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Abstract

While deep learning gradually penetrates operational planning of power systems,
its inherent prediction errors may significantly affect electricity prices. This paper
examines how prediction errors propagate into electricity prices, revealing notable
pricing errors and their spatial disparity in congested power systems. To improve
fairness, we propose to embed electricity market-clearing optimization as a deep
learning layer. Differentiating through this layer allows for balancing between
prediction and pricing errors, as oppose to minimizing prediction errors alone. This
layer implicitly optimizes fairness and controls the spatial distribution of price
errors across the system. We showcase the price-aware deep learning in the nexus
of wind power forecasting and short-term electricity market clearing.

1 Introduction

Addressing the gap between electricity market clearing and power system operations with large
shares of renewables, recent literature proposes various deep learning tools for forecasting weather-
dependent generation and loads, set-points of conventional generation, and active sets of network
constraints, among other applications. Deep learning models learn complex physical processes from
an abundance of operational data and instantly map contextual features into informed inputs for
market clearing [1], and even directly estimate market-clearing outcomes from data [2]. However
well-informed and tuned these models may be, they are still prone to prediction errors that affect
market outcomes for electricity producers and consumers.

This paper uncovers the propagation of prediction errors of deep learning into locational marginal
prices — the ultimate indicator defining electricity market outcomes across the network — and demon-
strates spatial disparity of these errors across the range of power system benchmark systems. To
reduce the errors and improve fairness in electricity market applications, we propose to directly
incorporate market-clearing optimization as a deep learning layer to inform predictions on pricing
errors. For clarity, we use wind power forecasting as the deep learning task, but other prediction tasks
may benefit from the same approach. Our results show that even small errors cause spatial disparities
in congested systems, with usually a small set of buses contributing the most to the overall disparity.
While transmission investments would ultimately resolve spatial disparities, informing predictions
with market-clearing outcomes already improves fairness.

2 Price-Awareness for Fair Deep Learning

Consider a dataset {(;,w;)}™, of m operational records, where the i record includes a power
output w; and the associated feature vector ¢;, collecting weather and turbine data, such as wind
speeds and blade pitch angles. The dataset is used to train a deep learning model DeepWP mapping
features to wind power outputs, i.e., DeepWP(y) = w. DeepWP is a neural network with a fully
connected feedforward architecture, and we train it to minimize the prediction error || — w||. While
standard, this training approach is unaware of the effects of prediction errors on electricity prices.
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2.1 From Prediction to Electricity Price Errors

To study the impact of prediction errors on electricity prices, we work with the electricity market
clearing based on a DC optimal power flow (OPF) problem [1, 2]. Given a wind power forecast
w € R™, the goal is to identify the conventional generation dispatch p € R™ which satisfies electric
loads d € R’} at minimum dispatch costs. Generators produce within technical limits p,p € R
incurring costs, described by a quadratic function with coefficients ¢ € R and C' € S'!. The power
flows are computed using a matrix F' € R®*" of power transfer distribution factors, i.e., the flows
are f = F(p+ @ — d) € R® limited by f € R$. The DC-OPF optimization takes the form:

minimize p'Cp+c'p (1a)

PSPSP
subjectto 1" (p+@w—d)=0: b, (1b)
[F(p+® —d)] < F : A, Ay, (o)

which minimizes total costs subject to power balance, and generation and transmission limits.

The locational marginal prices (LMPs), induced on a particular wind power forecast @, are derived
from the optimal dual variables associated with power balance and power flow constraints:

n(@) =X 1—F'(Af—Ap) €R", 2)
where the first term is the system-wide price adjusted by the second term due to congestion.

Remark 1 (Uniqueness). If convex problem (1) is feasible for some forecast w, then its primal and
dual solutions are unique thanks to strictly monotone objective function (1) [3]. Hence, electricity
price (W) is also unique w.r.t. forecast .

Hence, the LMP error, defined as 07 = 7(w) — w(w) € R™, is also unique w.r.t. forecast @w.
Two key observations arise from analyzing Eq. (2). The first relates to disparities due to congestion.

Observation 1 (Spatial disparity). In congested networks, for which HT(X7 +A 1) > 0, the price
error at bus i is proportional to the i column of matrix F of power transfer distribution factors.

Hence, the same prediction error has a disparate effect on electricity prices, depending on location.
This effect under DeepWP predictions is illustrated in Fig. 2 (left plane), where LMP errors vary in
the range from —4.2 $/MWh to +0.9 $/MWh on average.

The second observation identifies a unique system bus, reference bus r, with small price errors.

Observation 2 (Reference bus). Since the " column of F is all zeros, the price error at the reference
bus only includes the error of the system-wide term in (2).

The spatial disparities is measured using the notion of a—fairness [4]:

a= max [E[|om] — E[l|om ][ ©)
where the expectation is w.r.t. the dataset distribution. Parameter « is the fairness bound, with smaller
values denoting stronger fairness. While the original definition takes the maximum across all pairs of
individuals (buses), we use bus 7 as a reference, as it only includes the error of the system-wide price.

2.2 Electricity Market Clearing as a Neural Network Layer

To minimize the impact of prediction errors on electricity prices, we develop a new deep learning
architecture DeepWP+, depicted in Fig. 1. Relative to DeepWP, the new architecture includes a
market-clearing optimization layer which computes electricity prices in response to predictions and
passes them on to the loss function, including both wind power prediction and price errors.

Directly acting on problem (1), however, is computationally challenging: it requires solving the
problem and then differentiating through the large set of Karush—Kuhn—Tucker conditions. We
propose to work with the dual optimization instead. For brevity, we rewrite problem (1) as

minimize p'Cp+c¢'p (4a)
P

subjectto  Ap > b(W) : X, (4b)
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Figure 1: The standard DeepWP and proposed DeepWP+ learning architectures.

Table 1: Wind power prediction and LMP errors under conventional (DeepWP) and price-aware
(DeepWP+) deep learning models

wind power data DeepWP DeepWP+
case bus CaPacity F-scale RMSE(@) RMSE(7) CVaR(7) a—value RMSE(@)  RMSE(7) CVaR(7) a—value
MW [p.u.] Mwh  $/MWh  $/MWh $/MWh MWh gain $/MWh gain $/MWh gain $/MWh gain
14_ieee 14 100 1.00 0.35 0.62 1.52 0035 +0.6% 061 —0.6% 150 —0.8% 0 —
57_ieee 38 600  0.60 2.31 11.03 34.64  32.08 2.60 +11.2% 10.72 —-2.9% 33.59 -3.1% 3092 -3.8%
24_jeee 15 1,000 0.75 4.08 8.62 3770 2748 451 49.6% 833 —3.5% 3635 —3.7% 2626 —4.6%
39 epri 6 1,500 0.70 5.94 11.15 31.21 17.53 643 +7.6% 10.19 —9.4% 28.02 —11.4% 15.84 —10.7%
73_iece 41 1,000 0.80 4.02 5.12 1621 32.83 551 +26.9% 4.24 —20.8% 13.41 —20.9% 26.63 —23.3%
118_ieee 37 500 0.75 2.29 3.59 1132 1791 2.60 +12.1% 2.88 —24.7% 9.06 —25.0% 14.09 —27.2%

where the feasible region is parameterized by forecast w. The dual problem takes the form:
P o~ T
A=A QA 5

ma);l}r%lze q(w) QA, )
where q(@) = AC71lc+ b(@) and Q = AC~1AT. Since the two problems are strictly convex
and concave, respectively, the strong duality holds, such that the LMPs can be extracted from the
dual problem using expression (2). A virtue of the dual problem (5) is that it only includes the non-
negativity constraints; it is thus simpler to solve and differentiate through than its primal counterpart
in (4).

The market clearing as an optimization layer is implemented using Diff0Opt.jl — a library for
differentiating through the solution of optimization problems in Julia [5].

3 Numerical Results and Discussion

For numerical experiments, we use power system benchmark systems from [6]. In each system, we
install one wind farm and uniformly scale transmission capacity to provoke congestion, as shown in
Table 1. To ensure fair compassion, we use the same wind power forecasting data' across all systems.
The data includes wind power output as a function of wind speed, wind direction and blade pitch
angle features. We independently sample 1,000 scenarios for training and testing.

The DeepWP architecture consists of four hidden layers with 30 neurons each, all using ReLLU as
activation functions. The training consists of three stages, all using ADAM optimizer: pre-training
with 500 epochs and learning rate 1e—4, then 1000 epochs with learning rate 5e—5, and final 100
epochs with learning rate 5e—6. The training of DeepWP+ starts from the 501" epoch using the
parameters of the pre-trained DeepWP model obtained at the first stage. As neural network parameters
are initialized at random, we report the average results across 100 trained models.

We discuss the results using the root mean square error of wind power prediction, denoted RMSE(®@),
that of prices, denoted RMSE(7), the root mean square error across 10% of the worst-case scenarios,
denoted CVaR(7), and a—fairness bound.

"https://www.kaggle.com/datasets/theforcecoder/wind-power-forecasting
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Figure 2: Projection of DeepWP and DeepWP+ wind power predictions errors on locational marginal
price errors in the IEEE 118-bus system.

Table 2: Average CPU time per training epoch of DeepWP+ architecture

case 14_ieee 24_ieee 39_epri 57_ieee 73_ieee 118_ieee
time [min.] 0.06 0.26 0.22 0.48 2.03 6.28

Table 1 provides a statistical summary for different systems. Under prediction errors of the price-
agnostic DeepWP model, LMP errors vary between 0.62 and 11.15 $/MWh This range, obtained using
the same wind power dataset, is explained by at least two factors. First, all systems have unique cost
structures: the average LMP spans the rage from 42.8 (14_ieee) to 149.3 (39_epri) $/MWh, for the
median wind power output. Second, congested networks prone to larger errors. This is particularly
evident from the 14_ieee system, where no wind power output scenario causes congestion. The zero
fairness bound « for this system also supports this observation.

The application of the price-aware DeepWP+ model, on the other hand, demonstrates the reduction
of LMP errors, varying from 0.6 to 24.7% relative to the DeepWP model. Even larger reductions
are observed across 10% of the worst-case wind scenarios, measured by CVaR (7). For example,
in the 39_epri case, while the average LMP error is reduced by 0.96 $/Mwh, the worst-case error
decreases by 3.19 $/Mwh. Although the focus of DeepWP+ is on price errors, it implicitly minimized
the disparity of LMP errors, as shown by the reduced fairness bound « across all congested systems.
Figure 2 depicts this effect for the most geographically distributed 118_ieee system, where the fairness
bound « is reduced by 27.2% thanks to price-aware predictions. Observe, while the majority of buses
demonstrate near zero price errors, it is a small set of buses contributing to c—fairness statistic the
most. Importantly, the benefits of DeepWP+ do come at the expense of increasing prediction errors.
However, all DeepWP+ predictions are feasible and yield competitive and fairer — in the a—fairness
sense — electricity prices.

The price error reduction and fairness improvements are due to the bias which DeepWP+ introduces
during the training procedure. Figure 3 visualizes how the bias is introduced starting from the 501
epoch, which diverts the training towards the desired result, i.e., to minimal prediction or minimal
price error. Finally, we remark that incorporating the electricity market as an optimization layer in
deep learning increases the computational burden of the training procedure. Table 2 reports CPU
times per training epoch, which tends to increase in the size of the system.

Overall, our results show that embedding market clearing as a deep learning layer informs predictions
on market outcomes and improves algorithmic fairness in electricity markets.
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Figure 3: Prediction (top) and locational marginal price (bottom) errors in the 39-bus EPRI system
during the training of DeepWP and DeepWP+ models.
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