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Abstract

Representations learned by pre-training a neural network on a large dataset are
increasingly used successfully to perform a variety of downstream tasks. In this
work, we take a closer look at how features are encoded in such pre-trained rep-
resentations. We find that learned representations in a given layer exhibit a de-
gree of diffuse redundancy, i.e., any randomly chosen subset of neurons in the
layer that is larger than a threshold size shares a large degree of similarity with
the full layer and is able to perform similarly as the whole layer on a variety
of downstream tasks. For example, a linear probe trained on 20% of randomly
picked neurons from the penultimate layer of a ResNet50 pre-trained on Ima-
geNetlk achieves an accuracy within 5% of a linear probe trained on the full
layer of neurons for downstream CIFARIO classification. We conduct experi-
ments on different neural architectures (including CNNs and Transformers) pre-
trained on both ImageNetlk and ImageNet21k and evaluate a variety of down-
stream tasks taken from the VTAB benchmark. We find that the loss & dataset
used during pre-training largely govern the degree of diffuse redundancy and the
“critical mass” of neurons needed often depends on the downstream task, sug-
gesting that there is a task-inherent redundancy-performance Pareto frontier. Our
findings shed light on the nature of representations learned by pre-trained deep
neural networks and suggest that entire layers might not be necessary to per-
form many downstream tasks. We investigate the potential for exploiting this re-
dundancy to achieve efficient generalization for downstream tasks and also draw
caution to certain possible unintended consequences. Our code is available at
https://github.com/nvedant07/diffused-redundancy.

1 Introduction

Over the years, many architectures have been proposed (such as [Simonyan and Zisserman, 2014, He
etal., 2016, Kolesnikov et al., 2021]) that achieve competitive accuracies on many benchmarks [Rus-
sakovsky et al., 2015]. A key reason for the success of these models is their ability to learn useful
representations of data [LeCun et al., 2015]. While these models continue to get better, understand-
ing the properties of underlying learned representations continues to be a challenge.

Prior works have attempted to understand representations learned by deep neural networks through
the lens of mutual information between the representations, inputs, and outputs [Shwartz-Ziv and
Tishby, 2017] and hypothesize that neural networks perform well because of a “compression” phase
where mutual information between inputs and representations decreases. Additionally, recent works
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Table 1: Different model architectures with varying penultimate layer lengths trained on ImageNetlk. WRN50-
2 stands for WideResNet50-2. Implementation of architectures is taken from timm [Wightman, 2019]. Diffused
redundancy here measures what fractions of neurons (randomly picked) can be discarded to achieve within
0 = 90% performance of the full layer.

Model Feature ImageNetlk Diffused Redundancy for § = 0.9
Length Top-1 Accuracy CIFAR1I0 CIFARI00 Flowers Oxford-III'T-Pets

ViT S-16 384 64.82% 0.70 0.50 0.50 0.80
ViT S-32 384 55.73% 0.70 0.50 0.50 0.70
ResNet18 512 69.23% 0.80 0.50 0.50 0.90
ResNet50 2048 80.07% 0.90 0.50 0.20 0.90
WRN50-2 2048 77.00% 0.95 0.80 0.50 0.95

VGG16 4096 73.36% 0.95 0.80 0.80 0.95

have found that many neurons are polysemantic, i.e., one neuron can encode multiple “concepts” [El-
hage et al., 2022, Olah et al., 2020], and that one can then train sparse linear models on such concepts
to do “explainable” classification [Wong et al., 2021]. However, it is not well understood if or how
extracted features are concentrated or spread across the entire representation.

While the length of the feature vectors extracted from state-of-the-art networks 2 can vary greatly,
their accuracy on downstream tasks are not correlated to the size of the representation (see Table 1),
but rather depend mostly on the inductive biases and training recipes [Wightman et al., 2021, Steiner
et al., 2021]. In all cases, the size of extracted feature vector (i.e. number of neurons) is orders
of magnitude less than the dimensions of the input and thus allows for efficient transfer to many
downstream tasks [Kolesnikov et al., 2020, Bengio et al., 2013, Pan and Yang, 2009, Tan et al.,
2018]. We show that even using a random subset of these extracted neurons is enough to achieve
downstream transfer accuracy close to that achieved by the full layer, thus showing that learned
representations exhibit a degree of diffused redundancy (Table 1).

Early works in perception suggest that there are many redundant neurons in the human visual cor-
tex [Attneave, 1954] and some later works argued that a similar redundancy in artificial neural
networks should help in faster convergence [Izui and Pentland, 1990]. In this paper, we revisit re-
dundancy in the context of modern DNN architectures that are trained on large-scale datasets. In
particular, we propose the diffused redundancy hypothesis and systematically measure its preva-
lence across different pre-training datasets, losses, model architectures, and downstream tasks. We
also show how this kind of redundancy can be exploited to obtain desirable properties such as gen-
eralization performance but at the same time draw caution to certain drawbacks of such an approach
in increasing disparity in inter-class performance. We highlight the following contributions:

* We present the diffused redundancy hypothesis which states that learned representations exhibit
redundancy that is diffused throughout the layer, i.e., many random subsets (of sufficient size) of
neurons can perform as well as the entire layer. Our work aims to better understand the nature of
representations learned by DNNGs.

* We present an initial analysis of why diffused redundancy exists in deep neural networks, we show
that a randomly chosen subset of neurons of size k performs as well as the projection of the entire
layer on the first k principal components. Intuitively this means that in DNNs’ representations,
many random subsets of size k roughly capture all the variation in data that is possible with k
dimensions (since PCA represents directions of maximum variance).

* We propose a measure of diffused redundancy and systematically test our hypothesis across vari-
ous architectures, pre-training datasets & losses, and downstream tasks.

— We find that diffused redundancy is significantly impacted by pre-training datasets & loss
and downstream datasets.

— We find that models that are explicitly trained such that particular parts of the full repre-
sentation perform as well as the full layer, i.e., these models have structured redundancy
(e.g. [Kusupati et al., 2022]), also exhibit a significant amount of diffused redundancy. Fur-
ther, we also evaluate models trained with regularization that decorrelates activation of neu-
rons and again find that these regularizations surprisingly do not affect diffused redundancy.

?Extracted features for the purpose of this paper refers to the representation recorded on the penultimate
layer, but the larger concept applies to any layer



These results suggest that this phenomenon is perhaps inevitable when DNNs have a wide
enough final layer.

— We quantify the degree of diffused redundancy as a function of the number of neurons in
a given layer. As we reduce the dimension of the extracted feature vector and re-train the
model, the degree of diffused redundancy decreases significantly, implying that diffused re-
dundancy only appears when the layer is wide enough to accommodate redundancy.

* Finally we draw caution to some potential undesirable side-effects of exploiting diffused redun-
dancy for efficient transfer learning that have implications for fairness.

1.1 Related Work

Closest to our work is that of Dalvi et al. [Dalvi et al., 2020] who also investigate neuron redun-
dancy but in the context of pre-trained language models. They analyze two language models and
find that they can achieve good downstream performance with a significantly smaller subset of neu-
rons. However, there are two key differences to our work. First, their analysis of neuron redundancy
uses neurons from all layers (by concatenating each layer), whereas we show that such redundancy
exists even at the level of a single (penultimate) layer. Second, and perhaps more importantly, they
use feature selection to choose the subset of neurons, whereas we show that features are diffused
throughout and that even a random pick of neurons suffices. Our work also differs by analyzing
vision models (instead of language models) and using a diverse set of 30 pre-trained models (as
opposed to testing only two models) which allows us to better understand the causes of such redun-
dancy.

Efficient Representation Learning These works aim to learn representations which are “slim”,
with the goal of efficient deployment on edge devices [Yu et al., 2018, Yu and Huang, 2019, Cai
et al., 2019]. Recently proposed paradigm of Matryoshka Representation Learning [Kusupati et al.,
2022] aims to learn nested representations where one can perform downstream tasks with only a
small portion of the representation. The goal of such representations is to allow quick, adaptive
deployment without having to perform multiple, often expensive, forward passes. These works could
be seen as inducing structured redundancy on the learned representations, where pre-specified parts
of the representation are made to perform similar to the full representation. Our work, instead, aims
to look at diffused redundancy that arises naturally in the training of DNNs. We carefully highlight
the tradeoffs involved in exploiting this redundancy.

Pruning and Compression Many prior works focus on pruning weights [LeCun et al., 1989, Han
etal., 2015, Frankle and Carbin, 2019, Hassibi and Stork, 1992, Levin et al., 1993, Dong et al., 2017,
Lee et al., 2018] and how it can lead to sparse neural networks with many weights turned off. Our
focus, however, is on understanding redundancy at the neuron level, without changing the weights.
Work on structured pruning is more closely related to our work [Li et al., 2016, He et al., 2017],
however, a key focus of these works is to prune channels/filters from convolution layers. Our work
is more focused on understanding the nature of learned features and is more broadly applicable to all
kinds of layers and models. We additionally focus on randomly pruning neurons, whereas structured
pruning methods perform magnitude or feature-selection-based pruning.

Explainability/Interpretability Many works aim to understand learned representations with the
goal of better explainability [Mahendran and Vedaldi, 2014, Yosinski et al., 2015, Alain and Bengio,
2018, Kim et al., 2018, Olah et al., 2017, 2020, Elhage et al., 2022, Zeiler and Fergus, 2013]. Two
works in this space are especially related to our work: sparse linear layers [Wong et al., 2021]
which show that one can train sparse linear layers on top of extracted features from DNNs; and
concept bottleneck models [Koh et al., 2020] which explicitly introduce a layer in which each neuron
corresponds to a meaningful semantic concept. Both these works explicitly optimize for small/sparse
layers, whereas our work shows that similar “small” layers already exist in pre-trained networks, and
in fact, can be found simply with random sampling.

Understanding Deep Learning A related concept is that of instrinsic dimensionality of DNN land-
scapes [Li et al., 2018]. Similar to our work, intrinsic dimensionality also requires dropping random
parameters (weights) of the network. We, however, are concerned with dropping individual neu-
rons. Other works on understanding deep learning [Shwartz-Ziv and Tishby, 2017, Achille and
Soatto, 2017] have also looked at the learned features, however, none of these works analyze the
redundancy at the neuron level. Another related phenomenon to diffused redundancy is that of
neural collapse [Papyan et al., 2020], which states that representations of the penultimate layer “col-



lapse” to K points (where K = number of classes in the pre-training dataset). This implies that
for perfectly collapsed representations we need to store just enough information in the final layer
activations to be able to represent K different points. We interestingly show that this information is
spread throughout the layer with a significant degree of redundancy.

2 The Diffused Redundancy Phenomenon
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Figure 1: [Testing For Diffused Redundancy in ResNet50 Pre-trained on ImageNet1k] Top: transfer accu-
racies + Diffused Redundancy (D R) measure (Eq 1) on different downstream datasets, dotted horizontal line
shows accuracy obtained using the full layer. We see that accuracy obtained using parts of representation varies
greatly with pre-training loss (much more diffused redundancy in Adversarially Trained (AT) ResNet), but also
depends on the downstream dataset. Bottom: comparing CKA between a randomly chosen fraction of neurons
to the whole layer. Here we evaluate CKA on samples from different datasets and find that similarity of a subset
of layer rapidly increases, reaching a similarity of greater than 90% on the adversarially trained ResNet with
only 10% randomly chosen neurons. Values are averaged over 5 random picks and error bars show std. dev.

Prior observations about a compression phase [Shwartz-Ziv and Tishby, 2017] and neural col-
lapse [Papyan et al., 2020] suggest that the representations need not store a lot of information about
the input. These findings imply that all neurons in a learned representation might not be necessary
to capture all the information in a particular layer. Extending these observations, we propose the
diffused redundancy hypothesis:

Learned features are diffused throughout a given layer with redundancy such that there exist many
randomly chosen subsets of neurons that can achieve similar performance to the whole layer for a
variety of downstream tasks.

Note that our hypothesis has two related but distinct parts to it: 1) redundancy in learned features,
and 2) diffusion of this redundancy throughout the extracted feature vector. Redundancy refers to
features being replicated in parts of the representation so that one can perform downstream tasks with
parts of representation as well as with the full representation. Diffusion refers to this redundancy
being spread all over the feature vector (as opposed to being structured), i.e., many random subsets
(of sufficient size) of the feature vector perform equally well.

In order to evaluate the redundancy part of the diffused redundancy hypothesis we use two tasks:
1) representation similarity between randomly chosen subsets of a representation with the whole
representation, and 2) transfer accuracy on out-of-distribution datasets (using a linear probe) of
randomly chosen subsets of the representation compared to the whole representation. To estimate
diffusion, we run each check for redundancy over multiple random seeds and plot the standard
deviation over these runs.

Representation Similarity of Part vs Whole Centered Kernel Alignment (CKA) is a widely used
representation similarity measure and takes in two representations of n data points Z € R"*% and
Y € R™*% and gives a similarity score between 0 and 1 [Kornblith et al., 2019]. Intuitively, CKA
(with linear kernel, see Appendix A for details about CKA) measures if the two representations rank
the n points similarly (where similarity is based on cosine distances). For a given neural network



g and n samples drawn from a given data distribution, i.e., X ~ D, let g(X) be the (penultimate)
layer representation. If m is a boolean vector representing a subset of neurons in g(X), then we
aim to measure CKA(m © ¢(X), g(X)) to estimate how much redundancy exists in the layer. If
indeed CKA(m © ¢g(X), g(X)) is high (i.e. close to 1) then it’s a strong indication that the diffused
redundancy hypothesis holds.

Downstream Transfer Performance of Part vs Whole A commonly used paradigm to measure
the quality of learned representations is to measure their performance on a variety of downstream
tasks [Zhai et al., 2019, Kolesnikov et al., 2020]. Here, we attach a linear layer (h) on top of the
extracted features of a network (g) to do classification. This layer is then trained using the training
dataset of the particular task (keeping g frozen). If features were to be diffused redundantly then
accuracy obtained using h o g, i.e.linear layer attached to the entire feature vector, should be roughly
the same as b’/ o (m ® g); where m is a boolean vector representing a subset of neurons extracted by
g, and h & R’ are independently trained linear probes.

For both tasks, i.e. representation similarity and downstream transfer performance, we evaluate on
CIFAR10/100 [Krizhevsky et al., 2009], Oxford-IIIT-Pets [Parkhi et al., 2012] and Flowers [Nils-
back and Zisserman, 2008] datasets, from the VTAB benchmark [Zhai et al., 2019]. Training and
pre-processing details are included in Appendix B.

Measure of Diffused Redundancy In order to rigorously test our hypothesis, we define a measure
of diffused redundancy (DR) for a given model (g) with M being a set of all possible boolean
vectors of size |g], i.e. size of the representation extracted from g. Each vector m € M represents a
possible subset of neurons from the entire layer. This measure is defined on a particular task (7") as
follows:

) 1 T(mQ®g)
min f ,s.t. WZmEMf T(g)g 26

gl
Mp={meM|>,mi=f; me{0,1}9}

Here T'(.) denotes the performance of the model inside () for the particular task and ¢ is a user-
defined tolerance level. For the task of representation similarity T'(m © g) is CKA between a subset
of neurons denoted by m ® g and g, and T'(g) is always 1, since it denotes CKA between g and g.
For downstream transfer performance, T'(m © g) is the test accuracy obtained by training a linear
probe on the portion of representation denoted by m ® g and T'(g) is the test accuracy obtained using
the full representation. For § = 1, this measure tells what fraction of neurons could be discarded
to exactly match the performance of the entire set of neurons. A higher value of DR denotes that
only a few random neurons were needed to match the task performance of the full set of neurons,
and thus indicates higher redundancy. Since M contains an exponential number of vectors (2!9]),
precisely estimating this quantity is hard. Thus, we first choose a few f (number of neurons to be
chosen) to define subsets of M. Then for each M ; we randomly select 5 samples.

2.1 Prevalence of Diffused Redundancy in Pre-Trained Models

Figure 1 checks for diffused redundancy in the penultimate layer representation of two types of
ResNet50 pre-trained on ImageNet1k: one using the standard cross-entropy loss and another trained
using adversarial training [Madry et al., 2019] (with /5 threat model and ¢ = 3) 3. We check for
diffused redundancy using both tasks of representation similarity and downstream transfer perfor-
mance.

Redundancy This is indicated along the x-axis of Fig 1, i.e., redundancy is shown when some small
subset of the full set of neurons can achieve almost as good performance as the full set of neurons.
When looking at downstream task performance (Figs 1a&1c), in order to obtain performance within
some 8% of the full layer accuracy (dotted lines), the fraction of neurons that can be discarded
are task-dependent, e.g. across both training types we see that flowers (102 classes) and CIFAR100
(100 classes) require more fraction of neurons than CIFAR10 (10 classes) and oxford-iiit-pets (37

3We also report results for £, ¢ = 4/255 in Appendix D and generally find that the £ models exhibit
higher diffused redundancy. We choose to study adversarially robust models since they’ve been shown to
transfer better [Salman et al., 2020].



classes), perhaps because both these tasks have more classes. Additionally, across all datasets,
the model trained with adversarial training exhibits more diffused redundancy than the one trained
with standard loss (Fig 1d& 1b respectively), meaning we can discard far more neurons for the
adversarially trained model to reach close to the full layer accuracy. Interestingly when looking at
CKA between part of the feature vector with the full extracted vector (Figs 1e&1f), we do not see a
significant difference in trends when evaluating CKA on samples from different datasets. However,
we still see that we can achieve a given level of CKA with far fewer fraction of neurons in the
adversarially trained ResNet50 as compared to the usually trained ResNet50.

Diffused Redundancy This is indicated by small error bars in Figs la&lc&le&1f. If redundancy
were instead very structured, then different random picks of neurons would have high variance,
however, the error bars here are very low, showing that performance is very stable across different
random picks, thus indicating that redundancy is diffused throughout the layer.

While both tasks of downstream transfer and CKA between part and whole indicate higher diffused
redundancy for the adversarially trained model, we see that downstream transfer performance can
differ substantially based on the dataset (while CKA remains fairly stable across the same datasets),
indicating that downstream performance turns out to be a “harder” test for diffused redundancy.
Thus, in the rest of the paper, we examine diffused redundancy through the lens of downstream
transfer performance and include CKA results in Appendix A.

2.2 Understanding Why Many Random Subsets Work
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Many prior works explicitly train models to
have “small” representations (e.g. [Kusupati
et al., 2022, Yu et al., 2018, Yu and Huang,
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Here, however, we seek to better understand
why there exist so many randomly selected sub-
sets that work just as well as the whole layer.

High CKA between two random subsets of
the same size. First, we use representation sim-
ilarity (CKA) [Kornblith et al., 2019] to get a
sense of how two random picks of neurons (of
the same size) relate to each other. Concretely,

Fraction of Neurons

Figure 3: [Random Projection (dotted) vs Randomly
Choosing Neurons (solid)] Standard (top) vs Adver-
sarial (bottom) Training. We find that diffused redun-
dancy performs significantly better than random projec-
tions. This indicates that the “constrained” projection
offered by diffused redundancy is crucial in achieving
good downstream performance.



we calculate CKA between two random picks of k% neurons in the penultimate layer (averaged over
10 such randomly picked pairs) on samples taken from different datasets. Fig 2a& 2b show CKA
results averaged over these different picks of pairs of subsets of the full set of neurons. We see that
after picking a certain threshold, i.e. for a large enough value of &, the similarity between any two
randomly picked pairs of heads is fairly high. For example, for the adversarially trained ResNet50
(Fig 2b), we observe that any 10% of neurons picked from the penultimate layer are highly similar
(CKA of about 0.8), with very low error bars. A similar value of CKA is obtained with 20% of neu-
rons for the standard ResNet50 model. These results indicate that, given a sufficient size, picking
any random subset of that size has very similar representations and thus provides an initial intuition
for why almost any random subset, with high probability, could work equally well.

Downstream performance on k& randomly chosen neurons closely follows performance on top
k principal components. While high representation similarity is a necessary condition for two
representations to have similar downstream performance, it’s not a sufficient one. As seen earlier
in Fig 1, similar values of CKA can still show different downstream accuracy. Thus, to further
understand why any random pick of neurons achieves similar accuracy, we compare a randomly
chosen subset of neurons with a projection on the same number of top k principal components.
Fig 2c& 2d shows that the performance of a linear probe trained on a random subset of neurons
initially lags behind the top PCA dimensions for small values of k(< 20%), but for higher values
(> 20%) closely follows the performance on a probe trained on the projection on the same number of
top principal components. This indicates that a sufficiently sized random subset of size k (roughly)
captures the maximum variance in data that can be captured in k£ dimensions (upper bound by top %
principal components since they are designed to capture maximum variance). As a sanity check, we
also show the results for the bottom k principal components (directions of least variance) and see
that randomly chosen neurons perform significantly better.

Random projections into lower dimensions do not perform well on downstream tasks. The
presence of diffused redundancy in a particular layer indicates that a dimension lower than the layer’s
size suffices to perform many downstream tasks. However, randomly sampling neurons (as we do
in our experiments on diffused redundancy) can be seen as one very particular way of reducing
dimension that is restricted by what the network has learned. This raises a natural question, would
our observation extend to less restricted ways of reducing dimensions? To test this, we compare
diffused redundancy i.e., a linear probe trained on a random sample of k neurons to a linear probe
trained on a random projection of the layer’s activations. To project a d dimensional layer into
a lower dimension (k) we multiply it by a (normalized) randomly sampled matrix from a normal
distribution R%**. We report our results over 5 seeds in Fig 3 and find that diffused redundancy
significantly outperforms random projection.

3 Factors Influencing The Degree of Diffused Redundancy
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Figure 4: [Comparisons Across Architectures For Downstream Task Accuracy] All models shown here are
pre-trained on ImageNet1k. We see that diffused redundancy exists across architectures, and the trend observed
in Figure 1c&1aregarding adversarially trained models also holds here as models’ curves that are more “inside”
are the ones trained with standard loss.

In order to better understand the phenomenon of diffused redundancy we analyze 30 different pre-
trained models, with different architectures, pre-training datasets and losses. We then evaluate each
model for transfer accuracy on 4 datasets mentioned in Section 2. While all results in this section
are on the penultimate layer, we also report results on intermediate layers in Appendix E and find
similar trends of diffused redundancy. All details for reproducibility can be found in Appendix B.
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Figure 5: [Comparison Across Upstream Datasets] We see that degree of diffused redundancy depends a
great deal on the upstream training dataset, in particular, models trained on ImageNet21k exhibit a higher
degree of diffused redundancy, although the differences in the degree of diffused redundancy are downstream
task dependent

Architectures We consider VGG16 [Simonyan and Zisserman, 2014], ResNetl8, ResNet50,
WideResNet50-2 [He et al., 2016], ViT-S16 & ViT-S32 [Kolesnikov et al., 2021]. Additionally,
we consider ResNet50 with varying widths of the final layer (denoted by ResNet50_ffx where x
denotes the number of neurons in the final layer).

Upstream Datasets ImageNet-1k & ImageNet-21k [Russakovsky et al., 2015].

Upstream Losses Standard cross-entropy, adversarial training ({5 threat model, e = 3 and ¢, threat
model, ¢ = 4/255 4) [Madry et al., 2019], MRL Loss [Kusupati et al., 2022], DeCov [Cogswell
et al., 2015], and varying strengths of dropout [Srivastava et al., 2014].

Downstream Datasets CIFAR10/1000, Oxford-IIIT-Pets, and Flowers, same as Section 2. Addi-
tionally, we also report performance on harder datasets such as ImageNetv2 [Recht et al., 2019]
and Places365 [Zhou et al., 2017] in Appendix F. For all analyses in this section, we also report
corresponding approximations for DR (Eq 1) in Appendix D.

3.1 Effects of Architecture, Upstream Loss, Upstream Datasets, and Downstream Datasets

Extending the analysis in Section 2, we evaluate the diffused redundancy hypothesis on other archi-
tectures. Fig 4 shows transfer performance for different architectures. All architectures shown in
Fig 4 are trained on ImageNetlk. We find that our takeaways from Section 2 also extend to other
architectures.

Fig 5 compares two instances each of ViT-S16 and ViT-S32, one trained on a bigger upstream dataset
(ImageNet21k) and another on a smaller dataset (ImageNet1k)

Note that the nature of all curves in both Figs 4&5 highly depends on downstream datasets. This is
also consistent with the initial observation of Section 2 about diffused redundancy being downstream
dataset dependent. Additionally, we also report results on ImageNetV?2 and Places365 in Appendix F
showing that diffused redundancy also holds on “harder” datasets.

3.2 Diffused Redundancy as a Function of Layer Width

We take the usual ResNet50 with a penultimate layer consisting of 2048 neurons and compare
it with variants that are pre-trained with a much smaller penultimate layer, these are denoted by
ResNet50_ffx where x (< 2048) is the number of neurons in the penultimate layer. Fig 6 shows
how diffused redundancy slowly fades away as we squeeze the layer to be smaller. In fact, for
ResNet50_f£8, we see that across all datasets we need > 90% of the full layer to achieve perfor-
mance close to the full layer. This shows that diffused redundancy only appears in DNNs when the
layer is sufficiently wide to encode redundancy.

3.3 Comparison With Methods That Optimize For Lesser Neurons

Matryoshka Representation Learning (MRL) is a recently proposed paradigm that learns nested
representations such that the first k, 2k, 4k, ..., N (where N = size of the full layer) dimensions of
the extracted feature vector are all explicitly made to be good at minimizing upstream loss, with
the intuition of learning coarse-to-fine representations. This ensures that one can flexibly use these

“Results for £, robust models can be found in Appendix D
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Figure 6: [Diffused Redundancy as Function of Layer Width] As we make the length of the layer smaller,
the degree of redundancy becomes lesser. For ResNet50_££8, i.e.ResNet50 with only 8 neurons in the final
layer, we see that we need almost 90% of neurons to achieve similar accuracy as the full layer.

smaller parts of the representation for downstream tasks. MRL, thus, ensures that redundancy shows
up in learned representations in a structured way, i.e., we know the first k, 2k, ... neurons can be
picked and used for downstream tasks and should perform reasonably.

Here we investigate two questions regarding Matryoshka representations: 1) do these representations
also exhibit the phenomenon of diffused redundancy? i.e. if we were to ignore the structure imposed
by MRL-type training and instead just pick random neurons from all over the layer, do we still get
reasonable performance?, and 2) how do they compare to representations learned by other kinds of
losses?

Figure 7 investigates these questions by comparing ResNet50 representations learned using MRL
loss to other losses. resnet50_mrl nonrob_first (red line) denotes a ResNet50 trained using
MRL loss and evaluated on parts of the representation that were optimized to have low upstream
loss (i.e. first k, 2k, ...N neurons, here £k = 8 and N = 2048) and resnet50_mrl_nonrob_random
(green line) refers to the same model with the same number of neurons chosen for evaluation, except
they’re chosen at random from the entire layer.

First, we interestingly see that even the ResNet50 trained with MRL loss exhibits diffused redun-
dancy (denoted by green line spiking very quickly for most datasets in Fig 7), despite having been
trained to only have structured redundancy. Based on this observation, we conjecture that diffused
redundancy is a natural consequence of having a wide layer. Second, we see that ResNet50 trained
on MRL indeed does better in the low neuron regime across datasets (red line on the extreme left
part of the plots in Fig 7), but other models quickly catch up as we pick more neurons, thus indicat-
ing that major efficiency benefits of MRL-type models are best realized when using an extremely
low number of neurons, else one can obtain similar downstream performances by simply picking
random samples from existing pre-trained models.
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Figure 7: [Comparison of Diffused Redundancy in MRL vs other losses] Here we compare ResNet50 trained
using multiple losses including MRL [Kusupati et al., 2022]. nonrob indicates that the model was trained with
the standard crossentropy loss while robustl2eps3 indicates adversarial training with /> threat model and
€ = 3. Red line shows results for part of the representation explicitly optimized in MRL, whereas the green
line shows results for parts that are picked randomly from the same representation. Even the MRL model
shows a significant amount of diffused redundancy despite being explicitly trained to instead have structured
redundancy.

3.4 Methods That Prevent Co-adaptation of Neurons Also Exhibit Diffused Redundancy

We consider two additional modifications to upstream pre-training: we add regularization to
the usual cross-entropy loss that decorrelates neurons in the feature representation using De-



Cov [Cogswell et al., 2015] and Dropout [Srivastava et al., 2014]. Dropout does this implicitly by
randomly dropping neurons during training and DeCov does this explicitly by putting a loss on the
activations of a given layer. We pre-train different ResNet50 on ImageNetlk by varying strengths of
dropout ranging from 0.1 all the way up to 0.8 and also by separately adding the DeCov regularizer
(regularization strength = le — 4) to give 9 additional pre-trained models. Intuitively these meth-
ods should lead to increased diffused redundancy since by design these methods force the model to
disperse similar information in different parts of a layer to perform the same task downstream task.
Interestingly, we see that diffused redundancy in these models is almost completely independent of
the regularization strength. This suggests that diffused redundancy might be an inevitable property
of DNNs when the layer has sufficient width. Due to space constraints, we include these results in
Appendix G.

4 Possible Fairness-Efficiency Tradeoffs in Efficient Downstream Transfer
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Figure 8: [Gini Coefficient of Class-Wise Accuracies as we Drop Neurons] Higher value of Gini coefficient
indicates higher inequality [Gini, 1921]. We see that for all models gini coefficients become higher as the
accuracy reduces (as a result of dropping neurons). Additionally, in some regions (highlighted in the plots), the
model explicitly optimized for efficient transfer (resnet50.mrl) can give rise to higher gini values, resulting
in a more unequal spread of accuracy over classes.

One natural use case for diffused redundancy is efficient transfer to downstream datasets. As de-
fined in Eq 1 and as also seen in Sections 2& 3, dropping neurons comes at a small cost (¢ in
Eq 1) in performance as compared to the full set of neurons. Here we take a deeper look into this
drop in overall performance and investigate how it is distributed across classes. If the drop affects
only a few classes, then dropping neurons — although efficient for downstream tasks — could have
implications for fairness, which is not only of concern to ML researchers and practitioners [Zafar
et al., 2017, Hardt et al., 2016, Holstein et al., 2019], but also to lawyers [Tolan et al., 2019] and
policymakers [Veale et al., 2018].

We compare the spread of accuracies across classes using inequality indices, which are commonly
used in economics to study income inequality [De Maio, 2007, Schutz, 1951] and have also recently
been adopted in the fair ML literature [Speicher et al., 2018]. We use gini index [Gini, 1921]
and coefficient of variation [Lawrence, 1997] to quantify the spread of performance across classes.
For a perfect spread, both gini and coefficient of variation are 0, and higher values indicate higher
inequality.

Figure 8 compares the gini index for various models at varying levels of accuracy (note that accuracy
monotonically increases with more neurons, hence the right most point for a model represents the
model with all neurons). We make two observations: across all datasets and all models we find that
aloss in accuracy (compared to the full layer) comes at the cost of a few classes, as opposed to being
smeared throughout classes, as indicated by high gini values on the left of each plot. Additionally, we
observe that the model trained using MRL loss tends to have slightly higher gini values in the regions
where the drop in accuracy is slightly higher (highlighted on the plots). To ensure that this trend is
not simply due to lower accuracy, we investigate the error distributions across classes (Appendix C)
and find that predictions become more homogeneous as we drop more neurons. Similar trends are
also observed with coeff. of variation as shown in Appendix C. These results draw caution to the
potential unintended side-effects of exploiting diffused redundancy and suggest that there could be
a possible fairness-efficiency tradeoff involved.

Connections to Robustness-Fairness Tradeoffs There are well-established tradeoffs between ro-
bustness and fairness in both standard [Nanda et al., 2021] and adversarial training [Xu et al., 2021,
Wei et al., 2023]. One major difference between these works and our setup is that the task they
train on is also the task they test on. We instead operate in the transfer learning setup where we
train a linear probe on the representation of a pre-trained model. While it’s not immediately clear
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whether the discrepancy between class accuracies observed on the pre-training task (e.g. as in [Xu
et al., 2021]) also leads to an inter-class accuracy discrepancy on downstream tasks when dropping
neurons, it would be very interesting future work to establish more formal connections between the
robustness-fairness tradeoff and its effects on the fairness-efficiency tradeoff presented in this paper.

5 Conclusion and Broader Impacts

We introduce the diffused redundancy hypothesis and analyze a wide range of models with differ-
ent upstream training datasets, losses, and architectures. We carefully analyze the causes of such
redundancy and find that upstream training (both loss and datasets) plays a crucial role and that
this redundancy also depends on the downstream dataset. One direct practical consequence of our
observation is increased efficiency for downstream training times which can have many positive im-
pacts in terms of reduced energy costs [Strubell et al., 2019] which is crucial in moving towards
“green” Al [Schwartz et al., 2020]. We, however, also draw caution to potential pitfalls of such effi-
ciency gains , which might hurt the accuracy of certain classes more than others, thus having direct
consequences for fairness.
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A Measuring Diffused Redundancy

A.1 CKA Definition

In all our evaluations we use CKA with a linear kernel [Kornblith et al., 2019] which essentially
amounts to the following steps:

1. Take two representations Y € R"*?! and Z € R"*42

2. Compute dot product similarity within these representation, i.e.compute K = YY 7, L =

4
3. Normalize K and Lto get K’ = HKH, L' = HLH where H = I, — %llT
_ HSIC(K,L) _ 1 .
4. Return CKA(Y, Z) = IO, KSICED)” where HSIC(K, L) = CEE (flatten(K")
flatten(L’))

We use the publicly available implementation of Nanda et al. [2022], which provides an implemen-
tation that can be calcuated over multiple mini-batches: https://github.com/nvedant07/STIR

A.2 Additional CKA results

Fig 9 shows CKA comparison between randomly chosen parts of the layer and the full layer for dif-
ferent kinds of ResNet50. We observe that even ResNet50 trained with MRL loss shows a significant
amount of diffused redundancy.
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Figure 9: [Comparison of Diffused Redundancy in MRL vs other losses, through the lens of CKA] We see
a similar trend as reported in Fig 7 in the main paper, where even the MRL model shows a significant amount
of diffused redundancy despite being explicitly trained to instead have structured redundancy. The amount of
diffused redundancy however is much lesser than the resnets trained using the standard loss and adv. training
as denoted by a much lower red line across all datasets.

B Training and Pre-Processing Details for Reproducibility

Here we list the sources of weights for the various pre-trained models used in our experiments:

* ResNetl8 trained on ImageNetlk using standard loss: taken from timm v0.6.1.

* ResNetl8 trained on ImageNetlk with adv training: taken from Salman et al. [Salman
et al., 2020]:
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https://github.com/nvedant07/STIR

* ResNet50 trained on ImageNetlk using standard loss: taken from timm v0.6.1.

* ResNet50 trained on ImageNetlk with adv training: taken from Salman et al. [Salman
etal., 2020]: https://github.com/microsoft/robust-models-transfer.

* ResNet50 trained on ImageNetlk using MRL and with different final layer widths
(resnet50_ffx): taken from released weights of by Kusupati et al. [Kusupati et al., 2022]:
https://github.com/RAIVNLab/MRL.

* WideResNet50-2 on ImageNetlk both standard and avd. training:  taken
from Salman et al. Salman et al. [2020]: https://github.com/microsoft/
robust-models-transfer.

* VGG16 trained on ImageNet1k with standard loss: taken from timm v0.6.1.

* VGG16 trained on ImageNetlk with adv training: taken from Salman et al. [Salman et al.,
2020]: https://github.com/microsoft/robust-models-transfer.

* ViTS32 & ViTS16 trained on ImageNet2 1k & ImageNetlk: taken from weights released by
Steiner et al. [Steiner et al., 2021]: https://github.com/google-research/vision_
transformer.

All linear probes trained on the representations of these models are trained using SGD with a learn-
ing rate of 0.1, momentum of 0.9, batch size of 256, weight decay of 1e — 4. The probe is trained
for 50 epochs with a learning rate scheduler that decays the learning rate by 0.1 every 10 epochs.
Scripts for training can also be found in the attached code.

For pre-processing, we re-size all inputs to 224x224 (size used for pre-training) and apply the
usual composition of RandomHorizontalFlip, ColorJitter(brightness=0.25, contrast=0.25, satura-
tion=0.25, hue=0.25), RandomRotation(degrees=2). All inputs were mean normalized. For ima-
genetlk pre-trained models: mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. For
imagenet21k pre-trained models: mean = [0.5,0.5,0.5], std = [0.5,0.5,0.5].

C Deeper Analysis of Fairness-Efficiency Tradeoff in Section 4

Analyzing Error Distributions To ensure that the higher gini coefficient shown in Fig 8 as we drop
more neurons is not merely an artifact of lower overall accuracy, we plot class-wise accuracies as
we drop neurons (Figs 11, 12 & 13). We find that for the entire layer, accuracy starts at an almost
uniform distribution, and while overall accuracy deteriorates as we drop neurons, the drop comes at
a larger cost for a few classes resulting in disparate inter-class accuracies.

Coeff of Variation for Measuring Inequality in Inter-Class Accuracy Fig 10 shows results for
the same analysis shown in Fig 8 of the main paper and we find similar takeaways even when using
the coefficient of variation as a measure of inequality.

D Corresponding Diffused Redundancy Estimates For Analyses in Section 3
& /., Robust Model Results

Corresponding diffused redundancy (DR) ablations for Figures 4,5,7. These are shown in Fig-
ures 15,16,17 respectively. This should allow for easy comparison of diffused redundancy (lines
that are more outside have higher DR). For example, Figure 16 clearly shows higher diffused redun-
dancy in models trained on larger upstream datasets (here ImageNet21k) since these curves lie more
on the outside of the same model’s curves for ImageNet1k.

Additionally, we show numbers on x-axis for Figure 4 in Figure 18. Figures 5 and 7 compare models
with same number of neurons in the final layer and hence trends shown with fraction on the x-axis
will be exactly the same with absolute numbers on the x-axis. However, Figure 18 allows a direct
comparison of the performance of the same absolute number of neurons across different models.

We report results for £, robust models (with € = 4/255) in Fig 14 and find that ¢ model generally
shows a greater degree of diffused redundancy.
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Figure 10: [Coefficient of Variation As We Drop Neurons] We see a similar trend as reported in Fig 8 of the
main paper where inequality increases as we drop neurons for all models on all datasets.

E Results on Intermediate Layers

We additionally ran our experiment on other intermediate layers and report the results in Fig 19. We
present results for a ResNet50 pretrained on ImageNet1k using the standard CrossEntropy loss. The
intermediate layers considered are characterized as activations following each residual connection
within distinct ResNet blocks. layerX.Y.act3 means the Yth residual connection in the Xth
ResNet block and act3 indicates that we’re taking the value after the activation (ReLU) has been
applied.

F Results on Harder Downstream Tasks: ImageNetV2 and Places365

We report results on harder downstream tasks such as ImageNetlk, ImageNetV2, and Places365
in Figure 20. We find that when randomly dropping neurons, the model is still able to generalize
to ImageNetlk and Places365 with very few neurons, i.e., the phenomena of diffused redundancy
observed for smaller datasets, also holds for harder datasets. Interestingly we also observe that the
accuracy gap between ImageNetlk and ImageNetV2 is maintained even as we drop neurons.

G Effects of Explicitly Preventing Co-adaptation of Neurons: Analysis of
Dropout and DeCov

Regularizers such as dropout and DeCov, force different parts of the representations to not be cor-
related. Thus these regularizers can be seen as explicitly requiring different, compact parts of the
representation to be self-contained for the downstream task. Thus, intuitively, such methods should
increase diffused redundancy. Here we investigate if our observation about diffused redundancy is
influenced by such regularizers. We evaluate ResNet50 pre-trained on ImageNetlk with dropout
in the penultimate layer ranging from a strength of 0.1 all the way to 0.8. We also train another
ResNet50 model with the DeCov regularizer added to the usual crossentropy loss and put a weight
of 0.0001 on the regularizer to ensure that its numerical range is similar to that of the cross entropy
loss term.

Results in Figures 21 & 22 suggest that such regularizers have almost no effect on diffused redun-
dancy. Trends across datasets remain consistent regardless of the strength of dropout or the weight
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Figure 11: [Error Distributions As A Function of Fraction of Neurons] We see that accuracy deteriorates
as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near homogenous
predictions for the least number of neurons on the left.

given to DeCov regularizer. This observation further adds to the evidence that diffused redundancy
is likely to be a natural property of representations learned by DNNss.
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Figure 12: [Error Distributions As A Function of Fraction of Neurons — continued] We see that accuracy
deteriorates as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near
homogenous predictions for the least number of neurons on the left.
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Figure 13: [Error Distributions As A Function of Fraction of Neurons — continued] We see that accuracy
deteriorates as we drop neurons, however, this drop comes at a larger cost for a few classes and results in near
homogenous predictions for the least number of neurons on the left.
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Figure 17: [Comparison of Diffused Redundancy in MRL vs other losses] Here we compare ResNet50
trained using multiple losses including MRL [Kusupati et al., 2022]. Red line shows results for part of the
representation explicitly optimized in MRL, whereas green line shows results for parts that are picked randomly
from the same representation. Even the MRL model shows a significant amount of diffused redundancy despite

being explicitly trained to instead have structured redundancy. This figure shows diffused redundancy (DR) for
all plots in Figure 7.
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Figure 18: [Comparisons Across Architectures For Downstream Task Accuracy] This shows the same plots
as Figure 4, except showing absolute number of neurons on the x-axis
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Figure 19: [Middle Layers; ResNet50, trained with CrossEntropy loss on ImageNet1k] We see that as
we go deeper in the network, accuracy progressively increases. We see even middle layers exhibit diffused
redundancy, and accuracy plateaus very quickly for earlier layers. layerX.Y.act3 refers to the Yth residual
connection in the Xth ResNet block and act3 indicates that we’re taking the value after the activation (ReLU)
has been applied.
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Figure 20: [Performance on ImageNetlk, ImageNetV2, and Places365] We check for the performance of
randomly chosen subsets of neurons on harder tasks like ImageNet1k, ImageNetV2, and Places365. We find
that diffused redundancy holds for all these harder tasks as well. Additionally, we see that randomly dropping
neurons still preserves the accuracy gap between ImageNetlk and ImageNetV2.
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Figure 21: [Dropout and DeCov regularizer’s effect on Diffused Redundancy]
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(i) DeCov Regularization (0.0001)

Figure 22: [Dropout and DeCov regularizer’s effect on Diffused Redundancy] Same results as Figure 21,
but showing D R estimates (Eq 1). Lines that are more towards the right (i.e.more on the “outside””) mean they
exhibit more diffused redundancy.
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