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Abstract

Attention-free language models that combine gating and convolutions are growing in popularity due
to their efficiency and increasingly competitive performance. To better understand these architectures,
we pretrain a suite of 17 attention and gated-convolution language models, finding that SoTA gated-
convolution architectures still underperform attention by up to 2.1 perplexity points on the Pile. In
fine-grained analysis, we find 82% of the gap is explained by each model’s ability to recall information that
is previously mentioned in-context, e.g. Hakuna Matata means no worries Hakuna Matata it means no →
??. On this task, termed associative recall, we find that attention outperforms gated-convolutions by a
large margin: a 70M parameter attention model outperforms a 1.4 billion parameter gated-convolution
model on associative recall. This is surprising because prior work shows gated convolutions can perfectly
solve synthetic tests for AR capability. To close the gap between synthetics and real language, we develop
a new formalization of the task called multi-query associative recall (Mqar) that better reflects actual
language. We perform an empirical and theoretical study of Mqar that elucidates differences in the
parameter-efficiency of attention and gated-convolution recall. Informed by our analysis, we evaluate
simple convolution-attention hybrids and show that hybrids with input-dependent sparse attention
patterns can close 97.4% of the gap to attention, while maintaining sub-quadratic scaling. Our code is
accessible at: https://github.com/HazyResearch/zoology.

1 Introduction

Two advances – gating and long convolutions – have catalyzed a wave of excitement around gated-convolution
language models [Fu et al., 2023a, Ma et al., 2022, Wang et al., 2022, Poli et al., 2023a, inter alia.]. These
architectures combine gating (i.e. element-wise multiplication) with long convolutional filters (i.e. the length
of the sequence) to enable interactions between distant tokens [Dauphin et al., 2017, Gu et al., 2021]. Recent
work suggests that these models, which exhibit better asymptotic scaling in input sequence length than
attention, can match attention in language modeling quality [Poli et al., 2023a, Peng et al., 2023, Fu et al.,
2023b].

We pretrain and evaluate 17 language models across 4 scales (70M - 1.4Bn) and 5 architectures on the
same data and infrastructure setup. Surprisingly, we find that there is still a perplexity gap of up to 2.1
points between state-of-the-art convolution-based architectures and strong Transformer baselines in language
modeling on the Pile (Table 1). Through fine-grained analysis, we find a single, simple capability is responsible

∗Equal contribution, Random ordering by coin toss.
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Figure 1: The associative recall gap. We stratify Pile validation data for models from each architecture
class by whether or not the predicted token is a previously seen bigram in the example context. We plot
validation perplexity versus the bigram’s frequency in the training data. We can clearly see that the gap is
localized to examples where bigrams occur, and are seen rarely during in training.

for much of the gap: recalling information seen in-context. Consider the example below, where some tokens
can be predicted by recalling an earlier association:

Hakuna Matata!⏞ ⏟⏟ ⏞
Key-Value

It means no worries⏞ ⏟⏟ ⏞
Key-Value

for the rest of your days! Hakuna⏞ ⏟⏟ ⏞
Query

Matata⏞ ⏟⏟ ⏞
AR Hit

means no⏞⏟⏟⏞
Query

→ worries⏞ ⏟⏟ ⏞
AR Hit

We find that errors on “AR Hits” (e.g. worries above) account for 82% of the perplexity gap to attention on
average, despite only representing 6.4% of all tokens in the Pile dataset.1 A 70M parameter Transformer can
predict AR Hits better than a 1.4Bn parameter Hyena gated convolution model (20× larger) (Table 1, Table
5). The AR gap persists at the 7Bn parameter scale when comparing RWKV and Llama-2 (Appendix G).

This task, associative recall (AR), has a long history in machine learning [Graves et al., 2014, Ba et al.,
2016, inter alia.] (Appendix A.1). Prior work argues that a model’s ability to perform AR is predictive of
in-context learning quality [Elhage et al., 2021, Olsson et al., 2022]. As a result, AR has been adopted as a
tool in designing new architectures and prior work has shown that gated convolution architectures match
attention on synthetic AR tasks used as proxies for real language modeling [Fu et al., 2023a, Poli et al., 2023a,
Lutati et al., 2023]. For this reason, the downstream AR perplexity gaps are surprising.

Through measuring recall on real data, we learn the key disparity is that prior synthetic formulations assume
there is one query per input, at a fixed position in the sequence, where tokens come from a small vocabulary
size (e.g. |V | < 50, less than model dimension). Yet, language modeling often requires performing multiple
recalls (e.g. for both “Hakuna Matata” and “no worries” above, in a single forward pass), at varying positions,
with tokens from a large vocabulary (larger than model dimension). We thus propose the study of multi-query
AR (Mqar). Compared to the prior AR formulations, Mqar better captures the persisting quality gaps on
synthetic and real world data (Section 4). However, it is not clear why Mqar elucidates the gap.

We formalize the the Mqar gap across the architecture classes. Gated-convolutions process variable
sequences using fixed filters defined by the model weights rather than as functions of the input data (See
Figure 1). We find it is inefficient for gated-convolutions to perform the variable distance token-to-token
interactions (e.g. at a distance of 10 tokens for Hakuna Matata and 9 for no worries) in a parameter and
FLOPs efficient way compared to attention. Attention achieves input-dependence since it computes all
token-to-token interactions when determining how to mix information in the sequence. We formally describe
the limitation of gated convolutions via theory and experiments in the rest of the paper.

We first introduce a simple operator, BaseConv, that can provably simulate the class of architectures built
from gating and convolution primitives. This includes architectures such as H3, Hyena, RWKV, and RetNet.

1We measure AR on real data using a simple heuristic: n-gram tokens that are repeated in context.
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Overall Slices % of gap due to
Model Param (M) TFLOPs AR Hits Other Tokens AR Hits

Attention 125 2.46 11.01 (2.40) 2.16 (0.77) 12.45 (2.52) —
Long Conv 128 1.74 16.98 (2.83) 25.62 (3.24) 16.46 (2.80) 40.1%
H3 168 2.55 12.06 (2.49) 6.75 (1.91) 12.60 (2.53) 88.4%
Hyena 158 2.41 11.60 (2.45) 5.00 (1.61) 12.28 (2.51) 100.0%
RWKV 169 2.08 11.64 (2.45) 5.70 (1.74) 12.29 (2.51) 100.0%

Attention 360 6.23 9.44 (2.25) 1.98 (0.69) 10.62 (2.36) —
Long Conv 360 4.08 13.13 (2.57) 13.27 (2.59) 13.12 (2.57) 40.5%
H3 357 4.85 10.38 (2.34) 4.81 (1.57) 11.00 (2.40) 65.8%
Hyena 358 5.03 10.07 (2.31) 3.83 (1.34) 10.75 (2.38) 98.2%
RWKV 351 4.31 9.79 (2.28) 3.82 (1.34) 10.51 (2.35) 100.0%

Table 1: Language modeling validation perplexity on the Pile. After pretraining on 10B tokens of
Pile data, we report log perplexity with negative log-likelihood in parentheses. We report overall scores, and
for the AR vs. non-AR token slices defined in Section 3. FLOPs are computed for inputs of 2048 tokens
based on the equations in Appendix C. A table with additional results is in Table 4.

We show with theory and experiments that the model dimension for BaseConv (and thus the aforementioned
architectures) to solve Mqar grows with the input sequence length (Theorem 4.4) while attention can
solve Mqar with model dimension independent of sequence length (Proposition 4.3, Section 4.3).2 In
practice, gated-convolutions appear to encode approximate solutions to AR that support only a subset of
token-interaction distances (which affects the ability to identify matching keys given Mqar queries). While
theoretically analyzing deep learning architectures is challenging [Hahn, 2020, Merrill et al., 2022, Keles et al.,
2023], the fact that gating and convolutions are polynomial operations facilitates our precise analysis.

We show that input-dependent sequence mixing is important to solve Mqar efficiently. The
scaling for gated convolutions with input-independent convolutions is undesirable so we next ask which
architectural choices close the gap. We show that data-dependent sequence mixing helps an architecture
solve Mqar efficiently (Theorem 4.5). The model needs to adapt the sequence mixing weights based on the
token-interaction distances required for each new example.

Several architectural modifications could satisfy the input-dependence property. Based on our analysis, we
evaluate minimal modifications that only add input-dependent operations on exact-match repeated bigram
tokens (our heuristic for measuring tokens that require recall). Note that language models often need
to perform recall between fuzzier substrings (e.g. synonymous bigrams) or higher-dimensional concepts.
However, we show that simply inserting input-dependent operator — e.g., a convolution filter that shifts the
sequence based on the bigram positions or sparse attention placed only on repeated bigram positions — to the
BaseConv architecture at < 10% of layers suffices to outperform the Transformer baseline on Pile language
modeling (Section 5) and succeed on Mqar synthetic tasks (Section 4.3). Moreover, this closes > 80% of the
Mqar perplexity gap on the Pile validation data. Finally, we prototype solutions that learn the positions at
which to use input-dependent operations, validating that they also close the gap to attention on the Pile.

In this work, we analyze the increasingly-popular convolution-based architectures and identify fundamental
limitations. We hope the Mqar framework and our analysis of the role of input-dependence for Mqar
inform the design of future architectures. We release our code for reproducability: https://github.com/

HazyResearch/zoology.

2 Background and Preliminaries

In this section, we describe the setting, introduce notation, and discuss important related work. See
Appendix A for a broader discussion of related work.

Language modeling. We study auto-regressive language models trained on the task of next token

2Note that the runtime of Attention is quadratic, but gated convolutions is near linear.
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prediction [Gao et al., 2020]. Given a sequence of N tokens x = {x0, ..., xN−1} drawn from a vocabulary C,
the model outputs a probability distribution over C for each of xi given the preceding tokens P(xi|x0, ..., xi−1).
The language models in this work share the same high-level architecture. First, each token xi in the input is
embedded in d-dimensional space yielding a matrix u ∈ RN×d. Next, u is passed through a stack of L layers,
with layer ℓ outputting uℓ ∈ RN×d. Finally, the embeddings uL output by the last layer are mapped back
to logits over C with a linear projection. Each layer transforms u with a sequence mixer (e.g. attention)
followed by a state mixer (e.g. MLP). Unless specified, our models adhere to the implementation details of
the LLaMA architecture (except the sequence mixer, which we vary throughout) [Touvron et al., 2023].

Sequence mixers. Our work evaluates how the choice of sequence mixer affects the quality and behavior
of language models. Most sequence mixers aggregate the token embeddings in a sequence via a weighted sum.
For example, y[i, :] =

∑︁N−1
j=0 ω(i, j)u[j, :]), where ω is a function outputting scalar weights. We study the

differences between two classes of sequence mixers, discussed next.

Attention. [Vaswani et al., 2017] We review attention, the de facto language model sequence mixer. An
attention layer is parameterized by three learnable projection matrices Q,K,V ∈ RN×d. To compute the
output y given inputs u, attention applies the projections to the input: q = Qu, k = Ku, v = Vu. The
projected embeddings are aggregated according to: y = softmax( 1√

d
qk⊤)v (shown in Fig. 1) in O(N2d) time,

which is expensive for long sequences (large N).

Gated-convolutions. A more efficient alternative to attention is the convolution, which is defined as
y[i, :] =

∑︁N−1
j=0 k[j, :]⊙ u[i− j, :] where the kernel k ∈ RN×d is a learnable weight matrix. Convolutions can

be computed in time O(Nd logN) using the Fast Fourier Transform (FFT) and the convolution theorem:
y = u ∗ k = FFT−1(FFT(u)⊙ FFT(k)) [Cooley and Tukey, 1965]. While purely convolutional architectures
match or outperform attention in certain domains (e.g. vision [Tay et al., 2022, Gu et al., 2021], audio [Goel
et al., 2022], and time-series [Zhang et al., 2023]), they trail by a large margin on language [Fu et al., 2023a].

Recent work has closed much of this gap by combining convolutions with gating (i.e. elementwise multiplication
of the input with a transformed version of itself). Gating was first proposed in the context of convolutions
by Dauphin et al. [2017], but more recently it has played a central role in state-of-the-art sub-quadratic
language models, some of which claim attention-level quality [Fu et al., 2023a, Wang et al., 2022, Poli et al.,
2023a, Peng et al., 2023, Zhai et al., 2021, Fu et al., 2023b, inter alia]. Though they may appear different on
the surface, these sub-quadratic architectures can all be expressed in terms of convolutions and gating. See
Appendix H.2 for detailed descriptions of these architectures and their similarities. This work analyzes the
differences between attention and the broad class of gated convolution mixers.

3 Identifying the associative recall problem

In this section, we measure the perplexity gap between gated convolutions and attention and show that single
skill termed associative recall accounts for 82% of the gap on average. This is surprising because prior work
shows gated convolutions solve a synthetic version of associative recall perfectly. Informed by our analysis,
we define a new synthetic formulation that better reflects real data. This task facilitates our analysis of why
the gap occurs (Section 4) and how to fix it (Section 5).

3.1 Fine-grained analysis of downstream quality

Perplexity Gap We pretrain a suite of large language models with different sequence mixers across 3
scales (70M-360M) for 10B tokens on the standard Pile language modeling setting using the EleutherAI
GPT-NeoX training infrastructure [Gao et al., 2020, Andonian et al., 2023]. In the main paper, we compare
attention to three state-of-the-art gated convolution sequence mixers: H3, Hyena, and RWKV [Fu et al.,
2023a, Poli et al., 2023a, Peng et al., 2023].3 We further include a pure long-convolution model to underscore
the importance of gating. In Appendix F, we include results on additional sequence mixers [Hasani et al., 2022,
Sun et al., 2023]. We use a strong Transformer attention baseline with rotary embeddings and SwiGLU MLPs
following the Llama architecture [Touvron et al., 2023]. We also use this strong training recipe when training

3RWKV is commonly referred to as an RNN. We show it can be viewed as a convolution (Appendix H.2.2).
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the attention-free sequence mixers. For experimental details and hyperparameters for all architectures see
Appendix C.

Across scales, we find that attention outperforms the gated convolutions by at least a third of a perplexity
point on average: the minimum gaps are +2.14, +0.59, +0.35 PPL at 70M, 160M, and 360M parameter
scales, respectively. We report overall test perplexity in Table 1. Though these gaps are relatively small on
average, models may still perform very differently on different subsets of data [Eyuboglu et al., 2022].

Associative Recall Perplexity To better understand the differences between attention and gated
convolutions, we perform a fine-grained analysis of next token predictions and observe that convolution-based
models struggle to recall associations previously seen in context. For example, in Fig. 1, the model must
recall the association between “Tim” and the last name “Rice”. Following a long line of prior work, we call
this skill associative recall (AR) [Willshaw et al., 1969, Hopfield, 1982] (see Appendix A for an extended
discussion of AR’s history in machine learning). In Appendix D.1.1, we provide annotated Pile examples to
demonstrate the phenomenon qualitatively.

Quantifying AR performance. It is challenging to derive a quantitative measure of associative recall performance
on the Pile because we don’t know which next token predictions in raw text require associative recall. We
use a simple heuristic to identify these tokens, which we refer to as AR Hits. An AR Hit is the last token
of an n-gram repeated in context (e.g. the second occurence of “Rice” in Fig. 1). However, some common
n-grams (e.g. “of the”) could have been memorized during training, so we factor in the frequency with which
an n-grams appeared in the training data. This heuristic enables us to scale our analysis to over 10 million
tokens of Pile validation data.

We stratify Pile tokens into two slices based on this heuristic and report perplexity on each in Table 1:

1. AR Hits: (6.4% of tokens) Tokens in the final position of a bigram (a pair of consecutive tokens) which
previously appeared in context, but ≤ 1250× during training.

2. Other tokens: (93.6% of tokens) Tokens in the final position of a bigram which did not previously
appear in context or it appeared > 1, 250 times during training.

In Figure 1, we visualize these slices by plotting log-perplexity against the frequency with which bigrams
appear during training. Strikingly, the gap between attention and gated convolutions is the largest on AR
hits with the fewest occurrences. On the other tokens, there is no gap.

In Table 1, we also compute the percentage of the difference in perplexity between attention and each model

that is due to AR tokens: ∆ log(ϕAR)·|TAR|
∆ log(ϕ)·|T | , where ϕ is the perplexity and T is the set of tokens in the test set.

This quantity can also be interpreted as the fraction of the overall gap that would close if a model matched
attention on the AR slice. We find that the AR slice accounts for 82% of the average quality gap between the
gated convolutions and attention.

To evaluate the AR capacity of larger models, we train two 1.4 billion parameter attention and Hyena models
for 50 billion tokens on the Pile and repeat this analysis (see Table 5). Strikingly, a 70 million parameter
attention model is a full perplexity point better in the AR slice than this 1.4B Hyena model that is 20× its
size (2.41 vs. 3.43 ppl.). In Appendix G, we also evaluate open-source RWKV and attention models trained
up to 7 billion parameters. We use a controlled semi-synthetic dataset to measure AR capacity and show that
RWKV’s performance degrades sharply as we increase the number of queries in an example while attention
performs consistently well Appendix G.

3.2 Formalizing the problem: Multi-Query Associative Recall

This gap in associative recall perplexity is very surprising because prior work shows gated-convolutions can
perfectly solve a formalized version of the task [Fu et al., 2023a, Poli et al., 2023a, Olsson et al., 2022]. In
this synthetic task, the input x contains a sequence of bigrams representing key-value pairs from a random
dictionary followed by a single query token. For example, the correct output for the input below would be 3:

A 4 B 3⏞⏟⏟⏞
Key-Value

C 6 E 2 F 1 C 6 G 8 → B ?⏞⏟⏟⏞
Query

5



Gated convolutions (e.g. H3, Hyena, RWKV) can solve this task perfectly for most sequence lengths.

These conclusions are inconsistent with our findings on the Pile, as described above, so we ask how this
formulation of AR differs from the way AR manifests in real language. We identify a major difference. In
real world inputs, the language model often needs to perform multiple associative recalls in a single forward
pass, at varying positions in the sequence (e.g. “Tim Rice” and “March 2018” in Fig. 1. We refer to this as
Multi-Query AR (Mqar). We formally define the Mqar problem as follows: 4

Definition 3.1 (Multi-Query-AR (Mqar)). We are given an input sequence x = {x0, . . . , xN−1} where each
xi ∈ C is a token drawn from a vocabulary of size c = |C|. The task is to check, for every query 1 ≤ i < N ,
whether there exists a 0 ≤ j < i such that ui ≡ uj . If so, output uj+1.

For example, the correct output for input below would be 4, 6, 1, 2, 3:

A 4 B 3 C 6 F 1⏞⏟⏟⏞
Key-Value

E 2→ A ? C ? F ?⏞⏟⏟⏞
Query

E ? B ?

In Section 4, we use Mqar to explain the quality gap between gated convolutions and attention.

4 Explaining the associative recall problem

In this section, we provide an explanation for the gap in associative recall performance by analyzing the
formal Mqar task theoretically and empirically. In Section 4.1, we define a simple gated-convolution
architecture, called BaseConv, which we show can simulate a broad class of architectures built from gating
and convolutions. This allows us to make general statements that apply to popular gated-convolution
architectures like Hyena, RWKV, or H3. In Section 4.2, we show that there exist theoretical solutions to
Mqar that could in principle be learned by BaseConv, and we analyze their complexity in terms of model
width and depth. In Section 4.3, we use experiments on synthetic data to show that solving Mqar with
BaseConv (and other gated-convolution architectures) requires model dimension to scale linearly with the
sequence length. In contrast, attention solves Mqar consistently in our experiments with model dimension
scaling independently of sequence length. These empirical scaling laws provide a potential explanation for
the AR gap and, alongside our theoretical analysis, point to the potential solutions discussed in Section 5.

4.1 BaseConv: a minimal gated convolution operator

In this section, we define our minimal gated-convolution architecture, called BaseConv. Given a function,
we would like to know the most efficient model (e.g. parameters, FLOPs) that can represent the solution.
In this work, we show we can precisely reason about this question for representing polynomial functions
with gated convolutions as gating and convolutions are both polynomial operations. The standard model
defining computational complexity for polynomials is by the size of the smallest arithmetic circuit that can
compute the polynomial. We define the BaseConv gated convolution operator which is exciting because
(1) it is universal in that it that can simulate any arithmetic circuit C (with only a poly-log blowup in the
corresponding parameters) and (2) it is simple to implement efficiently (19 lines of pure PyTorch including
imports, see Appendix B).

Definition 4.1 (BaseConv Operator). Given an input u ∈ RN×d, the BaseConv operator for layer ℓ is
defined as:

y :=
(︁
u ·W ℓ + bℓ1

)︁⏞ ⏟⏟ ⏞
Linear Projection

⊙
(︁
hℓ ∗ u + bℓ2

)︁⏞ ⏟⏟ ⏞
Convolution

(1)

where the layer is parameterized by learnable filters h ∈ RN×d, a linear projection W ℓ ∈ Rd×d, and ‘bias’
matrices b1, b2 ∈ RN×d. The ⊙ is component-wise product and convolution of two matrices is computed as
convolution of the corresponding columns.

4In Appendix H.7.1 we define a formal, general form of this definition, used in the theoretical analysis.
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In our experiments, each BaseConv layer uses Õ(Nd + d2) parameters5 and can be computed in Õ(Nd2)
operations. For our theoretical results, we can assume the weight matrix W ℓ is restricted to a class of
matrices that support near-linear time matrix multiplication (e.g. Kaleidoscope matrices, see Definition H.3).
Under this assumption, BaseConv uses Õ(Nd) parameters and Õ(Nd) FLOPs (Proposition H.6). We now
state the equivalency result between arithmetic circuits and BaseConv a “canonical” representation of
arithmetic circuits (Theorem H.21 in Appendix H.5):

Theorem 4.2 (Equivalency to Arithmetic Circuits). For an arithmetic circuit C of size s and depth ∆ that
takes u ∈ RN×d as input, there exists an equivalent BaseConv operator that uses Õ(s∆) parameters and
Õ(∆) layers.6

In other words, any gated convolution model with small number of layers can be simulated by BaseConv with
only a (poly)logarithmic blowup in parameters and layers. We note that arithmetic circuits are a very well
studied computation model in computational complexity Bürgisser et al. [1996]. Many well-known efficient
algorithms on matrices (e.g. the FFT or the current best known matrix-matrix multiplication algorithm) in
fact give small arithmetic circuits. However, arithmetic circuits are inherently discrete objects – we cannot
learn them via gradient descent. Theorem 4.2 shows that (up to poly-log loss in parameters), we can instead
learn over BaseConv models. This result generalizes a similar result from Dao et al. [2020] for the special
class of linear functions: we generalize the earlier result to the class of all polynomials.

For specific gated convolution layers, we can get rid of the poly-logarithmic factor blowup–we observe in the
appendix that BaseConv and Hyena models can simulate each other with only a small constant blowup in
parameters (Proposition H.12 in Appendix H.5).

4.2 Theoretical analysis of gated convolution capacity and associative recall

In this section, we provide theoretical Mqar solutions that could in principle be learned by each architecture
and analyze their complexity in terms of model width and depth. First, we note that attention solves Mqar
with parameters independent of sequence length (Proposition H.27).

Proposition 4.3 (Attention). Given an input u ∈ {0, 1}N×3c, Attention (even without using soft-max)
solves Mqar for u using O(c2) parameters, O(Nc2 + N2c) time complexity and O(1) layers.

It is natural to wonder then if all pairwise comparisons among tokens are necessary to solve Mqar. Indeed,
in the RAM setting, a sequential algorithm can simply utilize N logarithmic insertion and membership
queries to solve Mqar in subquadratic time. Unfortunately, any model attempting to emulate this would
require Ω(N) layers. Instead, we observe that we can parallelize this algorithm using dyadic intervals and
achieve a depth of Õ(1) (Proposition H.30). We then convert this algorithm into an arithmetic circuit and
apply Theorem 4.2 to derive an equivalent BaseConv model. This allows us to prove new upper bounds for
BaseConv models applied to Mqar, which improves upon the quadratic time complexity of attention to
near-linear runtime at the cost of using poly-log layers (Theorem H.37 in Appendix H.7).

Theorem 4.4 (Data-Independent Filters7). Given an input u ∈ {0, 1}N×O(log c) to Mqar (where we assume
that distinct tokens are embedded into distinct vectors in {0, 1}O(log c)), there exists a BaseConv operator
that solves Mqar for u using Õ(N log c) parameters as well as time complexity and Õ(1) layers.

Nevertheless, the poly-logarithmic number of layers in the above result is undesirable in practice. But, we
show that using input-dependent convolution filters, one can get constant many layers (for a sub-class of
inputs). Towards that end, we define the interaction distance between a query qi and the matching key kj as
i−j. This then allows us to present the corresponding upper bound for data-dependent mixing (Theorem H.38
in Appendix H.8).

Theorem 4.5 (Input-Dependent Filters). Given an input u ∈ {0, 1}N×c to Mqar (where we assume that the

5We use Õ(·) to hide poly-log factors.
6The formal statement in the Appendix has a sharper version of this result in terms of the circuit ‘width’.
7We note here that existing architectures also use data-independent convolution filters, meaning the filter is defined as a

function of the model parameters, independent of the input.
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Attention hybrid

Autocorrelation
Filters
Programmatic 
Filters

RWKV

Attention
Hyena

BaseConv
H3

Figure 2: The x-axis is the model dimension and the y-axis is accuracy on Mqar. Increasing the sequence
length correlates with increased task difficulty. Both rows use the same experimental setup, but evaluate
different sequence mixers. (Top, Claim 1) Gated convolutions and attention. We observe the
gated convolutions require larger dimensionality than attention to solve the task. (Bottom, Claim 2)
Input-dependent filters. Models with input-independent aggregation achieve improved scaling over the
gated-convolutions with input-independent aggregation.

tokens are embedded as one-hot encoding in {0, 1}c and there exists at most t distinct interaction distances),8

there exists a BaseConv operator that uses input-dependent kernels to solve the above case of Mqar using
O(t ·Nc) parameters and O(1) layers.

4.3 Empirical analysis of gated convolution capacity and associative recall

In this section, we measure empirically how model dimension must scale in order for different sequence mixers
to solve Mqar.

Setup We train and evaluate models on a synthetic Mqar with vocabulary size 8, 192, varying model
dimension and sequence length from 64 to 512. Appendix E provides further details on the formulation
and construction of this synthetic task. Following Olsson et al. [2022], we train two layer models with a
Transformer backbone that interleaves sequence mixing and state mixing (MLPs). For each architecture, we
sweep four learning rates from log(−4) to log(−2)} for each architecture, and report maximum test accuracy.

Our results, which are summarized in Figure 2, support two main claims:

Claim 1 (Gated-convolutions and attention). Gated-convolution models with two layers require model
dimension to scale at least linearly in sequence length in order to solve associative recall, while attention
models can solve it with near-constant dimensionality. We compare attention and BaseConv as well as three
popular instantiations of gated-convolution architectures: RWKV, H3, and Hyena [Peng et al., 2023, Fu et al.,
2023c, Poli et al., 2023a]. In the top row of Fig. 2, attention solves Mqar perfectly at all sequence lengths
using a constant model dimension of 64. In contrast, Mqar does not achieve accuracy > 0.9 unless d ≥ N .

Claim 2 (Input-dependent filters). Using input-dependent filters in gated-convolution models can close
some of the gap to attention. In Theorem 4.5, we show that BaseConv with input-dependent filters
could solve Mqar with improved scaling. In this solution, we construct a filter that spikes at position j
if matching keys are separated by j tokens. We evaluate two approaches for constructing this filter: (1)
programatically (i.e. hard-coded comparisons between token ids) or (2) with autocorrelation, which could
learn to perform fuzzy-matches (see Appendix H.8). In the bottom row of Fig. 2, we see that BaseConv
with programmatic input-dependent filters achieves near-constant scaling in model dimension and that
BaseConv with autocorrelation input-dependent filters achieves improved scaling over BaseConv with
input-independent filters.

8Note that the interaction distances can be arbitrary: there is just a bounded number of distinct distances.
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These input-dependent filters cannot easily be made to satisfy causality and using an O(N logN) filter per
gap could be expensive if each gap applies only to a small number of bigrams. A simpler and perhaps
more efficient way to solve the problem would be to introduce a small amount of attention to an otherwise
BaseConv model [Fu et al., 2023a]. As the first natural baseline, we evaluate an attention hybrid on
synthetic Mqar and show that it achieves improved scaling in Figure 2. Next, we put these empirical and
theoretical insights into practice on Pile language modeling.

5 Closing the Associative Recall Gap

In this section, we evaluate hybrid BaseConv-Attention models that leverage different sparsity patterns.
We show that hybrids with input-dependent sparsity patterns can close most of the gap to attention, while
maintaining sub-quadratic scaling. We also show that BaseConv hybrids can outperform attention-only
models by up to a full perplexity point, all while being dramatically simpler to implement and analyze than
prior hybrids [Fu et al., 2023a] (see implementation in Appendix B. We describe the architectures in Section 5
and results on Pile language modeling in Section 5.

Sparse BaseConv-Attention Hybrids We evaluate hybrids composed primarily of BaseConv layers
and three attention layers (6.3% of layers at 354M parameters and 10% at 168M parameters). We augment
the attention layers with operators that selectively apply attention to some tokens based on a selection
function f : RN×d → {0, 1}N . They take as input u ∈ RN×d and output y ∈ RN×d:

y[i, :] = softmax(
1√
d
q[i, :]k⊤)v · f(u)[i] (2)

where q,k,v are query, key, and value projections, as in attention. We evaluate four choices for f :

(1) Full attention. First, we evaluate the performance of full attention hybrids. These hybrids correspond to
fixing f(u)[i] = 1 for all i in Eq. (2). Prior work has shown full attention hybrids to be effective, but they do
not explain why supplementing gated convolutions with attention is necessary [Fu et al., 2023a]. Based on our
findings in Section 3, we hypothesize that sparse attention applied only to associative recall hits may suffice.

(2) Random selection. As a control, we evaluate sparse attention randomly applied to tokens. This corresponds
to a stochastic selection function where f(u)[i] is drawn from a Bernoulli. Many prior works have employed
sparse attention patterns like this one, which are independent of the input [Zaheer et al., 2020, Child et al.,
2019a, Beltagy et al., 2020, inter alia.].

(3) Programmatic selection. Next, to evaluate our hypothesis that attention is needed for associative recall,
we prototype a programmatic selection function that selects only those tokens that might be associative recall
hits. Specifically, f(x[i, :]) is 1 if the token xi previously occurred in the sequence. In practice, we compare
raw token ids, not token embeddings.

f(x)[i] =

{︄
1 if there exists j < i such that xi = xj

0 otherwise
(3)

(4) Learned selection. Finally, we prototype a learned selection function f(u)[i] = σ(u[i, :] ·W ) parameterized
as a simple linear layer with sigmoid activation. We fix a hyperparameter k and select the top-k tokens with
the highest score in each batch. This allows us to compute attention in O(ndk) time. During training, we
add small amount of Gaussian noise to the top-k calculation to encourage exploration and use an auxiliary
loss to encourage sparse selection: ℓf (u) = 1

N max(0,
∑︁N

i=1 f(u)[i]− k). This approach is most similar to the
recently proposed SeqBoat architecture [Ren et al., 2023]. We discuss the differences in Appendix A.

Downstream Evaluations We evaluate the prototypes on Pile language modeling. We take BaseConv
architectures at the 150M and 360M parameter scales and add input-dependent selection to three layers
(details in Appendix C.2). Results are in Table 2. We validate that the prototypes close the overall and AR
quality gaps to attention when added to the BaseConv backbone.
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Overall Slices
Model Param (M) TFLOPs AR Hits Other Tokens

Attention 125 2.46 11.01 (2.40) 2.16 (0.77) 12.45 (2.52)

BaseConv 168 2.46 12.90 (2.56) 8.68 (2.16) 13.29 (2.59)
+ Random selection 162 2.44 12.13 (2.50) 5.33 (1.67) 12.83 (2.55)
+ Programmatic selection 162 2.44 11.06 (2.40) 2.70 (0.99) 12.19 (2.50)
+ Learned selection 166 2.44 11.06 (2.40) 3.20 (1.16) 12.14 (2.50)
+ Full attention 166 2.58 9.57 (2.26) 2.01 (0.70) 10.76 (2.38)

Attention 360 6.23 9.44 (2.25) 1.98 (0.69) 10.62 (2.36)

BaseConv 354 4.81 11.01 (2.40) 5.98 (1.79) 11.52 (2.44)
+ Random selection 365 5.06 12.94 (2.56) 6.17 (1.82) 13.62 (2.61)
+ Programmatic selection 365 5.06 9.54 (2.26) 2.35 (0.86) 10.50 (2.35)
+ Learned selection 351 5.06 9.59 (2.26) 2.61 (0.96) 10.58 (2.36)
+ Full attention 351 5.10 8.59 (2.15) 1.95 (0.67) 8.91 (2.19)

Table 2: Language model perplexity on slices of the PILE. We evaluate Hyena and BaseConv with
Hybridization and Selective look-up at 160 and 355M parameters. We validate that the methods enable the
gated convolutions to outperform attention.

At 360M parameters, BaseConv with just 3 attention layers can outperform the Transformer, while requiring
fewer FLOPs. Our hybrid attention-BaseConv models outperform attention only models by 0.85 perplexity
points while enabling an 18% reduction in total FLOPs vs attention. However, this uses full quadratic
attention. We next show that sparse attention localized to potential AR tokens, is also sufficient to close the
gap, validating our insights on the role of input-dependence for MQAR. At 360M parameters, programmatic
selection closes 85% of the gap between pure BaseConv and attention on the AR slice, in contrast to the
random selection control. Learned selection closes 72% a of the gap using just k = 256 (sub-quadratic)
attention positions per example.

6 Discussion and Conclusion

We present an extensive analysis of gated convolution architectures in light of their recent popularity. We
identify a persisting quality gap between efficient convolution and inefficient attention based architectures,
largely due to a single failure mode associative recall. We design a new multi-query associative recall (Mqar)
analysis tool, which correlates with downstream AR quality. We theoretically and empirically explain the
gap is due to insufficient data-dependent mixing in gated convolutions and we show minimal architectures
that close the gap on the Pile.

Our results in analyzing gated convolutions go beyond the conventional wisdom that attention is the “right”
model. A significant amount of work focuses on improving the efficiency of attention [Dao et al., 2022, Dao,
2023, Katharopoulos et al., 2020a] and theoretically studying the exact power of attention [Hahn, 2020, Merrill
et al., 2022, Keles et al., 2023]. Attention is often used as the goalpost for what is needed downstream. We
hope our contributions highlight the value of Mqar, and more broadly tasks tied to real language modeling,
as a proxy to study.
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Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. arXiv
preprint arXiv:2302.10866, 2023a. 1, 1, 2, 3.1, 3.2, 4.3, A.2, A.3, B, C.2, E.1, 2, H.2, 8

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated convolutional
networks. In International conference on machine learning, pages 933–941. PMLR, 2017. 1, 2
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Samuel Weinbach. GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch, 9 2023. URL
https://www.github.com/eleutherai/gpt-neox. 3.1

Ramin Hasani, Mathias Lechner, Tsun-Huang Wang, Makram Chahine, Alexander Amini, and Daniela Rus.
Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022. 3.1, A.3

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu Wei.
Retentive network: A successor to transformer for large language models, 2023. 3.1, A.3, D.1.2, 3, 6, H.2,
H.2.3, 12

Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher Lee-Messer, Jared Dunnmon,
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Appendix

The appendix includes the following content:

1. Appendix A provides an extended discussion of related work and concepts.

2. Appendix B provides a code implementation of the BaseConv architecture.

3. Appendix C gives details for the experiments, including model architectures and hyperparameters.

4. Appendix D provides additional analysis of how Mqar appears in real data across a variety of language
distributions.

5. Appendix E provides a formal definition of the Mqar problem, synthetic construction procedure, and
experimental details.

6. Appendix F provides additional synthetic experiments and analysis.

7. Appendix G provides experiments and analysis for how the Mqar gap changes as we scale the gated
convolution and attention architectures.s

8. Appendix H gives proofs and additional discussion for the theoretical analysis in our work.

A Extended Related Work

We are inspired by and build on prior work in mechanistic interpretability (Appendix A.1), efficient architecture
design (Appendix A.2), and input-dependent architectures (Appendix A.3).

A.1 Mechanistic Interpretability, Synthetic Languages, and Associative Recall

Work in mechanistic interpretability aims to decompose the capabilities of a neural network into human-
understandable algorithms that can be attributed to specific parameters in the model [Olah, 2022, Power
et al., 2022, Elhage et al., 2021, Cammarata et al., 2020]. Some of these works, use synthetic data to validate
mechanistic interpretations of neural networks [Olsson et al., 2022]. This relates to a broader line of work
using synthetic languages to study language model architectures [Wang and Eisner, 2016, White and Cotterell,
2021, Allen-Zhu and Li, 2023, Ravfogel et al., 2019, Xie et al., 2021]. Mechanistic design puts mechanistic
interpretations to use in designing new architectures and learning algorithms. Several works in architecture
research have used synthetic tasks to validate architecture designs [Kitaev et al., 2020].

Our work is focused on one particular synthetic task: associative recall. Motivated by psychological models
of how humans associate and retrieve information, work in the early days of neural network research focused
on developing systems capable of associative recall [Willshaw et al., 1969, Feldman et al., 1981, Hopfield,
1982]. For example, Hopfield networks, proposed in 1982, are a recurrent neural network explicitly designed
to support associative (“content-addressable”) memory [Hopfield, 1982]. More recently, several notable
recurrent neural network mechanisms (e.g. neural turing machines, LSTMs, and RNNs with fast weights)
were evaluated on a synthetic version of associative recall [Graves et al., 2014, Ba et al., 2016, Zhang and
Zhou, 2017, inter alia.]. These works use a formulation of associative recall very similar to the single-query
associative recall in our work. Since the rise of large language models, several works have argued that
LLMs ability to perform in-context learning is due, at least in part, to the associative recall capabilities of
attention [Elhage et al., 2021, Olsson et al., 2022].

A.2 Efficient Language Modeling Architectures

We first briefly review the efficiency motivations for the recent excitement around gated convolution architec-
tures. While attention requires compute that scales as O(N2) in sequence length N , convolutions scale as
O(N logN) [Cooley and Tukey, 1965]. Ideal, inference complexity is O(1) in sequence length, as provided by
recurrent neural networks. State-space models can be computed either as a convolution or recurrence, to
achieve both sub-quadratic training and constant inference complexity in sequence length [Gu et al., 2021].

16



Architectures that use implicit convolutional filters [Poli et al., 2023a], can be converted to an SSM via a
simple distillation step [Massaroli et al., 2023].

A.3 Input-Dependence in Sequence Modeling Architectures

In an input-dependent sequence model, the way tokens are aggregated across the sequence is controlled by
the data, not just the model parameters. We highlight several prior works related to our study that explore
input-dependent sequence models.

• Attention [Vaswani et al., 2017] achieves input-dependent sequence mixng since the Q, K, and V
terms are achieved via linear combinations of the input x. For instance, Q = xWQ for some learned
weight matrix WQ.

• Input-Independent Convolution Architectures. Given the quadratic scaling of attention, Gu
et al. [2021] propose S4, an architecture that use long convolutions to process the input. CKConv
Romero et al. [2022] uses a convolution filter that is implicitly parametrized by an MLP of the relative
positions of the observations in a time-series. A line of subsequent work improved upon S4 by changing
the parametrization [Gupta et al., 2022, Gu et al., 2022, Mehta et al., 2022, Ma et al., 2022, Fu et al.,
2023c] or changing the SISO convolutions to MIMO convolutions [Smith et al., 2023]. The convolution
filter in each of these architectures is input-independent. The linear convolution layer alone cannot
perform MQAR [Fu et al., 2023a].

• Input-Dependence via Gating. Since pure convolution architectures with input-independent filters
struggle to perform associative recall, an important task in in-context learning [Olah, 2022], subsequent
work proposed to introduce input-dependence by adding a gating or element-wise multiplication
operation to the architecture, where both the inputs to the operator are defined in terms of the input
[Fu et al., 2023a, Poli et al., 2023a]. The multiplication is generally y = σ(Wx) ⊙ x. The filters
remain input-independent. These architectures demonstrate promising results on the associative recall
synthetics proposed in prior work Fu et al. [2023a], Poli et al. [2023a] and provide large downstream
improvements over S4.

Prior work suggests the models match attention in quality [Poli et al., 2023a, Fu et al., 2023b, Peng
et al., 2023] and this has led to increasing use of these architectures [Nguyen et al., 2023, toe, 2023],
however our results suggest there is still a sizable gap to attention. We show the gap is largely due to
the models’ recall abilities and capture this behavior in a novel synthetic task. We theoretically show
that dimension scales in sequence length when solving MQAR with gated convolutions.

Selective S4 Wang et al. [2023] learns which positions to mask prior to passing the input to the next
long convolution (S4) layer. This resembles gating (which also controls which information flows forwards
to the next layer).

• Input-Dependent Convolution Architectures Prior work introduces convolution architectures
with input-dependent filters [Yang et al., 2020, Kosma et al., 2023]. For instance, Yang et al. [2020]
parametrizes the convolution filter as a linear combination of n projections of the input. Liquid S4
Hasani et al. [2022] is also motivated by introducing input-dependence to S4. To accomplish this, the
work proposes including correlation terms between the input tokens during state mixing. We evaluate
Liquid S4 and find the architecture lags attention on the Pile by 4.4 perplexity points in Table 3.

Overall Slices % of gap due to
Model Param (M) AR Hits Other Tokens

Attention 125 12.37 (2.52) 2.32 (0.84) 14.04 (2.64) —
Liquid S4 145 16.80 (2.82) 22.75 (3.12) 16.42 (2.80) 52.6%

Table 3: Validation perplexity on the Pile after pretraining on 5B tokens. We report log perplexity with
negative log-likelihood in parentheses. AR vs. non-AR token slices are defined in Section 3.
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• Recurrent Architectures The pure long-convolution architectures can also be computed as recurrences.
Letting si represent the hidden state at time i, ui be the input at time i, and A,B,C be projection
matrices, the recurrence computes:

si+1 = f(Asi + Bui)

yi = Csi

In a linear RNN like S4, the A, B, and C matrices are input-independent and f is an identify function.
However, recent work proposes input-dependent RNNs (e.g. RetNet Sun et al. [2023]), where a subset
of these matrices is input-dependent (e.g. A = xWa). Note that linear attention mechanisms can
also be expressed as input-dependent RNNs [Katharopoulos et al., 2020b]. While these architectures
improve over gated convolutions in Mqar synthetic experiments and downstream quality on the Pile
(Appendix F), we observe and prove that the required RNN hidden state dimensionality grows with the
number of key-value pairs that the model needs to recall in the sequence (Appendix H.6). In contrast,
attention complexity does not scale with the number of key-value pairs to recall.

• Hybrid Architectures Finally, we can combine architectural components that provide different
capabilities. Prior work proposes architectures that hybridize sub-quadratic layers and attention [Fu
et al., 2023a, Ma et al., 2022, Ren et al., 2023], but does motivate this choice from a mechanistic design
perspective. Further, H3 without attention Fu et al. [2023a] and MEGA [Ma et al., 2022], which uses
blocked attention, underperform attention on language modeling.

SeqBoat [Ren et al., 2023] shares closest resemblance to our learned selection module. SeqBoat introduces
a different module that learns where to use attention however, their model can end up using full attention
at a layer, providing quadratic scaling in the worst case. Different from SeqBoat, we use an auxiliary
loss to encourage sparsity in the selected attention positions and select the top-k positions to remain
sub-quadratic.

Overall, our work finds that previously proposed sub-quadratic models do not efficiently solve the Mqar
task.

B Code Listing

In this section, we include code listings for the BaseConv operator. We begin with the a standard
BaseConv implementation that uses an explicitly-parameterized long convolution. Below, we also provide
the implementation for BaseConvwith an implicitly-parameterized long convolution.

1 import torch

2

3 def fft_conv(u: torch.Tensor , k: torch.Tensor):

4 """

5 Args:

6 u (torch.Tensor): (batch_size , d_model , seq_len)

7 k (torch.Tensor): (d_model , l_max)

8 Return:

9 y (torch.Tensor): (batch_size , d_model , seq_len)

10 """

11 seqlen = u.shape [-1]

12 fft_size = 2 * seqlen

13 k_f = torch.fft.rfft(k, n=fft_size) / fft_size

14 u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size)

15 y = torch.fft.irfft(u_f * k_f , n=fft_size , norm="forward")[..., :seqlen]

16 return y

17

18 class BaseConv(torch.nn.Module):

19

20 def __init__(self , d_model: int , l_max: int , ** kwargs):

21 super().__init__ ()

22 self.d_model , l_max = d_model , l_max ,

23 self.projection = torch.nn.Linear(self.d_model , self.d_model)

24 self.filter = torch.nn.Parameter(torch.randn(self.d_model , l_max), requires_grad=

True)
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25

26 def forward(self , u: torch.Tensor):

27 """

28 Args:

29 u (torch.Tensor): (batch_size , d_model , seq_len)

30 Return:

31 y (torch.Tensor): (batch_size , d_model , seq_len)

32 """

33 u_conv = fft_conv(u.transpose (1, 2), self.filter).transpose (1, 2)

34 u_proj = self.projection(u)

35 y = u_conv * u_proj

36 return y + u

Listing 1: Explicit BaseConv implementation. Implementation of the BaseConv layer with explicitly-
parameterized long convolutions. The implemtnation is 19 lines excluding comments and whitespace.

In some of our experiments, we interleave BaseConv layers that use explicit short convolution filters (like
those in torch.nn.Conv1d) and with BaseConvlayers that use implicit long convolution filters (like those
described in Poli et al. [2023a]).

Below we include the code for BaseConv with an implicit convolution.

1 class PositionalEmbedding(nn.Module):

2 def __init__(self , emb_dim: int , seq_len: int , ** kwargs):

3 """ Complex exponential positional embeddings for implicit long convolution filters.

"""

4 super().__init__ ()

5 t = torch.linspace(0, 1, seq_len)[None , :, None] # 1, L, 1

6 bands = (emb_dim - 1) // 2

7 t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None , :, None]

8 w = 2 * math.pi * t_rescaled / seq_len # 1, L, 1

9 f = torch.linspace (1e-4, bands - 1, bands)[None , None]

10 z = torch.exp(-1j * f * w)

11 z = torch.cat([t, z.real , z.imag], dim=-1)

12 self.z = nn.Parameter(z, requires_grad=False)

13

14 def forward(self , L):

15 return self.z[:, :L]

16

17 class BaseImplicitConv(nn.Module):

18 """

19 BaseConv with implicit filter parameterized by an MLP.

20

21 Args:

22 d_model (int): Number of expected features in input and output.

23 l_max (int): The maximum sequence length.

24 d_emb (int , optional): Dimension of the positional embeddings. Must be odd and $\
geq$ to 3 (time , sine and cosine). Defaults to 3.

25 d_hidden (int , optional): The number of features in the hidden layer of the MLP.

Defaults to 16.

26 """

27

28 def __init__(self , d_model: int , l_max: int , d_emb: int=3, d_hidden: int = 16,):

29 """

30 Long convolution with implicit filter parameterized by an MLP.

31 """

32 super().__init__ ()

33 self.pos_emb = PositionalEmbedding(d_emb , l_max)

34 self.filter_mlp = nn.Sequential(nn.Linear(d_emb , d_hidden), torch.nn.ReLU(), nn.

Linear(d_hidden , d_model))

35 self.projection = torch.nn.Linear(d_model , d_model)

36

37

38 def forward(self , u: torch.Tensor , *args , ** kwargs):

39 """

40 Args:

41 u (torch.Tensor): (batch_size , seq_len , d_model)

42 Return:
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43 y (torch.Tensor): (batch_size , seq_len , d_model)

44 """

45 filter = self.filter_mlp(self.pos_emb(u.shape [1])).transpose(1, 2)

46 u_conv = fft_conv(u.transpose (1, 2), filter).transpose(1, 2).to(dtype=u.dtype)

47 u_proj = self.projection(u)

48 y = u_conv * u_proj

49 return y + u

Listing 2: Implicit BaseConv implementation. Implementation of the BaseConv layer with implicitly-
parameterized long convolutions. (The implementation is 34 lines excluding comments and whitespace).

C Downstream Experimental Details

We use A100 80GB Nvidia GPUs to run all experiments. We use the reference training infrastructure from
https://github.com/EleutherAI/gpt-neox for all pretraining runs. The Pile data is tokenized using the
GPT2BPETokenizer and all models see the data in the same order.

Below we provide details on the hyperparameters and settings for training each architecture studied in the
paper on the real-world Pile data. In Appendix C.1 we summarize and justify our method for measuring the
quality gap due to associative recall between the convolution architectures and attention. In Appendix C.2,
we provide details on the pure gated convolution architectures, attention baseline, and hybrid architectures
studied in the paper.

C.1 Measuring the Mqar Gap on Real Language Data

Here we summarize our method for computing the amount of quality gap between the convolution and
attention models that is ascribed to associative recall capability (e.g., in Table 1):

1. Given an input sequence, we identify recurring bigrams (i.e. bigrams that have already appeared in the
sequence at a prior position). Since bigrams that appear frequently during training may be memorized
by the model, rather than requiring the model to perform recall at inference-time, we only measure AR
log-probabilities with respect to bigrams that are seen fewer than a threshold number of times during
training. The threshold used in all the experiments in our submission is 1, 250 training occurrences in
the 10B tokens of pretraining data.

2. We measure the log-probability assigned to the true bigram completion. This bigram completion is
referred to as an AR Hit in our work. This protocol assumes that the model can produce the completion
by recalling the prior occurrence of the bigram in the sequence.

3. For the model being evaluated m, and the attention model M , we measure the % of the quality gap
between m and M ascribed to associative recall capability as follows. Let the average log-probability
for all AR Hits across validation sequences be lmH and lMH for m and M respectively. Let the average
log-probabilities of all tokens in the validation sequences be lm and lM respectively. Let pH be the
proportion of AR Hit tokens in the validation data. As the final gap ascribed to AR, we report:

min(
(lmH − lMH )pH

lm − lM
, 1.0)

Shown above, if m is better than attention (M) overall and M is better than m at AR, we ascribe
100% of the gap to AR.

We briefly discuss two important decisions in this protocol. First, we only measure explicit bigrams, i.e.
bigrams are identified based on token ids in the sequence. However, intuitively, models may also perform
associative recall between related concepts produced by a contextual language model. For instance, language
may contain bigrams in which one word is swapped by a synonym. As another example, a model may see
a sentence such as “The iPhone is outside my budget so I instead purchased an Android phone. ... It was
much ” and predict “cheaper” for the blank, recalling that the sequence is discussing cost. Our work does
not measure such fuzzy (more abstract) recall instances.
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Next, we measure the gap based on log-probabilities rather than perplexity. This is simply because we
want to make our metrics independent of the number of tokens in each of the slices of the validation set.
Approximately 6.4% of validation tokens are AR Hits with the threshold set to consider bigrams seen less
than 1, 250× during training.

C.2 Gated Convolution Downstream Architectures

We evaluate over 4 previously proposed architectures as well as BaseConv, the theoretically “canonical”
representation for gated convolutions, introduced in Section 4, for a total of 14 training runs. Here we provide
details on the hyperaparamters and configurations used for training each architecture. We also provide details
on the FLOPs computation.

• Attention [Vaswani et al., 2017, Touvron et al., 2023] We train using the the specifications in
Table 6. The parameters are sourced from the Transformer implementation in https://github.com/

EleutherAI/gpt-neox.

• Hyena [Poli et al., 2023a] We train using the specifications in Table 8. The parameters are sourced
from the Appendix of Poli et al. [2023a] and the implementation is sourced from the provided reference
at https://github.com/HazyResearch/safari.

• H3 [Fu et al., 2023a] We train using the specifications in Table 10. The hyperparameters and
implementation use the reference at https://github.com/HazyResearch/H3.

• RWKV [Peng et al., 2023] We train using the specifications in Table 11. The parameters are sourced
from the Appendix of Peng et al. [2023] and the details provided in the reference implementation at
https://github.com/BlinkDL/RWKV-LM. We specifically evaluate RWKV-V4.

• Pure long convolution We train using the specifications in Table 13. We evaluate a simple long
convolution based model with no gating as a reference point. While this is a generic architecture, we
use the reference implementation and initialziations/regularizations from recent work Fu et al. [2023c].
The implementation is provided at https://github.com/HazyResearch/safari.

• BaseConv We train using the specifications in Table 15. The implementation, amounting to 19 lines
of PyTorch, is shown in Appendix B.

We provide the equations used to compute the FLOPs for each model, letting D be the model width, H the
head dimension, L the depth, N the sequence length, V the vocabulary size, and B the batch size. FLOPs
equations for different architecture types are provided in Table 7 (attention), Table 9 (Hyena and adapted for
H3), Table 14 (pure long convolution), and Table 16 (BaseConv). We compute FLOPs for RWKV as in the
Appendix of [Peng et al., 2023], based on the number of linear layer parameters, plus input and language
modeling head FLOPs.

Hybrid Architectures In the main paper and appendix, we evaluate a series of architectures with a hybrid
of gated convolution and non gated convolution layers. For these architectures, we use the same number of
layers as the pure gated convolution architecture (as reported in Appendix C.2). The hybridized (non gated
convolution) layers are inserted as replacements of the gated convolution layer. For each architecture, we
simply evenly intersperse the two types of layers. We evaluate with the following replacement layers in this
work:

• Full attention following the specification of attention in Appendix C.2.

• Random selection We evaluate sparse attention randomly applied to tokens as introduced in Section 5.

• Programmatic selection We apply sparse attention on AR hit tokens as introduced in Section 5.
When processing the input sequence, we can causally determine if a bigram of raw token ids is repeated
in the sequence to construct the attention pattern.

• Learned selection We learn the positions on which to use attention by introducing a simple linear
layer with sigmoid activation to the architecture that is trained to output high scores if attention should
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be applied to the token. We can take the top-k positions to control the computational complexity of
the layer. This approach is introduced in Section 5.

We use these protocols to validate that input-dependence suffices to address the associative recall gap and
highlight that there are varied approaches to incorporating input-dependence in an architecture.

D Extended Downstream Analysis of Mqar

In this section, we provide additional analysis of how Mqar manifests in real language data. We extend
our discussion of associative recall on the Pile Gao et al. [2020]. We also perform analysis on sources in
RedPajama including ArXiv and StackOverflow Together [2023].

D.1 Additional Discussion of Mqar in the Pile

The Pile is a widely popular language modeling corpus Gao et al. [2020].

1. First, in Appendix D.1.1, we provide several real examples of how associative recall occurs in the Pile
to demonstrate it’s role in language modeling. We color code the tokens to highlight differences in the
next token predictions from Attention, RWKV and Hyena models.

2. Next, in Appendix D.1.2, we explain where associative recall hits tend to occur in sequences. This is
useful to guide the design of sequence mixers — if associative recall tends to occur in specific places,
the input-dependent sequence mixer may not need to compute all N2 token-to-token interactions for
every sequence.

D.1.1 Pile Examples

For the examples below, the legend is: tokens are colored as both correct, both incorrect, Attention correct
and Hyena incorrect, Attention incorrect and Hyena correct. For tokens where the models disagree, the
predictions of each model are provided in parentheses.

while lunch -ing at the Ma -ison Ber -gey b -ist -ro near his apartment : he had been mus
-ing about(rwkv= about, attn= on) the ...(723 tokens)... the young waitress -’s sigh at
the Ma -ison Ber(rwkv= Bl, attn= Ber) -gey(rwkv=-nd, attn=-gey)

Example D.1: Comparing next token predictions of a 350M parameter Attention model and
a 350M parameter RWKV model. In this example, the models need to perform associative recall to
correctly predict “Bergey” in the 4-gram Ma-ison Ber-gey. The previous mention of the 4-gram was more
than 700 tokens earlier in the passage.

The second(rwkv= first, attn= second) section is all about Pixar Fest , and the
(rwkv= third, attn= the) final section is all(rwkv= about, attn= all) about Pixar Pier
. ...(480 tokens)... -If(rwkv=-Disney, attn=-If) there wasn -âĢ -t enough Pixar at
Disneyland , Pixar Fest(rwkv= would, attn= Fest) is(rwkv= at, attn= is) coming to the
Disneyland Resort on April 13 , 2018 .

Example D.2: Comparing next token predictions of a 350M parameter Attention model and
a 350M parameter RWKV model. In this example, the models need to perform associative recall to
correctly predict “Fest” in the bigram Pixar Fest.
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David Mus -a P -id -cock is an indigenous English revert to(rwkv=-ant, attn= to) Islam
,(rwkv=,, attn= who) who formed the Islamic Party of Britain in 1989 , at London Central
Mosque(rwkv= Mosque, attn= University) .(rwkv=., attn= in) ...(711 tokens)... -I have
just found out that David Mus(rwkv= Cameron, attn= Mus) -a P(rwkv= (, attn= P)

-id(rwkv=-asha, attn=-id) -cock(rwkv=-ham, attn=-cock) is(rwkv= (, attn= is) speaking
at a Yorkshire Forum debate today in Bradford with

Example D.3: Comparing next token predictions of a 350M parameter Attention model and
a 350M parameter RWKV model. In this example, the models need to perform associative recall to
correctly predict a middle and last name. Note that the middle and last names span several tokens.

-The most common map elements(hyena= in, attn= elements) in Sub -Space are prizes ,
or ” -g(hyena=-points, attn=-g) -reens ”(hyena=-",, attn=") ( -for their green color -).
Pri -zes allow players to upgrade their ships and gain(hyena= other, attn= gain) special
weapons or abilities(hyena= abilities, attn= upgrades) . While prizes are generally
plent -ifully scattered throughout the map(hyena= map, attn= game) , the upgrades or
abilities(hyena= bonuses, attn= abilities) they award are randomly selected by the
zone . -Energy -Rather than dealing with ammunition counts and hit points separately ,
Sub -Space combines both of these elements into a single unit of measure : energy . Each
ship is equipped with a certain amount of energy , from which(hyena= which, attn= the)

it must draw its health as well as its weapons power . ...(1,526 tokens)... Speed Zone
proved to be less popular than the Jack -pot -/ -Running , Chaos , or ” -flag ” zone games
and support was discontinued shortly after Sub -Space(hyena=-space, attn=-Space) went
to retail .

Example D.4: Comparing next token predictions of a 350M parameter Attention model and
a 355M parameter Hyena model. In this example, the models need to perform associative recall to
correctly predict the name of the game “SubSpace”. Note that both models correctly perform the recall when
there is a short gap between tokens, but only Attention correctly performs recall when the gap is greater
than 1,000 tokens.

Thus far , no systematic study has been published on is -olation(hyena=-olation, attn=-ot)

via sequential centrif -ug -ation , and no systematic analysis is ...(491 tokens)... Fig .
1(hyena= 1, attn=-Â␣l) -is -olation via sequential(hyena= centrif, attn= sequential)

centrif -ug -ation .

Example D.5: Comparing next token predictions of a 350M parameter Attention model and
a 355M parameter Hyena model. In this example, the models need to perform associative recall to
correctly predict the technique “sequential centrifugation”.

Miss -ouri(hyena=-ouri, attn=-iss) Southern has had 14 Major League Base-
ball draft selections since the draft began in 1965 . ...(149 tokens)...

Fred G . Hughes Stadium(hyena= Stadium, attn= Field) ( -opened in 1975
) is named(hyena= the, attn= named) after former(hyena= the, attn= former)

J -op -lin Globe publisher and(hyena= and, attn= Fred) Missouri South-
ern(hyena= State, attn= Southern) board of reg -ents member

Example D.6: Comparing next token predictions of a 350M parameter Attention model and
a 355M parameter Hyena model. In this example, the models need to perform associative recall to
correctly predict the name of the university “Missouri Southern”.
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D.1.2 Distribution of Mqar Hit Positions in Sequences

In Figure 3, we compute and plot the distances between AR hits and its prior bigram (key-value) occurrence
in the sequence across the Pile training data. The distances follow a power law distribution where most AR
hits are within 100 token positions from the prior bigram occurrence, and a long tail of AR hits requires
long-range interactions.

Implications This suggests that architectures which compute token-to-token interactions within windows,
where the window size is less than the full sequence length, may suffice to handle Mqar in real data. For
instance, sliding window attention may help with AR [Beltagy et al., 2020, Sun et al., 2023, inter alia.]. Prior
work leverages the observation that local attention captures most of the token dependencies to improve
efficiency Sukhbaatar et al. [2019].

Figure 3: Across the Pile training data, we measure the distances between n-grams and their prior occurrences
in the provided context. We plot the frequency across distances, finding it follows a power law distribution.

D.2 Analyzing Mqar across Varied Language Distributions

We use the HuggingFace sample of the popular RedPajama language modeling corpus Together [2023] to
understand how the prevalence of Mqar hits and and ways in which the hits appear vary across language
distributions. We analyze text sequences from the following sources: ArXiv papers, Books, C4, Common
Crawl, GitHub, Stack Exchange, and Wikipedia.

First we profile the prevalence of Mqar hits by computing the number of repeated bigram occurrences per
sequence. Each sequence is 2, 048 tokens in length and exclude bigrams containing NLTK stop words or
punctuation from the computation. The prevalence of hits and the distances between hit tokens and the
prior bigram occurrence in context vary across distributions as shown in Figure 4 and 5.

Arxiv, Github, and Stack Exchange contain relatively structured or richly formatted langauge data. We
observe that the prevalence of Mqar hits is relatively high in these three sources in Figure 4. We inspect
why these documents contain many bigrams. In Arxiv, we find domain-specific terminology, groups of related
citations, Latex commands, and mathematical equations are frequently repeated within the same document.
In GitHub and Stack Exchange, we find function and variable names are frequently reused. Meanwhile, the
C4, CC, Books, and Wikipedia bigrams are highly variable. The topics and documents in these corpora are
relatively diverse and unstructured.
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Figure 4: Mqar hits by sub-source of the RedPajama language corpus Together [2023]. Hits are measured
using the repeated bigrams in each sequence of length .

Figure 5: We measure the distance between n-grams and their prior occurrences in the provided context
across sequences from each source. We plot the frequency across distances, finding it follows a power law
distribution.

25



If the placement V of the hyperplanes is not generic, then the induced subdivision Σ is not a trian-
gulation. However, the above bijection is unaffected and, in particular, the fine type of a vertex of
CDA can be read off the corresponding facet of Σ. We define the crosscut complex ccutΣ ⊆ 2[n]×[d]

to be the unique simplicial complex with the same vertices-in-facets incidences as the polyhedral
complex Σ. The crosscut complex is a standard notion in combinatorial topology and can be
defined in more generality (see Björner). The following observation is immediate from the definitions.

Proposition D.1. For V an ordered sequence of n points in T d−1 let A = A(V ) be the
corresponding tropical arrangement and let Σ be the regular subdivision of ∆n−1 ×∆d−1 induced by
V . Then the fine cotype ideal fcI is Alexander dual to the Stanley-Reisner ideal of ccutΣ.

The crosscut complex encodes the information of which collections of vertices lie in a common face.
Hence, the crosscut complex is a purely combinatorial object and does not see the affine structure
of the underlying polyhedral complex.

Example D.7: ArXiv sequence where the initial bigram occurrence is highlighted in red and the repeated
bigram with the Mqar hit is highlighted in blue.

1 /**

2 * Adds a directed edge to the graph from pt1 to pt2. Precondition: Both

3 * GeographicPoints have already been added to the graph

4 *

5 * @param from The starting point of the edge

6 * @param to The ending point of the edge

7 * @param roadName The name of the road

8 * @param roadType The type of the road

9 * @param length The length of the road , in km

10 * @throws IllegalArgumentException If the points have not already been

11 * added as nodes to the graph , if any of the arguments is null , or if the

12 * length is less than 0.

13 */

14 public void addEdge(GeographicPoint from , GeographicPoint to,

15 String roadName , String roadType , double length)

16 throws IllegalArgumentException {

17

18 if (from == null || to == null || roadName == null

19 || roadType == null || length < 0 || !mapNodes.containsKey(from)

20 || !mapNodes.containsKey(to)) {

21 throw new IllegalArgumentException ();

22 }

23

24 if (! mapNodes.get(from).hasEdge(to)) {

25 mapNodes.get(from).addNeighbor(to , roadName , roadType , length);

26 numEdges ++;

27 }

28 }

Example D.8: GitHub sequence where substrings such as “IllegalArgumentException”, “roadType” (and
other variable names), “GeographicPoint” (and other data types), “containsKey” (and other function calls)
are repeated throughout.

E Synthetic Mqar Experimental Details

In this paper, we propose Mqar as a useful tool to help explain gaps between three popular sequence modeling
layers — Transformers or Sparse Transformers, Convolutions, and Recurrences. In this section, we detail
the motivation behind the design of Mqar and include extended experiments on additional architectures.
We provide a procedure for generating Mqar synthetic data, which can help in the development of new
architectures.
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E.1 Mqar Generation Procedure

Here we provide additional discussion on the properties of our Mqar synthetic data. The objective of the
synthetic analysis is to help explain the differences in language modeling behavior between different classes of
language modeling architectures, as observed on real-world data Section 3. Synthetic recall tasks were used
in the development of Hyena Poli et al. [2023a] and H3 Fu et al. [2023a], and Olsson et al. [2022] to study
Transformer in-context learning behavior.

1. Attention: Attention can perform recall trivially (Proposition 4.3). The bound is independent of the
sequence length N .

2. Convolutions: The gated convolution models use input-independent filters. We show in Section 4 that
the dimensionality for solving recall grows with the input sequence length. Real language modeling can
require performing O(N) recalls in one forward pass. Our intuition is that it is difficult to efficiently
compute all token-interaction distances with such a filter.

3. Recurrences: Recurrent models include a single hidden state as an information bottleneck. We show
in Appendix H.6 that the gated recurrence requires Ω(N) bits to solve Mqar for d ≤

√
N for model

dimension d. Our intuition is that it is difficult to store large numbers of key-value pairs seen in
the sequence in low-dimensional hidden states.

Motivated by this analysis, we propose Procedure 1 for generating synthetic Mqar data. This procedure
allows toggling two simple properties of the synthetic dataset, specified below, to reveal the differences
between the sequence modeling architecture families. We also discuss deviations from the prior work that
uses synthetic recall data.

1. Size of the Key-Value Map: The number of unique key-value pairs appearing in each example in
the dataset. In Procedure 1, we use the input parameter D to toggle this value.

2. Number of Gaps in the Data: The number of unique token-interaction distances required to perform
the recall task. Prior work assumes there is a single query token that requires recall per example, failing
to test whether the architecture can support multiple token-interaction distances. In Procedure 1, we
use the parameters N (sequence length), D (size of the key-value map per example), and α to toggle
this property. We enforce that the token-interaction distances appearing in the synthetic examples
follow a power-law distribution specified by α (based on Figure 3). Keeping α and D constant while
varying N changes the number of unique token-interaction distances appearing in the example.

Finally, noting that the vocabulary size appears in the theoretical bounds for all three architecture families
(Section 4), we increase the vocabulary size to be much larger than the model dimension as typically seen in
language modeling (30k - 50k tokens). Prior work uses vocab sizes ≤ 40 tokens.

Algorithm 1 Mqar Synthetic Procedure

Input: Vocabulary C, Sequence length N , Power-law parameter α, Number of Key-Value Pairs D
Output: Synthetic sequence

1: Let the first half of C be keys K and the second half be values V .
2: Pair each key token k ∈ K with a random value token v ∈ V .
3: Sub-select D random key-value pairs to include in the sequence.
4: Place the D key-value pairs at the start of the sequence (i.e. consuming the first 2D positions).
5: Place a second occurrence of each d ∈ D at a distance from the first occurrence in the sequence. The

distance for each d ∈ D is selected at random from the positions [2D..N ], where the probability of
choosing each position follows the power law distribution specified by α.

6: Output the synthetic sequence.

E.2 Training Details

We first describe the architectures evaluated on Mqar synthetic data and then the training hyperparameters.
We evaluate the following four architecture categories in the experiments:

1. Attention Standard GPT-2 style multi-headed Transformer architecture with learned positional
embeddings Brown et al. [2020]. Attention, the core building block of Transformers, is defined in
Section 2. The architecture for synthetics has 1 attention head.

2. Gated convolutions (Hyena Poli et al. [2023a], RWKV Peng et al. [2023]). Gating, convolutions, and
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the class of gated convolutions are defined in Section 2.
3. Gated recurrences (RetNet Sun et al. [2023]). RetNet proposes computing attention over chunks of

the sequence and combining this with a recurrence over the sequence. We evaluate this architecture
(“Chunked RNN”) with chunk sizes of 32 and 8 in Figure 6.
In RetNet, hidden states are updated as:

Sn = γSn−1 + AT
nVn

Outputs at each timestep are defined as
On = CnSn

where γ ∈ R1, A = xWa for input x ∈ N× and learned weight matrix Wa ∈ Rd×d, C = xWc for
Wc ∈ Rd×d, V = xWv for Wv ∈ Rd×d.
RetNet similar to a state-space-model (SSM) Gu et al. [2021], except for that the matrices A and C are
input-dependent (i.e. they are functions of the input x). We note that RetNet is a special case of the
recently proposed Mamba Anonymous [2023a] and GateLoop Anonymous [2023b] architectures, which
replace the γ term in RetNet with yet another input-dependent matrix.
The RetNet model is formally defined in Appendix H.2.3.

4. Sparse attention Several works have proposed methods for efficiently computing attention Tay et al.
[2022]. We evaluate two classical methods: sliding window attention Beltagy et al. [2020], Zaheer et al.
[2020] and blocked window attention Child et al. [2019b], Qiu et al. [2019].
Consider a window size w. Sliding window attention permits each token to attend to the prior w tokens
in the sequence. Blocked window attention first splits the sequence into blocks of size w tokens, and
then computes standard causal attention within the block.

For all synthetic runs in the main paper and the appendix, we use the following training protocol:
• Optimizer and schedule: Weight decay 0.1, warmup duration 10%, linear warmup, AdamW optimizer.

For each run, we sweep the learning rates in np.logspace(−4,−2, 4). We train for 64 epochs.
• Training duration: The global batch size is 8 for input sequence length or model dimension ≥ 512,

16 for input sequence length or model dimension ≥ 256, and 64 otherwise.
• Width and depth: For all synthetic experiments, we use exactly two layers (each with one sequence

mixer and one MLP, interleaved with layer normalization). The model dimension, sequence length, and
number of KV pairs are varied based on the relevant experiment (see Appendix F).

• Position information: No position embeddings are used for the pure convolution runs (input-dependent
nor input-independent filters). Position embeddings are used for the runs with any attention variant.

• Data: We train and evaluate each model on 100, 000 and 3, 000 data points respectively. The data and
data order for all runs are constant.

F Extended Results on Mqar Across Architectures

In this section, we provide further validation that Mqar is a useful diagnostic tool to explain the behaviors
of a wide variety of architecture families. We show:

1. Gated convolutions In the main paper, we claim the gated convolution models with input-independent
filters use larger dimensionality than attention as the number of token-interaction distances required for
the task increases (N , holding α and D constant in Procedure 1).

2. Gated recurrences In this section, we show gated recurrrent models use larger dimensionality than
attention to solve the task as the number of unique key-value pairs to store (D in Procedure 1) increases.

3. Sparse attention In this section, we validate that sliding window attention helps close the Mqar gap
when the token-interaction distances are relatively short, and degrades on longer distances. Meanwhile,
blocked window attention struggles to close the gap (intuitively tokens earlier in a block are able to
interact with few other tokens in the sequence). Concretely, in Appendix D, we observe that repeated
bigrams in the Pile and RedPajama corpora tend to occur within neighboring tokens in the context.

We finally show the architectures that perform well on Mqar also perform well on downstream real-world
AR on the Pile. We use the experimental protocols outlined in Appendix E for the synthetic experiments
and Appendix C for the downstream experiments in this section.
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Figure 6: Mqar quality as we vary the model dimension for synthetic datasets that contain different numbers
of key-value pairs per example. (Top) We focus on the evaluation of the input-dependent gated recurrent
RetNet Sun et al. [2023] architecture. The architecture combines chunked attention with recurrence and
we evaluate at two different chunk sizes (8 and 32). For reference, we include gated convolution (Hyena)
and attention. (Bottom) We evaluate two efficient attention variants – sliding window and blocked window
attention – at two window sizes (8 and 32).

F.1 Synthetic Experiments

Experiment 1: Increasing the number of token-interaction distances per example. To construct
the synthetic dataset following Procedure 1, we set α = 0.1 and |C| = 8, 192 for all experiments. We
vary N ∈ {64, 128, 256, 512} to increase the number of token-interaction distances that will appear in the
examples and we vary the model dimension ∈ {64, 128, 256, 512}. The results of this experiment are shown
in Fig. 2, validating that the gated convolutiosn use larger dimensionality than attention as the number of
token-interaction distances required for the task increases.

Experiment 2: Increasing the number of key-value pairs occurring per example. To construct
the synthetic dataset following Procedure 1, we set α = 0.1 and |C| = 8, 192 for all experiments. We fix
N = 256 and vary D ∈ {N32 ,

N
16 ,

N
8 ,

N
4 } to increase the number of key-value pairs occurring per example. For

each number of key-value pairs per example, we additionally vary the model dimension ∈ {64, 128, 256}. The
results are shown in Fig. 6. We validate that as the number of associative recall keys and values exceeds the
window size, the model again uses increased dimensionality relative to full O(N2) attention to solve the task.
While Fig. 6 highlights RetNet, we note that it is a special case of the recently released Mamba Anonymous
[2023a] and GateLoop Anonymous [2023b] architectures. Corresponding to this experiment, we theoretically
show in Appendix H.6 that the gated recurrence uses Ω(N) bits to solve Mqar for d ≤

√
N . Intuitively, it is

difficult to store a large number of key-value pairs in low dimensional hidden states.

Experiment 3: Increasing the range of token-interaction distancs per example. To construct the
synthetic dataset following Procedure 1, we set α = 0.1 and |C| = 8, 192 for all experiments. We fix N = 256
and vary D ∈ {N32 ,

N
16 ,

N
8 ,

N
4 } to increase the number of key-value pairs occurring per example and the range

of token-interaction distances per example. For each number of key-value pairs per example, we additionally
vary the model dimension ∈ {64, 128, 256}.
The results are shown in Fig. 6, validating that sliding window attention closes the gap to attention when the
number of KV pairs is within the window size. I.e., 16 KVs means that there are 16 keys and 16 values, for
32 total tokens. Sliding attention with window size 32 performs well up until 16 KVs and degrades beyond
this point relative to attention models of the same dimensionality. Sliding window attention with window
size 8 does not perform well on any setting, as expected. Blocked attention also not perform well – intuitively
tokens at the beginning of a block lack sufficient prior context to attend to.
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Overall Slices % gap due to
Model Param (M) TFLOPs AR Hits Other Tokens AR Hits

Attention 73 1.52 12.99 (2.56) 2.41 (0.88) 14.76 (2.69) —
Long Conv 76 1.20 20.28 (3.01) 40.25 (3.70) 19.25 (2.96) 44.4%
H3 72 1.33 15.78 (2.76) 13.86 (2.63) 15.94 (2.77) 63.2%
Hyena 72 1.34 15.13 (2.72) 9.00 (2.20) 15.74 (2.76) 60.8%
RWKV 72 1.89 16.10 (2.78) 14.11 (2.65) 16.26 (2.79) 57.9%

Attention 125 2.46 11.01 (2.40) 2.16 (0.77) 12.45 (2.52) —
Long Conv 128 1.74 16.98 (2.83) 25.62 (3.24) 16.46 (2.80) 40.1%
H3 168 2.55 12.06 (2.49) 6.75 (1.91) 12.60 (2.53) 88.4%
RWKV 169 2.08 11.64 (2.45) 5.70 (1.74) 12.29 (2.51) 100.0%
RetNet (128) 152 2.60 11.15 (2.41) 3.01 (1.10) 12.45 (2.55) 100%
Hyena 160 2.41 11.60 (2.45) 5.00 (1.61) 12.28 (2.51) 100%
+ Slide Attn. (64) 159 2.28 11.57 (2.45) 5.23 (1.65) 12.30 (2.51) 100%
+ Slide Attn. (256) 159 2.29 10.65 (2.37) 3.42 (1.23) 11.52 (2.45) 100%

Attention 360 6.23 9.44 (2.25) 1.98 (0.69) 10.62 (2.36) —
Long Conv 360 4.08 13.13 (2.57) 13.27 (2.59) 13.12 (2.57) 40.5%
H3 357 4.85 10.38 (2.34) 4.81 (1.57) 11.00 (2.40) 65.8%
Hyena 358 5.03 10.07 (2.31) 3.83 (1.34) 10.75 (2.38) 98.2%
RWKV 351 4.31 9.79 (2.28) 3.82 (1.34) 10.51 (2.35) 100.0%

Table 4: Language modeling validation perplexity on the Pile. After pretraining on 10B tokens of
Pile data, we report log perplexity with negative log-likelihood in parentheses. We report overall scores, and
for the AR vs. non-AR token slices defined in Section 3. FLOPs are computed for inputs of 2048 tokens
based on the equations in Appendix C.

F.2 Demonstrating Mqar as a Tool for Architecture Development

In the main paper, we provide experiments showing that there is gap between the gated convolution and
attention models on synthetic Mqar data and correspondingly in the downstream Pile results. In Table 4,
we show that the trends of RetNet and sparse attention on Mqar also carry to the downstream results. We
hope Mqar synthetic data may be useful in future architectural development.

G Mqar Perplexity Gap and Model Size

In this section, we investigate how the associative recall gap changes as we increase the model size to a billion
parameters and beyond. Overall, the results suggest that the larger models improve in memorizing bigrams
from the training data, but do not rapidly improve in in-context learning (perplexity on rare bigrams).
Below, we pretrain at the 1.4Bn parameter scale and observe that the 70M parameter attention model is a
full perplexity point better on AR than this 1.4Bn Hyena model (Table 1). We discuss these results further
in (Section 3).

Overall Slices % of gap due to
Model Param (B) TFLOPs AR Hits Other Tokens AR Hits

Attention 1.4 1.52 8.19 (2.10) 1.91 (0.65) 9.86 (2.29) —
Hyena 1.4 1.20 9.65 (2.27) 3.43 (1.23) 11.01 (2.40) 40.3%

Table 5: Large-scale language model validation perplexity on the Pile. After pretraining on 50B
tokens of Pile data, we report log perplexity with negative log-likelihood in parentheses. We report overall
scores, and for the AR vs. non-AR token slices defined in Section 3. FLOPs are computed for inputs of 2048
tokens based on the equations in Appendix C.
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Figure 7: Perplexity of RWKV 7B and Llama2 7B parameter models on synthetic MQAR data as a function
of the number of recalls required per input / number of key-value pairs per input (P ). Inputs are constructed
using each model’s full vocabulary.

Open-source 7B parameter models We next evaluate the RWKV (gated convolution) Peng et al. [2023]
and Llama 2 (attention) pretrained models at the 7B parameter scale Touvron et al. [2023].9 These are both
popular models that took a significant amount of effort to train, towards maximizing quality. We find that
there is a gap between RWKV and attention at the 7B scale and that it increases as the model needs to
conduct more recalls per sequence (P below).
We summarize the experimental protocol below.

1. Justifying the experimental protocol. Since frequent bigrams may just be memorized by the model
and not require in-context recall, our work measures AR quality on infrequent bigrams in validation
sequences (Figure 1, Appendix C.1). We do not have access to the custom training data mixtures
used in training RWKV or Llama 2 to measure bigram frequencies, so we use a synthetic test to fairly
measure the AR capabilities.

2. Evaluation dataset. We construct the synthetic dataset following Algorithm 1, where each sequence
contains P token pairs, or “bigrams”. Each bigram, containing a “key” token and a “value” token,
appears twice in the sequence. On the second occurrence of a “key” token, the model should look back
to the prior occurrence to output the corresponding “value” token. We measure the AR perplexity of
the model based on its ability to predict the correct “value” token as the next word for these repeated
keys. The sequences are constructed using the models’ vocabulary tokens.

3. Evaluation details. We evaluate (inference only, no training) on sequence lengths of 1024 tokens. We
measure the AR perplexity when the sequences contain P ∈ {16, 32, 64, 128, 256} key-value pairs, using
1000 samples per P value. The tokens that do not contain a key or value are simply filled with a fixed
token id (so this token is repeated frequently in the sequence). We plot perplexity for AR and non-AR
tokens (fixed token) vs. P . We find RWKV quality degrades with P on the AR slice (blue line), while
all other lines remain flat. MQAR remains problematic at scale.

Overall our results suggest that simply scaling the model size may not close the MQAR quality gap between
the gated convolutions and attention.

Measuring AR Gap with Scale In the main paper, we measure the AR perplexity on downstream data
based on bigrams that are seen < 1, 250× during pretraining. However, we hypothesize that larger models

9We specifically evaluate the RWKV-Raven model downloaded from https://huggingface.co/docs/transformers/model_

doc/rwkv and the Llama 2 model downloaded from https://github.com/facebookresearch/llama.
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may memorize a larger number of bigram pairs seen in the training dataset, but do not rapidly gain the
capability to perform associative recall as well as attention in-context. In-context learning is defined as
learning from examples provided in context [Xie et al., 2021].
Concretely, the gap between the Hyena / RWKV and attention models at the 350m scale is 1.85 / 1.84
perplexity points when we focus on bigrams seen < 1, 250× during pretraining (Table 1). If we instead
focus on bigrams seen 1× during pretraining, the gap to attention quality is 12.0 / 13.2 perplexity points
respectively. The gated convolutions appear to struggle in the regime of rare bigrams that require the model
to use the context.

H Details on Theoretical Analysis

This section provides proofs and extensions to the theoretical results in the main paper.

H.1 Preliminaries and Notation

H.1.1 Notation

We denote the all 1 row vector of size k, given by
[︁
1 1 . . . 1 1

]︁
, and the all 0 row vector of size k, given

by
[︁
0 0 . . . 0 0

]︁
, as 1k and 0k, respectively. We also construe the standard basis vector ei as a column

vector in these notes, and adhere to the following matrix indexing convention: M[i, j] is the entry in the ith
row and the jth column, M[i, :] ∈ F1×n denotes the ith row, and M[:, j] ∈ Fm×1 denotes the jth column of
M ∈ Fm×n. We then use 1m×n,0m×n ∈ Fm×1 to denote the matrix of all 1s and 0s, respectively.
Next, we denote the Hadamard product of vectors u,v ∈ Fn as u ⊙ v; the operation can be extended to
matrices by applying the Hadamard product column-wise across the matrices. This is commonly referred to
as (element-wise) gating. For vectors u,v ∈ Fn, we also denote their linear (or acyclic) convolution as u ∗ v
and cyclic convolution as u⊛ v.

Polynomial Notation. Because convolution is intimately tied to operations on polynomials, it is convenient
to use them to discuss the inputs and outputs of gated convolution models. Let us define maps poly,poly∗ :
F

n → F[X]/(Xn) such that

poly(u) =

n−1∑︂
i=0

u[i]Xi, and poly∗(u) =

n−1∑︂
i=0

u[i]Xn−1−i.

This allows us to map between vectors and polynomial. Accordingly, we also define coeff : F[X]/(Xn+1)→ F
n

as the map converting polynomials back to vectors: coeff(u(X)) = u with u[i] defined as the coefficient in
u(X) at degree i.
These operations allow us to interpret the convolution of vectors in terms of polynomial multiplication [Hei-
deman and Burrus, 1988]. More specifically, we have

u ∗ v = coeff (u(X) · v(X) mod Xn) , and

u⊛ v = coeff (u(X) · v(X) mod Xn − 1) .

We can similarly interpret the Hadamard product of vectors u⊙ v as the Hadamard product of polynomials
u(X)⊙ v(X):

u⊙ v = coeff (u(X)⊙ v(X)) = coeff

(︄
n−1∑︂
i=0

(u[i] · v[i]) ·Xi

)︄
.

Arithmetic Circuit Notation. We briefly introduce the notation of arithmetic circuits [Volkovich, 2016],
the focus of Appendix H.5. An arithmetic circuit C with variables X ≜ {x1, x2, . . . , xn} over a field F is
interpreted as a directed acyclic graph, where the input nodes are labelled by either the variables from X
or constants from F and the internal nodes are labelled by + or × with the output being the polynomial
computed at the output node.
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We shall also refer to the size of the circuit as the number of nodes, the depth of the circuit as the length of
the longest path between an input node and the output node, and the width of the circuit as the number
of parallel operations in the circuit, or ‘wires’ which will be intersected by a horizontal ‘cut’ through the
circuit. Moreover, the degree of a circuit is defined as the degree of the polynomial computed by the circuit.
We summarize this with the following definition:
Definition H.1. An arithmetic circuit C is an (n, s,∆, w)-circuit if C is an n-variate arithmetic circuit of
size s and of depth at most ∆, and width w.

Model Notation. Now we introduce the notation we will be using for defining layers. In what follows, we
denote u ∈ RN×d as the model input; N as the sequence length; L as the number of stacked layers, indexed
by ℓ; and d as the input (embedding) dimension.

H.1.2 Summary of the Results

The outline of our results are as follows: In Appendix H.2 we introduce gated convolution models and define
H3, Hyena, RWKV, RetNet, and BaseConv. In Appendix H.3 we introduce a set of primitive operations
that BaseConv can implement. We use these as tools in the subsequent proofs. Then, in Appendix H.5, we
show that a general arithmetic circuit of size s and degree at most ∆ can be simulated by BaseConv. We
use the above results to show all models built from gating and convolutions can be simulated by BaseConv.
This helps us analyze the class of gated convolutions, beyond a specific proposal (e.g. Hyena).
Next, we study the representational power that gated convolutions and attention use to solve Mqar. In
Appendix H.7, we derive a BaseConv model inspired from dyadic intervals to show the dimensionality for
gated convolutions (with input-independent filters) solve Mqar. Next, we analyze the dimensionality for a
BaseConv model with data-dependent kernels to solve Mqar in Appendix H.8.

H.2 Gated Attention-Free Models

We now present formal definitions of gated convolution and recurrence models with respect to the 5-tuple of
parameters (N,L, d,N ′, d′).
Definition H.2. An (N,L, d,N ′, d′)−Gated Convolution Model is a stacked sequence to sequence model
with L layers such that:

1. Input and output are N × d matrices,
2. Each layer’s operations consist of element-wise gating, convolution, linear projection, and
3. All the individual gated convolution layers take in N ′ × d′ matrices and output N ′ × d′ matrices. We

refer to the tuple (N ′, d′) as the inner dimension of the model.
We define the Hyena, RWKV, RetNet, and BaseConv layers to make step 2 more concrete. We also assume
that the input u ∈ RN×d is embedded into u′ ∈ RN ′×d′

such that

u′[n, t] =

{︄
u[n, t] if n < N, t < d

0 otherwise.

The output from the last layer z ∈ RN ′×d′
is transformed into output y ∈ RN×d by extracting the top left

N × d entries in z.
Next, we define the class of weight matrices that we will use in the linear projections in the models:
Definition H.3. The linear projection Linearm,m has its matrix representation as the weight matrix10W ∈
Rm×m taken to be a K-matrix for W ∈ (BB∗)poly- logm

poly- logm (Definition H.17). Consequently, each matrix W

has Õ(m) parameters and runtime for matrix vector multiplication, and allows us to represent general linear
transformations with low-depth linear arithmetic circuits [Dao et al., 2020]. We will also need linear maps
Linearm,n for m < n, where each take the corresponding square matrices from Linearm,m and note that

such matrices has Õ(n) parameters and runtime for matrix vector multiplication.
Remark H.4. We note that the weight matrix W ∈ Rd×d above is taken to be a dense matrix in the
experiments. However, for our theoretical results, we restrict the linear projection in our models as per

10I.e. Linearm,m(z) = W · z.

33



Definition H.3. In the rest of the paper, unless mentioned otherwise all linear projections will follow
Definition H.3.
Next, we define three popular gated convolution models that we study in our work: Hyena Poli et al. [2023a],
RWKV Peng et al. [2023], and RetNet Sun et al. [2023].

H.2.1 The Hyena Layer

We will now outline the Hyena layer [Poli et al., 2023b]. Hyena takes a sequence u ∈ RN×d as input and
produces L + 1 projections p1, . . . , pL, v by passing y though a linear layer and applying a short convolution
afterwards. The algorithm then recursively performs a point-wise multiplication of the projection with the
convolution of the filter hl with the previous output. We summarize this process in Algorithm 3.

Algorithm 2 Projection (u,h)

Input: Input sequence u ∈ RN×d, a short convolution filter h ∈ RN .
1: In parallel for 0 ≤ n < N : ẑ[n, :]← Lineard,(L+1)d (u[n, :]) so that ẑ ∈ RN×(L+1)d

2: In parallel for 0 ≤ t < (L + 1)d : z[:, t]← h ∗ ẑ[:, t]
3: Reshape and split z ∈ RN×(L+1)d into p1, . . . ,pL,v, where pℓ,v ∈ RN×d for ℓ ∈ [L].
4: return p1, . . . ,pL,v.

Algorithm 3 Hyena (u,h,hs)

Input: Input sequence u ∈ RN×d, set of convolution filters h1, . . . ,hL ∈ RN×d, short convolution filter
hs ∈ RN .

1: p1, . . . ,pL,v ← Projection(u,hs).
2: z0 ← v
3: for ℓ = 1, . . . , L do
4: In parallel for 0 ≤ t < d : zℓ[:, t]← pℓ[t, :]⊙

(︁
hℓ[:, t] ∗ zℓ−1[:, t]

)︁
.

5: return zL

Remark H.5. In Algorithm 3, L is used to denute the nuber of recursive applications of the Hadamard
product and convolutions, not the number of layers Note that asymptotically, the recursive step does not
make a difference.
Henceforth, we will refer to a model consisting of L Hyena layers is a gated convolution model with associated
tuple (N,L, d,N, (L + 1)d) as (N,L, d,N, (L + 1)d)−Hyena.

H.2.2 The RWKV Layer

We will now describe the RWKV layer [Peng et al., 2023]. RWKV is typically referred to as an RNN, but,
like some other recurrent models (e.g. S4 [Gu et al., 2021]), it can also be viewed as a convolution. Here, we
present the convolutional view of RWKV. We will see that it is closely related to the Hyena layer.
RWKV takes a sequence u ∈ RN×d as input and applies a short convolution. Next, it produces three
projections q, k, v by passing u through a linear layer. Then, it performs a convolution sandwiched by
element-wise multiplication. We summarize this process in Algorithm 5.

Algorithm 4 RWKVProjection (u,h)

Input: Input sequence u ∈ RN×d, a short convolution filter h ∈ RN .
1: In parallel for 0 ≤ t < d : ẑ[:, t]← h ∗ u[:, t]
2: In parallel for 0 ≤ n < N : z[n, :]← Lineard,3d (ẑ[n, :]) so that z ∈ RN×3d

3: Reshape and split z ∈ RN×3d into q,k,v ∈ RN×d.
4: return q,k,v.
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In practice, the short convolution filter hs is restricted to a length two filter with hs[0] = µ and hs[1] = 1−µ,
where µ ∈ [0, 1] is learned parameter. In the RWKV paper, the short convolution is referred to as a “time
shift”.

Algorithm 5 RWKV (u,h,hs)

Input: Input sequence u ∈ RN×d, set of convolution filters h1, . . . ,hL ∈ RN×d, short convolution filter
hs ∈ RN .

1: q,k,v ← Projection(u,hs).
2: In parallel for 0 ≤ t < d : zℓ[:, t]← σ(q[:, t])⊙

(︁
hℓ[:, t] ∗ (softmax(k)⊙ v)[:, t]

)︁
.

3: return zL

In practice, the long convolution filter h is also restricted to h[:, t] = ew(t−1), where w ∈ R is a learnable
parameter that controls how quickly the magnitudes of the filter decreases as t grows.
To summarize, the differences between Hyena and RWKV are: (1) Hyena applies the short convolution after
the linear projection whereas RWKV applies it before, (2) RWKV includes non-linear activations (sigmoid and
softmax) while Hyena does not, (3) RWKV and Hyena use different parameterizations for the convolutional
filters, and (4) Hyena recursively performs a point-wise multiplication of the projections with the convolution
filter whereas RWKV performs this operation only once (though, in practice, Hyena uses a recurrence depth
of one, making them equivalent in this regard).

H.2.3 The Retnet Layer

In this section, we introduce the RetNet layer Sun et al. [2023]. To this end, we take an input sequence
u ∈ RN×d and project it using learnable weight matrices. We then compute the states zn recurrently as in
line 5 and the output Out[n, :] as in line 6 for each n ∈ [N ] (see Algorithm 6 below).

Algorithm 6 RetNet (u,h,hs)

Input: Input sequence u ∈ RN×d, a scalar γ ∈ R, learnable weight matrices WA,WC ,WV ∈ Rd×d.
1: A,C,V← uWA,uWC ,uWV so that A,C,V ∈ RN×d.
2: Initialize the output Out ∈ RN×d

3: Initialize the state z0 ← (A[0, :])
⊤
V[0, :].

4: for 1 ≤ n < N do
5: zn ← γzn−1 + (A[n, :])

⊤
V[n, :] for zn ∈ Rd×d

6: Out[n, :]← C[n, :]zn

7: return Out

H.2.4 BaseConv

Finally, we introduce the BaseConv here as follows:

Y = (uW + b1)⊙ (u ∗ h + b2), (4)

with input u ∈ RN ′×d′
, weight matrix W ∈ Rd′×d′

and bias matrices bi ∈ RN ′×d′
defining linear projections

of the input sequence, and h ∈ RN ′×d′
is the a set of the d′ mixed length filters.

The corresponding pseudocode for BaseConv is as follows:
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Algorithm 7 BaseConv (u,W ,b1,h,b2)

Input: Input sequence u ∈ RN ′×d′
, linear mapping W ∈ Rd′×d′

so that W ∈ (BB∗)poly log d′

poly log d′ , convolution

filter h ∈ RN ′×d′
, bias matrices b1,b2 ∈ RN ′×d′

.
1: In parallel for 0 ≤ n < N ′ : x[n, :] = Lineard′,d′ (u[n, :])
2: In parallel for 0 ≤ t < d′ : z[:, t] = h[:, t] ∗ u[:, t]

3: In parallel for 0 ≤ t < d′ : y[:, t]← (x[:, t] + b1[:, t])⊙ (z[:, t] + b2[:, t]). ▷ See equation 4
4: return y

Note that the convolution in Algorithm 7 is not limited to causal convolution and allows circular convolution
as well. For simplicity, we use ∗ here and will disambiguate when required. We will start by specifying the
parameter count and complexity of a single layer of BaseConv below.
Proposition H.6. A single layer of BaseConv requires Õ(N ′d′) parameters and runtime.

Proof. We know the parameters and runtime for the linear part of BaseConv via Definition H.3 is Õ(N ′d′).
Further, each convolution operation requires O(N ′) parameters and O(N ′ logN ′) runtime, and we employ d′

such operations. Finally the Hadamard product step takes O(nd) time.

Similar to Hyena, we will refer to a model consisting of L BaseConv layers as (N,L, d,N ′, d′)−BaseConv.
In our experiments, we extend BaseConv by adding an MLP after Algorithm 7. For simplicity we will
denote BaseConv (u,h, b1, b2) as BaseConv (u,h) when b1 = b2 = 0.
We will now show that there exists a BaseConv model that can emulate each of the basic operations in
Algorithm 7.
Lemma H.7. The functions Lineard,d (u) (Definition H.3), with d, d′ defined as in Algorithm 7, convolution
with filter h ∈ RN×d, and element-wise gating can be computed with Algorithm 7 via a (N, 1, d,N, d′) −
BaseConv.

Proof. For each operation from Definition H.2 and Algorithm 7:
1. For any input u ∈ RN ′×d′

, Lineard,d′ (u) with matrix representation W ∈ RN ′×d′
can be performed

by a single BaseConv layer computing BaseConv (y,W ,h, b1, b2) with b1 and b2 being the matrix
of all 0s and all 1s, respectively while and the convolution with the zero filter. That is, we have

Y = (uW + 0N ′×d′
)⊙ (u ∗ 0N ′×d′

+ 1N ′×d′
) = (uW)⊙ 1N ′×d′

= uW = Lineard,d′ (u) .

2. For any input u ∈ RN×d, convolution with filter h ∈ RN×d can be performed by a single BaseConv
layer computing BaseConv (y,W ,h, b1, b2) where W, b2 are all zeroes, and b1 is the matrix of all 1s
so that we get

Y = (u0N ′×d′
+ 1N ′×d′

)⊙ (u ∗ h + 0N ′×d′
) = 1N ′×d′

⊙ (u ∗ h) = u ∗ h.

3. We may compute element-wise gating between matrices u,v ∈ RN×d, where v is some fixed factor,
with a single layer computing BaseConv (y, ,)0N ′×d′

, e0,v,0
N ′×d′

where e1 is the identity filter,
respectively, by Definition H.2.

Y = (u0N ′×d′
+ v)⊙ (u ∗ e0 + 0N ′×d′

) = v ⊙ u.

H.3 Primitives

In this section, we will establish some additional basic primitives that we expect a gated convolution model
to emulate: shift, remember and add. We specify them below:

1. Shift an sequential input of length N up or down by s entries:
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shift up(y, s), shift down(y, s)

• Input: y ∈ RN×d, s ≥ 0
• Output: z ∈ RN×d where z+ = shift down(y, s) and z− = shift up(y, s)

y ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

← y0 →

...

← yi−1 →

← yi →

...

← yN−1 →

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z+ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

← 0→

...

← 0→

← y0 →

...

← yN−1−s →

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z− ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

← ys →

...

← yN−1 →

← 0→

...

← 0→

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. Add a sequence x ∈ Rn×d to a running sum S ∈ Rn×d for some 2n ≤ N ′ with both x and S contained
as subvectors in y ∈ RN×d.

addn(y : x,S):
• Input: sequence y containing x,S ∈ Rn×d for 2n ≤ N such that y[0 : n − 1] ≡ x,y[n :

2n− 1] ≡ S and y[2n : N − 1] ≡ 0N−2n.
• Output: z ∈ RN×d containing the sum y+S such that y[0 : n−1] ≡ 1n,y[n : 2n−1] ≡ S+x

and z[2n : N − 1] ≡ 0N−2n.

y ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

← x→

← S →

←− 0 −→

...

← 0→

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
z ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

← 1n →

← S + x→

←− 0 −→

...

← 0→

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3. Remember v ∈ Rm×d as part of a sequence of input y ∈ RN×d while performing gated convolution
only on x ∈ Rn×d for some m,n ≤ N × d.
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remembern,m,s,t(y : x, v, h, p):
• Input: sequence y ∈ RN×d containing x ∈ Rn×d,v ∈ Rm×d, and modifiers p,h ∈ Rn×d

such that y[0 : n − 1] ≡ x,y[n + s : n + s + m − 1] ≡ v and y[i] = 0 otherwise with
x ∗ h ∈ R(n+s)×d and v ∗ h ∈ R(m+t)×d.

• Output: z ∈ RN×d containing (p⊙ (x ∗ h)) ∈ R(n+s)×d, such that:

y ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

← x→

0s

← v →

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
z ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

← p⊙ (x ∗ h)→

← v →

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

These primitives are building blocks of our proofs in the sequel. We will show that each of these primitives
can be solved by some (N,L, d,N ′, d′)−BaseConv model with a small constant L.
Proposition H.8 (The Shift Primitive). For any y ∈ RN×d, there exist (N, 1, d,N, d)−BaseConv and
(N, 3, d,N, d)−BaseConv that computes shift down(y, s) and shift up(y, s) for any s ≤ N .

Proof. Define the following kernel dependent on s ≤ N

hs[n, :] ≡

{︄
1d if n = s + 1

0d otherwise.

We now deal with the down and up shifts separately:
1. We define W := 0N×d, b1 := 1N×d, b2 := 0N×d. Then, for input y ∈ R

N×d,
BaseConv

(︁
y,0N×d,hs,1

N×d,0N×d
)︁

for BaseConv in Algorithm 7 is given by equation 4 as

Y ≡ y ∗ hs.

Now, to perform shift down(y, s), we note that

Y[:, j] = y[:, j] ∗ hs[:, j] = coeff(y[:, j](X) · hs[:, j](X))

= coeff

(︄(︄
N−1∑︂
i=0

y[i, j] ·Xi

)︄
·Xs mod XN

)︄

= coeff

(︄
N−1∑︂
i=0

y[i, j] ·Xi+s mod XN

)︄

= coeff

(︄
N−1+s∑︂

i=s

y[i− s, j] ·Xi mod XN

)︄

= coeff

(︄
N−1∑︂
i=s

y[i− s, j] ·Xi

)︄
,

which implies that we exactly get what is specified in the output.
2. We again define W := 0N×d, b1 := 1N×d, b2 := 0N×d. Then, for input y ∈ R

N×d,
BaseConv

(︁
y,0N×d, e0,1

N×d,0N×d
)︁

for BaseConv in Algorithm 7 is given in equation 4 as

Y0 ≡ y ⊛ e0.
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Now, to perform shift up(y, s), as before, we first apply the circular convolution to reverse the input

Y0[:, j] = y[:, j] ⊛ e0 = coeff

(︄
N−1∑︂
i=0

y[N − 1− i, j] ·Xi

)︄
,

We then apply Y1 ≡ shift down(Y0, s) to get

Y1[:, j] ≡ coeff

(︄
N−1∑︂
i=s

Y0[N − 1− (i− s), j] ·Xi

)︄
,

≡ coeff

(︄
N−1∑︂
i=s

Y0[N − 1− i + s, j] ·Xi

)︄
.

Finally, we apply another circular convolution with the identity filter to replace N − 1− i with i to get

Y2[:, j] = Y1[:, j] ⊛ e0 = coeff

(︄
N−1∑︂
i=0

y[i + s, j] ·Xi

)︄
,

Here, we note that we can compute both of these primitives in one and three layers, respectively (see
Lemma H.11).

Now, we present a BaseConv model with two layers that implements the addn(y : x,S), the purpose of
which is to add some window of computation x to a running sum S.
Proposition H.9 (The Running Sum Primitive). For any x,S ∈ Rn×d contained in some y ∈ RN×d, there
exists a (N, 2, d,N, d)−BaseConv that computes addn(y : x,S) for BaseConv as in Algorithm 7.

Proof. We will show this for d′ = 1 and the general case follows as we will explain at the end. We now specify
the two layers that we use

z1 ≡ BaseConv
(︁
y,0N×1,h1, b11,0

N×1
)︁
≡ b11 ⊙

(︁
h1 ∗ y

)︁
z ≡ BaseConv

(︁
z1,0N×1,h2, b21, b

2
1

)︁
≡ b21 ⊙

(︁
h2 ∗ y + b22

)︁
,

where we will specify the kernels as we go along. Let us start by defining the kernel and the bias for the first
layer as

h1 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0

e0

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b1 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n

1n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us first compute h1 ∗ y as follows:

h1(X) · y(X) = (Xn + 1) · (S(X) ·Xn + x(X))

= S(X) ·X2n + (S + x)(X) ·Xn + x(X).
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We then have

z1 ≡ b11 ⊙
(︁
h1 ∗ y

)︁
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n

1n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

S + x

S

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n

S + x

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Resetting for Next Phase. We now use the next layer to reset for the next phase. Here, we need the
first vector to be 1n in order to start adding the next vector. We thus use the kernel and the biases h2, b21, b

2
2

defined as

h2 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0

0n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b21 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1n

1n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b22 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1n

0n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Explicitly, for the second layer, we compute the result of the convolution in terms of polynomials as follows:

h2(X) · z1(X) = 1 · (S + x)(X) ·Xn = (S + x)(X) ·Xn.

Thus, the output for the second layer is given by

z ≡ b21 ⊙
(︁
h2 ∗ z1 + b22

)︁
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1n

1n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n

S + x

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1n

0n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1n

1n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1n

S + x

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1n

S + x

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, we have used two BaseConv layers to add x to the running sum S and reset for the next phase.
Here, we note that the only operations we perform and are convolutions and Hadamard product and they
generalize in the obvious way to d > 1.

Next, we show that a five layer BaseConv model can perform gated convolution on windows of the input
(without changing the rest of the input).
Proposition H.10 (The Remembering Primitive). For any x ∈ Rn×d,v ∈ Rm×d contained in some
y ∈ RN×d for some n + m + s + t ≤ N so that for h ∈ Rn×d and p ∈ R(n+s)×d with x ∗ h ∈ R(n+s)×d

and v ∗ h ∈ R(m+t)×d, there exists a (N, 5, d,N, d)−BaseConv that computes remember(y : x,v,h,p) for
BaseConv as in Algorithm 7.

Proof. We will again show this for d′ = 1 and the general case should follow. We now specify the first two
layers that we use

z1 ≡ BaseConv
(︁
y,0N×1,h1, b11,0

N×d
)︁
≡ b11 ⊙

(︁
h1 ∗ y

)︁
z2 ≡ BaseConv

(︁
z1,0N×1,h2, b21,0

N×d
)︁
≡ b21 ⊙

(︁
h2 ∗ y

)︁
,
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The kernel h1 and the bias b11 for the first layer are then given by

h1 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h

0m

es+t

0n

0n

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b11 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p

0m+t

0n

0s

1m

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

where recall that x ∗ h ∈ R(n+s)×d and v ∗ h ∈ R(m+t)×d.
We now want to first specify the result of applying the first kernel:(︁

h1 ∗ y
)︁

= coeff
(︁
(h(X) + Xn+m+s+t) ·

(︁
v(X) ·Xn+s + x(X)

)︁)︁
= coeff

(︁
h ∗ v(X) ·Xn+s + h ∗ x(X) + v(X) ·X2n+2s+m+t + x(X) ·Xn+m+s+t

)︁
We then have

z1 ≡ b11 ⊙
(︁
h1 ∗ y

)︁
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p

0m+t

0n

0s

1m

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h ∗ x

h ∗ v

x

0s

v

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p⊙ (h ∗ x)

0m+t

0n

0s

v

· · ·

0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We now describe the second kernel h2 and the bias matrix b21 as follows:

h2 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0

0m+t

e0

0n+s

0m

· · ·

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b21 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n+s

0m+t

0n

1n+s

1m

· · ·

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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This yields the following convolution computation:

h2 ⊙ z1 ≡ coeff
(︁(︁
Xm+n+s+t + 1

)︁
·
(︁
v(X) ·X2n+2s+m+t + (p⊙ (h ∗ x)) (X)

)︁)︁
≡ coeff(v(X) ·X3n+3s+2m+2t + v(X) ·X2n+2s+m+t

+ (p⊙ (h ∗ x)) (X) ·Xm+n+s+t + (p⊙ (h ∗ x)) (X))

Thus we have

z2 ≡ b12 ⊙
(︁
h2 ∗ z1

)︁
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n+s

0m+t

0n

1n+s

1m

· · ·

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p⊙ (h ∗ x)

0m+t

0n

p⊙ (h ∗ x)

v

· · ·

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n+s

0m+t

0n

p⊙ (h ∗ x)

v

· · ·

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We now shift this up by 2n + s + m + t entries using the primitive operation defined in Proposition H.8 that
costs three additional layers so that we end up with

z ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p⊙ (h ∗ u)

v

· · ·

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Again, we note that the only operations we perform and are convolutions and Hadamard product and they
generalize in the obvious way to d > 1.

Finally, we show that these primitives may be composed by ’stacking’ models with matching inner dimension
(N ′, d′).
Lemma H.11. For f, g : RN×d → R

N×d that have (N,L1, d,N
′, d′) and (N,L2, d,N

′, d′) BaseConv
models then their composition f ◦ g has an (N,L1 + L2, d,N

′, d′) BaseConv model which can be computed
by performing their models in succession, or ’stacking’.

Proof. This result follows from noting that for any f(u) which requires L1 layers to compute and that we can
compute f ◦ g(u) = g(f(u)) using the BaseConv model with L2 layers, yielding L1 + L2 layers in total.

H.3.1 BaseConv-Hyena Equivalence

We show that the equivalence between BaseConv and Hyena by showing that each layer can simulate the
other’s computation using a constant number of layers.
Proposition H.12. For any input u ∈ RN×d and (N,L, d,N ′, d)−Hyena such that zHyena ≡ Hyena(u) with
a set of filters hℓ and linear projections pℓ as per Definition H.3 for ℓ ∈ [L], there exists a (N, 5L, d,N ′+N, d)-
BaseConvmodel such that zHyena ≡ BaseConv(u).
Similarly, for any input uBaseConv ∈ RN×d and (N,L, d,N ′, d)−Coyote such that zBaseConv ≡ BaseConv(u)
with a set of filters hℓ for ℓ ∈ [L], there exists a series of Hyena layers such that we have

Hyena (Hyena (. . .Hyena(uBaseConv,h)))⏞ ⏟⏟ ⏞
L layers

≡ zBaseConv.
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Proof. For the input uHyena ∈ RN×d, the output of the ℓth layer zℓ
Hyena ∈ RN ′×d′

for Hyena is given by (see
Algorithm 3)

zℓ
Hyena ≡ pℓ

Hyena ⊙ (hl ∗ zℓ−1),

where pℓ
Hyena ≡ Linear(uHyena) ∈ RN ′×d. Now, using the original input uHyena ∈ RN×d to Hyena, we define

the following input for BaseConvusing one layer:

uBaseConv ≡

⎛⎜⎜⎜⎜⎝
uHyena

0(N ′−N)×d

uHyena

⎞⎟⎟⎟⎟⎠
Then, we simply use the rememberN,N,N ′−N,N ′−N (uBaseConv : uHyena,uHyena,h

ℓ
Hyena,p

ℓ
Hyena) primitive for

BaseConv. Consequently, this allows us to “remember” the input uHyena in the output of the previous
BaseConvlayer zℓ−1

BaseConv. We then use this to retrieve pℓ
Hyena ≡ linear(uHyena) with the projection used for

BaseConv given by

pℓBaseConv ≡ Linear(zℓ−1
BaseConv) ≡

⎛⎝ 1N×d

pℓ
Hyena.

⎞⎠
Overall, the output of the ℓth layer for BaseConv is given by

zℓ
BaseConv ≡

⎛⎜⎜⎜⎜⎝
pℓ
Hyena ⊙

(︁
hℓ
Hyena ∗ uHyena

)︁
0(M−N)×d

uHyena

⎞⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎝

zℓ
Hyena

0(M−N)×d

uHyena

⎞⎟⎟⎟⎟⎠
Hence, we can reproduce the output of the ℓth layer of Hyena using five layers of BaseConv after augmenting
the input and using the remembering primitive (Proposition H.10) with internal dimension N ′ + N .
Now, for the input uBaseConv ∈ RN×d, the output of the ℓth layer for BaseConv is given by

zℓBaseConv ≡ Linear(zℓ−1
BaseConv)⊙ conv(hl, zℓ−1

BaseConv).

Here, we show inductively that simply using ℓ-many Hyena models recursively simulates zℓBaseConv. For ℓ = 1,
we have

Hyena(uBaseConv,h) ≡ Linear(uBaseConv)⊙ (h1 ∗ uBaseConv) ≡ z1
BaseConv.

We now assume that (ℓ− 1)-many recursive Hyena models produce z
(ℓ−1)
BaseConv. For the ℓth layer, we then have

Hyena (Hyena (. . .Hyena(uBaseConv,h)))

≡ Hyena
(︂
z
(l−1)
BaseConv

)︂
≡ linear

(︂
z
(l−1)
BaseConv

)︂
⊙ conv

(︂
hl, z

(l−1)
BaseConv

)︂
≡ zℓBaseConv.

H.4 Linear Arithmetic Circuits

In this section we show the relation between linear arithmetic circuits and BaseConv. We recall a few
definitions from [Dao et al., 2020].
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Definition H.13 (Linear Arithmetic Circuit [Bürgisser et al., 1996]). An arithmetic circuit is called a linear
arithmetic circuit if it only uses addition, subtraction and scalar multiplication. Further, every multiplication
has a fixed constant from F as at least one of its two inputs. In other words, all gates in the circuit are linear
functions of their inputs (i.e. of the form ax + by for fixed constants a, b ∈ F).
Definition H.14 (Butterfly Matrices [Dao et al., 2020]). A butterfly factor of size k ≥ 2 (denoted as Bk ) is

a matrix of the form Bk =

[︃
D1 D2

D3 D4

]︃
where each Di is a k

2 ×
k
2 diagonal matrix. We restrict k to be a

power of 2 .

A butterfly factor matrix of size n with block size k (denoted as B
(n)
k ) is a block diagonal matrix of n

k
(possibly different) butterfly factors of size k :

B
(n)
k = diag

(︂
[Bk]1 , [Bk]2 , . . . , [Bk]n

k

)︂
Finally, a butterfly matrix of size n (denoted as B(n) ) is a matrix that can be expressed as a product of

butterfly factor matrices: B(n) = B
(n)
n B

(n)
n
2

. . .B
(n)
2 . Equivalently, we may define B(n) recursively as a matrix

that can be expressed in the following form:

B(n) = B(n)
n

⎡⎣ [︂B(n
2 )
]︂
1

0

0
[︂
B(n

2 )
]︂
2

⎤⎦
(Note that

[︂
B(n

2 )
]︂
1

and
[︂
B(n

2 )
]︂
2

may be different.)

From Definition H.14, we observe that size n butterfly factor is comprised of three vectors d, d+, d− ∈ Rn

such that

d =
(︁
diag−1 (D1) ,diag−1 (D4)

)︁
,

d+ =
(︂
0
n
2 ,diag−1 (D2)

)︂
, and

d− =
(︂

diag−1 (D3) ,0
n
2

)︂
,

where diag−1(D) : Rn×n ↦→ R
n is the mapping from diagonal matrices to the vector of its diagonal entries.

Let us define D1,D2,D3 ∈ Rn×n as diag (d) ,diag
(︁
d+
)︁
, and diag

(︁
d−)︁ respectively. Then we note that

D1 ≡
[︃

D1 0
0 D4

]︃
D2S

n
2 ≡

[︃
0 D2

0 0

]︃
S

n
2 D3 ≡

[︃
0 0
D3 0

]︃
(5)

where Sk ∈ Fn×n is a shift matrix for i ∈ [n/2]. This gives us the following proposition:

Proposition H.15. For any powers of 2, n = k ≥ 2, any butterfly factor matrix B
(n)
k is equivalent to

B
(n)
k = S

k
2D3 + D2S

n
2 + D1

where D3,D2,D1,S
n
2 are defined as in equation 5.

We use Proposition H.15 to show that butterfly matrices can easily be computed by BaseConv .
Lemma H.16. For any n, d ≥ 2, k ≥ 1, and arbitrary vector x ∈ Rnd:

(1) there exists a (N,L, d,N ′, d′) − BaseConv that can represent B
(nd)
k · x with N = n,N ′ = O(N),

L = O(1), and d′ = O(d), and
(2) there exists a (N,L, d,N ′, d′) − BaseConv that can represent B(nd) · x with N = n,N ′ = O(N),

L = O(log nd), and d′ = O(d).

Proof. (1) Given x ∈ Rnd, construct u ∈ Rn×d where x is the row-major form of u. We show that
BaseConv can compute Bnd · x column by column.

Let A = S
k
2D′

3,C = D′
2S

n
2 , and D = D1 for Di,S

k
2 ∈ R

nd×nd for 1 ≤ i ≤ 3 as defined in
Proposition H.15. We take d1 = 1ndD, d2 = 1ndC2,d3 = 1ndA, which extracts the diagonal entries of
Di. With this we construct D′

i ∈ Rn×d where di is the row major form of D′
i. This implies that

Dix ≡ D′
i ⊙ u.
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Then we can decompose Bnd · x into

Bndx ≡ D1 ⊙ u + D2 ⊙ u + D3 ⊙ u.

By Lemma H.7, each Hadamard product A⊙u,B⊙u,C⊙u can be trivially be performed with a single
layer BaseConv model. Let each of these model outputs be denoted y1, y2, y3, respectively. Finally
all that remains is to compute the y1 + y2 + y3. We achieve this using layers of add primitives11:

addn(y1 : y1,0)

addn(y2 : y2,y1)

addn(y3 : y3,y1 + y2),

where using by Proposition H.9 and Lemma H.11, this requires six more layers, and we get

y3 ≡ y1 + y2 + y3 ≡ Bndx.

Then we can construct the (N,L, d,N ′, d′)−BaseConv as desired with L = O(1) layers.

(2) From Definition H.14, B(nd) = B
(nd)
nd B

(nd)
nd
2

. . .B
(nd)
2 . From (1), BaseConv can compute any butterfly

matrix by simulating the log(nd) butterfly factor matrices which comprise B(nd). With Lemma H.11,
this creates a BaseConv with 5 · log(nd) = O(log(nd)) layers. Lemma H.11

Butterfly matrices comprise the kaleidoscope hierarchy, which we define below:
Definition H.17 (The Kaleidoscope Hierarchy [Dao et al., 2020]).

• Define B as the set of all matrices that can be expressed in the form B(n) (for some n).
• Define (BB∗) as the set of matrices M of the form M = M1M

∗
2 for some M1,M2 ∈ B.

• Define (BB∗)
w

as the set of matrices M that can be expressed as M = Mw . . .M2M1, with each
Mi ∈ (BB∗) (1 ≤ i ≤ w). (The notation w represents width.)

• Define (BB∗)
w
e as the set of n× n matrices M that can be expressed as M = SES⊤ for some en× en

matrix E ∈ (BB∗)
w

, where S ∈ Fn×en =
[︁
In 0 . . . 0

]︁
] (i.e. M is the upper-left corner of E). (The

notation e represents expansion relative to n.)
We similarly show how BaseConv can simulate any kaleidoscope matrix.
Lemma H.18. Given n, d ≥ 2, e > 0 for any nd × nd matrix M ∈ (BB∗)

w
e , and x ∈ Rnd there exists a

(N,L, d,N ′, d′)−BaseConv that can represent M ·x with N = n,L = O(w log(end)), N ′ = en, and d′ = d.

Proof. By Definition H.17, M can be decomposed with respect to size end× end matrix

E = E1 ·E2 · · ·Ew.

Further, any Ei ∈ (BB∗) can be expressed as a product of 2 log end butterfly factor matrices. Then by
Lemma H.16 and Lemma H.11 we can compute Eix

′ in by stacking 2 log end (n, d, L, en, d)−BaseConv
models each with L = O(1). Because E has width w, Lemma H.11 implies that composing with each Ei for
1 ≤ i ≤ w constructs a final model with O(w log(end)) layers.

Finally, the kaleidoscope hierarchy is related to linear arithmetic circuits via the following result. We note
that in [Dao et al., 2020] it is assumed that w = s, yet inspection of the proof yields the following stronger
result:
Theorem H.19 ( [Dao et al., 2020]). Let M be an n × n matrix such that multiplication of M times an

arbitrary vector u can be be represented as (n, s,∆, w)-linear arithmetic circuit C. Then, M ∈ (BB∗)
O(∆)
O(w/n).

We combine Theorem H.19 and Lemma H.18 to show that BaseConv can compute any linear arithmetic
circuit with polylogarithmic factors in ∆.
Corollary H.20. For any (nd, s,∆, w)-linear arithmetic circuit C that can be represented by a matrix
M ∈ Rnd×nd multiplied by a vector x ∈ Rnd, there exists an equivalent (n,∆′, d, w, d) − BaseConv with
∆′ = O(∆ log(w)) such that Mx = BaseConv (u,h) where x is the row major form of u ∈ Rn×d.

11Recall that addn(y : x,S) adds the subvector x to S for the input y.
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H.5 General Arithmetic Circuits

We are now ready to prove the result that yields the equivalency between arithmetic circuits and BaseConv.
Theorem H.21. For any (nd, s,∆, w)-arithmetic circuit C, there exists an equivalent (N,∆′, d,N ′, d′) −
BaseConv with N = n,∆′ = O(∆ logw), N ′ = O(w), d′ = d that simulates C.
For the reader’s convenience, we begin with a proof sketch and then provide the details afterwards.

Proof Sketch of Theorem H.21. Let us layer C so that each layer Cℓ for ℓ ∈ [LC ] either only has linear gates
or multiplication gates, where the number of such layers LC = O(∆). The composition of all Cℓ layers results
in C. We use zℓ+1 ∈ Rw to denote the output of the ℓ-th layer Cℓ which feeds as the input to the (ℓ + 1)-th
layer Cℓ+1. Here, we note that if we can simulate each Cℓ with BaseConv, then we can simulate the entire
layered circuit C due to Lemma H.11.
Now, if the layer Clinℓ is a linear layer (with only addition gates), then it can be represented by a matrix
M ∈ Rw×w multiplied by zℓ ∈ Rw (We can append with 0s if necessary so that the input from the previous
gates can be written as w-length vector). Thus, we can apply Corollary H.20 to simulate Clinℓ with an
equivalent (n, logw, d,O(logw), d)−BaseConv model.
Next, if Cmult

ℓ instead consists of only the multiplication gates. Then, we note here that the output zℓ may
not exactly equal the input to Cmult

ℓ . Nevertheless, we can apply a O(w) sparse linear map R ∈ Rw×w so
that Rzℓ yields vectors v1,v2, and v3, where v1 constitutes the “first” input to all the multiplication gates
and v2 constitutes all the “second” inputs while v3 consists of all entries needed as inputs in the subsequent
layers. That is, for the ith gate in Cmult

ℓ , we compute v1
i · v2

i . This implies that for all the gates in Cmult
ℓ , we

can simply compute v1⊙v2. To this end, we use the remember primitive with constant number of layers from
Proposition H.10 to define a (n,O(logw), d, w, d)−BaseConv model that remembers v3 while performing
the Hadamard product of v1 with v2.
Overall, we can then collect all the resulting BaseConv layers and compose them as in Lemma H.11 to
simulate C. Overall, the number of layers used is given by O(∆ logw) while the internal dimension remains
fixed at w.

Using the outline in the proof sketch, we now delve into a detailed analysis of the arithmetic circuit C to an
equivalent BaseConvmodel.

Proof of Theorem H.21. Let u ∈ Rnd be the input to the arithmetic circuit C with depth ∆ and width w.
We begin by rearranging the circuit into layers of addition and multiplication gates. That is, each layer Cℓ
has either all addition gates or all multiplication gates. This allows us to readily apply the results from
Appendix H.4. Note here that we can assert that the number of such layers LC = O(∆). Moreover, we
construe the input to each such circuit as a vector of length w by appending with extra 0s if necessary so
that the composition of the layers results in a circuit equivalent to C. See Fig. 8 for an example of such
decomposition
Let zℓ ∈ Rw denote the input to each layer Cℓ for ℓ ∈ [LC] with z1 ≡ (u,0w−nd). It is important to note
here that we may not have zℓ+1 ≡ Cℓ(zℓ) since the inputs for gates at the (ℓ + 1)-th layer may come from
any of the previous layers. We now handle the case of layers with addition gates, multiplication gates, and
the intermediate stage separately.

Addition Gates. Let Clinℓ denote an arbitrary linear layer which only contains the addition gates that

takes in zℓ as input. We know that there exists a matrix M ∈ Rw×w′
such that we have

Clinℓ (zℓ) ≡Mzℓ.

Here, note here that we may need entries from the vector zℓ in subsequent layers. Let s be the total number
of such entries, then for at each index for such entries i ∈ [w], we have the corresponding index is ∈ [s]. We
then append the ith standard row vector into the matrix M to get the matrix M′ ∈ Rw×(w′+s) so that we
have (︁

M′zℓ
)︁

[j] =

{︄(︁
Mzℓ

)︁
[j] if j < w′

zℓ[i] if j = w′ + is

Here, note that we must have w′ + s ≤ w as w is the width of the circuit. If needed, we then append the
matrix M′ with all-zero rows 0w so that we get the matrix M′′ ∈ Rw×w. Note here that we have thus
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Figure 8: An example decomposition of an arithmetic circuit as layers of only addition or multiplication
gates.

preserved all entries needed in subsequent layers and incorporated the output of the ℓth layer with the output
M′′zℓ ≡ zℓ+1 serving as the input of the (ℓ + 1)-th layer. Applying Corollary H.20 then yields an equivalent
(n,O(logw), d, w, d)−BaseConv model.

Multiplication Gates. Next, we deal with the layer Cℓmult of multiplication gates by collecting the two
inputs to each multiplication gates as vℓ

1,v
ℓ
2. Note that for the input zℓ ∈ Rw from the previous layer, we

will again have entries that need to be used in the subsequent layers that we will denote as vℓ
3. We thus need

to permute the entries of zℓ to get the vector [vℓ
1 :: vℓ

2 :: vℓ
3] so that we can remember vℓ

3 while taking the
Hadamard product vℓ

1 ⊙ vℓ
2. To this end, we can achieve this permutation of entries using a O(w)-sparse

linear matrix12 Rℓ ∈ Rw×w with which is equivalently represented by an (w,w, 1, w)-linear arithmetic circuit
that simply moves the appropriate wires from the previous layer. This can again be achieved by a equivalent
(n,O(logw), d, w, d)−BaseConv model. That is, Rℓzℓ has the following form:

Rℓzℓ ≡

⎛⎜⎜⎜⎜⎝
vℓ
1

vℓ
2

vℓ
3

⎞⎟⎟⎟⎟⎠ .

Next, we can now define a (n, 1, d, n, d) − BaseConv which extracts vℓ
1 as the projection with the in-

put to the remember primitive given by yℓ ≡ (vℓ
2,v

ℓ
3,0). We then specify the remember primitive as

12Each row of Rℓ has exactly one non-zero entry.
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remember
(︁
yℓ : vℓ

2,v
ℓ
3, e0,v

ℓ
1

)︁
which computes the following

zℓ+1 ≡

⎛⎜⎜⎜⎜⎝
vℓ
1 ⊙ (e0 ∗ vℓ

2)

vℓ
3

0

⎞⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎝
vℓ
1 ⊙ vℓ

2

vℓ
3

0

⎞⎟⎟⎟⎟⎠
≡ Cℓmult(z

ℓ) ∈ Rw.

Using Proposition H.10, we know that this requires a (n,O(logw), d, w, d)−BaseConv which remembers
the entries that will serve as inputs in subsequent layers while performing the Hadamard product v1 ⊙ v2.
Overall, we can now stack all the resulting BaseConv layers and compose them as in Lemma H.11 to
simulate C. Overall, the number of layers blows up by O(∆ logw) while the internal dimension remains fixed
at w.

H.6 The Retnet Reduction and Space Complexity for AR

We are now in a position to show that there exists an equivalent BaseConv model that can simulate a
Retnet layer from Algorithm 6. Recall that for an input sequence u ∈ RN×d, we project the input using
weight matrices WA,WC ,WV ∈ Rd×d to A,C,V ∈ RN×d and compute the following recurrence (see line 5
in Algorithm 6):

zn ≡ γzn−1 + (A[n, :])
⊤
V[n, :], (6)

where zn ∈ Rd×d. We unroll this recurrence to express each state zn in terms of u with coefficients given by
γ and the weight matrices WA,WC ,WV as follows:

z0 ≡ ((uWA) [0, :])
⊤

(uWV ) [0, :]

≡ (u[0, :]WA)
⊤

(u[0, :])WV

≡W⊤
A (u[0, :])

⊤
(u[0, :])WV

≡W⊤
A

(︁
u⊤[:, 0]u[0, :]

)︁
WV .

Similarly, we have

z1 ≡ γz0 + W⊤
A

(︁
u⊤[:, 1]u[1, :]

)︁
WV

≡ γ
(︁
W⊤

A

(︁
u⊤[:, 1]u[0, :]

)︁
WV

)︁
+ W⊤

A

(︁
u⊤[:, 1]u[1, :]

)︁
WV

≡W⊤
A

(︁
γ
(︁
u⊤[:, 0]u[0, :]

)︁
+ u⊤[:, 1]u[1, :]

)︁
WV

We can then generalize this to n ∈ [N ] to get

zn ≡W⊤
A

(︄
n∑︂

i=0

γn−iu⊤[:, i]u[i, :]

)︄
WV . (7)

The above helps us infer that zn can be expressed as a polynomial in {u[0, 0],u[0, 1], . . . ,u[N −1, d−1]}. For
each polynomial, there exists an arithmetic circuit that computes the polynomial in a natural way, whence
we can apply Theorem H.21 to get an equivalent BaseConv model.
Corollary H.22. For a RetNet model with O(d2) parameters and N layers, there exists an equivalent
BaseConvmodel that uses O(Nd) parameters and O(N log d) layers.
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Proof. We will start by describing the arithmetic circuit that computes the states zn ∈ Rd×d here. Indeed,
each state requires exactly two alternative layers with only multiplication gates and only addition gates,
respectively. First, we note that for each n ∈ N , we have

zn ≡ γzn−1 + (A[n, :])
⊤
V[n, :].

Since we can compute z0 in O(1) layers and computing γ · zn−1 needs exactly one layer with each entry from
zn−1 serving as an input to a multiplication gate along with γ, the depth of the circuit is O(N) with width
d2. We can thus apply Theorem H.21 to get an (O(N),O(N log d), d2,O(d2),O(d2))−BaseConv model that
can compute zn for each n ∈ N .

The Space Complexity of AR In the context of the Retnet Model and associative recall, it is worth
exploring the space complexity of the associative recall (AR) problem:

The AR problem takes key-value pairs {ki,vi}n−1
i=0 along with a query q appended at the end as

input and the goal is to output vi if q = ki for some i ∈ [0, N − 1].
Indeed, we will first provide a lower-bound for any model that purports to solve AR. To this end, we will
require a randomized communication complexity lower bound result for the index problem:

The index problem has two agents, Alice and Bob, where Alice has a string x ∈ {0, 1}n and Bob
has an index i ∈ [n], and the goal for the players is to output the i-th entry xi. Moreover, we also
require the communication to be one-way: only Alice is allowed to send a single message to Bob
and Bob needs to output the answer.

We will make use of the following lower-bound result.
Theorem H.23 ([Jayram et al., 2008]). The one-way randomized communication complexity13 of the index
problem for sending an n-length bit string is Ω(n).
We now use Theorem H.23 to provide a lower bound on the number of bits required by the Retnet model to
solve AR.
Corollary H.24. The RetNet model requires Ω(N)-bits to solve AR for d ≤

√
N .

Proof. Consider an instance (x, i) of the index problem with x ∈ {0, 1}N . We now describe the corresponding
instance of the AR problem:

{i,xi}N−1
i=0 , i. (8)

Next, consider the following one-way protocol for solving the index problem using the RetNet model. Alice
with their access of x ∈ {0, 1}N generate an input for AR (without the query) as in equation 8. Alice then
runs the RetNet model on {i,xi}N−1

i=0 and sends the memory content of running the RetNet model to Bob.
This should include the output zN−1 as we can reasonably assume that both have access weight matrices
WA,WC ,WV and the scalar γ. Since we assume that this model solves AR, the output Out[N, :] = xi

should contain the associated value of i. Here, Bob can compute Out[N, :] by using the memory content sent
by Alice along with the term γzN−1:

xi = Out[N, :] = C[N, :]zN = C[N, :]
(︁
γzN−1 + (A[N, :])⊤V[N, :]

)︁
.

That is, the total number of bits that are communicated in this protocol is O(d2). For d ≤
√
N , have

shown that a one-way communication protocol exists for solving the index problem exists that uses o(N)
communication complexity. This contradicts Theorem H.23 and hence, we conclude that the ReNet model
solving AR also needs Ω(N) bits.

H.7 The Multiple-Query Associative Recall Problem

H.7.1 Introduction

In this section, we consider a general version of the associative recall problem [Ba et al., 2016].

13The randomized communication complexity of function f is defined as minπ ∥π∥, where π ranges over all randomized
protocols that can solve f with probability of success at least 2/3.
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Setup. Next, we will redefine the multiple-query associative recall problem (Mqar) from Definition 3.1 to
a slightly more general problem:

Suppose we are given an input sequence u[0 · · ·N−1] ≜
{︂

(k0,v0, q0) , . . . ,
(︂
kN

3 −1,vN
3 −1, qN

3 −1

)︂}︂
with each ki,vi, qi ∈ C is a token drawn from a vocabulary of size c = |C|. Our goal is then to
check, for each 1 ≤ i ≤ N

3 − 1, whether there exists 0 ≤ j < i such that qi ≡ kj , and if so, output
vj .

Here, we note that it suffices to have d ≈ log(c) so that ki,vi, qi is embedded in {0, 1}d. However, we will
specify the specific embedding being used for the results below. Here, we construe the tokens ki, qi and vi to
be the keys, the queries, and the associated values. Indeed, it might be helpful to think of the input u as a
streaming sequence of key-value pairs for which we sequentially employ standard associative recall for every
key that shows up in the sequence so far.
To see that the above generalizes Definition 3.1, considers a sequence of length N

3 : u[0 · · ·N − 1] :=
{x0, . . . ,xN−1}, where each xi ∈ C. The goal of Definition 3.1 is then to check, for each 1 ≤ i < N − 1,
whether there exists 0 ≤ j < i such that xi ≡ xj , and if so, output xj+1, and continue otherwise. We can
reduce this problem to the above general formulation by taking the following sequence of tuples as the input
{(xi,xi+1,xi)}.
Remark H.25. As noted above, this version is more general than Definition 3.1. Thus, the results proven in
the sequel, which are proven for the above general Mqar can be ported (with constant blowup in parameters)
to get the results corresponding results for Definition 3.1.

H.7.2 Mqar Solution via Attention

Before describing how BaseConv solves the multiple-query associative recall problem, we discuss how
Attention solves it trivially using pairwise inner-products. To this end, we will specify how the input is
presented to attention.
Remark H.26. We note that the input for the multiple-query associative recall problem u ∈ {0, 1}N×d has
designated indices for the keys, queries, and values in the sequence. We gather these indices below:

K = {i ∈ {0, . . . , N − 1}| i ≡ 0 mod 3},
V = {i ∈ {0, . . . , N − 1}| i ≡ 1 mod 3},
Q = {i ∈ {0, . . . , N − 1}| i ≡ 2 mod 3}, .

(9)

The input u ∈ RN×d to Attention for d = 3c is then given by

u[i, :] ≡

⎧⎪⎨⎪⎩
[ki : 0c : 0c] if i ∈ K
[0c : vi : 0c] if i ∈ V
[0c : 0c : qi] if i ∈ Q

Here, each ki,vi, qi is embedded as a one-hot encoding in {0, 1}c.
Without softmax, the output for an attention layer O ∈ RN×d is given by

O ≡
(︁
QK⊤)︁V, (10)

where Q,K,V ∈ RN×d are defined as uWQ,uWK ,uWV for u ∈ RN×d. Instead of position embeddings,
we use ALiBi, a popular technique that biases the attention scores QK⊤ with a lower-triangular Toeplitz
matrix B ∈ RN×N [Press et al., 2021]. The values in this matrix are controlled by a fixed hyperparameter so
they do not count towards the number of parameters in the model.

Algorithm 8 ALiBi-without-softmax (u[0 · · ·N − 1],Oprev[0 · · ·N − 1],B))

Input: Input sequence u[0 · · ·N − 1] ≜ {(ki,vi, qi)}
N
3 −1
i=0 with each ki,vi, qi ∈ {0, 1}3c, previous layer’s

output Oprev[0 · · ·N − 1] ∈ RN×3c, and linear bias B ∈ RN×N .
1: Add ucurr ← u + Oprev as an input to this layer.
2: K,Q,V← ucurrWQ,ucurrWK ,ucurrWV .
3: O←

(︁
QK⊤ + B

)︁
V

4: return O as the output of this layer.
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Proposition H.27. Given an input u ∈ {0, 1}N×d (encoded as in Remark H.26) where d = 3c, Attention
with linear biases (even without using soft-max) solves Mqar for u using O(c2) parameters, O(Nc2 + N2c)
time complexity and O(1) layers.

Proof. We use two layers of attention. We will start by specifying the projection matrices for the first layer
W1

Q,W
1
K ,W1

V ∈ Rd×d as:

W1
K ≡W1

Q ≡ 0, W1
V ≡

⎛⎝0 0 0
0 Ic×c 0
0 0 0

⎞⎠
Above, W1

V is meant to isolate the vi embeddings. For the first layer, we then have Q1 ≡ K1 ≡ 0, and

V1[i, :] := u1[i, :]W1
V ≡

{︄
[0c : vi : 0c] if i ∈ V,
0d otherwise

,

where K,Q,V are defined as in equation 9. The output for the first layer is given by the following:

O1[i, :] =
(︁(︁
QK⊤ + B1

)︁
V
)︁

[i, :]

= B1V[i, :]

=

{︄
[0c : vi : 0c] if i ∈ K
0d otherwise

,

The QKT is ignored (≡ 0) and we isolate the shifted sequence by setting the bias matrix B appropriately. In
particular, the last equality follows from the fact that B1 is an up-shift matrix that shifts each row of V by 1.
We apply the residual connection at the end of the standard Transformer block to insert the ki adjacent to
the vi. For the second layer, the input u2 ∈ RN×d is given by

u2[i, :] ≡

⎧⎪⎨⎪⎩
[ki : vi : 0c] if i ∈ K
[0c : vi : 0c] if i ∈ V
[0c : 0c : qi] if i ∈ Q

,

Further, we take the following projection matrices:

W2
K ≡

⎛⎝Ic×c 0 0
0 0 0
0 0 0

⎞⎠ ,W2
Q ≡

⎛⎝ 0 0 0
0 0 0

Ic×c 0 0

⎞⎠ ,W2
V ≡

⎛⎝ 0 0 0
Ic×c 0 0
0 0 0

⎞⎠
We then have the following matrices as input to attention after applying projection:

Q2[i, :] := u2[i, :]W2
K ≡

{︄
[qi : 02c] if i ∈ Q,
0d otherwise

,

K2[i, :] := u2[i, :]W2
Q ≡

{︄
[ki : 02c] if i ∈ K,
0d otherwise

,

V2[i, :] := u2[i, :]W2
V ≡

{︄
[vi : 02c] if i ∈ K ∪ V,
0d otherwise

.

(11)

Here, note that the values have been shifted to the corresponding key position. Next, we compute the term
in the parenthesis for the second layer as(︁

Q2K2⊤)︁ [i, j] =
(︁
Q2K2⊤)︁ [i, j] = ⟨Q2[i, :],K2⊤[:, j]⟩

= ⟨Q2[i, :],K2[j, :]⟩

=

{︄
⟨qi,kj⟩ if i ∈ Q, j ∈ K
0 otherwise

=

{︄
1 if i ∈ Q, j ∈ K, qi ≡ kj ≡ ek for some k

0 otherwise.
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Finally, we compute the output as follows:

O2[i, :] =
(︁(︁
Q2K2⊤ + B2

)︁
V2
)︁

[i, :]

=
(︁(︁
Q2K2⊤ + 0

)︁
V2
)︁

[i, :]

=
(︁
Q2K2⊤)︁ [i, :] ·V2

=

N−1∑︂
j=0

(︁
Q2K2⊤)︁ [i, j] ·V2[j, :]

=
∑︂
j∈K

(︁
Q2K2⊤)︁ [i, j] · [vj : 02c]

=

{︄
[vj : 02c] if j ∈ K, i ∈ Q, qi ≡ kj

0d otherwise
,

where we use the fact that for each index j ∈ K, the matrix V2 contains the associated value from equation 11.
Thus, for each query qi, we solve the associated value problem yielding a match for the jth key.
In total, we only need O(c2)-many parameters to perform these multiplications and the linear bias in the first
layer is a hyperparameter that is static and unlearned; the time complexity comes from the multiplication of
QK⊤ in O(N2c), and projections in O(Nc2). Finally, we only need O(1) layers for this solution.

In the sequel, we develop a parallel algorithm to solve the multiple-query associative recall problem with
O(Nd · log2 N) work complexity and O(d · log2 N) time. We then convert the algorithm into a BaseConv
model via the route of arithmetic circuits, which then solves the multiple-query associative recall problem
with Õ(1) layers and Õ(Nd) parameters.

H.7.3 Initial Attempt: A Sequential Algorithm

We will first discuss the algorithm that simply uses an associative array to solve the multiple-query associative
recall problem. Specifically, we want to use a data structure that allows for logarithmic insertion and
membership query. Here, we do not specify a choice but data structures including self-balancing binary search
trees which allow for O(logN · d) insert and find operations for d-bit entries should be sufficient.

Algorithm 9 Sequential-MQ-AR (u) [0 · · ·N − 1]

Input: Input sequence u[0 · · ·N − 1] ≜ {(ki,vi, qi)}
N
3 −1
i=0 with each ki,vi, qi ∈ {0, 1}d.

1: Initialize an associative array with insert and find and an output array out← [].
2: for i ∈ {0, . . . , N

3 − 1} do
3: (kj ,vj)← find(qi) ▷ Query for qi in the data structure.
4: if kj is not null then
5: Add vj to out.

6: insert(ki,vi) ▷ Add the key-value pair to the data structure.

7: return out.

Proposition H.28. Algorithm 9 solves the multiple-query associative recall problem (Mqar) in O(dN logN)
time for an input sequence u ∈ {0, 1}N×d.

Proof. For any i ∈ {0, . . . , N
3 − 1}, we know that both insertion and lookup operations take O(log(i) · d) time.

Overall, the runtime of the algorithm is

N
3 −1∑︂
i=0

O(log(i) · d) = O(log(N !) · d) = O(N logN · d).
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H.7.4 Algorithm via Parallel Binary Search

Our plan is to convert the algorithm for solving the multiple-query associative recall problem in the RAM
model into an arithmetic circuit, which by Theorem H.21 will lead to a BaseConv model that solves
the multiple-query associative recall problem. With respect to Algorithm 9, it may be the case that the
arithmetic circuit has a large number of layers Ω(N). Unfortunately, this would imply that the resulting
BaseConv model may have near quadratic complexity in N . Instead, we now initiate our effort into designing
a BaseConv model with both small enough number of parameters and number of layers. Here, we will first
subdivide the problem using dyadic intervals into O(N) subproblems and reduce each such subproblem into a
multiple search problem [Akl and Meijer, 1990]. To this end, we briefly introduce the multiple search problem
below.

Given two array of numbers A ≜ a0 ≤ . . . ≤ an−1 and B ≜ (b0 ≤ . . . ≤ bm−1) with n ≤ m, for
each aj ∈ A, the goal is to find the smallest element in B that is larger than or equal to aj .

The multiple search problem is solved by a parallel binary search (pbs) algorithm in [Akl and Meijer, 1990]
with work complexity O(n · logm) and time O(log n logm). Specifically, for sorted arrays A[0 · · ·n− 1] and
B[0 · · ·m− 1], pbs constructs the array C[0 · · ·n− 1] defined as

C[i] ≜

{︄
min0≤j<m{j| A[i] ≤ B[j]} if A[i] ≤ B[m− 1]

m otherwise.
(12)

The algorithm itself runs in exclusive-read exclusive-write (EREW) PRAM model—no two processors are
allowed to read from or write into the same memory location at the same time.
We now augment the algorithm copied from [Akl and Meijer, 1990] for our purposes below.

Algorithm 10 pbs-key-values (q[s · · · t], k[x · · · y], n,m)

Input: sorted arrays q[s · · · t] := {qi}ti=s, k[x · · · y] := {(j,kj)}yj=x.
1: Initialize n processors denoted P0, P1, . . . , Pn−1 ▷ {Sequential steps are assumed to be executed by Ps.}
2: Initialize the output array C := [m]ti=s.
3: if s ≤ t then
4: mid← ⌊(s + t)/2⌋
5: if q[mid] ≤ k[x][1] then
6: for i := s to mid in parallel do
7: C[i]← j ▷ Step executed in parallel by Pi

8: pbs-key-values (q[mid + 1 · · · t], k[x · · · y])
9: else

10: if q[mid] > k[y][1] then
11: for i := mid to t in parallel do
12: C[i]← y + 1 ▷ Step executed in parallel by Pi

13: pbs-key-values (q[s · · ·mid− 1], k[x · · · y])
14: else ▷ C[mid] is determined using sequential binary search
15: z ← minx≤j≤y{j| q[mid] ≤ k[j][1]}
16: C[mid]← z
17: do steps 18 and 19 in parallel
18: pbs-key-values (q[s · · ·mid− 1], k[x · · · z − 1])]
19: pbs-key-values (q[mid + 1 · · · t], k[z · · · y])

20: return C.

Let Σ be the set {0, 1} and denote the set of binary strings of size n as Σn. We define prefix(x) for n-bit
strings as the set of all initial substrings of x ∈ Σn which includes the empty string and x itself. Next, let
dec : {0, 1}n → N be the decimal representation of an n-bit string x with x[0] denoting the least significant
bit. We also use sort(A) as a procedure that sorts an array A. Finally, wlog, we assume that N is a power of
2. We are now ready to present a parallel algorithm that solves the multiple-query associative recall problem
below.
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Algorithm 11 Parallel-MQAR (u[0 · · ·N − 1])

Input: Input sequence u[0 · · ·N − 1] ≜ {(ki,vi, qi)}
N
3 −1
i=0 with each ki,vi, qi ∈ {0, 1}d.

1: Initialize N
3 log

(︁
N
3

)︁
processors denoted P0, . . . , PN

3 log(N
3 )−1.

2: Initialize the index and output array idx, val← [].
3: for k := {0, . . . , log

(︁
N
3

)︁
− 1} do

4: for x := {x ∈ Σlog(N
3 )−k| x[log

(︁
N
3

)︁
− k − 1] = 0} do

5: {All the steps below are executed in parallel by {{{Px,k
i }x}i∈[0,2k−1]}k}

6: Ixk ← {y ∈ Σlog(N
3 )| x ∈ prefix(y)}.

7: kkx
sorted, I

kx
permuted ← sort

(︁
{kdec(i)}i∈Ix

k

)︁
▷ Ikxpermuted := {(j,dec(i))| kkx

sorted[j] ≡ kdec(i)}
8: x[log

(︁
N
3

)︁
− k − 1]← 1

9: Jx
k ← {y ∈ Σlog(N

3 )| x ∈ prefix(y)}.
10: qkx

sorted, J
kx
permuted ← sort

(︁
{qdec(j)}j∈Jx

k

)︁
▷ Jkx

permuted := {(dec(j), k)| qkx
sorted[k] ≡ qdec(j)}

11: Ck ← pbs-key-values
(︁
qkx
sorted, kkx

sorted, 2
k, 2k

)︁
12: for j ∈ Jx

k do
13: if Ck[dec(j)] ̸= 2k then
14: ckxj ← Ck[Jkx

permuted(dec(j))]

15: if ckxj ̸= 2k then ▷ cf. equation 12

16: Add Ikxpermuted(ckxj ) to idx[dec(j)].

17: for i ∈ {1, . . . , N
3 − 1} do

18: {Executed in parallel by Pi.}
19: if ∃ j ∈ idx[i] then
20: Add vj+1 to val

21: return val.

Remark H.29. In lines 7 and 10, we keep track of the sorted permutation of the indices of keys and queries,
respectively. This helps us in the retrieval of the index of the matching key as in line 16.

H.7.5 Correctness and Complexity

Proposition H.30. Algorithm 11 solves the multiple-query associative recall problem with work complexity
O(Nd · log2 N) and time O(d · log2 N).

Proof. The correctness of pbs implies the correctness of Algorithm 11 if we can show that, for each 1 ≤ i < N
3 ,

we check for a match among the keys {kj}j∈[i−1]. To this end, for each 1 ≤ i < N
3 , let the set of all iterator

indices associated with an index i be defined as Ki ≜ {(k, x)|i ∈ Jx
k } with Jx

k as noted in line 9. Then, we
define the corresponding set for keys as Ii ≜

⋃︁
(k,x)∈Ki

Ixk with Ixk s defined as in line 6. That is, for all the

calls to pbs-key-values that i is part of (given by Ki) where the algorithm checks for a match among the
keys in Ii, it then suffices to show that Ii = [i− 1].

Here, first note that if some index j ∈ Ixk ⊆ Ii for some x ∈ Σlog(N
3 )−k, then, by definition, x ∈ prefix(bin(j)).

Here, let x1 := x|x[log(N
3 )−k]=1 where we set the (log

(︁
N
3

)︁
− k)-th index of x to be 1. Consequently, as we

have i ∈ Jx
k for the same k and x as in Ixk (cf. line 6), we must have x1 ∈ prefix(bin(i)). Thus we get j < i,

whence we can claim that Ii ⊆ [i− 1].
For the other direction, for any i, let b denote the position of the most significant bit in bin(i) which differs
from bin(j) for any j ∈ [i− 1]. Then, there must exist a binary string that is in the prefix set of both bin(i)
and bin(i). That is, there exists x ∈ prefix(bin(i)) ∩ prefix(bin(j)) with x ∈ Σb. Thus, we then must have
bin(j) ∈ Ix

log(N
3 )−b

and bin(i) ∈ Jx
log(N

3 )−b
with x as the corresponding witness. Hence, we have [i− 1] ⊆ Ii.

Overall, we have shown that Ii = [i−1]. Since this holds for all 1 ≤ i < N
3 , we can conclude that Algorithm 11

solves the multiple-query associative recall problem.

Next, it is easy to see that we execute lines 6 to 16
∑︁log(N

3 )−1

k=0

N
3

2k+1 -many times. We note that sorting n
values each of size d can be done with work complexity n log n · d. We note that, at each instance, we are
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sorting sorting 2k values. Meanwhile, remembering 2k sorted permutation of indices can be done in linear time
using arrays. Moreover, each call to pbs-key-values has n = m = 2k which has work complexity n logm.
Finally, we know that the work complexity of lines 18 to 20 is O(N). Thus, the overall work complexity of
Algorithm 11 is

d ·
log(N

3 )−1∑︂
k=0

N
3

2k+1
O(2k · log 2k) = d · O(N) ·

logN/3−1∑︂
k=0

O(k) = O(Nd · log2 N). (13)

We will now analyze the depth of Algorithm 11. We know that the depth of computation for Algorithm 10 is
O(log n logm) for input sizes. Moreover, we have O(1) depth for the computation in 18 to 20 as each entry
in idx can have at most one entry. Since the nested for loops iterating over ks and the associated xs runs in
parallel, the depth of Algorithm 11 is dominated by the largest depth among all calls to pbs-key-values

and to sort. The largest such call to pbs-key-values is of size n = m = 2log(N
3 )−1 = N/6 which yields a

depth of d · log2 N
3 . Moreover, using sorting networks (Definition H.34), we know that the largest depth is for

sorting N
6 values of size d given by d ·Θ(logN) (Lemma H.35). Thus, we can conclude that Algorithm 11

takes O(d · log2 N), time where N is the length of the input.

H.7.6 Conversion to Arithmetic Circuit

We will convert Algorithm 11 to an arithmetic circuits modularly. In particular, after writing out an explicit
circuit for Algorithm 10, we will uses this circuit as a black-box along with circuits for sorting networks.

Circuit for pbs-key-values. We will denote the corresponding arithmetic circuit for Algorithm 10 as
pbs-key-values as well with the input gates comprising of each entry from q[s · · · t] and k[x · · · y] and the
i-th output gate yielding the value C[i] as in Algorithm 10.
Here, we first convert the comparisons for the if statements in Algorithm 10. To this end, we briefly introduce
comparators.
Definition H.31 (Comparators). A comparator is a device with inputs x and y and outputs x′ and y′, that
performs the following function:

x′ = min(x,y),

y′ = max(x,y).

Using comparators, we can use bit-wise XOR and AND to define the result of the comparisons in lines 5 and 10
as the following fixed variables:

ℓx := 1{q[mid] ≤ kx},
gy := 1{q[mid] > ky},
z := bin-search({ki}ti=s, q[mid]).

(14)

This then allows us to infer the index of the key array for each recursive call to pbs-key-values in lines 8,
13, 18, and 19 from Algorithm 10. Specifically, let zs and zt − 1 denote the starting and ending indices for
the keys as inputs to the recursive calls in Algorithm 10) below:

pbs-key-values(q[mid + 1 · · · t], k[zt · · · y]); (lines 8 and 19) (15)

pbs-key-values(q[s · · ·mid− 1], k[x · · · zs − 1]); (lines 13 and 18) (16)

Here, zt and zs can assume values dependent on the results of the comparisons in lines 5 and 10. Specifically,
we have

zt = ℓx · x + (1− ℓx)(1− gy) · z =

⎧⎪⎨⎪⎩
x if q[mid] ≤ kx (line 8)

z if q[mid] ∈ (kx,ky] (line 19)

0 otherwise

,

zs = gy · (y + 1) + (1− ℓx)(1− gy) · z =

⎧⎪⎨⎪⎩
y + 1 if q[mid] > ky (line 13)

z if q[mid] ∈ (kx,ky] (line 18)

0 otherwise

.
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Here, zs or zt getting a value 0 signifies that the branch is dead, and we do not execute the recursive call.
Finally, let the arrays Ct[mid + 1 · · · t] and Cs[s · · ·mid − 1] denote the outputs to the recursive calls in
equation 15 and equation 16, respectively. We can then succinctly express the outputs for each index of the
output array C as

C[i] =

⎧⎪⎨⎪⎩
ℓx · x + zs · (C1[i]) i ∈ [s · · ·mid− 1]

gy · (y + 1) + zt · (C2[i]) i ∈ [mid + 1 · · · t]
ℓx · x + (1− ℓx)(1− gy) · z + gy · (y + 1) i = mid

(17)

We can thus state the circuit schematically in Fig. 9.
Now, before accounting for the complexity of the circuit for Algorithm 10, we must first assert the complexity
of the comparators that we use in Fig. 9.

1 1

q[mid] ≤ kx q[mid] > kybin-search
({ki}

t
i=s, q[mid])

pbs-key-values (q[s · · · t], k[x · · · y], n,m) qs q[mid] qt.....kx ky....................... .....

x
y + 1

×

×× ×

−1 −1

+ +

zs
pbs-key-values(q[s · · ·mid − 1, k[zs · · · y]) pbs-key-values(q[mid + 1 · · · t], k[x · · · zt − 1])

ℓx gy
z

zt

+

× ×

. . .

...........

×

+

×

+

+ +
. . .

C[mid] C[mid − 1]C[s] C[mid − 1]........... C[t]

Figure 9: pbs-key-values (q[s · · · t], k[x · · · y], n,m) as a circuit with recursive calls and subprocedures as
“black boxes.”

Lemma H.32 (Cormen et al. [2022]). For binary strings x,y ∈ Σd of length d, there exists a comparison
network of size O(d), width O(d), and depth O(log d).
We use this lemma to compute the complexity of the arhmetic circuit from Fig. 9.
Proposition H.33. There exists an (O((n+m)d),O(nd·(logm+log n)),O(log n(logm+log n log d)),O(nd))-
arithmetic circuit14 equivalent to pbs-key-values (Algorithm 10) with inputs q and k of lengths n and m
with d-bit entries.

Proof. The size of the circuit for pbs-key-values should equal the work-complexity of Algorithm 10 but we
also need to account for the comparison gates in equation 14. Further, the circuit for binary search also has a
size of O(d · n) instead of O(d · log n) work as in Algorithm 10. Using Lemma H.32, along with the fact that
the comparison gates and the binary search are used at most O(log n) times, we deduce that we are adding
O(nd log n) size to the circuit in addition to the work complexity of the parallel algorithm. Thus, the overall
size of the arithmetic circuit for pbs-key-values is O(dn logm + nd log n). Further, the depth of the circuit

14Recall that a (n, s,∆, w)-arithmetic circuit is an n-variate circuit with size s, depth at most ∆, and width w.
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here is determined by the runtime of Algorithm 10 along with the depth of the comparison gates and binary
search O(log n log d), and finally, at most n processors are used for the parallel algorithm in Algorithm 10,
which yields the width of the circuit.

Circuit for Parallel-MQAR. Now, we will call the circuit for Parallel-MQAR with the same name while
the input gates contain the inputs of Algorithm 11. Indeed, we can directly “translate” Algorithm 11 to an
arithmetic circuit as the values for Ixk and Ixk for each x and k are predetermined from N . Thus, we start by
placing the corresponding sorting networks which feeds into the pbs-key-values (q[s · · · t], k[x · · · y], n,m)
circuit for Algorithm 10 in Fig. 9 so that the output values from the calls to pbs-key-values result in
the checks as in line 16 of Algorithm 11. That is, we get outputs Ck[Jkx

permuted(dec(i))] from each call to

pbs-key-values. We can then use a comparison gate to check if this value equals 2k, and if not, we have
found a match Ck[Jkx

permuted(dec(i))] for the query qi which results in the output of the associated value
vCk[Jkx

permuted(dec(i))]+1, exactly as in Algorithm 11. That is, we first define the following variable as the output

of the comparison gate:
ckdec(i) := 1{Ck[Jkx

permuted(dec(i))] ̸= 2k}. (18)

Here, as Ck[Jkx
permuted(dec(i))] ̸= 2k implies that Ikxpermuted

(︂
Ck[Jkx

permuted(dec(i))]
)︂

equals the index of

the matching key kj corresponding to the query qi, the ith output is then simply given by ckdec(i) ·

Ikxpermuted

(︂
Ck[Jkx

permuted(dec(i))]
)︂

, where the 0 output implies that there does not exist a matching key.

Here, we also briefly introduce the the sorting networks that we use to sort the keys and queries:
Definition H.34 (Informal). Sorting networks are circuits with gates and wires where the gates of the circuit
are comparators (Definition H.31) connecting two wires. Each such circuit can perform sorting on a fixed
number of values.
We can then show the circuit schematically as in Fig. 10.
We now dilineate the complexity of the circuit, starting with the complexity of the sorting networks.
Lemma H.35 (Ajtai et al. [1983]). Let A be an array with d-bit entries of size n. Then, one can implement
a sorting network to sort the array A with size O(d · n log n) and depth O(log d log n).
Proposition H.36. There exists an (N · d,O(Nd · log2 N),O(log d log2 N),O(Nd logN))-arithmetic circuit
that solves the multiple-query associative recall problem.

Proof. We note here that for each k, there are
N
3

2k+1 parallel problems of size 2k for both the sorting networks
and the pbs− key− values circuit. Using Lemma H.35, the cumulative size of these sorting networks is
O(d ·N log2 N) (see equation 13) with overall depth O(log d logN).

Similarly, the next layer again runs
∑︁log N

3 −1

k=0

N
3

2k+1 -many circuits for pbs− key− values each of which has

size O(2kd(log 2k + log 2k)) = O(d · 2k log 2k), depth O(log2 2k log d) and width O(2k) (Proposition H.33).
Again, the cumulative size of this layer is given by O(Nd · log2 N) (see equation 13). Since we run each of
these circuits in parallel, the depth of this layer is again O(log d log2(N)) while the width is O(N · logN).
Finally, we perform N

3 log N
3 comparisons at the end of d-bit strings in parallel which results in size O(N logN ·

d), depth O(log d) and width O(N logN ·d) (Lemma H.32). Therefore, the resulting arithmetic circuit has size
O(d ·N log2 N +Nd · log2 N +N logN ·d) = O(Nd log2 N), depth O(log d log2 N) and width O(Nd logN).

H.7.7 The Resulting BaseConv Model

As we have an arithemtic circuit for solving the multiple-query associative recall problem, we can now invoke
Theorem H.21 to claim that there is a corresponding BaseConv model that solves the multiple-query
associative recall problem with Õ(N log c) parameters and O(1)˜ layers.

Theorem H.37. There exists a
(︂
Nd, Õ(1), Õ(1), Õ(Nd), Õ(1)

)︂
− BaseConv solves the multiple-query

associative recall problem.

Proof. Directly applying Theorem H.21 yields a BaseConv model with the number of layers O(log d · log2 N ·
logNd logN) = O(1) layers while the claim on the input and inner dimensions follow trivially.
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)

Figure 10: Parallel-MQAR(u[0 · · ·N − 1]) as a circuit that includes sorting networks and the circuit for
pbs-key-values as subroutines.

H.8 Data-Dependent Convolutions

H.8.1 Introduction

In this section, we are again concerned with solving the multiple-query associative recall problem (Ap-
pendix H.7.1). However, in contrast to Appendix H.7.4, which yields a circuit that is unchanged and works
for all inputs, we instead take the viewpoint of adapting the sequence mixing weights (Section 2) with respect
to the particular sequence that the model receives as input. More specifically, we take the distance between
the tokens in the sequence as a measure for designing data-dependent convolutions.

Setup. To formally setup the problem, as in our discussion of designing a parallel algorithm, we consider
the following problem description of the multiple-query associative recall problem.

Suppose we are given an input u[0 · · ·N − 1] ≜
{︂

(k0,v0, q0) , . . . ,
(︂
kN

3 −1,vN
3 −1, qN

3 −1

)︂}︂
with

each ki,vi, qi ∈ C. Here, each token is embedded using the standard one-hot encoding in {0, 1}c
(i.e. we assume d = c).15 Our goal is again to check, for each 1 ≤ i ≤ N

3 − 1, whether there exists
0 ≤ j < i such that qi ≡ kj , and if so, output vj .
Here, we define the interaction distance between the ith query qi and the matching key kj as
i− j. We then also assume that number of distinct interaction distances is bounded by t.

15Our arguments do need c = d. However we do not need d = N but we made this simplification for ease of presentation.
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We can identify these distances using an autocorrelation [Chatfield, 1995], which has an elegant underlying
formulation. We will briefly introduce the relevant mathematical machinery in the context of elucidating the
data-dependent model that we seek to develop in the sequel.

Autocorrelations We introduce autocorrelation convolutions. Let ũ[t] := u[−t], then the cross correlation
of two vectors u and v is given by

u ⋆ v ≜ ũ ∗ v.

The autocorrelation of a vector u ∈ Rn is the cross correlation of u with itself. Moreover, in terms of
polynomials, we have ũ(X) = Xn−1 · u(1/X). Thus, in analogy with our interpretation of convolution in
terms of polynomial multiplication, we characterize the autocorrelation of a vector u ∈ Rn, given by w ∈ Rn

as follows:
w = coeff (u(X) · ũ(X) mod Xn − 1) .

H.8.2 BaseConv with kernels generated using Auto-Correlation

We are now ready to describe the model that solves the multiple-query associative recall problem using
data-dependent kernels derived using auto-correlations.

The Input-Dependent Kernels. There are several potential strategies to identify the best token-
interaction distances for an input using a convolution. Here we will focus on an autocorrelation convolution
for exposition. Autocorrelation allows us to identify the top t distinct shifts of the sequence that result in
highly overlapping values (e.g. matches between query and keys in our associative recall setting). We can
then construct convolution filters that perform each of these t shifts. That is, we define a function Top such
that Top (u ⋆ u, t) returns a list of the top t shifts {sℓ}ℓ∈[t]. We then use these top t distances {sℓ}ℓ∈[t] to
define the following two kernels:

hk(X) ≡
∑︂
ℓ∈[t]

Xsℓ+(ℓ−1)·N3 ,

hv(X) ≡
∑︂
ℓ∈[t]

Xsℓ−1+(ℓ−1)·N3 .
(19)

Here, we note that we only only have two kernels as we will assume N ′ = tN3 and the shift will be done in
”parallel.” Obviously, one can instead define t distinct shift kernels but then there is a cost of O(t) in the
number of layers.

Projections. We define the following projections K,Q,V ∈ {0, 1}N×d of the input that we shall use below
using equation 9.

K[i, :] :=

{︄
u[i, :] if i ∈ K,
0d otherwise

,

Q[i, :] :=

{︄
u[i, :] if i ∈ Q,
0d otherwise

,

V[i, :] :=

{︄
u[i, :] if i ∈ V,
0d otherwise

,

(20)

Finally, we present the BaseConv model that solves the multiple-query associative recall problem with
input-dependent kernels using O(1) layer and O(t ·Nd)-many parameters.
Theorem H.38. There exists a BaseConv model with gated data-dependent convolutions that solves the
multiple-query associative recall problem on inputs from {0, 1}3N×c with the total number of distinct interaction
distances bounded by t in O(1) layers and O(t ·Nc) total parameters.

Proof. We note that we have the input dimension d = c. Now, for any input sequence u ∈ {0, 1}N×d, we get
the input-dependent kernels as in equation 19 using autocorrelation of the input. We will now outline the
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following computations for the BaseConv layers:

y = LinearQ(u)⊙
(︁
hK ∗ LinearK(u)

)︁
= Q⊙

(︁
hK ∗K

)︁
(21)

z = LinearE(y)⊙
(︁
hV ∗ LinearV(u)

)︁
= E⊙

(︁
hV ∗V

)︁
, (22)

where we have the linear projections LinearQ(u) = Q, LinearK(u) = K, LinearV(u) = V and
LinearE(y) = E defined as

E[i, :] := LinearE(y)[i, :] =

{︄
1d if ∃ j ∈ [d] such that y[i, j] = 1

0d otherwise
. (23)

Here, we will first present the argument for the special case when we have t = 1 as that will help us elucidate
the general case. To this end, as the kernels from equation 19 for t = 1 are given by

hk(X) ≡ Xs1 ;

hv(X) ≡ Xs1−1,
(24)

we observe that convolving with these kernels h ∗ y is equivalent to operating with the following primitives
(Appendix H.3):

shift down(y, s1);

shift down(y, s1 − 1).
(25)

We note that we shift down instead of shifting up as the index of the top-left entry is (0, 0). We can then
write down the computations performed in equation 21 and equation 22 as follows:

y = Q⊙ shift down(K, s1) (26)

z = E⊙ shift down(V, s1 − 1), (27)

We begin by examining y below:

y[i, :] = (Q⊙ shift down(K, s1)) [i, :]

= Q[i, :]⊙ shift down(K, s1)[i, :] (28)

=

(︄{︄
u[i, :] if i ∈ Q
0d otherwise

)︄
⊙

(︄{︄
u[i− s1, :] if i− s1 ∈ K,
0d otherwise

)︄
(29)

=

{︄
u[i, :]⊙ u[i− s1, :] if i ∈ Q and i− s1 ∈ K,
0d otherwise

Here, we use the fact that the Hadamard product is row-independent in equation 28, and the definitions of
the projections from equation 20 in equation 29. Examining the jth entry, we get

u[i, j]⊙ u[i− s1, j] =

{︄
1 if i ∈ Q, i− s1 ∈ K and qi ≡ ki−s1 ≡ ej

0 otherwise.

That is, we can express

y[i, :] =

{︄
ej if i ∈ Q, i− s1 ∈ K and qi ≡ ki−s1 ≡ ej

0d otherwise
. (30)

Consequently, as per the definition in equation 23, we get

E[i, :] =

{︄
1d if i ∈ Q, i− s1 ∈ K and qi ≡ ki−s1

0d otherwise
(31)
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We can now finally specify the output z from equation 27 as follows:

z[i, :] = (E⊙ shift down(V, s1 − 1)) [i, :]

= E[i, :]⊙ shift down(V, s1 − 1)[i, :] (32)

=

(︄{︄
1d if i ∈ Q, i− s1 ∈ K and qi ≡ ki−s1

0d otherwise

)︄
⊙

(︄{︄
u[i− s1 + 1, :] if i− s1 + 1 ∈ V,
0d otherwise

)︄
(33)

=

{︄
u[i− s1 + 1, :] if i ∈ Q, i− s1 ∈ K, i− s1 + 1 ∈ V and qi ≡ ki−s1

0d otherwise

=

{︄
vi−s1 if qi ≡ ki−s1

0d otherwise
(34)

Again, we use the fact that the Hadamard product is row-independent in equation 32, and the definitions of
the projections from equation 20 in equation 33. Overall, we have solved associative recall for all queries that
have interaction distance exactly equal to s1.
In order to generalize this to arbitrary t ≤ N

3 , we first increase the internal dimension so that the input to

the kernels u′ ∈ R(N ·t)×d in equation 19 and the projections K′,Q′,V′ ∈ R(N ·t)×d are given by

u′ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0d

...

0d

u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,K ′ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0d

...

0d

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,Q′ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q

...

Q

Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,V′ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0d

...

0d

V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

We then observe that for hk
ℓ (X) := Xsℓ and hv

ℓ (X) := Xsℓ−1, we have

hk(X) ≡
∑︂
ℓ∈[t]

hk
ℓ (X) ·X(ℓ−1)·N3 ,

hv(X) ≡
∑︂
ℓ∈[t]

hk
ℓ (X) ·X(ℓ−1)·N3 .
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In analogy with equation 25, we can then equivalently write

(︁
hK ∗K

)︁
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hK
t

...

hK
2

hK
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0d

...

0d

K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hK
t ∗K

...

hK
2 ∗K

hK
1 ∗K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

shift down(K, st)

...

shift down(K, s2)

shift down(K, s1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similarly, we also have

(︁
hV ∗V′)︁ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

shift down(V, st − 1)

...

shift down(V, s2 − 1)

shift down(V, s1 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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That is, the argument for t = 1 now applies to each of the t shifts as we now have (cf. equation 21)

y′ ≡ Q′ ⊙
(︁
hV ∗V

)︁

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q

...

Q

Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

shift down(V, st − 1)

...

shift down(V, s2 − 1)

shift down(V, s1 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q⊙ shift down(V, st − 1)

...

Q⊙ shift down(V, s2 − 1)

Q⊙ shift down(V, s1 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yt

...

y2

y1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where, for each ℓ ∈ [t], we have (cf. equation 30)

yℓ[i, :] ≡

{︄
ej if i ∈ Q, i− sℓ ∈ K and qi ≡ ki−sℓ ≡ ej ,

0d otherwise
.

We then analogously get E′ as follows:

E′ ≡ LinearE(y′) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LinearE(yt)

...

LinearE(y2)

LinearE(y1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Et

...

E2

E1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where, for each ℓ ∈ [t], we have (cf. equation 31)

Eℓ[i, :] =

{︄
1d if i ∈ Q, i− sℓ ∈ K and qi ≡ ki−sℓ

0d otherwise
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The output in the general case is then given by

z′ ≡ E′ ⊙
(︁
hV ∗V′)︁

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Et

...

E2

E1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

shift down(V, st − 1)

...

shift down(V, s2 − 1)

shift down(V, s1 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Et ⊙ shift down(V, st − 1)

...

E2 ⊙ shift down(V, s2 − 1)

E1 ⊙ shift down(V, s1 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zt

...

z2

z1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where, for each ℓ ∈ [t], we have (cf. equation 34)

zℓ[i, :] ≡

{︄
vi−sℓ if qi ≡ ki−sℓ

0d otherwise

Finally, we define the last output layer to compute zout ≡ Linearsum(z′) ≡
∑︁

ℓ∈[t] zℓ so that we have

zout[i, :] ≡

{︄
vi−sℓ if qi ≡ ki−sℓ for some ℓ ∈ [t]

0d otherwise

To recall, we retrieved the top t interaction distances of the input u using auto-correlation and defined the
corresponding convolution kernels (equation 19). We then shifted djown the keys K using the first kernel and
gated with the corresponding queries Q so that we got a match exactly when there exists a key that is at sℓ
interaction distance from the corresponding query. After “smearing” this match to get E, we used it as a
mask to retrieve the value in the next layer. Overall, since we have t atomic kernels that perform t shifts
with each of these kernels using O(Nd) parameters, we can conclude that the output solves the associative
recall problem for all queries with exactly ℓ interaction distance from the corresponding keys for all ℓ ∈ [t]
using O(1) layers and O(t ·Nc) parameters as we have d = c.

64



Table 6: Attention Training Settings

73M 125M 360M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) 8e-5, 8e-4

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1

Num Layers 6 12 24
Hidden Size 704 768 1024
FFN Width 4

Position Embeddings Rotary
Weight Tying True

Number of Heads (H) 8 12 16

Table 7: Attention FLOPs Computation

Equation

Input Layer B × V ×N ×D

Sequence Mixer Q,K,V Projections B ×N ×D ×D × 3
Sequence Mixer Attention B ×H ×H ×D + H ×N ×N + B ×N ×N ×D

Sequence Mixer Output Projection B ×N ×D ×D

Channel Mixer (FFN Width 4) B ×D ×D × 8× 2
3 ×N

Language Modeling Head B × V ×N ×D
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Table 8: Hyena [Poli et al., 2023a] Training Settings

72M 158M 358M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.98

Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) (1e-5, 8e-4)

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1

Num Layers 8 18 24
Hidden Size 768 864 1024
FFN Width 2

Position Embeddings None
Weight Tying True

Short Conv. Filter Size 3
Exp. Mod. Decay (Fast, Slow) 0.3, 1.2

Filter Sine Freq. (w) 14
Filter Order 64

Filter Inner MLP 2
Filter Weight Decay 0

Table 9: Hyena FLOPs Computation

Equation

Input Layer B × V ×N ×D

Sequence Mixer Input Projection B ×N ×D ×D × 3 + B ×N × 9×D
Sequence Mixer Long Convolution 10×N × log(N)×D ×B
Sequence Mixer Short Convolution 3×B ×N ×D

Sequence Mixer Implicit MLP (Order 64) D × 64
Sequence Mixer Output Projection B ×N ×D ×D

Channel Mixer (FFN Width 2) B ×D ×D × 2× 2×N

Language Modeling Head B × V ×N ×D
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Table 10: H3 [Fu et al., 2023c] Training Settings

72M 168M 357M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) (8e-5, 8e-4)

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1
Weight Tying True

Num Layers 8 19 33
Hidden Size 720 864 1024
FFN Width 2

Position Embeddings None

State Space Model State Size 64

Table 11: RWKV Peng et al. [2023] Training Settings

72M 169M 351M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.999

Optimizer eps 1e− 8
Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) 1e-5, 8e-4

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1
Weight Tying False

Num Layers 6 12 20
Hidden Size 624 768 984

Position Embeddings None
Initialization From Reference Impl.
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Table 12: RetNet [Sun et al., 2023] Training Settings

152M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.98

Optimizer eps 1.0e-8
Precision BFloat16

Learning rate decay Linear
Learning rate (min, base) (1e-5, 8e-4)

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.05

Normalization Layernorm
Weight Tying True

Num Layers 12
Hidden Size 768

Value Hidden Size 1280
Window Size 128

Position Embeddings xPos (relative position embeddings)
Initialization DeepNet

Table 13: Simple Long Convolution Fu et al. [2023c] Training Settings

76M 128M 360M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Precision BFloat16

Learning rate decay Linear
Learning rate (min, base) 8e-5, 8e-4

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1

Num Layers 6 12 24
Hidden Size 704 864 1024
FFN Width 4

Position Embeddings -
Weight Tying True

Channels 1
Lam 0.001

Kernel Dropout 0.1
Kernel LR 5e− 5
Activation GeLU

Exponential Modulation True

68



Table 14: Simple Long Convolution FLOPs Computation

Equation

Input Layer B × V ×N ×D

Sequence Mixer Long Convolution 10×N × log(N)×D ×B
Sequence Mixer Output Projection B ×N ×D ×D

Channel Mixer (FFN Width 4) B ×D ×D × 8× 2
3 ×N

Language Modeling Head B × V ×N ×D

Table 15: BaseConv Training Settings

168M 354M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Precision BFloat16

Learning rate decay Cosine
Learning rate (min, base) 8e-5, 8e-4

Global batch size 256
Training iterations 20000

Warmup Duration (Linear) 0.01
Weight decay 0.1

Num Layers 30 48
Hidden Size 852 1080
FFN Width 2

Position Embeddings -
Weight Tying True

Short Conv. Filter Size 3
Exp. Mod. Decay (Fast, Slow) 0.3, 1.2

Filter Sine Freq. (w) 14
Filter Order 64

Filter Inner MLP 2
Filter Weight Decay 0

Table 16: BaseConv FLOPs Computation

Equation

Input Layer B × V ×N ×D

Sequence Mixer Long Convolution 10×N × log(N)× 0.5(D)×B
Sequence Mixer Short Convolution B ×N × 0.5(D)

Sequence Mixer Implicit MLP (Order 64) 0.5(D)× 64
Sequence Mixer Linear Projection B ×N ×D ×D

Channel Mixer (FFN Width 2) B ×D ×D × 2× 2×N

Language Modeling Head B × V ×N ×D
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