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Abstract

Current state-of-the-art self-supervised approaches, are effective when trained on in-
dividual domains but show limited generalization on unseen domains. We observe that
these models poorly generalize even when trained on a mixture of domains, making
them unsuitable to be deployed under diverse real-world setups. We therefore propose
a general-purpose, lightweight Domain Disentanglement Module (DDM) that can be
plugged into any self-supervised encoder to effectively perform representation learning
on multiple, diverse domains with or without shared classes. During pre-training ac-
cording to a self-supervised loss, DDM enforces a disentanglement in the representation
space by splitting it into a domain-variant and a domain-invariant portion. When domain
labels are not available, DDM uses a robust clustering approach to discover pseudo-
domains. We show that pre-training with DDM can show up to 3.5% improvement in
linear probing accuracy on state-of-the-art self-supervised models including SimCLR,
MoCo, BYOL, DINO, SimSiam and Barlow Twins on multi-domain benchmarks in-
cluding PACS, DomainNet and WILDS. Models trained with DDM show significantly
improved generalization (7.4%) to unseen domains compared to baselines. Therefore,
DDM can efficiently adapt self-supervised encoders to provide high-quality, generaliz-
able representations for diverse multi-domain data.

1 Introduction
Self-supervised learning [7, 9, 10, 11, 12, 18, 21, 27] has become a popular paradigm for
unsupervised representation learning as it shows impressive results on downstream tasks.
However, we find that current self-supervised models when trained on a single-domain show
very poor generalizability to domain shifts. This can hinder their deployment in large scale
real-world settings where data almost always comes from multiple diverse domains. We

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

ar
X

iv
:2

30
9.

03
99

9v
2 

 [c
s.C

V
]  

13
 D

ec
 2

02
3

Citation
Citation
{Caron, Bojanowski, Joulin, and Douze} 2018{}

Citation
Citation
{Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin} 2020

Citation
Citation
{Caron, Touvron, Misra, Jégou, Mairal, Bojanowski, and Joulin} 2021

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{Chen and He} 2021

Citation
Citation
{Grill, Strub, Altché, Tallec, Richemond, Buchatskaya, Doersch, Avilaprotect unhbox voidb@x protect penalty @M  {}Pires, Guo, Gheshlaghiprotect unhbox voidb@x protect penalty @M  {}Azar, Piot, kavukcuoglu, Munos, and Valko} 2020

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Khosla, Teterwak, Wang, Sarna, Tian, Isola, Maschinot, Liu, and Krishnan} 2020



2 KALIBHAT ET AL. : ADAPTING SSL REPRESENTATIONS USING DDM

Mixture of Domains

Self-
Supervised
Encoder 

 
Representation ( )

Domain-Disentanglement Module (DDM)

Domain Labels
Unknown

Domain Prefix

Robust Clustering

Pseudo-Domain Labels

Figure 1: Framework of our proposed Domain Disentanglement Module: In our pro-
posed DDM framework, the representation space (h) of any given self-supervised encoder
is split into two portions, a domain prefix (hd) and a domain-invariant (hp) portion. Along
with the self-supervised loss (Lssl), hd is trained to be distinguishable across domains (Ld_var)
and hp is trained to be invariant to any domain information (Ld_invar). DDM also supports
scenarios when domain labels are not available using robust clustering, an iterative process
that reduces outlier noise.

illustrate this issue in Figure 2, where we show that popular self-supervised models, SimCLR
[11], MoCo [21] and BYOL [18], trained on individual domains of PACS [36] significantly
under-perform on unseen domains. This means that a different self-supervised model needs
to be trained for every new domain, which can add significant computational overheads given
that training these models often require large batch sizes and a large number of training
epochs [11, 21, 45].

One potential solution for self-supervised learning on multi-domain datasets is to train
the models on the union of all input domains. We illustrate this in Figure 2 were we plot
the multi-domain training results for each baseline on a mixture of PACS Photo, Sketch
and Cartoon. We observe that this solution may show improved performance on the training
domains, however they do not match the single-domain baselines in all cases. Moreover, they
show poor generalization to unseen domains (PACS Painting). In Section 3, we study the
representation space closely under multi-domain regimes to find that they can under perform
compared to single-domain regimes because domain-related and content-related information
overlap in the representation space, affecting their quality for instance classification.

To tackle these issues, we propose a Domain-Disentanglement Module (DDM), that
can be plugged in to any self-supervised model during multi-domain training. With DDM,
we enforce a disentanglement in the representation space where a domain prefix is trained
to be distinguishable across domains and the remaining portion is trained to be domain-
invariant to produce better structured representations. This is achieved by minimizing the
Wasserstein Distance [1] between the known and predicted domain label distributions. We
also extend DDM to more realistic, entirely unsupervised multi-domain setups where do-
main labels are unknown. In such scenarios, we present a robust clustering approach that
iteratively reduces outlier noise and detects pseudo-domain-labels that are used in DDM.

By pre-training with DDM, we show that we can improve the generalization capabil-
ity of various state-of-the-art self-supervised baselines including SimCLR [11], MoCo [21],
BYOL [18], DINO [10], SimSiam [12] and Barlow Twins [48]. We perform extensive ex-
periments on generalization benchmarks including PACS [36], DomainNet [37] and WILDS
[30]. Upon linear probing on unseen domains, we observe an improvement of 6.1% on
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PACS, 7.4% on DomainNet and 5.9% on WILDS using DDM. In summary, we propose a
lightweight module called DDM which can be simply attached to any self-supervised en-
coder to enable training over multiple diverse domains to produce well-structured, general-
izable representations (See Figure 1).
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Figure 2: Self-supervised baselines under single and multi-domain setups: We plot 3
SOTA self-supervised baselines, SimCLR, BYOL and MoCo, trained individually on PACS
Photo, Sketch and Cartoon and on their mixture. We observe that both single-domain and
mult-domain training generalizes poorly to unseen domains on all baselines. These baselines
when pre-trained with DDM (our method), outperforms even single-domain baselines and
shows significantly improved generalization to the unseen domains.

2 Related Work
Building on the success of unsupervised learning techniques [4, 5, 6, 8, 15, 23, 47], self-
supervised models have shown unprecedented capabilities when used in a range of down-
stream tasks. Among a number of self-supervised baselines, we focus on SimCLR [11],
MoCo [21], BYOL [18], DINO [10], SimSiam [12] and Barlow Twins [48]. These are joint-
embedding self-supervised learning methods, which involve taking two augmented views of
the same input and ensuring their representations are close using the same encoder or two
encoders sharing the same weights.

Extending these self-supervised methods to multiple diverse domains, other than Ima-
geNet [38], is a relatively less explored topic [44]. Existing approaches [28, 29, 35] use
pre-trained encoders and assume few source labels for unsupervised domain adaption and
domain generalization. [41] uses available class information and novelty discovery to learn
new samples in the wild. These works do not consider fully unsupervised multi-domain se-
tups, where even domain label information is unavailable. [17] assumes domain labels and
uses mutual information to encode common invariant information and domain-specific infor-
mation for each image. [46] uses multiple domain-specific decoders to reconstruct images
according to their domains such that the encoder is domain-invariant. This method may not
be scalable and is contingent upon the number of available domains. [49] proposes a con-
trastive method that selects negatives across domains to train invariant representations. Our
method reports better numbers on the PACS dataset compared to these baselines. Our method
also does not assume domain labels and can be flexibly applied on any self-supervised setup.

In our paper, we focus on a general multi-domain setup with diverse related or unrelated
domains, with and without shared classes, and evaluate on individual domain-specific tasks.
We make it possible to efficiently pre-train a single encoder on any existing state-of-the-art
self-supervised setup, over multiple domains, to significantly improve their generalizability.
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Colored CIFAR-10

Figure 3: Visualizing Colored-CIFAR representations: We prepare Colored-CIFAR,
multi-domain version of CIFAR-10 [32] where the images are randomly colored red or green.
We visualize the top activating features of the class-averaged representations of both do-
mains. In the SimCLR baseline, we observe a clear difference in feature distribution within
the same classes, across domains. DDM enables representations to have a shared domain-
specific prefix while the remaining portion is domain-invariant and almost identical across
classes. This structure significantly improves linear evaluation performance (See Figure 4).

3 Self-Supervised Models under Multi-domain Setups

We observed in Figure 2, that state-of-the-art self-supervised learning methods like SimCLR
[11], MoCo [13] and BYOL [18] show low transfer performance on unseen domains on both
single-domain and multi-domain regimes. In this section, we take a closer look at the learned
representation space under these regimes to explain this behavior.

We first define some notations. Let us consider a self-supervised model with a base
encoder f (.). We apply data transformations and pass the input samples, xi ∈ Rn, through
the base encoder to get self-supervised representations denoted by f (xi) = hi ∈ Rr where r
is the size of the representation space.

Let us take the example of SimCLR [11] trained on CIFAR-10 [32] dataset. In the first
t-SNE [43] plot in Figure 4(a), we observe that the representations are naturally clustered
based on their classes, which allows us to achieve a top-1 accuracy of 90.18 after linear
probing. Let us now define a multi-domain version of CIFAR-10 called Colored-CIFAR
where, each sample is randomly colored either red or green as shown in the first panel of
Figure 3. In this dataset, the domains refer to the colors of the image, while the labels are
of the objects. When SimCLR is trained on Colored-CIFAR, there is a significant drop in
top-1 accuracy (78.52). We observe that the representation space is divided into two large
clusters, corresponding to the domains (red or green) as shown in 4(b). We attribute the loss
in accuracy to this significant change in representation structure.

We now study the SimCLR representation space of Colored-CIFAR to further understand
and explain multi-domain behavior. In Figure 3, in the second panel, we show a heatmap
of the domain-wise averaged representations of each class in CIFAR-10. Each column cor-
responds to specific feature indices of the class-averaged representations. The darker the
column, the higher the magnitude of the feature. For fair comparison, we L2 normalize ev-
ery feature. For ease of visualization, we display only the subset of feature indices (called
most activating features) that are strongly deviated from the mean in at least one row. The
remaining features show low activation across the board and are omitted from visualization
[24, 25]. Top activating features correspond to important physical attributes discovered from
the training data [25, 40]. Two images of a car, one in each domain, would share all physical

Citation
Citation
{Krizhevsky, Nair, and Hinton} 

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{Chen, Fan, Girshick, and He} 2020{}

Citation
Citation
{Grill, Strub, Altché, Tallec, Richemond, Buchatskaya, Doersch, Avilaprotect unhbox voidb@x protect penalty @M  {}Pires, Guo, Gheshlaghiprotect unhbox voidb@x protect penalty @M  {}Azar, Piot, kavukcuoglu, Munos, and Valko} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{Krizhevsky, Nair, and Hinton} 

Citation
Citation
{vanprotect unhbox voidb@x protect penalty @M  {}der Maaten and Hinton} 2008

Citation
Citation
{Jing, Vincent, LeCun, and Tian} 2021

Citation
Citation
{Kalibhat, Narang, Firooz, Sanjabi, and Feizi} 2022

Citation
Citation
{Kalibhat, Narang, Firooz, Sanjabi, and Feizi} 2022

Citation
Citation
{Singla and Feizi} 2021



KALIBHAT ET AL. : ADAPTING SSL REPRESENTATIONS USING DDM 5

attributes except for the color. An ideal self-supervised encoder is expected to encode all
physical attributes independent of any domain shift.

However, in multi-domain SimCLR, we observe that there is almost no overlap between
the most activating features of each class between the red and green domains. This suggests
that the domain information (color) and instance information (actual content of the image)
are somewhat interleaved in these representations, causing different sets of features to be
strongly activated for the same class based on the domain. In single-domain SimCLR on
CIFAR-10 (no colors), the representations only encode content information, which results in
linearly separable representations by class. In multi-domain SimCLR on Colored-CIFAR,
a combination of both domain and content information is encoded in every representation
which directly affects linear classification performance. Therefore, to achieve compara-
ble performance to single-domain setups, we propose to disentangle domain information
from representations by plugging in a general-purpose a Domain-Disentanglement Module
(DDM) for Self-Supervised Models which is discussed in the next section.

(a) Accuracy: 90.18 (b) Accuracy: 78.52 (c) Accuracy: 87.06 (DDM) (d) Accuracy: 87.06 (DDM)
Figure 4: SimCLR Representation t-SNE before and after DDM: CIFAR-10 represen-
tations are naturally clustered by class, however, Colored-CIFAR representations are clus-
tered by domain which leads to a significant reduction in classification performance. When
SimCLR is trained with DDM, the prefix alone has domain-distinguishable representations,
while the remaining portion of the representation is domain-invariant, clustered by class.
This structure notably improves the classification performance.

4 Domain-Disentanglement Module for Self-Supervised
Representations

As described in the previous section, self-supervised models in their current state, are not
trained to learn content and domain information independently. We hypothesize that disen-
tangling domain information from the learned representations can improve the performance
of existing state-of-the-art SSL models in multi-domain setups. We therefore propose a
general-purpose Domain-Disentanglement Module (DDM) that can be simply attached at
any SSL encoder during its pre-training. In this work focus on joint-embedding (involv-
ing two transformed views) self-supervised encoders [3, 9, 10, 11, 12, 13, 18, 48] and not
masked image models [22].

Recall that for a given sample xi, its representation is denoted by f (xi) = hi ∈ Rr. Let yi
denote the domain of the ith representation. We allocate the first k features of the representa-
tion as the domain prefix, hi,0..k, denoted by hd

i for ease of notation. The remaining portion
of the representation hi,k..r is denoted by hp

i . We call hd
i as the domain-variant portion and
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hp
i as the domain-invariant portion. We train the domain prefix of the ith sample according

to the following contrastive optimization, Lid_var = log
∑

2N
j=11 j ̸=i1yi=y j sim(hd

i ,h
d
j )

∑
2N
j=11yi ̸=y j sim(hd

i ,h
d
j )

.

where sim(a,b) = exp
(

1
τ

aT b
∥a∥∥b∥

)
. This loss maximizes the similarity of the domain pre-

fixes within each domain and minimizes the similarity of domain prefixes across domains.
hp

i is learned according to any self-supervised loss like SimCLR, MoCo, DINO etc., denoted
by Lissl . Splitting the representation in this manner helps us control each portion indepen-
dently. Lssl ensures that all content information is encoded in a self-supervised manner such
that representations can be utilized for downstream tasks. Ld_var ensures that the domain
prefixes across samples of different domains are distinguishable.

We next ensure that hp
i does not contain any domain-related information (domain-invariance

constraint). In other words, it should not be possible to predict the the domain label yi
from the representation hp

i . To achieve this, we pass each hp
i through a domain discrimi-

nator D(.) and minimize the Wasserstein distance (using the dual form as proposed in [1]),
Lid_invar = D(hp

i ,yi)−D(hp
i ,yrand), where yrand ∼P(y), i.e., randomly drawn from the distri-

bution of domain labels. The final optimization for the encoder ( f (.)) and the discriminator
(D(.)) is,

max
f

2N

∑
i=1

[
Lissl +λ1Lid_var +λ2Lid_invar

]
(1)

where λ1,λ2 are tunable hyperparameters. We optimize both the encoder f (.) and the dis-
criminator D using alternating gradient descent ascent. We train D(.) using gradient penalty
to improve its stability as proposed in [19]. This formulation is similar to [26, 39], except that
we use Wasserstein Distance to disentangle domain information from the remaining portion
of the representation space. In summary, our module DDM consists of splitting the rep-
resentation space into two parts and applying two additional loss terms, Ld_var and Ld_invar.
Note that, DDM can be plugged in while training any existing state-of-the-art self-supervised
model.

In Figure 3, in the last panel, we show the representation space of SimCLR trained on
Colored-CIFAR using DDM. We observe that among the most activating features, the first
few features (which are part of the domain prefix) are equivalent for all classes within a
domain and clearly distinguishable between both domains. The remaining portion of the
representation is completely invariant to any domain information as each class shows very
similar feature distribution in both red and green domains. In the t-SNE plots (Figure 4(c)
and (d)), we observe that the domain prefix is separable by domain whereas the domain-
invariant portion shows natural class clusters with overlapping red and green images. This
update in structure leads to a significant improvement in top-1 accuracy from 78.52 to 87.06.

4.1 Experimental Setup
We use ViT-S [16] as the base encoder ( f (.)) for all of our experiments. Our domain dis-
criminator (D(.)) is an MLP with LeakyReLU activations. The representations are 384-
dimensional with a 24-dimensional domain prefix. We train the encoder according to vari-
ous self-supervised baselines including SimCLR [11], MoCo [21], BYOL [18], DINO [10],
SimSiam [12] and Barlow Twins [48]. We use the same optimization and scheduling for the
encoder as the respective papers. While training with DDM, we use the Adam optimizer
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for the domain discriminator with a learning rate of 0.005 and cosine-annealing scheduling
and λ1 = λ2 = 0.5. We experiment with PACS [36], DomainNet [37] and the WILDS [30]
multi-domain benchmarks. We use Nvidia GeForce RTX A4000 GPUs for pre-training. We
evaluate representations using the linear evaluation protocol [2, 31, 42] where we train a
linear classifier on top of frozen representations and compute the top-1 accuracy over the
training and unseen domains.

4.2 Self-Supervised Baselines Trained with DDM

In Figure 2, we observed that self-supervised baselines (SimCLR, BYOL and MoCo), when
trained on a single domain or multiple domains, generalize poorly to unseen domains. These
baselines, when pre-trained with DDM, show improved performance on the training domains
(PACS Photo, Sketch and Cartoon) as well as significantly improved generalization to the un-
seen domain (PACS Art Painting). Pre-training on multiple domains with DDM outperforms
every self-supervised baseline as shown in Table 1 with a maximum of 2.6% improvement
on average top-1 accuracy on SimSiam. We also tabulate our results on DomainNet using
Painting, Real and Sketch as training domains and Clipart, Infograph and Quickdraw as the
unseen domains in Table 2. We observe that pre-training with DDM improves upon each
self-supervised baseline with a maximum of 3.5% improvement on average top-1 accuracy
on BYOL. DDM generalizes significantly better than its baselines showing a 6.1% (Sim-
Siam) increase in PACS (Painting) and a 7.4% (DINO) in DomainNet (Clipart).

To further evaluate the generalization of self-supervised baselines with DDM, we utilize
the WILDS benchmark [30]. In this benchmark, pre-train on iWildCam (200K samples, 182
classes, 323 domains), Camelyon17 (456K samples, 2 classes, 5 domains), FMoW (141K
samples, 62 classes, 80 domains) and RxRx1 (125K samples, 1139 classes, 51 domains). We
summarize our results in Table 3. On each benchmark, we observe that DDM outperforms
the baselines on the unseen validation set. The accuracy in rxrx1 is low since it is a very hard
classification task as it contains 1139 classes and 51 domains. We observe a 5.9% increase
linear classification accuracy on iWildCam on SimCLR

Table 1: SSL baselines trained on PACS (Photo, Sketch and Cartoon) with DDM

Model Top-1 Accuracy (Baseline / with DDM)
Photo Sketch Cartoon Painting (Unseen) Average

SimCLR 97.54 / 98.28 98.12 / 97.04 98.03 / 99.24 87.59 / 89.42 95.32 / 96.00
MoCo 93.59 / 93.19 92.71 / 94.36 91.63 / 92.98 77.34 / 78.51 88.81 / 89.76
BYOL 78.08 / 81.61 76.55 / 78.24 75.55 / 75.58 58.10 / 62.67 72.07 / 74.53
DINO 93.67 / 95.25 94.33 / 96.42 79.44 / 81.77 72.12 / 74.43 85.89 / 86.97

SimSiam 83.68 / 84.71 80.97 / 85.44 93.75 / 92.59 57.98 / 64.09 79.09 / 81.71
Barlow Twins 85.09 / 83.94 85.44 / 88.07 92.0 / 92.83 59.01 / 62.67 80.39 / 81.89

Table 2: SSL baselines trained on DomainNet (Painting, Real and Sketch) with DDM
Model Top-1 Accuracy (Baseline / with DDM)

Painting Real Sketch Clipart (Unseen) Infograph (Unseen) Quickdraw (Unseen) Average

SimCLR 74.49 / 75.99 79.31 / 82.02 85.86 / 86.26 68.60 / 70.48 34.75 / 39.25 22.98 / 24.38 60.99 / 63.06
MoCo 70.20 / 73.08 89.79 / 86.37 86.66 / 88.15 65.10 / 68.91 34.56 / 34.75 19.89 / 22.12 61.03 / 62.23
BYOL 56.87 / 59.82 77.60 / 79.67 71.43 / 75.21 50.67 / 55.86 27.4 / 30.68 19.33 / 22.85 50.55 / 54.02
DINO 79.53 / 79.11 86.46 / 86.88 75.8 / 76.50 66.32 / 73.76 30.83 / 32.12 27.71 / 29.08 61.11 / 62.90

SimSiam 77.55 / 78.78 82.02 / 85.88 86.52 / 88.38 67.43 / 71.53 27.03 / 30.56 22.29 / 25.67 60.47 / 63.47
Barlow Twins 56.78 / 61.18 79.06 / 80.16 71.56 / 73.90 60.40 / 64.33 26.11 / 28.82 18.67 / 21.70 52.09 / 55.01

Citation
Citation
{Li, Yang, Song, and Hospedales} 2017

Citation
Citation
{Peng, Bai, Xia, Huang, Saenko, and Wang} 2019

Citation
Citation
{Koh, Sagawa, Marklund, Xie, Zhang, Balsubramani, Hu, Yasunaga, Phillips, Gao, Lee, David, Stavness, Guo, Earnshaw, Haque, Beery, Leskovec, Kundaje, Pierson, Levine, Finn, and Liang} 2021

Citation
Citation
{Bachman, Hjelm, and Buchwalter} 2019

Citation
Citation
{Kolesnikov, Zhai, and Beyer} 2019

Citation
Citation
{vanprotect unhbox voidb@x protect penalty @M  {}den Oord, Li, and Vinyals} 2019

Citation
Citation
{Koh, Sagawa, Marklund, Xie, Zhang, Balsubramani, Hu, Yasunaga, Phillips, Gao, Lee, David, Stavness, Guo, Earnshaw, Haque, Beery, Leskovec, Kundaje, Pierson, Levine, Finn, and Liang} 2021



8 KALIBHAT ET AL. : ADAPTING SSL REPRESENTATIONS USING DDM

Table 3: SSL baselines trained on WILDS with DDM
Top-1 Accuracy (Baseline / with DDM)

Model iWildCam Camelyon17 FMoW RxRx1

SimCLR 66.01 / 71.87 95.19 / 95.68 38.94 / 41.23 8.43 / 11.20
MoCo 67.05 / 69.12 91.45 / 93.47 40.04 / 40.23 5.67 / 5.93
BYOL 71.69 / 74.88 95.15 / 96.38 38.74 / 39.78 4.39 / 6.20
DINO 64.55 / 68.07 94.38 / 95.38 33.57 / 34.52 7.32 / 7.66

SimSiam 60.45 / 61.16 88.37 / 89.16 39.27 / 40.05 6.39 / 7.26
Barlow Twins 63.17 / 63.84 96.38 / 97.62 44.40 / 47.46 5.79 / 6.65

5 DDM without Domain Labels

Figure 5: DDM with clustering: When
domain labels are not available, we per-
form DDM with clustering to identify
pseudo-domain-labels. In the above plots
we show the t-SNE of the SimCLR rep-
resentations trained on "Cartoon" and
"Sketch" domains in PACS. We observe
that DDM with robust clustering pro-
duces a better separation between do-
mains.

Most real-world multi-domain datasets are un-
labelled (i.e., domain label information is not
available). In this section, we develop an ex-
tension of DDM for such setups by identifying
pseudo domain labels via a clustering approach
in the representation space. As it is common in
clustering, we assume the number of domains
(denoted by M) is known. Depending on the
multi-domain setup, we can also approximate
the number of domains by studying any avail-
able meta-data like data sources, geo-location,
quality, etc. We can also estimate the number of
domains empirically through clustering and vi-
sualization.

Domain labels are required in both DDM
losses (Ld_var, Ld_invar) as described in the pre-
vious section. Let us consider a fully unlabelled
setup, with no domain labels while the num-
ber of domains M is known. We first warm up
our self-supervised encoder f (.) treating it as a
single-domain setup for a few iterations to get somewhat distinguishable representations by
domain. We next cluster the representations into M clusters using K-Means clustering [20].
Using the cluster assignments as pseudo-domain-labels (y), we continue training the encoder
f (.) along with a discriminator using the DDM optimization, to learn domain-disentangled
representations.

In practice, clustering does not discover 100% accurate domain labels, especially for
datasets that are distributionally similar. We therefore use a robust clustering approach cou-
pled with DDM to prevent outlier clustering noise from affecting the pseudo-domain-labels.
Suppose we discover M clusters with centroids c1,c2, . . . ,cM , before assigning pseudo-domain-
labels to each sample, we first determine if they are outliers or not. If so, we ignore these
samples in the next stages of training to prevent assigning a noisy label to them. We say a
representation is not an outlier if it is significantly closer to one of the clustering centroids
compared to another. Concretely, hi is not an outlier if

max
{
∥hi − cm∥2

∥hi − cn∥2 : 1 ≤ m ≤ M,1 ≤ n ≤ M
}
> 1+ ε (2)
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where ε ≥ 0 is defined as the outlier threshold. When ε is high, it means that the given
sample is very close to its respective centroid. When ε approaches 0, it indicates that the
sample is almost equidistant from at least two centroids and therefore, may not be reliably
assigned one pseudo-label. We ignore such samples going forward in training. When we
perform clustering for the first time, we start with ε = 1. We repeat the clustering at regular
intervals of training on the representations h to get improved cluster centroids. Each time
we repeat clustering, we decay the value of ε exponentially such that it approaches 0. By
the end of training, all samples will contribute to the training of the self-supervised encoder
with DDM. In Figure 5, we illustrate the difference between regular clustering and robust
clustering with MDSSL trained on the PACS dataset [36] ("Cartoon" and "Sketch" domains).
We observe that robust clustering helps in identifying more accurate and distinguishable
clusters.

To evaluate DDM with robust clustering, we combine CIFAR-10 [32], CIFAR-100 [33]
and STL-10 [14] to form a multi-domain dataset. The constituent datasets are distributionally
similar with several shared classes (CIFAR-10 and STL-10 share 9 out of 10 classes). With
this setup, we try to simulate a real-world scenario where data arises from various domains
however the actual domains are undefined. We therefore apply DDM with robust-clustering
to identify pseudo-domain-labels. We then evaluate the pre-trained representations by linear
probing the validation portion of each constituent dataset. We include Tiny-ImageNet [34]
as an unseen domain to test generalization.

In Table 4, we tabulate the results on this prepared multi-domain dataset on various self-
supervised baselines with and without DDM and robust clustering. We observe an improve-
ment in the average top-1 accuracy across all baselines with 1.7% improvement in MoCo.
DDM shows improved generalization on Tiny-ImageNet with a 2.9% increase in DINO.

Table 4: SSL baselines trained on a mixture of CIFAR-10, STL-10 and CIFAR-100 using
DDM and robust clustering

Model Top-1 Accuracy (Baseline / with DDM and robust clustering)
CIFAR-10 STL-10 CIFAR-100 Tiny-ImageNet (Unseen) Average

SimCLR 89.43 / 90.03 79.77 / 81.01 63.33 / 64.90 49.58 / 51.22 70.53 / 71.79
MoCo 90.80 / 90.69 80.02 / 81.60 61.57 / 64.28 37.16 / 39.55 67.38 / 69.03
BYOL 88.31 / 89.68 75.07 / 75.72 64.82 / 65.56 50.04 / 51.10 69.56 / 70.52
DINO 90.61 / 92.96 84.7 / 82.35 62.63 / 63.57 49.52 / 52.46 71.87 / 72.84

SimSiam 87.02 / 87.38 72.15 / 73.78 62.08 / 61.90 33.11 / 34.78 63.59 / 64.46
Barlow Twins 88.31 / 89.01 75.59 / 76.11 65.03 / 66.89 40.27 / 41.31 67.30 / 68.33

6 Conclusion

We proposed a Domain Disentanglement Module (DDM) for self-supervised encoders that
provide better structured representations, domain-invariant representations that can be used
for diverse multi-domain tasks. DDM also supports training over setups where domain la-
bels are not available by using a robust clustering technique that reduces outlier noise. With
DDM, we prevent the need for having to train multiple single-domain encoders and instead
leverage a single encoder to perform comparably on multiple domains. The benefit of invari-
ant representations is better generalization which we show on various benchmarks including
PACS, DomainNet and WILDS.
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