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ABSTRACT

Generative diffusion models excel at robustly synthesizing coherent content from raw noise through
a sequential process. However, their direct application in scenarios requiring outputs to adhere
to specific, stringent criteria faces several severe challenges. This paper aims at overcome these
challenges and introduces Projected Generative Diffusion Models (PGDM), an approach that recast
traditional diffusion models sampling into a constrained-optimization problem. This enables the
application of an iterative projections method to ensure that generated data faithfully adheres to
specified constraints or physical principles. This paper provides theoretical support for the ability of
PGDM to synthesize outputs from a feasible subdistribution under a restricted class of constraints
while also providing large empirical evidence in the case of complex non-convex constraints and
ordinary differential equations. These capabilities are demonstrated by physics-informed motion in
video generation, trajectory optimization in path planning, and morphometric properties adherence in
material science.

1 Introduction

Diffusion models are a class of generative models that function by progressively introducing noise into data and
then methodically demonising it [17, 11]. They have revolutionized high-fidelity creation of complex data, and their
applications have rapidly expanded beyond mere image synthesis, finding relevance in areas such as engineering
[22, 24], automation [3, 13], chemistry [1, 12], and scientific research [2, 6].

Although diffusion models excel at generating content that is coherent and aligns closely with the original data
distribution, their direct application in scenarios requiring stringent adherence to predefined criteria poses significant
challenges. Particularly in domains where the generated data needs to not only resemble real-world examples but also
rigorously comply with established specifications, physical laws, or engineering principles, conventional diffusion
models are unable to ensure this level of precision.

Given these limitations, one may consider an alternative approach: training a diffusion model on a data distribution
that already aligns with these constraints. Nevertheless, even when the training data is “feasible”, such an approach
does not inherently assure conformity to the desired criteria due to the inherent stochastic nature of diffusion models.
Additionally, we frequently encounter situations where the available data distribution must be manipulated to generate
content that aligns with certain properties, which might not be inherent in the original dataset. This issue is especially
limiting for the larger applicability of diffusion models in scientific and engineering domains where the training data is
scarce and limited to specific distributions, yet synthesized outputs are expected to meet rigorous properties or precise
standards [22].

This paper aims to address these challenges and proposes Projected Generative Diffusion Models (PGDM), a novel
approach that recasts the traditional sampling strategy in diffusion processes as a constrained-optimization problem.
The problem is then solved by the application of repeated projections allowing the diffusion process to generate data
that adheres strictly to specified constraints or physical principles. We then provide a theoretical underpinning for
the effectiveness of PGDM to certify the synthesis of samples adhering to a restricted class of constraints, while
also providing strong empirical evidence for its effectiveness on arbitrary non-convex constraints. This includes its
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Projected Generative Diffusion Models

application to physical-informed motion for video generation guided by ordinary differentiable equations, trajectory
optimization in motion planning, and maintenance of morphometric properties of generative material science processes.

A distinct advantage of PGDM lies in its ability to impose verifiable constraints while also optimizing the original
objective criterion of generative models that aims at synthesizing samples from the true data distribution. This dual
functionality leads to state-of-the-art FID scores while also strictly adhering to the imposed constraints.

Contributions. This paper makes the following key contributions: (1) It introduces PGDM, a new framework that
augments diffusion-based synthesis with arbitrary constraints in order to generate content with high fidelity that
also adheres to the imposed specifications. (2) It provides a theoretical basis, within a restricted constraint class,
explaining the ability of PGDM to generate highly accurate content while ensuring constraint compliance. (3) Extensive
experiments in domains ranging from physical-informed motion governed by ordinary differentiable equations, trajectory
optimization in motion planning, and adherence to morphometric properties in generative material science processes are
provided to illustrate the ability of PGDM to generate content that adheres to complex non-convex constraints as well
as physical principles. (4) Finally, PGDM’s versatility is also demonstrated in generating out-of-distribution samples
that must satisfy the imposed constraints as well as to operate well in scarce training data regimes.

2 Preliminaries: Diffusion Models

Diffusion-based generative models [17, 11] expand a data distribution, whose samples are denoted x0, through a Markov
chain parameterization {xt}Tt=1, defining a Gaussian diffusion process p(x0) =

R
p(xT )

QT
t=1 p(xt�1|xt)dx1:T .

In the forward process, the data is incrementally perturbed towards a Gaussian distribution. This process is represented
by the transition kernel q(xt|xt�1) = N (xt;

p
1� �txt�1,�tI) for some 0 < �t < 1, where the �-schedule

{�t}Tt=1 is chosen so that the final distribution p(xT ) is nearly Gaussian. The diffusion time t allows an analytical
expression for variable xt represented by �t(x0, ✏) =

p
↵tx0 +

p
1� ↵t✏, where ✏ ⇠ N (0, I) is a noise term, and

↵t =
Qt

i=1 (1� �i). This process is used to train a neural network ✏✓(xt, t), called the denoiser, which implicitly
approximates the underlying data distribution by learning to remove noise added throughout the forward process.

The training objective minimizes the error between the actual noise ✏ and the predicted noise ✏✓(�t(x0, ✏), t) via the
loss function:

min
✓

E
t⇠[1,T ], p(x0),

N (✏;0,I)

h
k✏� ✏✓(�t(x0, ✏), t)k2

i
. (1)

The reverse process utilizes the trained denoiser, ✏✓(xt, t), to convert random noise p(xT ) iteratively into realistic data
from distribution p(x0). Practically, ✏✓ predicts a single step in the denoising process that can be used during sampling
to reverse the diffusion process by approximating the transition p(xt�1|xt) at each step t.

Score-based models [18, 19], while also operating on the principle of gradually adding and removing noise, focus on
directly modeling the gradient (score) of the log probability of the data distribution at various noise levels. The score
functionrxt log p(xt) identifies the direction and magnitude of the greatest increase in data density at each noise level.
The training aims to optimize a neural network s✓(xt, t) to approximate this score function, minimizing the difference
between the estimated and true scores of the perturbed data:

min
✓

E
t⇠[1,T ],
p(x0),

q(xt|x0)

(1� ↵t)
h
ks✓(xt, t)�rxt log q(xt|x0)k2

i
, (2)

where q(xt|x0) = N (xt;
p
↵tx0, (1� ↵t)I) defines a distribution of perturbed data xt, generated from the training

data, which becomes increasingly noisy as t approach T .

3 Limitations

While diffusion models have proven highly effective in producing content that closely mirrors the original data
distribution, the stochastic nature of their outputs act as an impediment when specifications or constraints need to be
imposed on the generated outputs. In an attempt to address this issue, two viable approaches could be adopted: (1)
model conditioning and (2) post-processing corrections.
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Projected Generative Diffusion Models

Figure 1: Visualization of sampling steps failing to converge to feasible solutions in conditional models (left) while
minimizing the constraint divergence to 0 under PGDM (right). Constraint divergence is measured by the number of
pixels an object’s position varies from the true position of the object as computed by an ordinary differential equation
imposing physical properties (see Section 5 for additional details).

Model conditioning [10] aims to control generation by augmenting the diffusion process via a conditioning variable c
to transform the denoising process via classifier-free guidance:

✏̂✓
def
= �⇥ ✏✓(xt, t, c) + (1� �)⇥ ✏✓(xt, t,?),

where � 2 (0, 1) is the guidance scale and ? is a null vector representing non-conditioning. However, while
conditioning may be effective to influence the generation process, it lacks the rigor to ensure adherance to specific
constraints. This results in generated outputs that, despite being plausible, may not be entirely accurate or reliable.
Figure 1 (left) illustrates this issue by reporting the constraint violations (as a distance to the feasible solutions) identified
in the outputs of a conditional model. This model was conditioned on labels corresponding to positional constraints
imposed on objects in the generated image (discussed in Section 5.1).

Additionally, conditioning in diffusion models often requires training supplementary classification and regression
models, a process fraught with its own set of challenges. This approach demands the acquisition of extra labeled data,
which can be impractical or unfeasible in specific scenarios. For instance, our experimental analysis will demonstrate a
situation in material science discovery where the target property is well-defined, but the original data distribution fails
to embody this property. This scenario is common in scientific applications, where data may not naturally align with
desired outcomes or properties [14].

Post-processing correction. An alternative approach involves applying post-processing steps to correct deviations
from desired constraints in the generated samples. This correction is typically implemented in the last noise removal
stage, s✓(x1, 1). Some approaches have augmented this process to use optimization solvers to impose constraints
on synthesized samples [8, 16]. However, while effective in aligning the final output with the set constraints, these
approaches present two main limitations. First, their objective does not align with optimizing the score function. This
inherently positions the diffusion model’s role as ancillary, with the final synthesized data often resulting in a significant
divergence from the learned (and original) data distributions, as we will demonstrate in Section 5. Second, these
methods are reliant on a limited and problem specific class of objectives and constraints, such as specific trajectory
“constraints” or shortest path objectives which can be integrated as a post-processing step [8, 16].

4 Projected Generative Diffusion

This section describes the proposed methodology to overcome the aforementioned limitations.

Overview. The application of the reverse diffusion process of score-based models is characterized by iteratively
fitting the initial noisy samples xT to the learned approximation of p(x0). This process is akin to maximizing the
density function log q(xt|x0) at each given noise level, the gradients of which are estimated by s✓(xi

t, t). In traditional
score-based models, at any point throughout the reverse process, xt is unconstrained. When these samples are required
to satisfy some constraints, the objective remains unchanged, but the solution to this optimization problem must fall
within a feasible region, denoted C in this paper. For consistency with our analysis, it is convenient to represent this as
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Algorithm 1: PGDM

1 x0
T ⇠ N (0,�T I)

2 for t = T to 1 do

3 �t  �2
t/2�2

T

4 for i = 1 to M do

5 ✏ ⇠ N (0, I); g  s✓⇤(xi�1
t , t)

6 xi
t = PC(xi�1

t + �tg +
p
2�t✏)

7 x0
t�1  xM

t

8 return x0
0

a constrained optimization problem,

minimize
xT ,...,x1

X

t=T,...,1

� log q(xt|x0) (3a)

s.t.: xT , . . . ,x0 2 C. (3b)

Operationally, the negative log likelihood is minimized at each step of the reverse Markov chain, as the process
transitions from xT to x0. In this regard, and importantly, the objective of the PGDM’s sampling process is aligned
with that of traditional score-based diffusion models.

In an unconstrained setting, this optimization is formulated such that a variation of the traditional gradient ascent
algorithm is used to iteratively transform a sample from the Gaussian distribution q(xT |x0) to a sample from the
learned distribution q(x1|x0). The update step is provided by:

xi+1
t = xi

t + �trxi
t
log q(xi

t|x0) +
p
2�t✏ (4)

where ✏ is standard normal and �t > 0 is the step size. This update step is repeated M times for each xT to x0. To
prevent a deterministic behavior, an additional term is added to the gradient ascent algorithm,

p
2�t✏, drawing from

Stochastic Gradient Langevin Dynamics, by adding a weighted noise term ✏ at each update [19].

To avoid low density data regions, the sample is optimized to conform to the previous distribution in the Markov chain
before proceeding to the consecutive distribution, the transitions being ensured by setting x0

t�1 = xM
t , where as xM

t is
the final iterate of the previous time step.

4.1 Projection Guidance

The score network s✓(xt, t) directly estimates the first-order derivatives of Equation (3a), providing the necessary
gradients for iterative gradient-based optimization defined in Equation (4). In the presence of constraints (3b), however,
an alternative iterative method is necessary to guarantee feasibility. PDGM models a projected guidance approach to
provide this constraint-aware optimization process.

First, we define the projection operator, PC, as a constrained optimization problem,

PC(x) = argmin
y2C

||y � x||22, (5)

that finds the nearest feasible point to the input x. The cost of the projection ||y � x||22 represents the distance between
the closest feasible point and the original input.

Inspired by projected gradient methods, which extend gradient-based methods to retain feasibility through an application
of the projection operator after each update step, we define the projected diffusion model sampling step as

xi+1
t = PC

⇣
xi
t + �trxi

t
log q(xt|x0) +

p
2�t✏

⌘
, (6)

where C is the set of constraints and PC is a projection onto C. Hence, iteratively throughout the Markov chain, a
gradient step is taken to minimize the objective defined by Equation 3a while ensuring feasibility. Convergence is
guaranteed for convex constraints sets [15] and empirical evidence in Section 5 will showcase the general applicability
of this methods to arbitrary constraint sets. The full sampling process is detailed in Algorithm 1.

By incorporating constraints throughout the sampling process, the interim learned distributions are steered to comply
with these specifications. This is empirically evident from the pattern in Figure 1 (right): remarkably, the constraint
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violations decrease with each addition of estimated gradients and noise and approaches 0-violation as t nears zero. This
trend not only minimizes the impact but also reduces the optimality cost of projections applied in the later stages of the
reverse process. We provide theoretical rationale for the effectiveness of this approach in the subsequent subsection.

We conclude this section by noting that this approach can be clearly distinguished from other methods which use a
diffusion model’s sampling process to generate starting points for a constrained optimization algorithm [8, 16]. Instead,
PGDM leverages minimization of negative log likelihood as the primary objective of the sampling algorithm akin to
standard unconstrained sampling procedures. This strategy offers a key advantage: the probability of generating a
sample that conforms to the data distribution is optimized directly, rather than an external objective, while simultaneously
imposing verifiable constraints. In contrast, existing baselines often neglect the conformity to the data distribution,
which as we will show in Section 5, can lead to a deviation from the learned distribution and an overemphasis on
external objectives for solution generation, resulting into much higher FID scores.

4.2 Theoretical Justification

Next, we theoretically justify the use of iterative projections to guide the sample to the constrained distribution. The
analysis assumes that the feasible region C is a convex set and that the negative log of the density function is a convex
function, so that the mean of the distribution is the global optimum. W.l.o.g., we assume that the this mean is equal to
zero. We start by defining the update step.
Definition 4.1. The operator U defines a single update step for the sampling process as,

U(xi
t) = xi

t + �ts✓(x
i
t, t) +

p
2�t✏. (7)

The next result establishes a convergence criteria on the proximity to the optimum, where for each time step t there
exists a minimum value of i = Ī such that,

9Ī s.t.
���(xĪ

t + �trxĪ
t
log q(xĪ

t |x0))
���
2
 k⇢tk2 (8)

where ⇢t is the closest point to the global optimum that can be reached via a single gradient step from any point in C.
Theorem 4.2. Let PC be a projection onto C and xi

t be the sample at time step t and iteration i. For any i � Ī ,

E
⇥
Error(U(xi

t),C)
⇤
� E

⇥
Error(U(PC(x

i
t)),C)

⇤
(9)

where Error is the cost of the projection defined by the objective in Equation 5.

The proof for Theorem 4.2 is reported in Appendix D. This result suggests that PGDM’s projection steps ensure that the
resulting samples adhere more closely to the constraints compared to samples generated through traditional, unprojected
methods. Together with the next results, it will allow us to show that PGDM samples converge to the point of maximum
likelihood that also satisfy the imposed constraints.

The theoretical insight provided by Theorem 4.2 provides an explanation for the observed discrepancy between the
constraint violations induced by the conditional model and PGDM, as observed in Figure 1.
Corollary 4.3. For arbitrary small ⇠ > 0, there exist t and i � Ī such that:

Error(U(PC(x
i
t)),C)  ⇠.

The above result uses the fact that the step size �t is strictly decreasing and converges to zero, given sufficiently large T ,
and that the size of each update step U decreases with �t.

As the step size shrinks, the gradients and noise reduce in size. Hence, Error(U(PC(xi
t)) approaches zero with t, as

illustrated in Figure 1 (right). This diminishing error implies that the projections gradually steer the sample into the
feasible subdistribution of p(x0), effectively aligning with the specified constraints.

Feasibility guarantees. PGDM provides feasibility guarantees when solving convex constraints. This assurance is
integral in sensitive settings, such as physics-based simulations (Section 5.1) and material analysis (Section 5.3), where
strict adherence to the constraint set is necessary. This provision is non-trivial, as no prior methods have provided these
guarantees without post-processing the outputs of the diffusion models.

5 Experiments

To provide appropriate benchmarks for constraint-aware diffusion, we compare PGDM against three state-of-the-art
approaches. Conditional diffusion models (Cond.) [10] are the state-of-the-art methods for generative sampling
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Figure 2: Sequential stages of the physics-informed models on for in-distribution (left) and out-of-distribution (right)
constraint imposition.

subject to a series of specifications. While conditional diffusion models offer a way to guide the generation process
towards satisfying certain constraints, they do not provide compliance guarantees. To encourage constraints satisfaction,
we additionally compare to the recently proposed conditional models with a post-processing projection step (Post-

Cond.), emulating the post-processing approaches of [8, 16]. Finally, we use a score-based model identical to our
implementation but with a single post-processing projection operation (Post-Proc.) performed at the last sampling step.
Additional details are provided in Appendix A.

The performance of these models are evaluated by the feasibility and accuracy of the generated samples. We assess
feasibility by the degree and rate at which constraints are satisfied, expressly, the percentage of samples which satisfy
the constraints with a given error tolerance. Accuracy is measured by the Frechet Inception Distance (FID) score, a
standard metric in synthetic sample evaluation.

In an effort to demonstrate the broad applicability of this approach, our experimental settings have been selected to
exhibit: (1) behavior when the constraints lead to samples falling outside of the training distribution (Section 5.1), (2)

behavior on complex non-convex constraints (Section 5.2), and (3) behavior in low data regimes and where original
distribution does not satisfy the constraints (Section 5.3).

5.1 Physics-informed Motion

To showcase the applicability of PGDM in generating video frames adhering to physical constraints, this experiment
tasks the model with producing video samples of an object accelerating due to gravity. The position of the object in a
given frame is governed by

pt = pt�1 +

✓
vt +

✓
0.5⇥ @vt

@t

◆◆
(10a)

vt+1 =
@pt

@t
+

@vt

@t
(10b)

where p is the object position, v is the velocity, and t is the frame number. This positional information can be directly
integrated into the constraint set, with constraint violations quantified by the pixel distance from their true position. The
training data is based on earth’s gravity. We extend the model to simulate gravitational forces from the moon and other
planets. This will allow us to examine performance on physical constraints which differ from the training data.

The dataset is generated with object starting points sampled uniformly in the interval [0, 63]. For each data point, six
frames are included with the position changing as defined in Equation 10 and the initial velocity v0 = 0. Pixel values
are scaled to [-1, 1]. The diffusion models are trained on 1000 points with a 90/10 train/test split.

For this setting, we used a masked conditional video diffusion model as our conditional baseline, following the
methodology outlined in Voleti et al. [20]. Results randomly selected from the generated samples are visualized
in Figure 2 (left), with the top row displaying the ground-truth images for reference. The subsequent rows shows
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Setting PGDM Post-Proc. Cond. Post-Cond.

F
I
D Phy. 26.5 52.5 22.5 53.0

Mat. 213.9 297.1 214.2 254.7

Table 1: Model FID score performance for physics-informed motion (Phy.) and constrained materials (Mat).

Figure 3: Frequency of constraint satisfaction within a given error tolerance over 100 runs for physics-informed motion
(left) and constrained materials (right).

the outputs returned by PGDM, post-processing projection, and conditional post-processing, respectively. Samples
generated by conditional diffusion models are not directly shown in the figure, as the white object outline in the
Post-Cond. frames shows where the Cond. model originally positioned the object. First we notice that, in absence of
constraint projections, the score based generative model adopted generates samples that align with the original data
distribution but places the object arbitrarily within the frame (white ball outlines in the 3rd row). Post-processing
accurately repositions the object but greatly compromising the image quality. Similarly, post-conditioning exhibits
inaccuracies in object positioning, as shown by the white outline in the 4th row. These deviations from the desired
constraints are quantitatively depicted in Figure 3 (blue bars). The figure depicts the proportion of samples adhering
to the object’s governing behavior constraints across varying levels of error tolerance. Notably, this approach fails to
produce any viable sample within a zero-tolerance error margin. In contrast, PGDM generates frames exactly satisfying
the object position’s constraints, with FID scores only marginally outperformed by Cond. Implementation using the
model proposed by Song et al. [19] narrows this gap even further (Appendix B).

Out of distribution performance. To assess the efficacy of PGDM on constraints not represented in the training data,
we adjust the governing equation (10) to the gravitational pull of the moon, while leaving the training set untouched.
The results, shown in Figure 2 (right), demonstrate the applicability of PGDM to settings where the training data does
not include any feasible data points. Notice that, while synthesising high quality images, PGDM also guarantees

no constraint violations (0-tolerance) in this setting. This stands in contrast to other methods, which exhibit greater
constraint violations in this out-of-distribution context compared to their in-distribution test performance, as illustrated
by the red bars in Figure 3 (left). Notably, the results also show that PGDM can produce inceptions scores nearly
identical to the conditional model and dramatically better than post-processing methods (Table 1).

5.2 Constrained Trajectories

The next experiment showcase the ability of PGDM to handle nonconvex constraints. Motion planning is a classic
optimization problem which is integral to finding smooth, collision-free paths in autonomous systems. This setting
consists of minimizing the path length while avoiding path intersection with various obstacles in a given topography.
Recent research has demonstrated the use of diffusion models for these motion planning objectives [3]. In this task,
the diffusion model predicts a series of points, p0, p1, . . . , pN , where each pair of consecutive points represents a line
segment. The start and end points for this path are determined pseudo-randomly for each problem instance, with the
topography remaining constant across different instances. Additionally, the problem is complicated by adding new
obstacles at inference time (shown in red on Figure 4), rendering a portion of the training data infeasible and testing the
generalization of these methods. The performance is evaluated on two sets of maps adapted from Carvalho et al., shown
in Figure 4. The training-time obstacles remain the same in both maps, but we alter the test time conditions to simulate
different environments.

7
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Figure 4: Topography 1 (left) and Topography 2
(right).

PGDM Cond. Post-Cond.

S

Topography 1 100.0 77.1 77.1
Topography 2 100.0 53.3 53.3

P
L Topography 1 2.21 2.08 2.08

Topography 2 2.05 2.09 2.09

Figure 5: Constrained trajectories evaluation on suc-
cess percentage for a single run (S) and path length
(PL).

To circumvent the challenge of guaranteeing collision-free paths, previous approaches have relied on sampling large
batches of trajectories and selecting a feasible solution, if any are generated [3]. We use the Motion Planning Diffusion

model recently proposed by Carvalho et al. as a conditional model baseline for this experiment and the associated
datasets to train each of the models. For the Post-Cond. model, we emulate the approach proposed by Power et al. [16],
using the conditional diffusion model to synthesize a starting point for an optimization solver.

In this setting, the projection operator used by PGDM is non-convex, and the implementation uses an interior point
method [21]. While the feasible region is non-convex, and thus local infeasibilities may be obtained, especially at early
iterations, our experiments never report unfeasible solutions as the distance from the learned distribution decreases.
However, using the same interior point method for a post-processing projection, we find that the percentage of feasible
solutions does not increase from those of the unconstrained conditional model as this singular projection cannot
overcome local infeasibilities. These observations are consistent with the analysis of Figure 1.

The experimental results (Table 5) demonstrate the viability of PGDM for non-convex constraints. We visualize the
results of our approach in Figure 4, demonstrating that a single sample can find a feasible path, as opposed to requiring
a large batch of samples to report a feasible solution as done in previous methods. These reported metrics illustrate a
distinct improvement over state-of-the-art approaches for motion planning with diffusion models by eliminating the
failed inference points inherent to these approaches, while sacrificing minimal accuracy on average.

5.3 Constrained Materials

Microstructures are pivotal in determining material properties. Current practice relies on physics-based simulations
conducted upon imaged microstructures to quantify intricate structure-property linkages [4]. However, acquiring real
material microstructure images is both costly and time-consuming, lacking control over attributes like porosity, crystal
sizes, and volume fraction, thus necessitating “cut-and-try” experiments. Hence, the capability to generate realistic
synthetic material microstructures with controlled morphological parameters can significantly expedite the discovery of
structure-property linkages.

Previous work has shown that conditional generative adversarial networks (GAN) [9] can be used for this end [5], but
these studies have been unable to impose verifiable constraints on the satisfaction of these desired properties. To provide
a conditional baseline, we implement a conditional DDPM modeled after the conditional GAN used by Chun et al. [5]
with porosity measurements used to condition the sampling.

For this task, the material analyzed is cyclotetramethylene-tetranitramine [5]. The constraints are imposed on the
porosity of the generated material, which is measured as the number of pixels with intensities below a predefined
threshold, hence representing damaged regions of the microstructure. Evaluation of the conditional model’s constraint
satisfaction is included in Figure 3 (right) while FID scores are provided in Figure 1, and results are visualized in Figure
6. We observe in Figure 3 (right) that the conditional model finds it very difficult to cope with the imposed constraints.
Furthermore, the baseline approaches for constraint correction result in a noticeable decrease in image quality, evident
both visually (Figure 6) and in the FID scores (Table 1). PGDM, in turn, provides both exact constraint satisfaction and
an identical image quality to the conditional model, which is a particularly significant result given the complexity of
original data distribution.

Low data regime. A critical limitation in this setting is the cost of producing training data. To compose our dataset,
which was obtained from the authors of [5], a single 3, 000⇥ 3, 000 pixel microscopic image is subsampled to produce
64 ⇥ 64 image patches as data points, with pixel values scaled to [�1, 1]. Samples from the composed dataset are
included in Appendix A.
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Figure 6: Porosity constrained microstructure visualization.

The difficulties associated with data collection act as a primary motivation for this experiment but also introduce
challenges in producing images with low FID scores. The accuracy of our methodology should be considered relative
to the conditional model, provided the limited training data and complexity of the learned distribution. Despite the low
volume of data, the iterative projection method is able to guarantee constraint adherence while maintaining an FID
score competitive with the conditional diffusion model.

6 Related Work

Diffusion models with soft constraint conditioning. Variations of conditional diffusion models [10] serve as useful
tools for controlling task specific outputs from generative models. These methods have demonstrated the capacity
capture properties of physical design [22], positional awareness [3], and motion dynamics [23] through augmentation
of these models. The properties imposed in these architectures can be viewed as soft constraints, with stochastic model
outputs violating these loosely imposed boundaries.

Post-processing optimization. In settings where hard constraints are needed to provide meaningful samples, diffusion
model outputs have been used as starting points for a constrained optimization algorithm. This has been explored in
non-convex settings, where the starting point plays an important role in whether the optimization solver will converge
to a feasible solution [16]. Other approaches have augmented the diffusion model training objective to encourage
the sampling process to emulate an optimization algorithm, framing the post-processing steps as an extension of the
model [8, 14]. However, an existing challenge in these approaches is the reliance on an easily expressible objective,
making these approaches effective in a limited set of problems (such as the constrained trajectory experiment) while not
applicable for the majority of generative tasks.

Linear constraints for generative models. Finally, Frerix et al. [7] proposed an approach for implementing hard
constraints on the outputs of autoencoders. This was achieved through scaling the generated outputs in such a way that
feasibility was enforced. However, this method can only cope with simple linear constraints, making it inapplicable to
the settings explored in this paper.
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7 Discussion and Limitations

While in many settings providing constraint satisfaction guarantees is desirable, and even necessary, the computation
overhead of iterative projections should be taken into consideration. In applications where inference time is a critical
factor, it may be practical to adjust the time step t at which iterative projections begin, finding a trade-off between
the FID score associated with the starting point of iterative projections (Appendix C.2) and the computational cost of
projecting throughout the remaining iterations (Appendix C.1). This is specifically relevant when the projection cannot
be easily represented and external solvers are necessary to perform this projection.

We also note the absence of constraints in the forward process. As illustrated empirically, it is unnecessary for the
training data to contain any feasible points. We hold that this not only applies to the final distribution but to the interim
distributions as well. Furthermore, by projecting perturbed samples, the cost of the projection results in divergence
from the distribution that is being learned. Hence, we conjecture that incorporating constraints into the forward process
will not only increase computational cost of model training but also decrease the FID scores of the generated samples.

Finally, while this study provides a framework for imposing constraints on diffusion models, the representation of
complex constraints for multi-task large scale models remains an open research question. This paper motivates future
work for adapting optimization techniques to such settings, where constraints ensuring accuracy in task completion and
safety in model outputs bear transformative potential to broaden the application of generative models in many scientific
and engineering fields.

8 Conclusions

This paper was motivated by a significant challenge in the application of diffusion models in contexts requiring strict
adherence to constraints and physical principles. It presented Projected Generative Diffusion Models (PGDM), an
approach that recasts the score-based diffusion sampling process as a constrained optimization process that can be
solved via the application of repeated projections. Experiments in domains ranging from physical-informed motion
for video generation governed by ordinary differentiable equations, trajectory optimization in motion planning, and
adherence to morphometric properties in generative material science processes illustrate the ability of PGDM to generate
content of high-fidelity that also adheres to complex non-convex constraints as well as physical principles.
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A Experimental Settings

In the following section, further details are provided as to the implementations of the experimental settings used in this
paper.

A.1 Physics-informed Motion

Projections Projecting onto positional constraints requires a two-step process. First, the current position of the object
is identified and all the pixels that make up the object are set to the highest pixel intensity (white), removing the object
from the original position. The set of pixel indices representing the original object structure are stored for the subsequent
step. Next, the object is moved to the correct position, as computed by the constraints, as each pixel from the original
structure is placed onto the center point of the true position. Hence, when the frame is feasible prior to the projection,
the image is returned unchanged, which is consistent with the definition of a projection.

Conditioning For this setting, the conditional video diffusion model takes two ground truth frames as inputs, from
which it infers the trajectory of the object and the starting position. The model architecture is otherwise as specified by
Voleti et al..

A.2 Constrained Trajectories

Projections For this experiment, we represent constraints such that the predicted path avoids intersecting the obstacles
present in the topography. These are parameterized to a non-convex interior point method solver. For circular obstacles,
this can be represented by a minimum distance requirement, the circle radius, imposed on the nearest point to the center
falling on a line between pn and pn+1. These constraints are imposed for all line segments. We adapt a similar approach
for non-circular obstacles by composing these of multiple circular constraints, hence, avoiding over-constraining the
problem. More customized constraints could be implement to better represent the feasible region, likely resulting in
shorter path lengths, but these were not explored for this paper.

Conditioning The positioning of the obstacles in the topography are passed into the model as a vector when
conditioning the model for sampling. Further details can be found the work presented by Carvalho et al., from which
this baseline was directly adapted.

A.3 Constrained Materials

Projections The porosity of an image is represented by the number of pixels in the image which are classified as
damaged regions of the microstructure. Provided that the image pixel intensities are scaled to [-1, 1], a threshold is
set at zero, with pixel intensities below this threshold being classified as damage regions. To project, we implement a
top-k algorithm that leaves the lowest and highest intensity pixels unchanged, while adjusting the pixels nearest to the
threshold such that the total number of pixels below the threshold precisely satisfies the constraint.

Conditioning The conditional baseline is conditioned on the porosity values of the training samples. The implemen-
tation of this model is as described by Ho and Salimans.

Original Training Data We include samples from the original training data to visually illustrate how closely our
results perform compared to the real images. As the specific porosities we tested on are not adhered to in the dataset,
we illustrate this here as opposed to in the body of the text.
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d

We observe that only the Conditional model and PGDM synthesize images that visually adhere to the distribution, while
post-processing methods do not provide adequate results for this complex setting.
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B PGDM for Score-Based Generative Modeling through Stochastic Differential Equations

B.1 Algorithms

While the majority of our analysis focused on the developing these techniques to the sampling architecture proposed for
Noise Conditioned Score Networks [18], this approach can directly be adapted to the diffusion model variant Score-
Based Generative Modeling with Stochastic Differential Equations proposed by Song et al. Although our observations
suggested that optimizing across a continuum of distributions resulted in less stability in diverse experimental settings,
we find that this method is still effective in producing high-quality constrained samples in others.

We included an updated version of Algorithm 1 adapted to these architectures.

Algorithm 2: PGDM Corrector Algorithm

1 x0
N ⇠ N (0, �2

maxI)
2 for t � T to 1 do

3 for i � 1 to M do

4 ✏ ⇠ N (0, I)
5 g � s✓*(x

i�1
t , �t)

6 �  � 2(r||✏||2/||g||2)2
7 xi

t  � PC(x
i�1
t + �g +

p
2�✏)

8 x0
t�1  � xM

t

9 return x0
0

We note that a primary discrepancy between this algorithm and the one presented in Section 4.1 is the difference in �.
As the step size is not strictly decreasing, the guidance effect provided by PGDM is impacted as Corollary 4.3 does
not hold for this approach. Hence, we do not focus on this architecture for our primary analysis, instead providing
supplementary results in the subsequent section.

B.2 Results

We provide additional results using the Score-Based Generative Modeling with Stochastic Differential Equations. This
model produced highly performative results for the Physics-informed Motion experiment, with visualisations included
in Figures 7 and 8. This model averages an impressive inception score of 24.2 on this experiment, slightly outperforming
the PGDM implementation for Noise Conditioned Score Networks. Furthermore, it is equally capable in generalizing
to constraints that were not present in the training distribution.
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Figure 7: In distribution sampling for physics-informed model via Score-Based Generative Modeling with SDEs.
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Frame 1 Frame 2 Frame 3 Frame 4 Frame 5
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Figure 8: Out of distribution sampling for physics-informed model via Score-Based Generative Modeling with SDEs.

C Additional Results

C.1 Computational Costs

To compare the computational costs of sampling with PGDM to our baselines, we record the execution times for the
reverse process of a single sample. The implementations of PGDM have not been optimized for runtime, and represent

an upper bound. All sampling is run on two NVIDIA A100 GPUs. All computations are conducted on these GPUs
with the exception of the interior point method projection used in the Constrained Trajectories experiment which runs
on two CPU cores.

Physics-informed Motion Constrained Trajectories Constrained Materials

PGDM 48.85 383.40⇤ 26.89
Post-Proc 27.58 – 26.01

Cond. 35.30 0.56 18.51
Post-Cond. 36.63 106.41 18.54

Table 2: Average sampling run-time in seconds.

We implement projections at all time steps in this analysis, although practically this is can be optimized to reduce the
total number of projections as described in the subsequent section. Additionally, we set M = 100 and T = 10 for
each experiment. The increase in computational cost present in PGDM is directly dependant on the tractability of the
projections and the size of M .

The computational cost of the projections is largely problem dependant, and we conjecture that these times could be
improved by implementing more efficient projections. For example, the projection for Constrained Trajectories could be
dramatically improved by implementing this method on the GPUs instead of CPUs (⇤). However, these improvements
are beyond the scope of this paper. Our projection implementations are further described in Appendix A.

Additionally, the number of iterations for each t can often be decreased below M = 100, offering additional speed-up.
We provide empirical evidence of this in the subsequent section.

C.2 Tuning to Optimize FID Scores

Empirically, we find that the optimal starting point for iterative projections varies across seeds. Selecting this time step
is a test-time decision, that can be optimized for a given test case. Below, we show the impact on the FID score when
selecting different values of t to begin iteratively projecting.

Applications of PGDM should assess when to begin constraining the sampling process to achieve the best results, while
bearing in mind the increased computational cost of constraining the entire sampling process.
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Figure 9: Impact of iterative projections starting point on FID score.

Furthermore, we find that the number of iterations M can be reduced while producing equally impressive FID scores.
For this experiment, M = 80 provides the best consistent scores across ten seeds, with the improvement provided by
increasing M > 120 little or none. We include a visualization of these results in Figure 10. Note that in this figure we
empirically selected the best iterative projections starting point for each seed based on the analysis in this subsection.
Additionally, we show this has no impact on the convergence to feasible solutions originally illustrated in Figure 1.

Figure 10: Impact of adjusting M assessed by the FID Scores and constraint convergence of the outputs.

D Missing Proofs

Proof of Theorem 4.2

Proof. By optimization theory of convergence in a convex setting, provided an arbitrarily large number of update
steps M , xM

t will reach the global minimum. Hence, this justifies the existence of Ī as at some iteration as i �! 1,���xi
t + �trxi

t
log q(xi

t|x0)
���
2
 k⇢tk2 will hold for every iteration thereafter.

Consider that a gradient step is taken without the addition of noise, and i � Ī . Provided this, there are two possible
cases.

Case 1: Assume xi
t + �trxi

t
log q(xi

t|x0) is closer to the optimum than ⇢t. Then, xi
t is infeasible.

This claim is true by the definition of ⇢t, as xi
t + �trxi

t
log q(xi

t|x0) is closer to µ than is achievable from the nearest
feasible point to µ. Hence, xi

t must be infeasible.

Furthermore, the additional gradient step produces a point that is closer to the optimum than possible by a single update
step from the feasible region. Hence it holds that

Error(xi
t + �trxi

t
log q(xi

t|x0)) > Error(PC(x
i
t) + �trPC(xi

t)
log q(PC(x

i
t)|x0)) (11)

as the distance from the feasible region to the projected point will be at most the distance to ⇢t. As this point is closer to
the global optimum than ⇢t, the cost of projecting xi

t + �trxi
t
log q(xi

t|x0) is greater than that of any point that begins
in the feasible region.
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Case 2: Assume xi
t + �trxi

t
log q(xi

t|x0) is equally close to the optimum as ⇢t. In this case, there are two
possibilities; either (1) xi

t is the closest point in C to µ or (2) xi
t is infeasible.

If the former is true, xi
t = PC(xi

t), implying

Error(xi
t + �trxi

t
log q(xi

t|x0)) = Error(PC(x
i
t) + �trPC(xi

t)
log q(PC(x

i
t)|x0)) (12)

Next, consider that the latter is true. If xi
t is not the closest point in C to the global minimum, then it must be an equally

close point to µ that falls outside the feasible region. Now, a subsequent gradient step of xi
t will be the same length as a

gradient step from the closest feasible point to µ, by our assumption.

Since the feasible region and the objective function are convex, this forms a triangle inequality, such that the cost of this
projection is greater than the size of the gradient step. Thus, by this inequality, Equation 11 applies.

Finally, for both cases we must consider the addition of stochastic noise. As this noise is sampled from the Gaussian
with a mean of zero, we synthesize this update step as the expectation over,

E
h
Error(xi

t + �trxi
t
log q(xi

t|x0) +
p
2�t✏)

i
� E

h
Error(PC(x

i
t) + �trPC(xi

t)
log q(PC(x

i
t)|x0) +

p
2�t✏)

i

(13)

or equivalently as represented in Equation 9.
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