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—— Abstract

A spanner of a graph is a subgraph that preserves lengths of shortest paths up to a multiplicative
distortion. For every k, a spanner with size O(n'"'/*) and stretch (2k 4 1) can be constructed by a
simple centralized greedy algorithm, and this is tight assuming Erdés girth conjecture.

In this paper we study the problem of constructing spanners in a local manner, specifically in
the Local Computation Model proposed by Rubinfeld et al. (ICS 2011).

We provide a randomized Local Computation Agorithm (LCA) for constructing (2r — 1)-spanners
with O(n'*1/7) edges and probe complexity of O(n'~1/") for r € {2, 3}, where n denotes the number
of vertices in the input graph. Up to polylogarithmic factors, in both cases, the stretch factor is
optimal (for the respective number of edges). In addition, our probe complexity for r = 2, i.e., for
constructing a 3-spanner, is optimal up to polylogarithmic factors. Our result improves over the
probe complexity of Parter et al. (ITCS 2019) that is O(n'~'/?") for r € {2,3}. Both our algorithms
and the algorithms of Parter et al. use a combination of neighbor-probes and pair-probes in the
above-mentioned LCAs.

1H+1/k) edges

For general k > 1, we provide an LCA for constructing O(k?)-spanners with O(n
using O(n?/3A?) neighbor-probes, improving over the O(n*3A%) algorithm of Parter et al.

By developing a new randomized LCA for graph decomposition, we further improve the probe
complexity of the latter task to be O(n?/3~(1:5=)/k A2) for any constant o > 0. This latter LCA

may be of independent interest.
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1 Introduction

A spanner is a sparse structure that is a subgraph of the input graph and preserves, up to a
predetermined multiplicative factor, the pairwise distance of vertices. Formally, a k-spanner
of a graph G = (V, E) is a graph G’ = (V, E’) such that E’ C FE, in which the distance
between any pair of vertices in G’ is at most k times longer than the corresponding distance
in G. k is referred to as the stretch of the spanner.
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Improved Local Computation Algorithms for Constructing Spanners

Spanners have numerous applications in a wide variety of fields such as communication
networks [4, 29, 30], biology [5] and robotics [11, 16]. Consequently, the problem of con-
structing spanners has been studied extensively in several models, such as the distributed
model [6, 12, 13, 14, 15, 17, 31], streaming algorithms [1, 22] and dynamic algorithms [10, 9].

This problem was also considered in the realm of sublinear algorithms and in particular
in the model of Local computation algorithms (LCAs) introduced by Rubinfeld et al. [32]
(see also Alon et al. [2] and survey in [24]). In this model the goal is to avoid computing
the entire output and instead to compute parts of the output on demand. This model is
suitable for the case that not only the input is massive but also the output. Moreover, LCAs
support queries from different users while preserving consistency with a single valid solution
(although there might be several valid solutions) across different queries. The notion of
computing the output locally goes back to local algorithms, locally decodable codes and local
reconstruction algorithms. LCAs can be viewed as a generalization of these frameworks.

Recently, several works [26, 25, 23, 28] considered the problem of constructing spanners
in the LCA model. The formulation of the problem in this model is as defined next.

» Definition 1 ([2, 26]). An LCA A for graph spanners is a (randomized) algorithm with
the following properties. A has access to the adjacency list oracle OF of the input graph
G, a tape of random bits, and local read-write computation memory. When given an input
(query) edge (u,v) € E, A accesses OF by making probes, then returns YES if (u,v) is in
the spanner H, or returns NO otherwise. This answer must only depend on the query (u,v),
the graph G, and the random bits. For a fized tape of random bits, the answers given by A to
all possible edge queries, must be consistent with one particular sparse spanner.

For specific details regarding the types of probes supported in the LCA model, we refer the
reader to Section 2.

1.1 Our Results

We provide LCAs that with high probability construct the following spanners.

1. A 3-spanner with O(n1+1/ %) edges. The probe and time complexity of the algorithm
is O(n'/?) which is optimal up to polylogarithmic factors (and constitutes the first
optimal algorithm for general graphs). The size-stretch trade-off is optimal as well (up to
polylogarithmic factors). This improves over the algorithm of Parter et al. [28] whose
probe and time complexity is O(n3/*).

2. A 5-spanner with O(n't1/3) edges (the size-stretch trade-off is optimal up to polylog-
arithmic factors). The probe and time complexity of the algorithm is O(n?/3). This
improves over the algorithm of Parter et al. [28] whose probe and time complexity is
O(n°/9).

3. An O(k?)-spanner with O(n'*1/*) edges with high probability. The probe and time
complexity of the algorithm is O(n?*/3A?) where A denotes the maximum degree of the
input graph. This improves over the algorithm of Parter et al. [28] whose probe and time
complexity is O(n?3A%). Our algorithm (and the algorithm of [28]) uses only neighbor
probes for this task.

4. By additionally taking advantage of adjacency probes we further improve the probe
and time complexity of the latter algorithm to be O(n?/3~(1:5=®)/kA2) for any constant
a > 0. This result utilizes a new, efficient local computation algorithm for decomposing
a graph into subgraphs with improved maximum degree that may be of independent
interest.
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1.2 Our algorithms and techniques

We next describe our algorithms in high-level. Our LCAs for constructing 3-spanners and
5-spanners share similarities with the LCAs in [28] (which are inspired by the algorithm
of Baswana and Sen for constructing spanners [7]). The main novelty of our algorithms is
in selecting several sets of centers, each designed to cluster different type of vertices. The
basic idea is that for high-degree vertices we need to select less centers. Consequently, we
can allow more edges per pair of vertex-cluster or cluster-cluster which decreases the probe
complexity. To support this approach we also change the way each vertex finds its center.
See more details in Subsections 1.3 and 1.4.

Our algorithm for constructing O(k?)-spanners consists of two parts. The first, which is
described in high-level is Subsection 1.5, closely follows the construction in [28]. The main
novelty in this algorithm is in the way we partition the Voronoi cells, which are formed with
respect to randomly selected centers, into clusters of smaller size. In addition, we make other
adjustments in order to save an additional factor of A in the probe and time complexity. The
second is a new LCA for decomposing a graph into subgraphs of smaller maximum degree.
As the first algorithm depends quadratically on the degree, this allows for further savings.
We elaborate on this algorithm, which may be of independent interest, in Subsection 1.6.

1.3 Algorithm for constructing 3-spanners

We begin with describing our algorithm for constructing 3-spanners from a global point of

view. The local implementation of this global algorithm is relatively straight-forward.

The high level idea is as follows. We consider a partition of the vertices into heavy and
light according to their degrees. All the edges incident to light vertices are added to the
spanner. We now focus on the heavy vertices. As a first step, a random subset of vertices is
selected. We refer to these vertices as centers. With high probability, every heavy vertex has
a center in its neighborhood. Assuming this event occurs, each heavy vertex joins a cluster
of at least one of the centers in its neighborhood. A cluster is composed from a center and
a subset of its neighbors. On query {u,v}, where both v and v are heavy, we consider two
cases.

1. u and v belong to the same cluster. In this case we add the edge {u, v} to the spanner
only in case u is the center of v or vice versa.

2. Otherwise, u and v belong to different clusters. Assume without loss of generality that
the degree of v is not greater than the degree of u. We divide the edges incident to v into
fixed size buckets and add the edge {u,v} only if it has minimum rank amongst the edges
that are incident to the cluster of u.

In order to make the above high-level description concrete we need to set up some
parameters and describe how the centers are selected and how each vertex finds its center.
We begin by defining vertices with degrees larger than y/n as heavy. Thus by adding all the
edges incident to light vertices we add at most O(n3/ 2) edges.

The selection of the centers proceeds as follows. We define ¢ = ©(log v/n) sets of centers,
which are picked uniformly at random, Sy, ..., S; such that the size of S; is ©(y/n) and the
size of S;y1 is roughly half of the size of S;. Thus, overall, the number of centers is O(\/ﬁ)

We next describe how each heavy vertex finds its center. We partition the heavy vertices
into t sets, V1,...,V; according to their degrees. The set V; contains all the vertices with
degree in [\/n + 1,2y/n] and in general for every i € [t], the set V; contains all the vertices
with degree in [2¢=1\/n + 1,2%/n]. The centers for vertices in the set V; are taken from the
set S;. With high probability, for every i € [¢], each vertex v € V; has at least one vertex
from S; in its neighborhood and at most O(logn). Thus, with high probability, each heavy
vertex belongs to at least one cluster and at most O(logn) clusters.

42:3
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Given a heavy vertex v € V;, the centers of v are found by going over all the vertices in
Si, u, and checking if {u,v} is an edge in the graph. Since the total number of centers is
O(y/n), the probe and time complexity of finding the center of a given vertex is O(y/n).

It remains to set the size of the buckets. Let {u,v} € E be such that v € V; and
deg(u) < deg(v). Since v € V;, it follows that deg(v) < 2¢y/n. Since |S;| < e¢y/nlogn/2¢ for
some constant ¢, by setting the size of the buckets to be y/n we obtain that the total number
of edges between heavy vertices that belong to different clusters is O(n?/?), as desired.

From the fact that the size of the buckets is v/ it follows that the total probe and time
complexity of our algorithms is O(y/n). From the fact that the diameter of every cluster is 2
we obtain that for every edge {u,v} which we remove from the graph, there exists a path of
length at most 3 between v and v. Hence, the stretch factor of our spanner is 3, as desired.

1.4 Algorithm for constructing 5-spanners

We extend the ideas from the previous section to obtain our algorithm for constructing
5-spanners as follows. We partition the vertices in the graph into three sets: heavy, medium,
and light. The set of light vertices is defined to be the set of all vertices with a degree at
1/3 and the set of heavy vertices is defined to be the set of all vertices of degree at
least n?/3. The set of the medium vertices is defined to be all vertices that are not light nor

most n

heavy.

As before, we add to the spanner all the edges incident to light vertices and cluster all
the heavy vertices into a cluster of diameter 2. The difference is that now when we partition
the heavy vertices into sets according to their degrees the first set consists of all vertices with
a degree in [n?/3 + 1,2n2/3].

We partition the set of medium vertices into two sets according to the following random
process. Each medium vertex v samples uniformly at random ©(logn) of its neighbors. If
one of the vertices in the sample is heavy then v joins the cluster of the heavy vertex in
the sample that has minimum rank. Otherwise we say that v is bad. This forms clusters of
diameter 4.

In a similar manner to the process described above we define another a new collection
of sets of centers for the bad vertices such that the total number of such centers is O(n?/?)
and each bad vertex belongs to at least one cluster and at most O(logn) clusters. The new
centers are selected (randomly) only from the set of vertices which are not heavy. We call
the corresponding clusters light-clusters since they contain at most n?/3
diameter 2. Since the total number of light-clusters is O(n?/3) we can afford to take an edge
between every pair of adjacent light-clusters. Moreover, we partition each light-cluster into
1/3 and take an edge between every pair of adjacent buckets. Since each
bad vertex belongs to O(logn) light-clusters, the total number of pairs of buckets is O(n*/3).
The time and probe complexity of finding all the edges incident to two buckets is O(nz/ 3),
as desired.

vertices and have

buckets of size n

To analyse the stretch factor we partition the edges we remove into three types. The first
type of edges are edges between vertices in the same cluster. The second type of edges are
edges between a vertex v and a cluster C' which is not light, in which case there at least one
edge in the spanner which is incident to both v and C. The third type of edges are edges
which are incident to a pair of light-clusters, in which case there exists at least one edge in
the spanner which is incident to each pair of such clusters. Thus, overall the stretch factor is
5, as claimed.
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1.5 Algorithm for constructing O(k?)-spanners

The high-level idea of the algorithm for constructing O(k?)-spanners, which we describe from
a global point of view, follows that of [28]. The vertices of the graph are first partitioned into
O(n?/ 3) Voronoi cells which are formed with respect to a randomly selected set of O(n?/3)
centers. We can assume that each Voronoi cell has diameter O(k) by using a separate
algorithm to handle remote vertices which may not be close to a center. Each Voronoi
cell is then partitioned into clusters of size L = O(n'/3). In addition each Voronoi cell is
marked with probability 1/n'/3 which respectively also marks all the clusters of the cell.
Each non-marked cluster connects to all the adjacent marked clusters using a single edge.
This forms clusters-of-clusters around marked clusters. Instead of connecting every pair
of adjacent clusters A and B, which we can not afford, our goal is to connect A with the
cluster-of-clusters of some marked cluster C' adjacent to B. Since we can not afford to
reconstruct the cluster-of-clusters of C', we instead find the identity of all the Voronoi cells
which are adjacent to C and try to connect A with at least one of these cells. We show that
this is indeed the case although A may not be connected directly to any one of these cells.
By applying an inductive argument we show that the number of hops between A and B is
O(k), where traversing from one Voronoi cell to another is considered one hop. Since the
diameter of each Voronoi cell is O(k) we obtain an overall stretch factor of O(k?).

We improve on the LCA of [28] in two main ways. The first main improvement is a
new method for partitioning the Voronoi cells into clusters of size L, allowing the cluster
containing a vertex to be reconstructed using O(AZL?) probes instead of O(A3L?). The
second improvement relates to the problem of connecting a cluster A to the cluster-of-clusters
of some marked cluster C' adjacent to B. In particular there is an issue of which marked
cluster C' should be chosen, since it is too expensive to reconstruct every marked cluster
adjacent to B. The LCA of [28] processes a single cluster of each adjacent marked Voronoi
cell to B, of which there may be as many as O(A) We instead devise a rule by which B is
engaged with a single marked cluster adjacent to it, and show that in fact it suffices to only

consider this one cluster. Combining these improvements reduces the total number of probes
from O(n?/3A%) to O(n?/3A2).

1.6 Algorithm for graph decomposition

To further reduce the runtime of Theorem 31, we develop a new local computation algorithm
to decompose graphs into subgraphs with smaller degree. Observe that for a graph G, for
subgraphs G, ..., Gy, if we have k-spanners H; C G; for every i, the union Uie[t] H;is a k-
spanner for G. As the runtime of Theorem 31 depends on the maximum degree A, we develop
an efficient LCA to break G into ¢ graphs, each with maximum degree O(max{A/t,logn}),
where t is a parameter to be chosen. Given v and an index i € [t], the LCA returns in time
O(A/+/1) all neighbors of v in G; (i.e. it supports ALL_NBR queries to each subgraph). We
believe this algorithm may have other applications.

To apply this algorithm in the spanner framework, we compose the LCA for O(k?)
spanners with the LCA for graph decomposition. This is more subtle than generic sequential
composition of algorithms, as we must ensure the per-query overhead is mild. We do this
by observing the O(k?)-spanner algorithm only ever makes all neighbor queries, and so the
decomposition LCA spends O(A/+/t) work per query the spanner LCA makes to the graph.
In particular, as the spanner LCA makes O(n2/ 3A) all neighbor queries, our new runtime is
O(n?/3 A2 /t3/?) given our choice of t. As decomposing G into ¢ subgraphs increases the size
of the output spanner by a factor of ¢, we ultimately balance parameters and obtain a probe
and time complexity of O(n?/3=(1-5=2)/kA2) for any a > 0.
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1.6.1 Decomposing the Graph

To build this graph, consider assigning each edge of G = (V, E) two colors i, j € [R], one from
each endpoint. In particular, v assigns its first A/R edges to receive color 1, the next A/R
to receive color 2, etc. Then if an edge (u,v) has received colors %, j from both endpoints, we
can let the overall edge color be (i, j) where we assume w.l.o.g that u < v. Observe that if
each color corresponds to a subgraph, then this decomposition breaks G into R? subgraphs.
Moreover, given i, j and a vertex v, we can quickly enumerate blocks 7 and j from v and
determine which edges lie in the specified subgraph. However, as these blocks may be poorly
aligned, this as described results in a maximum subgraph degree of A/R rather than A/R?.
Instead, we have each vertex choose a random shift, and assign labels to its blocks according
to this shift. Then via standard concentration bounds the maximum degree of every subgraph
is as desired. We remark that as we must enumerate every element of bucket ¢ and j from v
to find edges with label (4, j), the worst-case time for an individual neighbor query can be
up to Q(A/R). However, we only need to do this once to answer an all-neighbors query, so
as long as all the neighbors are desired we can efficiently amortize this cost.

1.7 The number of random bits

All our algorithms are randomized and hence use random bits. For results 1-2 we use
randomness in the selection of centers and representatives. In result 3 we use randomness in
the selection of centers, marked clusters, and random ranking of edges.

When the centers and representatives are selected independently, the arguments for
proving the guarantees on the sparsity of the spanner follow from standard concentration
bounds. As shown by Parter at al. [28], by using a less standard analysis one is able to
prove that the same guarantees on the sparsity hold even when the random bits are only
O(log n)-wise independent (which requires only O(log? n) truly random bits). Furthermore,
by using an intricate analysis, they showed that the guarantees on the stretch factor continue
to hold as well. In this writing, we do not repeat the analysis in [28] since it lends itself quite
easily to our setting.

For result 4, similar techniques to those of [28] allow the result to be implemented using
polylog(n)-wise independence as well !

1.8 Related work

As mentioned above, the work which is the most closely related to our work is by Parter et
el. [28]. In addition to the upper bounds mentioned in Section 1.1 they also observe that it
is possible to obtain an LCA for constructing 5-spanners with O(n1+1/k) edges and probe
complexity O(nl_l/ (2’“)) for the special case in which the minimum degree is known to be at
least n'/2=1/(2k) (this builds on the fact that by picking O(n(}*/¥)/2) centers, w.h.p. each
vertex has a center in its neighborhood). In addition to upper bounds, they also provide
a lower bound of Q(min{y/n, %}) probes for the simpler task of constructing a spanning
graph with o(m) edges, where m denotes the number of edges in the input graph.

Our work also builds on the upper bound in [23], designed originally for bounded degree
graphs, which provide a spanner with (1 4 €)n edges on expectation, where € is a parameter,
stretch factor O(log? n - poly(A/e)) and probe complexity of O(poly(A/e) - n?/3). The work
in [23] is a follow-up of [26, 25] which initiated the study of LCAs for constructing ultra-sparse
(namely, with (1 + €)n edges) spanning subgraphs.

L More specifically, by using the concentration bound from Fact 5.3 in [28] on the sum of d-wise independent
random variables.
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2 Preliminaries

The input graph G = (V, E) is a simple undirected graph with |V| = n vertices and a bound
on the degree A. Both parameters n and A are known to the algorithm. Each vertex v € V
is represented as a unique ID from [n].
A local algorithm has access to the adjacency list oracle OF which provides answers to
the following probes (in a single step):
Degree probe: Given v € V| returns the degree of v, denoted by deg(v).
Neighbour probe: Given v € V and an index i, returns the i** neighbor of v if
1 < deg(v). Otherwise, L is returned. Additionally, for v € V', we define the all-neighbors
query, denoted by ALL_NBR(v), which returns all the neighbors of v. Clearly, this query
can be implemented by deg(v) + 1 neighbor probes.
Adjacency probe: Given an ordered pair (u,v) where u € V and v € V, if v is a
neighbor of u then i is returned where v is the i*? neighbor of u. Otherwise, L is returned.

We denote the distance between two vertices u and v in G by d(u,v) and the set of
neighbours of v in G by Ng(v). We denote by N¢(v)[i] the i-th neighbour of v in G. For
vertex v € V and an integer k, let 'y (v, G) denote the set of vertices at distance at most k
from v. When the graph G is clear from the context, we shall use the shorthand d(u,v), N(v)
and T' (v) for dg(u, v), Ng(v) and T'y (v, G), respectively. We define a ranking r of the edges as
follows: r(u,v) < r(v/,v") if and only if min{u, v} < min{u’, v’} or min{u,v} = min{u’, v}
and max{u, v} < max{u’,v'}.

We shall use the following definitions in our algorithms for constructing 3-spanners and
H-spanners.

» Definition 2. We say that a vertex v € V is in class i € N w.rt. A if deg(v) €
[2071A 4+ 1,2¢A].

» Definition 3. We say that an index i € N is in bucket j e Nwrt. Adfie[(j—1)- A+
1,5 Al

2.1 Probes in the LCA model

Since the introduction of the model in [32], there have been several formulations concerning,
mainly, the measure of performance, the way the input is accessed, and whether preprocessing
is allowed. In particular, when the input is a graph, there is the question of whether the
LCA can probe the graph anywhere (i.e. ask for the neighbors of an arbitrary vertex). In
contrast to message-passing models such as CONGEST and distributed LOCAL algorithms,
in LCAs the standard assumption is that indeed the LCA can access the graph anywhere
and more specifically that each vertex in the input graph is represented as a unique ID from
[n] ={1,...,n}. To support this claim, we refer the reader to the ultra-formal definition
in [20] (Definition 12.11) as well as [3, 18].

We note that the utility of making far-probes ? was studied in [21], in which the authors
showed that for a large family of problems, this extra power is not so useful. Indeed, this extra
power is not always used by LCAs. For example, in the recent result of Ghaffari [19], which
provides an LCA for the problem of Maximal Independent Set, the assumption is that the IDs
are taken from [n!°]. Nonetheless, we stress that this extra power is an important feature of

2 Namely, probing vertices for which we do not yet know a path from the query vertex.
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the LCA model, which, in particular, distinguishes it from message-passing models (see more
on the difference between LCAs and distributed LOCAL algorithms in Section 4.1 in [24]) and
comes into play in problems which have a more global nature. For example, this extra power
is utilized in Prop. 12.13 in [20] for graph coloring and in [27] for approximate Maximum-
Matching. The latter LCA is used in Behnezhad et al. [8] to obtain a state-of-the-art sublinear
algorithm for the extensively studied problem of approximate Maximum-Matching.

3 LCA for constructing 3-spanners

In this section, we prove the following theorem. Due to space limitations, we defer the claims
regarding probe and time complexities as well as the stretch factor to the appendix.

» Theorem 4. There exists an LCA that given access to an n-vertex simple undirected
graph G, constructs a 3-spanner of G with O(n1+1/2) edges whose probe complexity and time
complexity are O(n'/?).

Our algorithm is listed as Algorithm 1. As mentioned-above our algorithm proceeds by
forming clusters around centers and connecting the different clusters. To make the description
of our algorithm complete we begin with describing the selection of centers.

We define ¢ & log v/n sets of centers Si,...,S;. For every i € [t], we pick uw.a.r. x;
vertices to be in S; where z; = y/nlogn and x;+1 = x;/2 for every i € [t — 1]. The rest of
the details of the algorithm appear in Algorithm 1. We next prove the correctness of the
algorithm.

Recall that we refer to a vertex whose degree is greater than y/n as heavy. The next claim
states that with high probability every heavy vertex has at least one center and O(logn)
centers in its neighborhood.

> Claim 5. With high probability, for every i € [t] and every vertex v € V that is in class ¢
w.r.t. /n it holds that N(v) NS; # 0 and that [N (v) N S;| = O(logn).

Algorithm 1 LCA for constructing 3-spanners.

Input: Access to an undirected graph G = (V, E) and a query {u,v} € E where we assume
w.l.o.g. that deg(u) > deg(v).
Output: Returns whether {u, v} belongs to the spanner or not.
If deg(v) < n'/? then return YES (recall that deg(u) > deg(v)).
Otherwise, let ¢ denote the class of u w.r.t. \/n (see Definition 2).
If v € S. then return YES.
Otherwise, let C “s.n N(u). If C = 0 then return YES.
Let i denote the index of u in N(v) and let b denote the bucket of i w.r.t. /n (see
Definition 3).
6. For each x € C:
a. Go over every j < i such that j is in bucket b and return YES if for every such j,
N (v)[4] does not belong to the cluster of .
7. Return NO.

L S .

> Claim 6. With high probability, the stretch factor of the spanner constructed by Algorithm 1
is 3.
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Proof. Let {u,v} be an edge in E such that deg(u) > deg(v). We will show that there exists
a path of length at most 3 between u and v in the the spanner constructed by Algorithm 1
denoted by G' = (V, E'). If deg(v) < y/n then {u,v} € E’ and we are done. Otherwise, if
there exists a cluster C' such that u and v are both belong to C then in G’ they are both
connected by an edge to the center of C. Thus there exists a path of length at most 2
between u and v in G’. Otherwise, let C’ be a cluster for which u belongs to. We claim
that v is adjacent to C’ in G’. This follows by induction on the index of u in N(v) and
Sub-Step 6a. <

> Claim 7. The probe and time complexity of Algorithm 1 is O(y/nlogn).

Proof. Steps 1-2 can be implemented by making a single degree probe. Their time complexity
is O(1). Step 3 can be implemented by accessing the random coins. To implement Step 4
we need to go over all the vertices in S, (we may assume w.l.o.g. that we generate all the
centers in advance as there are only O(y/nlogn) centers) and check whether they are in N (u)
(by making a single adjacency probe). Thus the probe (and time) complexity of this step is
O(y/nlogn). Step 5 can be implemented by a single adjacency probe. The total number of
vertices we check in Sub-Step 6a is bounded by the size of C times the size of a bucket which
is y/n. For each vertex we check we make a single neighbor and then we check whether it
belongs to the cluster of a specific center. The latter can be implemented by making a single
degree probe and a single adjacency probe. By Claim 5, the size of C is bounded by O(logn),
thus the probe (and time) complexity of Step 6 is O(y/nlogn). The claim follows. <

> Claim 8.  With high probability, the number of edges of the spanner constructed by
Algorithm 1 is O(n'*+1/2).

Proof. The number of edges added to E’ due to Step 1 is at most n3/2. By the bound on
the number of centers, the number of edges added to E’ due to Step 3 is O(n/?logn). To
analyse the number of edges added to E’ due to Step 6 consider an edge {u, v} such that
deg(u) > deg(v), deg(v) > /n and v ¢ S, where ¢ denotes the class of u w.r.t. \/n. Since u
is in class c¢ it follows that deg(u) < 2°y/n. Since deg(v) < deg(u) it follows that N(v) has
at most 2¢ buckets. By Sub-Step 6a, for any cluster C, the number of edges in E’ that are
incident to v and a vertex from C' is at most 2¢ (since we add to E’ at most a single edge for
each bucket of N(v)). Since the number of clusters of class ¢ is O(y/nlogn/2°), the total
number of clusters of class greater or equal to ¢ is O(y/nlogn/2¢) as well. Therefore, the

total number of edges that are incident to v and added to E’ due to Step 6 is O(y/nlogn).

By Claim 5, w.h.p., the number of edges that are added due to Step 4 is 0. We conclude
that the |E’'| = O(n®/?logn), as desired. <

4 LCA for constructing 5-spanners

In this section, we prove the following theorem.

» Theorem 9. There exists an LCA that given access to an n-vertex simple undirected
graph G, constructs a 5-spanner of G with O(n'*1/3) edges whose probe complexity and time
complezity are O(n?/3).

Our algorithm for constructing 5-spanners also proceeds by forming clusters around
centers and connecting the different clusters. For the sake of presentation, we first describe
our local algorithm from a global point of view (see algorithm 2). In Section 4.1 we describe
the local implementation of this algorithm.
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As in the algorithm for constructing 3-spanners, the clusters are formed around randomly
selected centers only that now we have two types of clusters (and centers), heavy-clusters
and light-clusters that will be described in the sequel.

The selection of the first type of centers

The selection of the first type of centers proceeds as follows. We define a def logn'/3
sets of centers Si,...,S!. For every i € [a], we pick w.a.r. y; vertices to be in S} where
y1 = n'/3logn and y; 1 = y;/2 for every i € [a—1]. The clusters which are formed around the
first type of centers are the heavy-clusters. The formation of the heavy-clusters is described
in Step 2 of Algorithm 2.

The selection of the second type of centers

The selection of the second type of centers proceeds as follows. We define b def logn!/3
sets of centers S,...,S%. For every i € [b], we pick w.a.r. z; vertices to be in S? where
x1 = n?/3 logn and x;11 = x;/2 for every i € [b— 1].

The clusters which are formed around the second type of centers are the light-clusters.
The formation of the light-clusters is described in Step 3 of Algorithm 2.

The way we connect the different clusters is described in Steps 4 and 5.

In the next couple of claims we prove that with high probability every vertex v such that
deg(v) > n'/3 joins at least one cluster and at most O(logn) clusters. To do so, we partition
the vertices with degree greater than into n'/? into 3 sets. The first set, denoted by H, is
the set of vertices, v, such that deg(v) > n?/3. The second set is the set of vertices, v, such
that n'/3 < deg(v) < n?/? for which at least half of the vertices in N(v) have degree at least
n2/3. We denote this set by M;. M, consists of the remaining vertices. Namely, M5 is the
set of vertices, v, such that n'/3 < deg(v) < n?/® and for which less than half of the vertices
in N(v) have degree at least n?/3.

The implication of the next claim is that w.h.p. every vertex in H joins at least one
heavy-cluster and at most O(logn) heavy-clusters.

> Claim 10. With high probability, for every v € H it holds that N(v) NS} # 0 and that
|N(v) NS} = O(logn) where ¢ € [a] is the class of v w.r.t. n?/3.

The implication of the next claim (when combined with Claim 10) is that w.h.p. every
vertex in M; joins, via a representative, at least one heavy-cluster and at most O(logn)
heavy-clusters.

> Claim 11. With high probability, for every v € M it holds that v has a representative.

Proof. Let v € M;. Consider Step 2b of Algorithm 2. Since at least half of the neighbors of
v have degree at least n?/3, it follows that w.h.p. R, # 0 and so v has a representative. <

The implication of the next claim is that w.h.p. every vertex in M5 that does not have a
representative joins at least one light-cluster and at most O(logn) light-clusters.

>> Claim 12.  With high probability, for every v € M it holds that N(v) N S? # () and that
|N(v) N S?| = O(logn) where ¢ € [b] is the class of v w.r.t. n'/3.

The following corollary follows directly from Claims 10-12.
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Algorithm 2 Global algorithm for constructing 5-spanners.
Input: A graph G = (V, E).
Output: Constructs a 5-spanner of G, G’ = (V, E’).
1. For every v such that deg(v) < n'/3 add to E’ all the edges that are incident to v.
2. Forming heavy-clusters:
a. For each vertex v such that deg(v) > n?/? we define the centers of v to be N(v) N S}
where c is the class of v w.r.t. n?/3 (see Definition 2). For every center s of v, v joins
the cluster of s by adding the edge {s,v} to E’.

b. Each vertex v such that n'/3 < deg(v) < n?/3 sample war. y = O(logn) of its
neighbors. Let R, denote this set. The representative of v is defined to be the vertex,
7, of minimum id in R, such that deg(r) > n?/3 (if such vertex exists). If v has a
representative, r, then the edge {v,r} is added to E’ (and hence v joins all the clusters
of r).
3. Forming light-clusters:
a. For each vertex v such that n'/3 < deg(v) < n*? for which v does not have a

representative we define the centers of v to be N(v) N S2 where c is the class of v w.r.t.

nt/3 (see Definition 2). For every center s of v, v joins the cluster of s by adding the
edge {s,v} to F'.
4. Connecting vertices to adjacent heavy-clusters:
a. Let {u,v} be such that deg(u) > deg(v) and u belongs to a heavy-cluster. For each
cluster C' that u belongs to, do:
i. Partition the interval [deg(v)] into sequential intervals, which we refer to as buckets,
of size n2/3: by,.... b (where only bs; may have size which is smaller than n2/3).
ii. For each ¢ € [s], go over every j € b; in increasing order and check if N(v)[j] belongs
to C. If such j is found, add {v, N(v)[j]} to E’ and move to the next bucket.
5. Connecting adjacent light-clusters:

a. Let {u,v} be such that both u and v belong to different light-clusters. For each light
clusters C,, and C, that v and v belong to, respectively, do:

i. Let s, and s, denote the centers of C, and C,, respectively. Let ¢, and ¢, denote

the classes of v and v w.r.t. n'/3

ii. Partition the vertices in N(s,) that belong to the cluster C,, (namely, the neighbors
1/3

, respectively.

of s, that are in class ¢, w.r.t. n!/3) into subsets of size n
1/3

greedily by their index
in N(sy), S}, ..., S} (all the subsets are of size n'/3 except from perhaps S}*).

iii. Repeat Step 5(a)ii for the vertices in N(s,) that belong to C, and let S}, ..., S?
denote the resulting subsets.

iv. For each i € [t] and j € [r], add the edge of minimum rank in E(S}, S}) to E' (if
such edge exists).
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» Corollary 13. With high probability every vertex v such that deg(v) > n'/3 joins at least
one cluster and at most O(logn) clusters.

> Claim 14. With high probability, |E’| = O(n'*1/3).

Proof. The number of edges added to E’ due to Step 1 is at most n't'/3. By Claims 10
and 12 the number of edges added to E’ due to Steps 2a and 3a is O(n). Since each vertex
has at most one representative the number of edges added to E’ due to Step 2b is at most n.

Consider {u, v} such that deg(u) > deg(v) and u belongs to a heavy-cluster C. According
to Step 4(a)ii we connect v to C' by adding to E’ at most [deg(v)/n?/?] edges (at most one
edge for each bucket of N(v)).

If deg(u) < n*/? then deg(v) < n?/® as well and so [deg(v)/n?/3] < 1. Therefore the
total number of edges that are incident to v and added to E’ due to Step 4(a)ii is bounded
by the total number of centers of the first type which is O(n'/3).

Otherwise, let ¢ denote the class of u w.r.t. n?/3, then by definition deg(u) < 2¢ - n?/3.
Therefore by our assumption deg(v) < 2¢-n?/3 as well. The number of centers in S! is
n'/3logn/2¢ and so the total number of centers in |J ., S} is O(n'/?logn/2°). Observe
that the number of edges which are incident to v and added to E’ due to Step 4(a)ii is at
most [deg(v)/n?/3] times the number of centers in |J,,., S¢. Thus the total number of
edges that are incident to v and added to E’ due to Step 4(a)ii is O(n'/?) in this case as
well. Therefore, the total number of edges which are added to E’ in Step 4(a)ii is O(n'*1/3).

By Claim 12 it follows that the total number of subsets partitioning the light clusters
is O(n?/?) as the size of each subset is n'/3 except for at most O(n?/3) subsets, and since
each vertex may belong to O(logn) different clusters. Since in Step 5(a)iv we add at most a
single edge between a pair of subsets the total number of edges added to E’ due to this step
is O(n'*1/3). This concludes the proof of the claim. <

> Claim 15.  With high probability, the stretch factor of the spanner constructed by
Algorithm 2 is 5.

Proof. Let {u,v} be an edge which is not included in E’. By Step 1 of the algorithm it
follows that the degree of both u and v is greater than n'/3. By Corollary 13 w.h.p. all
vertices with degree greater than n'/3 join at least one cluster. In the rest of the proof we
condition on the event that both v and v join at least one cluster.

Assume w.l.o.g. that deg(u) > deg(v). If both uw and v belong to the same cluster (either
heavy or light) then there exists a path of length at most 4 in G’ between u and v as the
diameter of each cluster is at most 4.

If u belongs to a heavy cluster, C, then by Step 4(a)ii of the algorithm it follows that
there exists at least one edge in E’ which is incident to v and a vertex in C. Since the
diameter of C is at most 4 it follows that there exists a path in G’ from v to u.

Otherwise, both u and v belong to different light clusters C, and C,. By Step 5(a)iv,
there exists at least one edge in E’ which is incident to a vertex in C, and a vertex in C,,.
Since the diameter of a light cluster is at most 2 we obtain that there exists a path in G’
from wu to v of length at most 5. This concludes the proof of the claim. <

4.1 The local implementation

In this section we prove the following claim. In the proof of the claim we also describe the
local implementation of Algorithm 2.



R. Arviv, L. Chung, R. Levi, and E. Pyne

> Claim 16. The probe and time complexity of the local implementation of Algorithm 2 is
O(n?*/®logn).

Proof. On query {u,v} we first probe the degree of u and v and return YES if either u or
v have degree which is at most n'/%. Otherwise, assume w.l.o.g. that deg(u) > deg(v). we
consider the following cases.

First case: deg(u) > n?/3. In this case we find the centers of u by going over all the
centers, s, in S} where c is the class of u w.r.t. n?/3 and preforming the adjacency probe
(u, s). If v belongs to the set of centers of u then we return YES. Overall, since the number
of centers of the first type is O(n!/3), finding the centers of u requires O(n'/?) probes and
time.

We then find the bucket b of u in N(v) w.r.t. n?/3 (see Definition 3) by preforming the
adjacency probe (v,u). Let ¢ denote the index of u in N(v). For each center of u, s and for
each j € b such that j < i, we check if N(v)[j] belongs to the cluster of s. In order to do so
we first probe the degree of y = N(v)[j]. If deg(y) > n?/3 then v is in the cluster of s if and
only if it is a neighbour of s and is in class ¢ w.r.t. n?/3
If deg(y) < n?/? then we first find the representative of y and if it has a representative we

2/3

check if it belongs to the cluster of s. Since we have to check this for at most n*/° vertices

and for O(logn) centers, overall the probe and time complexity of preforming this task is
O(n?/3).

Second case: n'/3 < deg(u) < n?/3 and either u or v have a representative. In this
case we proceed as in the previous case only that we preform all the checks with respect
to the centers of the representative of u (and/or the representative of v). Since finding the
representative of a vertex requires O(logn) probes and time the probe and time complexity
in this case is O(n*/?) as well.

Third case: n'/3 < deg(u) < n?/3 and both u and v do not have representatives.

This corresponds to the case in which both u and v belong to light clusters. In order to find
the centers of u we simply go over all vertices, y, in N(u) and check if y is in S? where ¢
denotes the class of u w.r.t. n'/3. We repeat the same process for v. Since checking if a
vertex belongs to S% can be done in O(logn) time (we can generate all the centers in advance
and store them in a binary search tree) this task requires O(n?/3) probes and time.

Finally, for each pair of centers s, and s, of u and v, respectively, we go over all the
neighbours of s, and s, and determine for each one, according to its degree, whether it
belongs to the cluster of s, and s,, respectively. We then find the subsets that u and v
belong to as defined in Steps 5(a)ii and 5(a)iii and return YES if and only of {u,v} is the
edge of minimum rank that connects these subsets.

The above three cases cover all possible scenarios which implies that the time (and probe)
complexity of the local implementation of Algorithm 2 is O(n2/ 3) as claimed. <

5 Graph Decomposition Via Ranking

We give the formal statement of the LCA of Item 4. We note that our decomposition gives
a stronger promise than the maximum degree of each subgraph being bounded, in that we
actually bound the degree vertex-wise. In particular, up to poly-logarithmic factors, the
average degree of every subgraph is equal to the overall average degree divided by the number
of subgraphs with high probability.

where c is such that s belongs to S».
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» Theorem 17. There exists an LCA that, given a parameter R < /A and access to an
n-vertex simple undirected graph G = (V, E) with mazimum degree A, decomposes G into
edge-disjoint subgraphs Gy, ...,Gr2 such that:
1. Given (u,v) € E, the i € [R?] such that (u,v) € G; can be computed in time and space
o(1).
2. Givenv € V and i € [R?], ALL_NBR,(v) can be computed in time and space O(dg(v)/R).
3. With high probability, the degree of v in G; is O(max{log(n),dg(v)/R?}) for every
v € V oand i € [R?). In particular, for every i the mazimum degree of G; is
O(max{log(n), A/R?}) with high probability.
We first describe the decomposition in a global manner. We refer to each subgraph as a color.
We assign each edge in G one of R? colors, such that the degree and ALL_NBR query times
are as claimed. We will identify the set of colors with [R] x [R], and assume R? < A since
otherwise the statement is trivial. For convenience, let d(v) := dg(v) and d;(v) := dg, (v).
Each vertex v draws a random value r, ~ [R]. Furthermore, for every vertex v, let the
first [d(v)/R] neighbors of v be Bj(v), the second be By(v), etc. Note that this divides the
out-edges into R blocks. For an edge (u,v) with u < v in blocks B;(u), B;(v) respectively,
the color of the edge is the pair (i + 7, mod R, j+r, mod R). Let G, for a,b € [R] be
the subgraph consisting of all edges with color (a,b).
We can then combine Theorem 17 with Theorem 31 to give the final result.

» Corollary 18. There exists an LCA that given access to an n-vertex simple undirected
graph G with mazimum degree A, constructs an O(k?)-spanner with O(n*+t1/*) edges whose
probe complexity and time complexity are O(nz/S*(l‘s’a)/kAz), for any constant a > 0.

5.1 Decomposition Implementation

> Claim 19. Given (u,v) € G, we can determine the color (a,b) of the edge in time and
space O(1).

Proof. By making two adjacency probes, we can determine the indices of edge (u,v) in u
and v. Then we can compute which blocks contain this edge using two degree queries and a
constant number of arithmetic operations, and then compute the final color by looking up
the random shifts of u and v. <

> Claim 20. With high probability, for every v € V and (a,b) € [R] x [R] we have
dap(v) = O(max{log(n),d(v)/R*}).

Proof. Fix an arbitrary vertex v € V and color (a,b) € [R] x [R]. Fix its shift of r, of v
arbitrarily. Let S = By—p, (v) U Bp—, (v) be the set of all edges incident to v (in G) in blocks
a—1, and b —r,. Then S is a superset of the set of edges incident to v with color (a,b),
and |S| = 2d(v)/R.

For an arbitrary edge e = (v,u) in S, let X, be the indicator random variable which is 1
exactly when the color of e is (a,b). Let k be the block index of e in u so that e € By (u).
There are four cases to consider regarding e:

Case 1: v < wand e € B,_,,(v). Then e has color (a,b) if and only if r,, is equal to b —k,

which occurs with probability exactly 1/R.

Case 2: v < wu and e ¢ B,_,, (v). In this case e never has color (a,b).

Case 3: v > w and e € By_,, (v). Similarly to case 1, e has color (a,b) if and only if r, is

equal to a — k, which occurs with probability 1/R.

Case 4: v >wu and e ¢ By_, (). Similarly to case 2, e never has color (a,b).
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In any case, we have P[X, = 1] < 1/R for all e € S. Furthermore, the variables in {X.}ces
are independent random variables: for distinct edges e, e’ € S where e = (u,v) and e = (v/,v),
X, and X, are independent since the random variables r,, 7,/ are independent.

Letting X = > .4 X, and picking an arbitrary constant ¢ > 2, we find

E[X] < 2d(v)/R?* < cmax{logn, d(v)/R*} =: u.
By the multiplicative Chernoff’s bound we have
Pr[X > 3u] < exp(—p) < exp(—clogn) =n~°,

and so the total number of neighbors of v with color (a,b) is O(max{logn,d(v)/R*}) with
high probability. Finally, a union bound over all n vertices and R? < A colors completes the
proof. <

>> Claim 21. ALL_NBR;(v) can be computed in time and space O(d(v)/R).

Proof. Given v € V and a color ¢ = (a,b), let S = B,_,, (v) U By_,, (v) as before. Note that
these correspond to the blocks which have received labels a and b respectively, given the
random shift of vertex v. We make 2d(v)/R neighbor probes to determine all elements of S,
then 2d(v)/R adjacency probes to determine the indices of every edge in the other endpoint.
Then for each edge, we can check in time O(1) (by examining the random shift of the other
endpoint) if the label is (a,b). <

Proof of Corollary 18. Let 8 € (0, 1] be such that 3/(2 + 8) = 1.5 — a. Given a query
if edge (u,v) € G is in the spanner, we apply the LCA of Theorem 17 with parameter®
R = [nl/(k(”m)] to determine the ¢ such that (u,v) € G;. We then apply Theorem 31
with parameter k' = [k(l + %)] to the graph G; and query if (w,v) is contained in the
spanner, and return the answer. Note that we ultimately obtain a O(k'?) = O(k?)-spanner
for every subgraph (and thus for the overall graph), and the number of edges is bounded as
O(R*n* /¥y < O (nHﬁ'km) = O(n'*'/*). Furthermore, the time complexity is

O(n*BA2R=3) < O (nf~77"A2). <
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A LCA for constructing O(k?)-spanners

In this section, we present our LCA for constructing O(k?)-spanners.

A.1 The algorithm that works under a promise

We begin by describing a global algorithm for constructing an O(k?)-spanner which works

under the following promise on the input graph G = (V, E). Let L def op1/3 log n, where c is

a constant that will be determined later. For every v € V, let 4, of min, {|T;(v)| > L}. We

are promised that max,cy {i,} < k. In words, we assume that the k-hop neighborhood of
every vertex in G contains at least L vertices.
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In addition, we assume without loss of generality that & = O(logn) as already for k = logn
our construction yields a spanner with O(n) edges on expectation.
Our algorithm builds on the partition of V' which is described next.

Centers. Pick a set S C V by independently including each vertex v in S with probability
n~3logn, so that |S| = ©(n?*3logn) w.h.p. We shall refer to the vertices in S as centers.
For each vertex v € V| its center, denoted by c¢(v), is the center which is closest to v amongst
all centers (break ties between centers according to the id of the center).

Voronoi cells. The Voronoi cell of a vertex v, denoted by Vor(v), is the set of all vertices u
for which ¢(u) = ¢(v). Additionally, we assign to each cell a random rank, so that there is a
uniformly random total order on the cells; note carefully that the rank of a cell thus differs
from the rank of its center (which is given by its identifier, which is not assigned randomly).
We remark that we can determine the rank of the cell from the shared randomness and the
cell’s identifier, for which we simply use the identifier of its center.

The Voronoi cells are partitioned into clusters which are classified into a couple of
categories as described next.

Singleton Clusters. For each Voronoi cell, consider the BFS tree spanning it, which is
rooted at the respective center. For every v € V', let p(v) denote the parent of v in this BFS
tree. If v is a center then p(v) = v. For every v € V'\ S, let T'(v) denote the subtree of v in
the above-mentioned BFS tree when we remove the edge {v,p(v)}; for v € S, T'(v) is simply
the entire tree. Now consider a Voronoi cell. If the cell contains at most L vertices, then the
cluster of all the vertices in the Voronoi cell is the cell itself. Otherwise, there are two cases.
If T'(v) contains more than L vertices, then we say that v is heavy and define the cluster of v
to be the singleton {v}. Otherwise, we say that v is light and its cluster is defined as follows.

Non-singleton clusters. Observe that if v is light then it has a unique ancestor u (including
v) such that u is not heavy and p(u) is heavy. We define the cluster of v to consist of T'(u)
and possibly additional subtrees, T'(u'), where u’ is a also a child of p(u) (in T(p(u)), as
described next.

We begin with some definitions and notations. In order to determine the cluster of u
(which is also the cluster of v) consider transforming the heavy vertex r = p(u) into a binary
tree which we call the auziliary tree of r, B,., as follows. B, is rooted at r and has ¢ complete
layers where i is such that 2! < deg(r) and 2/T! > deg(r). These layers consist of auziliary
vertices, namely they do not correspond to vertices in G. We then add another layer to B,
consisting of the neighbors of r, sorted from left to right according to their index in N (r).
Note that except from the root and the vertices at the last layer of B,., all vertices in B, are

auxiliary vertices. This completes the definition of B,. For each vertex z € B, we define

B,(z) to be the subtree of B, rooted at z. We define S(z) o B,.(z) N N(r), namely S(z)

is the set of vertices of N(r) which are in the subtree of B, rooted at x. The descendants

of z, denoted by the set D(z), are defined to be the union of the vertices in T'(y) for every

y € S(x), namely D(x) dof Uyes@) T'(y). The weight of x is defined to be the number of

vertices in D(x), namely, w(z) et |D(x)].

We are now ready to define the cluster of u. Let z(u) be the unique ancestor of u in B,
(including r), z, for which w(z) < L and w(p(z)) > L (where p(z) denotes the parent of z in
B,). The cluster of u (and v) is defined to be the set D(z). This completes the description
of how the Voronoi cell is partitioned into clusters.
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Special vertices. In order to bound the number of clusters (see Section A.3) we shall use
the following definitions.

» Definition 22 (Special vertex). We say that a vertex u is special if |T(u)| > L and for
every child of w in T(u), t, it holds that |T(t)] < L.

Analogously we define special auxiliary vertex as follows.

» Definition 23 (Special auxiliary vertex). We say that an auxiliary vertex y is a special

auxiliary vertex if either of the following conditions hold:

1. y is a parent of a (non auziliary) vertex v which is heavy. In this case we say that y is a
type (a) special vertez.

2. w(y) > L and for every child of y, t, it holds that w(t) < L. In this case we say that y is
a type (b) special vertex.

For a cluster C, let ¢(C) denote the center of the vertices in C' (all the vertices in the
cluster have the same center). Let Vor(C') denote the Voronoi cell of the vertices in C.

A.2 The Edge Set

Our spanner, G’ = (V, E'), initially contains, for each Voronoi cell, Vor, the edges of the BFS
tree that spans Vor, i.e., the BFS tree rooted at the center of Vor spanning the subgraph
induced by Vor. Clearly, the spanner spans the subgraph induced on every Voronoi cell.
Next, we describe which edges we add to E’ in order to connect adjacent clusters of different
Voronoi cells.

Marked Clusters and Clusters-of-Clusters

Each center is marked independently with probability p def g /n'/3. If a center is marked,
then we say that its Voronoi cell is marked and all the clusters in this cell are marked as well.

Cluster-of-clusters. For every marked cluster, C, define the cluster-of-clusters of C'; denoted
by C(C), to be the set of clusters which consists of C' and all the clusters which are adjacent
to C. Let B be a non-marked cluster which is adjacent to at least one marked cluster. Let
Y denote the set of all edges such that one endpoint is in B and the other endpoint belongs
to a marked cluster. The cluster B is engaged with the marked cluster C' which is adjacent
to B and for which the edge of minimum rank in Y has its other endpoint in C.

The Edges between Clusters

By saying that we connect two adjacent subsets of vertices A and B, we mean that we add
the minimum ranked edge in F(A, B) to E’. For a cluster A, define its adjacent centers

Cen(0A) ef {c(v)|u € AN {u,v} € E}\ {c(A)}, i.e., the set of centers of Voronoi cells that
are adjacent to A. This definition explicitly excludes ¢(A), as there is no need to connect A
to its own Voronoi cell.

We next describe how we connect the clusters. The high-level idea is to make sure that
for every adjacent clusters A and B we connect A with the cluster engaging B (perhaps not
directly) and vise versa. For clusters which are not adjacent to any marked cluster and hence
not engaged with any cluster we make sure to keep them connected to all adjacent Voronoi
cells. Formally:

1. We connect every cluster to every adjacent marked cluster.
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2. Each cluster A that is not engaged with any marked cluster (i.e., no cell adjacent to A is
marked) we connect to each adjacent cell.

3. Suppose cluster A is adjacent to cluster B, where B is adjacent to a marked cell. Denote
by C the (unique) marked cluster that B is engaged with. We connect A with B if the
following conditions hold:

a. the minimum ranked edge in F(A, Vor(B)) is also in E(A, B)
b. ¢(B) is amongst the n'/* logn lowest ranked centers in Cen(dA) N Cen(9C)

A.3 Sparsity

>> Claim 24. The number of clusters, denoted by s, is at most |S| + O(nklog A)/L).
> Claim 25. The number of edges in E’ is O(n'T1/* . k21og® n) with high probability.

Proof. Deferred to full version. <

A.4 Connectivity and Stretch

> Claim 26. G’ is connected.

> Claim 27. Denote by Gy the graph obtained from G by contracting Voronoi cells and
by G, its subgraph obtained when doing the same in G’. If the cells’ ranks are uniformly
random, w.h.p. G4, is a spanner of Gy, of stretch O(k).

Proof. Deferred to the full version. <

> Claim 28. W.h.p., G’ is a spanner of G of stretch O(k?).

Proof. Due to the promise on G, w.h.p. the spanning trees on Voronoi cells have depth O(k).
Hence, the claim holds for any edge within a Voronoi cell. Moreover, for an edge connecting
different Voronoi cells, by Lemma 27, w.h.p. there is a path of length O(k) in G%,, connecting
the respective cells. Navigating with at most O(k) hops in each traversed cell, we obtain a
suitable path of length O(k?) in G'. <

A.5 The algorithm for general graphs

We use a combination of the algorithm in Section A with the algorithm by Baswana and
Sen [7] which has the following guarantees.

» Theorem 29 ([7]). There exists a randomized k-round distributed algorithm for computing
a (2k — 1)-spanner G' = (V,E') with O(kn*t'/*) edges for an unweighted input graph
G = (V,E). More specifically, for every {u,v} € E’, at the end of the k-round procedure,
at least one of the endpoints u or v (but not necessarily both) has chosen to include {u,v}
in E'.

We call a vertex v remote if the k-hop neighborhood of v contain less than L vertices.
We denote by R ey \ R the set of vertices which are not remote.

First Step. “Run the algorithm from Section A on the subgraph induced by R, i.e., {u,v} € E
with u,v € R is added to E’ if and only if the algorithm outputs the edge.
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Second Step. Run the algorithm of Baswana and Sen [7] on the subgraph H = (V, {{u,v} €
E|lue Rorve R}),ie, {u,v} € Ewithu € Rorv € R isadded to E’ if and only if the
algorithm outputs the edge.*

A.6 Stretch Factor

Consider any edge e = {u,v} € E'\ E’ we removed. If both u and v are in R, then e was

removed by the Algorithm from Section A, which was applied to the subgraph induced by R.

Applying Claim 27 to the connected component of e, we get that w.h.p. there is a path of
length O(k?) from u to v in G’. If u or v are in R, by Theorem 29 there is a path of length
O(k) from u to v in G'.

» Corollary 30. The above algorithm guarantees stretch O(k?) w.h.p. and satisfies that the
expected number of edges in E' is O(n*+/% . k2 log® n)

A.7 The local implementation
In this section we prove the following theorem.

» Theorem 31. There exists an LCA that given access to an n-vertex simple undirected graph
G, with high probability constructs a O(k?)-spanners with O(n'TY/*) edges in expectation.
The probe complexity and time complezity are O(n2/3A2). Moreover, the algorithm access
the graph only by ALL_NBR queries (and performs O(n?/3A) such queries).

Proof. The local implementation of the algorithm which is described in the previous section
is listed in Algorithm 3. The correctness of the algorithm follows from the previous sections.
We shall prove that its complexity is as claimed.

The local implementation for remote vertices. For Step 1, we need to determine for
both w and v if they are remote. Recall that a vertex u is remote if its k-hop neighborhood
contains less than L vertices. Therefore, we can decide for any vertex u whether it is in R
with at most L ALL_NBR probes. Thus the probe and time complexity is O(LA). If either
u or v are remote then we need to determine for each vertex in their k-hop neighborhood
whether it is remote or not. If either v or v are remote then the k-hop neighborhood of each
of them contain at most LA vertices. This follows from the fact that the size of the k-hop
neighborhood of v is at most A factor bigger from the k-hop neighborhood of u and vice
versa. Thus, we need to call ALL_NBR at most L2A times for this step. Hence, we obtain
that the probe and time complexity of this step is O(L?A2), in total.

If u,v € R, namely, when both u and v are non-remote, the algorithm proceeds as in
Section A.1. We next describe the local implementation of the algorithm for this case.

Finding the center and reconstructing the BFS tree. We first analyse the probe and time
complexity of determining the center of a vertex. Given a vertex v we perform a BFS from v
layer by layer and stop at the first layer in which we find a center or after exploring at least
L vertices. Let ¢ denote the layer in which the execution of the BFS stops. It follows that up
to layer ¢ — 1 we explored strictly less than L vertices. Thus this step can be implemented by
O(L) calls to ALL_NBR. In particular, the probe and time complexity of finding the center is
O(LA).

4 The algorithm is described for connected graphs; we simply apply it to each connected component of H.
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Algorithm 3 LCA for constructing O(k?)-spanners.

Input: {u,v} € F

Output: whether {u,v} is in E’ or not.

1. If w or v are in R, simulate the algorithm of Baswana and Sen at v and v when running
it on the connected component of u and v in the subgraph H (see Section A.5). Return
YES if either u or v has chosen to include {u,v} and NO otherwise.

2. Otherwise, u,v € R and we proceed according to Section A.1, where all nodes in R are
ignored:

a. If Vor(u) = Vor(v), return YES if {u,v} is in the BFS tree of Vor(u) and NO
otherwise.

b. Otherwise, let @ and W denote the clusters of u and v, respectively. Return YES if
at least one of the following conditions hold for A = @ and B = W, or symmetrically,
for A=W and B = @, and NO otherwise.

i. Ais a marked cluster and {u,v} has minimum rank amongst the edges in E(A, B).

ii. A is not engaged with any marked cluster. Namely, all the clusters which are
adjacent to A are not marked. In this case, we take {u,v} if it has minimum rank
amongst the edges in F(A, Vor(B)).

iii. There exists a marked cluster C' such that B is engaged with C', and the following
holds:

{u,v} has minimum rank amongst the edges in E(A, Vor(B)).
The cell Vor(B) is amongst the n'/*logn minimum ranked cells in Cen(9A) N
Cen(9C)

We observe that at the same cost we also determine the path from ¢(v) to v in the BFS
tree rooted at c(v) as follows. The parent of v in the tree is the neighbour of v that has
minimum id amongst all neighbour of v that are closer than v to ¢(v). Similarly, we can
determine the parent of the parent of v and so on until we reach c(v).

Determining if a vertex is heavy. In order to reconstruct the clusters we need to be able
to determine if a vertex is heavy or not. Recall that a vertex v is heavy if |T'(v)| > L. We
explore T'(v) by performing a find center procedure on all the neighbours of v and then
continuing recursively on all the neighbours of v that belong to Vor(v). Since finding the
center takes O(L) calls to ALL_NBR, we conclude that we can determine whether v is heavy
or light by using O(L?A) calls to ALL_NBR. This follows from the fact that when we partially
or completely reveal T'(v), we need to find the center of at most LA vertices. Thus, the
overall probe and time complexity for this step is O(L?A?).

Reconstructing the clusters. Given a vertex v we reconstruct its cluster as follows. First,
perform a find-center operation on v and let v := wug,u1,...,uq be the path to the center.
We then determine if v is heavy using the prior procedure (and if so we are done). Otherwise,
iteratively find T'(u;) for ¢ € [d] (where we do not search down the path that we have already
explored), terminating the search when 7'(u;) > L. In this case, construct the tree of special
vertices below u; and again find the first ancestor of u;_; in this tree that is heavy, and let
the cluster be the children of the predecessor special vertex. As we ultimately explore only
O(LA) vertices, this results in O(LA) calls to find-center, which results in at most O(L?A)
calls to ALL. NBR.
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Determining the cells adjacent to clusters. For Step 2 we need to reconstruct the cluster
of u, the cluster of v, and the clusters that u and v are engaged with; this takes O(L?A)
calls to ALL_ NBR. In addition, for each of these clusters C, we need to determine the center
of each vertex adjacent to C'. Since the size of the clusters is bounded by L, the number of
vertices adjacent to C' is at most LA. Therefore the number of calls to find-center is at most

LA. This likewise requires O(L?A) calls to ALL_NBR and overall O(L?A?) probes and time.

We conclude that we can perform all necessary checks to decide whether {u,v} € E’
or not using O(L2A) calls to ALL_NBR which invokes O(L?A?) neighbour probes. By the
analysis above, the time complexity is O(L?A?) as well. <
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