Cy and Sy, along with two additional matrices C N> S ~ € RY>N guch that
for C and Cp:

~ cos (m. it m(io + 1)1 cos (i + 3)jo
- Y S 2 T g
VN N
i m(io + 3)01 7+ 3)J0) aer .
= (=1)"/* cos (2) cos < 2) = (1" Cyli,j], (D
and similarly for S and Sy:

Swli, j] = sin <F(ijﬁé)jl> sin <7r(i + é)j°>

. io + 1)j i+ 1) o
= (—1)1" sin (W(OJN?)‘h) sin (”(N2)j°> LSyl (72)
We summarize these results into the following lemma.

Lemma 16. Define Cy, C N, Sy and S ~ asin (71) and (72), respectively. Then
Cy =Cn —Sn

2

where C~3N and §N are of the form (67).

Finally Lemma 14 and Lemma 16 imply the following:
Theorem 14. For any u € RN,
y=u'Cy
can be computed from four calls matrix vector multiplication with Monarch matrices.

Proof Sketch for Theorem 14 ~Lemlna 16 tells us that u' C and u' Sy are sufficient to compute
u' Cy, and (72) shows us that Cp, Sy are Monarch matrices that allows u' C and u' Sy to be

computed from two matrix- vector multiplications with C ~ and S N> respectively. Then the claim
follows from applying Lemma 14 twice.

D.6 Multivariate MONARCH MIXER with Block Size = &/ N

In this section, we generalize Theorem 1, Theorem 2, and Theorem 3 to arbitrary p > 2. In
Appendix D.6.1, we set up notation. We then generalize Theorem | and Theorem 2 to general
p in Appendix D.6.2 and then generalize Theorem 3 in Appendix D.6.3. In Appendix D.6.4 we
connect definition of p-variate Monarch in Appendix D.6.2 to the one defined in Section 3. Finally in
Appendix D.6.5 we discuss some extensions and generalizations.

D.6.1 Notation

We will use notation from Appendix D.5.1.

Fix an integer p > 2. We will be working with indices j,i where j = (jo,...,jp—1) and i =
(20, .+ yip—1) With 0 < dg, jo < {/N for every 0 < a < p. We will denote the set of all sub-indices
as [0, {/N)P, and the operator < to denote the lexicographical ordering of vectors in [0, YN)P.

Forany 0 < &' < M < N such that b’ divides M and M divides N, define the following permutation
matrices:

Pb',M,N = diag Pb/,Ma ey Pb’,M
N——

N
bva times

50

Note that Py n n is exactly the same as Py, n from earlier.

If we use o(b, M, N) to denote the corresponding permutation then it takes the input (i,_1, .. .,%0),
and maps it to (ip—1,...,%p, 9y _2,...,%0,4),(Where p = log, N and p’ = log, M). Le.
o(b, M, N) does not change the first p — p’ sub-indices and then does a left rotation on the re-
maining p’ sub-indices.

For the rest of the section, assume b = /N and then consider the following ‘sub-index reversal’
permutation matrix":

p—2
Py = [[Porar o0

a=0

If (b, N) is the permutation corresponding to the permutation matrix above, then of*(b, N') maps
(ip—h s 77:0) = (7:07 B ip—l)'

D.6.2 Generalizing Theorem 1 and Theorem 2

For a specific 0 < a < p, let

(a) T
G (Xa) = D0 UG iosiay) Tin(Xa) (73)
m=0

be an arbitrary polynomial of degree < /N in the Chebyshev polynomial basis (see (47)).
We will be interested in the evaluations of the above polynomials over the set

Adéf (WW,O""’MW,W—1)7 (74)

where w Nk is defined as in (??).

The p-variate version of Monarch matrices M/ € RY*N as follows. (See Appendix D.6.4 to see
how these are exactly related to the definition in (1)). For every row index i € [0, ¥/ N)? and column
index j € [0, ¥/ N)P, we have

p—1
M fid] = [T 45 (wems,) - (75)
a=0

To express the above in terms of a polynomial basis we will need the following definition. For
any 0 < a < p and i define the Lagrange basis polynomial Ai(a) (Xo,...,Xa—1) such that for any
0<mg,...,meg_1 < {/N, we have

(a) 1 ifig =mg,i1 =m1,..., -1 = Ma_1
Ai me ,...,me = .
o Ma—1 0 otherwise.

We use the above to convert the polynomials in (73) to not depend on the sub-indices in i (at least for
the definition in (75)). For every j and 0 < a < p, define:

é}a) (XQ,...7Xa) = Z Aga) (XO,"'aXa—l) 6.570;) (Xa)'
i=(i0,-ia—1,0p—a)yi0s--ria—1€[0, ¥N)

Note that the summation fixes the last p — a sub-indices in i since the definition of ngli) (X,) only
depends on (ig, . ..,%q—1). This implies that for any 0 < ig, ...,i, < ¥ N, we have

4“) (WWJU>---"*’€/N,¢G> - fjgj‘;) (WW%) . (76)

85 = 2 gives the well known bit reversal permutation.

51

We are now ready to define our basis p-variate polynomials. For any index j € [0, {/N)P, define

p—1
q‘]]V (X07"'aXp—1): sza) (X07;Xa) (77)
a=0
Then (75) can be re-written as
M3,] = g (wwoww_) (78)

The above leads to the following result, which generalizes Theorem 1 to general p:

Theorem 15. Let M, A and qjN (Xo, ..., Xp_1) be as defined in (75), (74) and (77). Then for any
vector u, M - u is equivalent to evaluating the polynomial

w(Xo,. o, Xp-1) = Y _uj- g (Xo,..., Xp1) (79)
J

at each point in AP.

Proof. By (78), the column M'[:, j] is exactly the evaluation of the polynomial (77) at each point in
AP Then the claim follows from the definition of matrix vector multiplication and (79).]

This then leads to the following result, (which generalizes Theorem 2):
Theorem 16. For matrices My, M1, Mo, each of form as in Theorem 15, the operation

f=M;"' (M; k)©(M;-u)). (80)
is equivalent to representing the polynomial

f(X) =k(X) - u(X) mod (TF/N (Xo)s-- s Ty (Xp_l))
in terms of the basis polynomials
4’ (X)
where k(X), u(X) are defined in terms of the respective basis polynomials corresponding to M; and
Ms; as in Theorem 15, and QJ-N (X)s corresponds to M.

Proof. Define
9(2) =[] (Z - o). (81)

acA
Then (80) follows since for

f(X) = E(X) - u(X) mod (ga(Xo), . qa(Xp-1),
we have the following for any a € AP we have:
f(a) = k(a) - u(a).
Using the known fact that T'p/(2) = Higfl (Z —w W,c) = qa(Z), the claim follows from
Theorem 15, (80), and the invertibility of M. [
D.6.3 Generalizing Theorem 3 for p > 2

To convert Theorem 16 into a causal map we basically have to blow up n — 27 -n. Further, paralleling
(48) we need to change the definition in (73) to have degree {/N — j, — 1 instead of the earlier

W—l:

YN—jo—1
z}ﬁ) (Xa) = Z Z((?j) [m] 'Tm(Xa)- (82)
m=0

52

Note that now the RHS only depends on a and j, (let us call the RHS Zg: vN) (X4)), so the next
definition becomes easier:

a a,W
69 (Xo, ... X@:zga) (x.).

)

We are now ready to define our causal basis polynomials. For any index j, define
p—1
g (X0, Xp1) = [[47 (Xo,..-, Xa) - (83)
a=0

These polynomials form a structured subclass of the polynomials defined in (77).
Lemma 17. The class of polynomials q~jN (Xo,...,Xp_1) defined in (83) are a special case of (77).

Proof. This follows from the fact that (82) is a special case of (73) for every i,j,0 < a < p. O]
RN b
We show that the product of two qNJ[: J (Xo,-..,Xp_1) type polynomials can be written has a
linear combination of g%, (Xo, ..., X,—1) with the indices of m being lexicographically larger than
the original indices.
~[@Jp . . v~ \?
Lemma 18. Ler 7 (Xo, ..., Xp_1) be defined as in (83). Then for any j,j' € [0, T) ,
A7 X X ol X Xpo1) = i+37,m T (X X
qj ((S PRI pfl)' i (Oy pfl)— Z aJ+J',mqm([OPIITIE pfl)
J+j’=mel0, ¥N)»

(84)
for some set of coefficients o545 m.
Proof. From (83) we have,

NP NP Pl | m 0| XX
'qvjl 2 J (X07--~;Xp—1)’a:iL 2 J (X07--~7Xp—1) = HZ(G [2 J) (Xa)'zj{';l [2 J) (Xa)
a=0

(85)

Letusfix 0 < a < p.
N
Because (82) is of the same form as in (48), we can apply Lemma 8 to each product é:t : J) (Xa)-
A5 o o
Ej, (Xa), which gives us
nS e N Gl) K N
s —3)| —3 i a) "(a, N)
gja (Xa) - Ejfl (Xa) = Z Yjatjlma lrn, (Xa) -
ma:ja""j{;
Going back to (85), we get
N | P YN | P p—1 N—-1
|-z |7z a a, YN
j[7 (X0, Xpq) - qu 7 Koo X)) =[] D2 o\ . e (x,).
a=0mq=ja+j
Let ajyjrm = [102; ozgjlrj, .m, - Then we get
"'L (’/QWJP X X "'L@ ’ _ ~N
QJ ((S PRI pfl)'q.j/ (X()w"vprl) - Z Qj+j’ m m (X()v"‘aprl),
J+i'=melo, YN)»

as desired. O

53

We now define the following padding scheme, PAD (k).

Algorithm 5 PAD(k)

5

P
Input: k € (R{ 2 J) , indexed as k; for j € [0, @)p

p
Output: k' € (R W)
P
1: forj € {0, @) do
2 iijZL@J for 0 < a < p then
/
3 Kliornin1) R (ot [S o+ [45))
4: else
5: k3 =0
6: return k’

The above basis and padding scheme allows us to extend Theorem 3 to general p.

Theorem 17. Fix a family of basis polynomials ’qjiN (X) as defined in (83). Let N > 1 be a perfect
P

power of p, n < L@J , k,u € R" and My, defined by basis E]:]-N (X). Then the operation

us (M’J‘Vl('+ - PAD (k) o Mly - PAD (u))) 0:n—1] (86)
defines a causal map in u.
Proof. Letk’ = PAD (k),u’ = PAD (u), and
f= (M’jv1 (Ml -k o MYy - u’)) 0:n—1]. (87)

P
In order to prove that (86) is causal in the input u € R™, we must show that for all i € [O, VN) ,
is dependent only on uy for i’ < i.

By Theorem 15, My - k” and My, - u’ correspond to the evaluations of the polynomials

K (Xo,....Xp1)= > k¢ (Xo,...,X,-1), and
yefo, UN)”

u' (Xo,..., Xp1) = Z Wy @ (Xoy- o Xpo1), (88)
jefo, YN)”

respectively. Let us define

_ A=)
k(Xo,...,Xp_l) = kJ q,] (Xo,...,Xp_l), and
<o &)
_ il
U,(Xo,...,Xp_l) = Uj 'qj (XO7--~7Xp—1)~ (89)

p—1
as the vector of length p consisting of the degrees of
a

Let us define deg <q~JN) = (W — fo— 1)

NP
the component univariate polynomials Z}al) (X,) defined as in (82). Then we have deg (a} : J > =

54

\§

({@J—jg—l, { J—jpl—l)for_]—(jo,~~,]p 1) such that 0 < j, < [2 —‘for
0 < a < p. Further, for j’ :(]O—k[{)ﬁw,---7jp,1+[%ﬁ1)wehave

deg (@) = (YN = jo— 1,0, YN = jj 1 —1)
_<WF/QN}]‘01,...,€/NWQN}%_11>
A (5]
= 5 —Jo—1,..., B) — Jp—1 — .

L@

P
: J) = deg ((jj)’) , We can set Zj(al) (Xa) = Z(flz (X,). Similarly, note that for j, j’

Since deg (% i

as above, ka, = kj and qu, = uj. Then it follows that k (X, ..., Xp—1) = k' (Xo,...,Xp—1), and

by a similar argument, u (Xo, ..., X,—1) = v’ (Xo, ..., Xp—1). Then by Theorem 16 we have

f (Xo, ce 7Xp—1) =k (Xo, ce 7Xp—l) U (Xo, ce ,Xp_1> mod (TW (XQ) goae ’TW (Xp—l))
:k(Xo,...,Xp_l)'U(Xo,...,Xp_l) (90)

where the second line follows by observing that each 0 < a < p, we have degx (k(X) - u(X)) <

2 {@J and observing that 2 [@J < {/N. We want to write f (Xo,..., Xp—1) in the form

fXo s Xpm)) = D fmc (KXo X)),
mG[O,W)

for a set of coefficients fy,. From (89) and (90) we get

E El
f(Xo,.. s Xp1) = > kyus - @ (X0, Xpo1) - G (X0, Xp_1).

svefo[S2])"
Then by Lemma 18 we have

f(XO’”"Xp_l) = Z kj/u-j ' Z Qj+j’,m ’quj:[l (X07~--3XP—1)'
igefo 42])” j+i’=melo, YN)P

p
Thus, for any m € {0, {/]V) , we have

E @ty m - Ky

j+i’'Zm

implying that f,, depends only on u; for j = m, as desired.

O
D.6.4 p-variate Monarch
Recall that we have fixed b = ¢/N (and hence N = bP).
Define the p-variate Monarch matrix as follows:
p—2 +
M’ =Piy (H By 10 (Pyeti etz n)) By, oD
a=0

Where each B, is block diagonal with b x b blocks for every 0 < a < p. Recall that Equation (1) has
a permutation Py at the end while the above definition does not have any permutation at the end. One
trivial way to show the equivalence of above to Equation (1) is to define Py = I. In Appendix D.6.5,

55

we show that exists other non-trivial choices for Pgy. Further for 1 < ¢ < p, the P; in Equation (1)
connect to the above definition as follows:

L (Pbpfi,bpffkl,N)T forl1<i<p-1
! PgN fori=p '

Finally we connect the above definition of p-variate Monarch to the earlier definition based on
polynomial evaluation:

Lemma 19. Equation (75) can be written as Equation (91).

Proof. In (91), B, would correspond to the evaluations o (w UN ia) from earlier. Specif-

J,i
ically the following holds for any 0 < a < p. We index the ¢’~! blocks of B, by
(20, ---s%a—=1) s (Jp—1, - - - » Ja+1) and the row and column ‘offsets’ within each such block are indexed

by ¢, and j, respectively. Connecting back to ngli) (+) we set

We will prove the claim as follows. Let e; € RY have a 1 in the j™ location and 0’s elsewhere. Our

goal is to multiply this vector on the right of Equation (91) and show that we get the j column of
M’ as defined in Equation (75). We will do so by induction.

Define yo = ej and y; = By - yo. Then for every 1 < a < p, define

-
Ya+1 = Ba (Ppo—a pp-at1 n) Ya-
Note that we have

M’ e =Pl y,. 93)
Next, we claim that for every 1 < a < p, we have for every (ig, . ..,i,—1) € [0, {’/N)“’l
Ya [((i0,~-';ia—2)>(jp—1a~'~a]a ylg— 1 Hg(b (wa) (94)
where for a = p, we think of ((40,...,%a—2), (Jp=1,---,Ja) s%a—1) = (f0, - -, Tp—1)-

We first note that Equation (94) is enough to prove the claim. Indeed we have that

p—1
¥ [(Gor- - ip-1)] = [T 67 (wemsy)
b=0

where the RHS in the above is the same as RHS in Equation (75). To see the claim note that by
definition of Py, we have (P,’;‘:N -yp) [(ip—1,---,i0)] = ¥p[(i0, -, ip_1)]. Equation (93) then
established the claim.

To complete the proof we prove Equation (94) by induction on a.

We next consider the base case of a = 1. Note that y is just the jth column of Bg (as yo = e;) and
in that case Equation (94) follows from Equation (92).

For the inductive hypothesis, assume that Equation (94) is true for a for some a > 1. We now want
to argue Equation (94) for y,+1. Towards that end define

-
Zo = (Pypappeti) Ya=Pppp-att yVa-

Note that
Ya+r1 = Ba *Zg.- (95)

Now by definition of Py, jp—a+1 7, We have

Zq [((i07 BRI Z.0«—1)) (jp—l’ s 7ja))] =Ya [((2.07 s 7ia—2) s (jp—l’ s ’ja) 7ia—1)} .

56

We claim that Equation (94) is true for a + 1 from the above along with Equa-
tion (95) and Equation (92). Indeed, fix any (ig,...,%a—1) Then in Equa-
tion (95) the entry z,[((i0,--.s%—1),(Jp-1,---,Ja))] gets multiplied by the entries
B0 ta1):Up-1:rdast1)) [ia, ja) for all values of i, € [0, ¥/N). The inductive hypothesis and
Equation (92) then proves the inductive step, as desired. O

Finally, we note that we can generalize Algorithm 4 for constructing B, for 0 < a < p (since this is
the multivariate case some of the steps are a bit simplified):

Algorithm 6 BLOCKY MULTIVAR MONARCH(B gy, ... B, _1), N, p)

Input: B(y,...,B(, 1) € RV*" where b = ¢/N
Output: Block diagonal matrices By, ..., B,_; € RV*¥
> Compose each output matrix from corresponding input matrix

1: fory < Otop—1do

2: fora<—0to%—1d0

3: By « C,-B{ab:ab+b—1,]
4 B, < diagBL,.. . B)

5: return By, ..., B,

D.6.5 Extensions and Open Questions

In this sub-section we outline certain (fairly) straightforward extension of our theoretical results and
conclude with some open questions.

Comparing Equation (91) to Equation (1) We note that we can post multiply M in Equation (91)
with a large class of permutations for which Theorem 17 still holds. We outline the technical reason
why this is true. At the heart of the argument for why Equation (86) gives a causal map is Lemma 18.
Specifically note that the sum in RHS in Equation (84), is over all j + j° < m. The main observation
is that this partial order still holds if we permute the b-variate representation of j, j’ and m in the same
way. In other words, for any permutation o : [0, p) — [0, p) if we define 5(§) = (jo(0)s - - - » Jo(p—1))
and similarly o(j’),o(m). Then we still have o(j) + o(j’) < o(m). This in turn implies the

following. Let P, be a permutation that maps j € [0, ¥/N)? to o(j) € [0, ¢/N)P. Then Theorem 17
holds if we replace M’ by M - P, with M as in Equation (91).

Evaluation points Our results as presented are for specific classes of evaluation points. A natural
question to ask is if our results can be extended to more general set of evaluation points. It turns
out that our results for p-variate Monarch matrices can be extended to a wider class of evaluation

points. Specifically, for each 0 < a < p, let S, C C with |S,| = ¥/N. Then our results in
this sub-section hold if we replace the evaluation points from AP to xz;(l, Sq. The only thing that
changes in our proofs is that in Theorem 16, we replace mod (TW (Xo0),-- s Toy (X,-1)) by
mod (gs, (Xo),.--,4qs, , (Xp—1)), where g4(Z) is as defined in Equation (81). This result can
then be propagated throughout the rest of our proofs.

On the other hand, our results in Appendix D.3 and Appendix D.5 do exploit specific properties of the
evaluation points (specifically (w}\,)\/ﬁ = wi;ﬁ for Appendix D.3 and T/ (wi,i) = (—1) w5 4
for Appendix D.5). To generalize these results to other sets of evaluation points, we need the existence
of degree /N polynomial that maps (in a v/ N-to-1 fashion) A to a set of /N elements. Another
interesting open question is to avoid the blowup n — 2P - n in Theorem 17 and ideally only pay a
blowup n — 2n for every p > 2 as we were able to do in Appendix D.3 and Appendix D.5 (with
p=2).

E Implementation

57

40

from einops import rearrange
import torch
from torch import nn

def blockdiag_matmul(x, w):
return torch.einsum(
"bom,...bm->...bn", w, x.view(*x.shape[:-1], w.shape[O],
shape [-11)
) .reshape (*x.shape)

class MonarchMatrix (nn.Module):

def __init__(self, sqrt_n: int):
super (). __init__(Q)

self .sqrt_n = sqrt_mn

w.

self .L = nn.Parameter (torch.randn((sqrt_n, sqrt_n, sqrt_n)))
self .R = nn.Parameter (torch.randn((sqrt_n, sqrt_n, sqrt_n)))

def forward(self, x):
x = rearrange(x, "... (m n) -> ... (n m)", n=self.sqrt_n)
x = blockdiag_matmul (x, self.L)
x = rearrange(x, "... (m n) -> ... (n m)", n=self.sqrt_n)
x = blockdiag_matmul (x, self.R)

return rearrange(x, "... (m n) -> ... (n m)", n=self.sqrt_

class MonarchMixerLayer (nn.Module) :
def __init__(self, sqrt_n: int, sqrt_d: int):
super () . __init__ Q)
self .mil MonarchMatrix (sqrt_n)
self .m2 MonarchMatrix (sqrt_n)
self .m3 MonarchMatrix (sqrt_d)

self .m4 MonarchMatrix (sqrt_d)

n)

self .n_kernel = nn.Parameter (torch.randn(sqrt_d *x 2, sqrt_n

** 2))
self.d_kernel = nn.Parameter (torch.randn(l, sqrt_d *x* 2))
self.layer_norm = nn.LayerNorm(sqrt_d ** 2)

def forward(self, x: torch.Tensor): # x.shape = (b, n, d)

x_tilde = self .m2(self.n_kernel * self.ml(x.transpose(-1,
) .transpose (-1, -2) # mix sequence

y = self .mé4(torch.relu(self.d_kernel * self.m3(x_tilde)))
mix features

return self.layer_norm(y + x_tilde) # skip connection

Listing 1: A basic implementation of the M2 layer.

58

-2))

	Introduction
	Preliminaries
	Monarch Mixer
	Monarch Matrices
	Monarch Mixer Architecture
	Architecture Benchmarks

	Theoretical Analysis: M2 as Polynomial Multiplication
	Experiments
	Non-Causal Language Modeling
	Image Classification
	Causal Language Modeling

	Related Work
	Discussion and Conclusion
	Broader Impacts
	Additional Experiments
	Per-Task GLUE Numbers
	Additional Throughput Results
	ImageNet Comparison against Swin
	Speech Applications
	CIFAR10
	Learnable Monarch Matrices in Sequence Mixer
	Roofline Analysis
	Associative Recall
	BERT Experiments with Alternative Architecture

	Experiment Details
	Model Architectures

	Missing details from sec:theory
	Background and Notation
	Multi-variate Polynomials
	Notation

	Monarch Matrices and Bivariate Polynomial Evaluation
	Proof of thm:monarch-bivariate
	Proof of thm:monarch-inverse

	Proof of thm:causalunivariate
	Review
	Univariate Matrix Convolutions
	Causal Monarch Convolutions

	Block Algorithms for Complex Numbers and Block Size N
	General Block Monarch Convolution
	Causal Block Monarch Convolution

	Bivariate Polynomials with Kronecker Substitution Over Reals
	Univariate Evaluation over Real Numbers
	Structured Causal Matrices
	Block Operations on Structured Causal Matrices
	Constructing M' from M
	Inverse of Chebyschev Transform

	Multivariate Monarch Mixer with Block Size = [p]N
	Notation
	Generalizing thm:monarch-bivariate and thm:monarch-inverse
	Generalizing thm:causalunivariate for p ≥2
	p-variate Monarch
	Extensions and Open Questions

	Implementation

