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In the machine learning ecosystem, hardware selection is often regarded as a mere utility, over-
shadowed by the spotlight on algorithms and data. This oversight is particularly problematic in
contexts like ML-as-a-service platforms, where users often lack control over the hardware used for
model deployment. How does the choice of hardware impact generalization properties? This paper
investigates the influence of hardware on the delicate balance between model performance and fair-
ness. We demonstrate that hardware choices can exacerbate existing disparities, attributing these
discrepancies to variations in gradient flows and loss surfaces across different demographic groups.
Through both theoretical and empirical analysis, the paper not only identifies the underlying factors
but also proposes an effective strategy for mitigating hardware-induced performance imbalances.

1 Introduction

The leap in capabilities of modern machine learning (ML) models has been powered primarily by the
availability of large-scale datasets, gains in available compute, and the development of algorithms
that can effectively use these resources (Radford et al., 2019; Brown et al., 2020). As ML-based
systems become integral to decision-making processes that bear considerable social and economic
consequences, questions about their ethical application inevitably surface. While an active area of
research has been devoted to understanding algorithmic choices and their implications on fairness
(Hooker et al., 2020; Quan et al., 2023; Caton & Haas, 2020) and robustness (Carlini & Wagner,
2017; Waqas et al., 2022) in neural networks, there has been limited work to date concerning the
influence of hardware tooling on these critical aspects of model performance (Hooker, 2020; Zhuang
et al., 2022; Jean-Paul et al., 2019).

This inquiry is especially pertinent as the ML hardware landscape undergoes substantial diversifica-
tion, from successive generations of GPUs, to custom deep-learning accelerators like TPUs (Jouppi
et al., 2017). While the hardware landscape is becoming more heterogeneous, the choice researchers
have over what hardware they use is often limited. ML models are often trained on ML services
or cloud providers where the availability of hardware is determined by factors like cost, geographic
location of datacenters and compatibility with ML frameworks (Mince et al., 2023). This introduces
the paradox that it is simultaneously more likely a model will be run on multiple hardware types
across its lifecycle, but an individual researcher or practitioner has less control over what hardware
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Figure 1: A model (ResNet34) with the same parameters (random seeds, epochs, batch-size) on
different hardware can have vastly different performance results, especially for minority groups
(dark colors). The reference hardware is T4. Left: UTK-Face, Right: CIFAR-10.

they are stuck with. It raises the important question: how does varying the type of hardware impact
fairness? Importantly, recent studies have indicated that models trained on different hardware
can exhibit varying levels of accuracy due to inherent differences in stochasticity (Zhuang et al.,
2022). One possible explanation is that hardware-induced nuances, such as precision discrepancies
and threading behaviours, may lead iterative optimizers to different local minima during training
(Hooker, 2020).

This paper further shows that these hardware-induced variations can disproportionately impact
different groups, leading to a “rich get richer, poor get poorer” dynamic. We depict this effect
in Figure 1, which shows the variable impact of hardware changes across demographic groups or
classes on both a facial recognition task accuracy (left) and on an image classification task (right).
Remarkably, while the accuracy rates for majority groups (illustrated with lighter colors) remain
relatively stable across different hardware configurations, the rates for minority groups (darker
colors) exhibit considerable variability (left plot). This disparity also arises in balanced datasets
(right plot).

Building on these observations, this work introduces a theoretical framework aimed at quantifying
hardware-induced performance disparities. Both our theoretical treatment and empirical validation
reveal that hardware choices systematically alter not just accuracy but also fairness. Our findings
suggest that two key mechanisms contribute to these disparities: (1) variations in gradient flows
across groups, and (2) differences in local loss surfaces. Informally, the former affects local optimality
for groups, while the latter pertains to model separability. We analyze these contributing factors in
detail, providing both theoretical and extensive empirical experiments. Additionally, by recognizing
these factors, we propose a simple yet effective technique that can be used to mitigate the disparate
impacts caused by hardware tooling. The proposed method relies on an alteration to the training
procedure to augment the training loss with the factors identified as responsible for unfairness to
arise.

Our study stands out for its breadth, conducting experiments that cover a range of hardware
architectures, datasets, and model types and the reported results highlight the critical influence of
hardware on both performance and ethical dimensions of machine learning models.



2 Related Work

The intersection of hardware selection and fairness in ML is an emerging area of research that has
received limited attention. For example, the stochastic effects introduced by software dependencies,
such as compilers and deep learning libraries, have been recently shown to impact model performance
(Hong et al., 2013; Pham et al., 2020). However, these studies have evaluated these effects within
the constraints of specific setups, leaving a gap in understanding how hardware selection affects
fairness in machine learning.

In the realm of ML fairness, the focus has predominantly been on algorithmic aspects. Related to
our work, the interplay between fairness and efficiency has been examined through the lens of model
compression techniques like pruning and quantization (Xu & Hu, 2022; Ahia et al., 2021; Tran et al.,
2022). Another possibly related line of work is that which looks at the relationship between fairness
and privacy in ML systems. In particular, Differential Privacy (Dwork et al., 2006), an algorithmic
property often employed to protect sensitive data in data analytics tasks, has been shown to conflict
with fairness objectives. Fioretto et al. (2022) surveys the recent progress in this area, exploring this
tension, and suggesting that achieving both privacy and fairness may require careful algorithmic
design (Bagdasaryan et al., 2019; Tran et al., 2021a; Cummings et al., 2019; Tran et al., 2021b).

Finally, the influence of randomness introduced through algorithmic choices, including the impact
of random seed, initialization, and data handling, has been a focal point of research. Summers
& Dinneen (2021) benchmark the separate impact of choices of initialization, data shuffling and
augmentation. Ko et al. (2023) evaluate how ensembling can mitigate unfair outcomes. Another
body of scholarship has focused on sensitivity to non-stochastic factors including choice of activation
function and depth of model (Snapp & Shamir, 2021; Shamir et al., 2020), hyper-parameter choices
(Lucic et al., 2018; Henderson et al., 2017; Kadlec et al., 2017; Bouthillier et al., 2021), the use of
data parallelism (Shallue et al., 2019) and test set construction (Sggaard et al., 2021; Lazaridou
et al., 2021; Melis et al., 2018). While these factors are critical in training phases, they do not study
how hardware selection may influence the model outcomes.

Our work aims to bridge this gap, offering new insights into how hardware choices can impact
the balance between model performance and fairness. Most relevant to this work is Zhuang et al.
(2022) which conducts large-scale experiments across different types of hardware to characterize
how tooling choices contribute to the level of non-determinism in a system. Zhuang et al. (2022)
analyzes key metrics like churn in predictions to understand the impact of hardware selection on
model stability. This work furthers this understanding, by focusing on fairness and providing a
theoretical framework to identify the underlying factors but also propose an effective strategy for
mitigating hardware-induced performance imbalances. This understanding is crucial for developing
more equitable ML systems that consider all facets of the computational environment.

3 Preliminaries

We consider a dataset D consisting of n datapoints (x;,a;,y;), with i € [n], drawn i.i.d. from an
unknown distribution II. Therein, ; € X is a feature vector, a; € A with A = [g] (for some finite g)
is a demographic group attribute, and y; € ) is a class label. For example, in a face recognition task,
the training example feature x; may describe a headshot of an individual, the protected attribute
a; the individual’s gender or ethnicity, and y; the identity of the individual. The goal is to learn a
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Figure 2: Illustration of the three components in Theorem 1. Left: Difference in model parameter
p(m) = max), |6, — 0,|2 when m = T4. Middle: Gradient flows g5/ on T4 hardware for
five demographic groups a. Right: Maximum eigenvalues of the group Hessian )\(Hﬁ’m) on T4
hardware for five demographic groups a.

predictor fg : X — Y, where 0 is a k-dimensional real-valued vector of parameters that minimizes
the empirical risk function:

n

o= arguin J(6:D) = 1 Y lfo(ai) i), 0
i=1

where £ : ) x Y — R, is a non-negative loss function that measures the model quality. As common
in deep learning, we consider iterative optimizers that approximate 8* via stochastic gradient descent
(SGD) steps 0 = 6!~ — ng'~1(B). Here 1 denotes the learning rate and g'(B) = Vg¢J(B, ') is
the gradient of the loss function on a random mini-batch B of samples from D.

In this work, our focus is on analyzing the impact of different hardware, used when optimizing the
above expression, in relation to the model fairness (as defined next). The paper uses 6y, to denote
the parameters of a model training on hardware m € M, the set of all possible hardware types.

Fairness. The fairness analysis focuses on the notion of hardware sensitivity, defined as the differ-
ence among the risk functions of some protected group a of models trained on different hardware
from a reference hardware m:

A(a,m) = max |L(@m, Da) — L(Ony, D). (2)
m'eM
Therein, D, denotes the subset of D containing samples (x;, a;, y;) whose group membership a; = a.
Intuitively, the hardware sensitivity represents the change in loss (and thus, in accuracy) that a given
group experiences as a result of hardware tooling. Fairness is measured in terms of the maximal
hardware loss difference, also referred to as fairness violation across all groups:

£(D,m) = max |A(a,m)— A(da’,m)|, (3)
a,a’€ A

defining the largest hardware sensitivity across all protected groups. A fair training method would
alm at minimizing the hardware sensitivity across different hardware.

The goal of the paper is to shed light on why fairness issues arise when the only difference in training
aspects of a model is the hardware on which the model was trained.
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Figure 3: Ilustration of Impact of group size on Gradient Norm Imbalance as shown in Theorem
3. Left: Group size used in training for five demographic groups. Middle: Gradient flows g, for 5
different demographic groups a averaged across three devices with 10 seeds each. Right: Hardware
Sensitivity; Notice higher sensitivity as the group size decreases.

4 Fairness analysis in tooling

To gain insights into how tooling may introduce unfairness, we start by providing a useful bound
for the hardware sensitivity of a given group. Its goal is to isolate key aspects of tooling that are
responsible for the observed unfairness. The following discussion assumes the loss function £(-) to be
at least twice differentiable, which is the case for common ML loss functions, such as mean squared
error or cross-entropy loss. We report proofs of all theorems in Appendix A.

Theorem 1. Given reference hardware m, the hardware sensitivity A(a,m) of group a € A is
upper bounded by:

Afa,m) <lgh |  plm) + 52 (HL) % plm)? + O (o(m)?) (4)

where p(m) = max,,er ||05, — 05, ||2 is the largest difference of the model parameters associated with
model m and a reference model m/, gﬁ’m = Vo J(0m; D,) are the gradient values associated with the

samples of group a, and Hg’m = VgJ(ém;Da) is the Hessian of the loss function associated with
group a, with \(X) as the maximum eigenvalue of matriz 3.

The upper bound is derived using a second-order Taylor ex-
pansion, the Cauchy-Schwarz inequality, and Rayleigh quo-
tient properties.
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Firstly, empirically, we find that this upper bound closely
approximates the hardware sensitivity in practice. This
tightness of the bound is illustrated in Figure 4, where we

rel. bound Delta(a, m)
o —
S =)
| |

also show that the contribution of the third-order term in 0.0 -
Equation (4) is negligible. This empirical validation is con- (.o\q,Q Qy\{b& &fbo %\Q}% @‘{\,\@
sistent with observations in existing literature (Vadera & ¥ o

Ameen, 2022; Gu & Guo, 2021). Figure 4: Upper bound (green) vs RHS

) components of Equation 4 (blue).
Next, we note that the constant factor p(m) is non-zero,

as evidenced by Figure 2 (left). These two observations emphasize the presence of two key group-
dependent terms in Equation 4 that modulate hardware sensitivity and form the crux of our fairness



analysis. Specifically, they are (1) the norms of the gradients gim (also called, gradient flows)
and (2) the maximum eigenvalue of the Hessian matrix Hﬁ,m for a given group a and reference
hardware m, also called group Hessian throughout the paper. Informally, the first term relates
to the local optimality within each group, whereas the second term is indicative of the model’s
capacity to distinguish between different groups’ data. Figure 2 provides an illustration of the
disparity of these components across protected groups. We will subsequently demonstrate that
these components serve as the primary sources of unfairness attributed to tooling.

The next sections analyze the effect of varying hardware types on both gradient flows and the group
Hessian. This understanding, besides clarifying the roles of these components onto (un)fairness, will
help us design an effective mitigation technique, introduced in Sec. 7.

4.1 Group Gradient Flows

Theorem 1 illustrates that a key determinant of unfairness in hardware selection lies in the differences
in gradient flows across groups. It points out that larger gradient flows for a given group are
associated with increased hardware sensitivity for that group.

To delve deeper into this issue we look into a property of the training data. Our observations
indicate that the size of the training group plays a significant role in these disparities. Theorem 2
explores this phenomenon in binary group settings, illustrating how differences in group sizes can
lead to distinct gradient norms. Theorem 3 broadens the scope of this analysis to multi-group
contexts, under mild assumptions.

Theorem 2. Consider a local minimum 6, of Equation (1) on a reference hardware m € M and
let the set of protected groups be A= {a,b}. If |Dy| > |Dp| then ||gall < ||lgbll-

The proof is derived by leveraging the conditions for a local minimum and the proportional con-
tributions of each group to the total gradient. This result explains why smaller groups yield larger
gradient norms, which consequently amplify sensitivity to stochasticity introduced by hardware, as
observed in our experimental results. We next generalize these insights to arbitrary group sets .A.

Theorem 3. Consider a hardware configuration m and denote a = minge 4 |Dy| to be the most
underrepresented group. Suppose that for any group a,a’ € A\ {a} the angle between their gradient

jus

vectors go, ga is less than 2. Then ||ga|| = maxaea |9

Theorem 3 suggests that the group with the smallest number of training samples will exhibit the
largest gradient norm upon convergence. The underlying assumption—that the angle between any
s

pair of gradient vectors is less than 7— essentially posits that the learning tasks across different

groups are not highly dissimilar, which is often observed in practice (Guangyuan et al., 2022).

This influence of group size on gradient norm is exemplified in Figure 3. Within the UTK-Face
dataset, the White category has the highest number of training samples, while Others has the
fewest (left plot). Consequently, the majority group (White) exhibits the smallest gradient norm,
while the group Others shows the largest (Figure 3 middle). As corroborated by Theorem 1, which
establishes the link between gradient norm and hardware sensitivity (unfairness), the majority group
manifests the least sensitivity, whereas the minority one has the highest. This is illustrated in the



right subplot of Figure 3. Additional empirical evidence supporting the impact of group sizes on
gradient norms is provided in Section 6.

4.2 Group Loss Landscape

While the previous section reviewed the influence of gradient flows on the unfairness observed in
tooling, Theorem 1 introduces another critical variable in determining hardware sensitivity: the
etgenvalues of the group Hessians. Intuitively, the group Hessian serves as an indicator for the
flatness of the loss landscape around the optimal solution (Li et al., 2018), as well as for the model’s
generalization capability (Kaur et al., 2023).

Group a Group b

03 o o,
For illustrative purposes, Figure 5 represents how @ o,

differences in Hessian’s maximum eigenvalues im-

°
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pact hardware sensitivity. In this example, group é 03
a has a flatter loss landscape around the stationary go.z
point compared to group b due to its smaller group |

Hessians. As a result, variations in model param-
eters ), and 7, across hardwares m and m’ lead
to a much smaller change in the loss function for
group a than for group b. This difference under-
scores the direct link between the group Hessian’s
maximum eigenvalues and the degree of hardware
sensitivity experienced by each group.
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Figure 5: Illustration on the impact of group
Hessians. Group ’a’ has a smaller Hessian com-
pared to Group 'b’, resulting in lower sensitiv-
ity of the loss function for Group ’a’.

The next result shed light on the underlying reasons for the observed disparities in group-specific
Hessians. Theorem 4 establishes a relationship between the maximum eigenvalues of the group
Hessian and the average distance of samples within that group to the decision boundary.

Theorem 4. Consider a model fg: trained using binary cross entropy on reference hardware m.
Then, Ya € A, the mazimum eigenvalue of the group Hessian N(HY) is bounded by:

1
| Dal

)\(Hf;) < Z Oz X HVGfG;*n(CU)HQ + ‘f%(‘f) - y‘ XA (nge;*n(x)) )

(z,y)€Dq

where 0 = (fox (z)) (1 — fo (x)) is the distance to decision boundary and fg(xz) € [0,1] is the
output obtained after the last Sigmoid layer.

This theorem relies on derivations of the Hessian associated with the model loss function and Weyl
inequality provided in Theorem 2. In other words, Theorem 4 shows that the maximum eigenvalue
of the group-specific Hessian is directly linked to how close the samples from that group are to the
decision boundary, as measured by the term fo: (z)(1 — fg: (x)). Intuitively, this term is at its
maximum when the classifier is most uncertain about its prediction, meaning when fp- (x) is close
to 0.5. Conversely, it reaches a minimum when the classifier is most certain, that is, when fg: ()
approaches either 0 or 1 in this binary classification setting. This relationship is further elaborated
in Proposition 2.1 (see appendix).

An empirical illustration, shown in Figure 6, highlights the relationship between group Hessian
eigenvalues and proximity to the decision boundary. Notice how samples from the Others group are
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Figure 6: The relationship between the group Hessian and distance to the decision boundary.

closer to the decision boundary, indicating that they are less separable than those in other groups.
As a result, this group reports the largest eigenvalue of group Hessians. Similar observations on
other datasets are discussed in the following section.

Having discussed the main reasons justifying unfairness in hardware selection, the next sections
delve into empirical validation and discuss a possible mitigation solution.

5 Experimental Setup

We first review the experimental setup.

Hardware selection. We report experiments across widely adopted GPU types: Tesla T4 (NVIDIA,
2018a), Tesla V100 (NVIDIA, 2017a), Ampere A100 (NVIDIA, 2021) and Ada L4 GPU (NVIDIA,
2023). These hardware types differ in CUDA core count, total threads and streaming multiproces-
sors (refer to Table 1 in the appendix for more details). Hardware characteristics impact the overall
level of stochasticity introduced by different hardware types. GPUs introduce stochasticity due to
random floating-point accumulation ordering from parallel threads, which often cause inconsistent
outputs between multiple runs due to the truncation of fraction part in floating point number in
the accumulation procedure (Chou et al., 2020). Respectively, A100, L4, V100, and T4 GPUs are
each equipped with varying numbers of CUDA cores (6912, 7424, 5120, and 2560, respectively)
for floating-point computations. These differences in parallelization relate to the design choices of
the hardware, for example, the T4 and L4 GPUs were specifically designed for inference workloads
which often present lower memory bandwidth requirements.

Controlling other sources of stochasticity. To ensure that our analysis focuses solely on the
impact of hardware on model fairness and performance, we have kept all other variables constant and
deterministic. This is done by fixed randomness for all Python libraries adopted, and maintaining
consistent data loading and augmentations, using FFCV-SSL (Bordes et al., 2023). This controlled
environment ensured that the same stochastic elements were present during both the training and
inference stages. Additionally, we maintained consistency in library versions and for CUDA cores
(Chetlur et al., 2014) experiments we consistently used the same precision FP32 for all accumulators,
except in the case of the CelebA dataset where we used mixed-precision training. Finally, all
results report average and standard deviation of metrics reported over multiple random seeds. This



approach allows us to confidently attribute any observed variations in sensitivity or stochasticity
specifically to the unique characteristics of the hardware platform.

Datasets. The experiments use three datasets: CIFAR-10 (Krizhevsky, 2009), CelebA (Liu et al.,
2015), and UTKFace (Zhang et al., 2017). UTKFace and CelebA are naturally unbalanced datasets,
while CIFAR-10 is a balanced dataset. To examine the impact of class imbalance in the CIFAR
dataset, we also created an Imbalanced version where class 8 (Ship for CIFAR-10) constitutes only
20% of its original size, with other classes remaining unchanged. We reformulate the task for CelebA
such that there are 4 classes based on the presence of the 'male’ and blond-hair’ attributes. This
leads to an imbalanced dataset for multi-class instead of multi-label classification tasks. For tasks
related to UTKFace, we use the ethnicity label as the ground truth while training. We include a
more extensive description of each dataset and additional details about task structure in Appendix
B.1.

Architectures. Finally, in addition to multiple hardware, hyper-parameters, and datasets, we also
evaluate our results on four different architectures with increasing complexity SmallCNN, ResNet18,
ResNet34 and ResNet50 (He et al., 2015) (see Appendix B.2 for additional details). This allow us
to validate our theoretical findings over a broad range of settings. All the models have been trained
using the SGD optimizer with momentum 0.99, and weight deacy of 5e — 4 a three-phase One Cycle
LR (Leslie, 2015) scheduler with a starting learning rate of 0.1. The batch size for CIFAR10 was
512, for UTKFace it was 32 for ResNet50 and 128 for other models; For CelebA batch size was 200.
For CIFAR10 and CelebA the model was trained for 15 epochs. In the case of UTKFace Ethnicity
the model was trained for 20 epochs. We used automatic mixed-precision training for CelebA via
torch.amp with float16 as the intermediate data type due to increased memory requirements.

6 Experimental Results

Our fairness analysis relies on the notion of hardware sensitivity, as defined in Equation (2). Recall
that this metric measures the maximum difference in class loss between a model trained on a
reference hardware and models trained on various other hardware setups, while keeping all other
parameters unchanged. The notion of hardware sensitivity helps us understand the theoretical
impact of hardware on model performance. However, ultimately we are interested in measuring the
accuracy variations across classes due to varying tooling for training. Hence, in this section, we will
also examine how varying hardware contributes to differences in accuracy across different groups.
When looking at hardware sensitivity, small values indicate more consistent results across hardware.

In the experiments conducted across Tesla T4, Tesla V100, Ampere A100, and Ada L4 architectures,
we found notable fairness (hardware sensitivity) variations. Figure 7 illustrates this for the CIFAR10
dataset. Firstly, observe that larger hardware sensitivity values for a class are associated with
greater deviations in that class’s accuracy. Next, also notice that classes showing smaller hardware
sensitivity (indicative of greater fairness) tend to be those with higher overall accuracies. To gain a
better understanding of these trends, let us examine the hardware sensitivity of class 8 (Ship) under
both balanced and imbalanced scenarios, as depicted in Figure 7 (top). In the imbalanced setting,
where class 8 had five times fewer samples than other classes, there is a notable 57% increase in
hardware sensitivity for the Ship class.

This pattern is not unique to a single dataset. For instance, in the UTKFace dataset, the minority
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Figure 7: Left: Hardware sensitivity for CIFAR10 (ResNet34) Balanced and Imbalanced. Right:
Class-wise accuracy. High Fairness violations are noted for the Imbalanced CIFARI10.

class Others exhibits 91% higher hardware sensitivity compared to the majority class White as
depicted in Figure 12 in the Appendix. Similarly, in the CelebA dataset, the blond-male minority
class presents hardware sensitivity that is 76% more than that of the non-blond female majority
class, as shown in Figure 11 in the Appendix. These observations support our hypothesis that
hardware selection can disproportionately affect the performance of minority classes.

6.1 Gradient Flows

We now turn our attention to the influence of gradient flows on the disparities in accuracy resulting
from hardware selection. As established in Theorem 1, the magnitude of gradient flow within a
group is directly linked to its hardware sensitivity. The norm of the group’s gradients, or their
gradient flows, is indicative of the local optimality of the model for a group. Essentially, this term
measures how sensitively the model responds to the specific characteristics within the data of each
demographic group. Larger gradient norm values suggest that the model is less optimized for that
particular group, implying a greater potential for accuracy disparities due to hardware selection.

Figure 8 illustrates the relationship between the group gradient flows and the hardware sensitivity.
Notice the strong correlation between a group’s hardware sensitivity and its gradient flow, particu-
larly under conditions of imbalance. In CIFAR10, in particular, unbalancing class Ship (five times
fewer samples) results in a 62.6% increase in the gradient norm and a corresponding rise in hardware
sensitivity by 57%. This trend is also echoed in the UTKFace-ethnicity task, where the gradient
norm of the minority class Others is significantly higher 95.2% more than the majority class White.
The CelebA dataset shows a similar pattern; the minority class blond-male exhibits a gradient norm
99.177% more than the majority class non-blond-female.

These observations highlight the impact of class imbalance on gradient norms and hardware sen-

sitivity, reinforcing the idea that minority classes tend to exhibit higher sensitivity to hardware
variations, which in turn can affect the accuracy of the model for these specific groups.
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Figure 8: Correlation plot between Hardware sensitivity and gradient flows. 1st: Even with a
perfectly balanced dataset, classes with higher gradient flows tend to have higher sensitivity in the
change of hardware. 2nd: Class 8 (Ship) is imbalanced in this setting and sees a sharp increase
in its gradient norm and sensitivity. 3rd:There is a strong correlation between the gradient norm
of groups and the hardware sensitivity in the ascending order of imbalance for UTKFace. 4th: A
similar trend is also found for the CelebA classification task.

6.2 Distance to the Decision Boundary

Next, we look at the second factor of unfairness highlighted in Theorem 1: the effect of the maximum
eigenvalue of the group Hessian. Such values provide insight into the model’s capacity to differentiate
between the data of different groups. A larger maximum eigenvalue implies that the model’s loss
surface is more curved for the data of that particular group. This curvature is indicative of how
sensitive the model is to variations in the data belonging to that group. Theorem 4 further links
this component with the distance to the boundary, and we show next how such notion connects to
hardware sensitivity (unfairness).

Figure 9 illustrates the relationship between the distance to decision boundary and hardware sen-
sitivity for the UTK Face and the CelebA datasets. We adopt the definition of distance to the
decision boundary from Tran et al. (2021a). For each sample @, this distance is computed as
0p = 1— Zgll p?(x), where p;(x) represents the softmax probability distribution of z, with val-
ues ranging between 0 and 1. Notably, the average distance to the decision boundary is a strong
predictor of hardware sensitivity. In cases involving a minority class, such as Others in the UTK
Face dataset, this distance is significantly shorter (67% lower) compared to other classes like White
(see first and second subplots). On CelebA (third and fourth subplots), the average distance to the
decision boundary is 61.28% lower for blond-male compared to non-blond-female. These findings
align with the theoretical implications presented in our paper.
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Figure 9: 1st: Distance-to-decision Boundary for UTKFace Ethnicity on ResNet34. 2nd: Class-
wise accuracy. 3rd: Distance-to-decision Boundary for CelebA on ResNet34. 4th: Class-wise
accuracy.
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Figure 10: Left: Accuracy Difference for groups pre and post-mitigation for UTKFace Ethnic-
ity on ResNet18. Notice the Maximum Accuracy Difference between the maximum and minimum
accuracy within groups is reduced by 66% from 2.92 to 0.99, post-mitigation averaged across hard-
ware. Right: Accuracy Difference for groups pre and post-mitigation for CIFAR10 Imbalanced on
ResNet18. Notice the Maximum Accuracy Difference between the maximum and minimum accuracy
within groups is reduced by 28%, from 1.916 to 1.366, post-mitigation averaged across hardware.

7 Mitigation solution

Given the influence of the groups’ gradient flows and group Hessians on the model unfairness due
to hardware selection, one intuitive approach to mitigate the observed effects is to equalize the
gradient and Hessian values across groups during training. However, this approach is computation-
ally intensive and often impractical, especially for large models, primarily due to the challenges in
computing the Hessian matrix during backpropagation. To address this issue, we propose a more
efficient mitigation strategy, underpinned by the observations provided in Proposition 2.1 (see Ap-
pendix). This proposition elucidates the relationship between the group Hessian and the distance
to the decision boundary. Leveraging this insight, our approach aims to align the average distance
to the decision boundary among different groups.

We achieve this by augmenting the empirical risk function with a component that quantifies the
disparity between the group-specific and batch-wide distances to the decision boundary:

O = argmin J(6; D) + A Y _(0p, — 0p)?, (5)
o a€A

where dg represents the average distance to the decision boundary of samples € S as described
in the Section 6.2, and A is a hyper-parameter which calibrates the level of penalization.

In our experiments, we implemented this mitigation strategy across various hardware setups and
observed a significant reduction in accuracy difference as outlined in Section 3. While it is possible
to optimize the choice of the value A during the empirical risk process, e.g., using a Lagrangian dual
approach as in (Fioretto et al., 2020a;b), we found that even a traditional simple grid search allows
us to find good A values yielding an effective reduction in accuracy disparity. Figure 10 shows a
marked decrease in maximum difference in accuracy within various groups for the UTK Face dataset
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(left) and CIFARI10 (right). Additional results on CelebA are reported in Figure 13 (Appendix) and
display similar trends. It is to be noted that for each dataset, different \ values produced different
reductions in accuracy difference.

Specifically, for a ResNet50 model trained on the CelebA dataset, the implementation of our mit-
igation scheme resulted in a 38% reduction in maximum difference in accuracy within groups, de-
creasing from 2.34 to 0.936. It also reduces the average accuracy difference across multiple hardware
as indicated in the right subplot in Figure 13. The biggest reduction of the maximum difference
in accuracy within groups was noticed in the UTKFace Ethnicity dataset on ResNet18 Model for
A = 2e — 5. The reduction was 66% from 2.92 to 0.99.

These results highlight the effectiveness of our proposed method in addressing fairness concerns
attributable to hardware variations.

8 Conclusion

This paper focused on an often overlooked aspect of responsible ML models: How variations in
hardware can disproportionately affect different demographic groups. We’ve presented a theoretical
framework to quantitatively assess these hardware-induced disparities, pinpointing variations in
gradient flows across groups and differences in local loss surfaces as primary factors contributing to
these disparities. These findings have been validated by extensive empirical studies, carried out on
multiple hardware platforms, datasets, and architectures.

The findings of this study are significant: the sensitivity of model performance to specific hardware
choices can lead to unintended negative societal outcomes. For example, organizations that release
their source codes and model parameters may attest to satisfactory performance levels for certain
demographic groups, based on results from their chosen training hardware. However, this claimed
performance could substantially degrade when the models are implemented on different hardware
platforms. Our work thus serves as both a cautionary tale and a guide for responsible practices in
reporting across diverse hardware settings.

Ethical considerations

The analyses and solutions reported in this paper should not be intended as an endorsement for
using the developed techniques to aid facial recognition systems. We hope this work creates further
awareness of the unfairness caused by variations in data, model, and hardware setup.
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SUPPLEMENTAL MATERIAL

A Missing proofs

Theorem 1. Given a reference hardware m, the hardware sensitivity of a group a € A is upper
bounded by:

* * 2
Om - em’

A(a,m) < ’ + %)\ (Him) X max (6)

emM

| g o — b

3)7

where gﬁym = VgJ(ém;Da) is the vector of gradients associated with the loss function £ evaluated

+ O <max Hém — ém/
m'eM

at @, and computed using group data D, Hfi}m = VgJ(ém; D,) is the Hessian matriz of the loss

function £, at the optimal parameters vector @, computed using the group data D, (henceforth
simply referred to as group hessian), and A\(X) is the mazimum eigenvalue of a matriz 3.

Proof. Using a second order Taylor expansion around 8}, the change in loss function of one partic-
ular group a when it is trained on another hardware m’ € M can be approximated as:

J(6%,; Do) — J (05 Dy) = J (05; Do) + (87 — 02) 7 VT (67,; Dy)

m/s

1 « .
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The above, follows from the loss £(-) being at least twice differentiable, by assumption.

By Cauchy-Schwarz inequality, it follows that:

* *\ 1 * *
(05— 07) " 9t < 1165, — 07, < | g (®)
In addition, due to the property of Rayleigh quotient we have:
1 * *\ 1 * * 1 * * (12
505 —05) T HL (0, — 67,) < SX (HLE) x 0, — 03,7 9)

Combining Equation 7, Equation 8, and Equation 9 together we obtain the following upper bound:

1
J(033 Da) = J(6;,: Da) < 0, — 0, x ||gk|| + 52 (HLE) x 1165, — 03,11

Thus, by the definition of hardware sensitivity it follows that:
A(a,m) = max |J(6,,;D,) — J(6),; D,)|
m’'eM

1 * * (12
ga|| + 3 (Hﬁ) x max ||, — 0",

< max [0, — 07| x ‘
< max 105, — 0]
which concludes the proof. O
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Proposition 1.1. Consider a particular hardware m € M, suppose for any group a,a’ € A the
angle between two gradient vectors ggm; gg, m 08 smaller than 5. Then if we denote @ = maxae 4| Da|

and a = minge 4 |Dg| then the following holds: ||g§m|| = minge4 |\g£7m||; ||gém|| = maXgeA ||gf;mH

Proof. For notational convenience, denote gfn to be the gradient at convergence point over the whole
dataset D. By the assumption, the gradient descent converges it follows that:

D
o= 3 gl = 0", (10
acA

Consider the most minority group a (i.e, |Dy| = arg min,c 4 |Dgl), it follows from the above equation
that: Dl
14 ¢
Gom=—>_ |D“|ga,m
ata 2

Taking the squared norm of vector on both sides of the previous equation, we have:

2

|Dq|

lge ml3 =D ,D“|gﬁ,m = lgh B +2 > (gh) gk m (11)
a

ata 5 afa a#a’#a

By the assumption that the angle between two gradient vectors of two arbitrary groups is less than
2 hence (g5 ,,)" g’ ,, = 0. Thus it follows that:

12 2 14 2 12 2
||gg,m||2 > Z Hga,mHQ > max ||ga,mH (12)
a
a#a
Hence the smallest minority group will present the largest gradient norm. O

Theorem 2. Let fo: be a binary classifier trained using a binary cross entropy loss on one reference
hardware m. For any group a € A, the maximum eigenvalue of the group Hessian )\(Hﬁ) can be
upper bounded by:

NHD < = S (fon @) (1 fon, @) % || Voo, @) + [fos, (@) — y| X (V3 o5, (@))
‘Da‘ (z,y) D

€Da Closeness to decision boundary Error

(13)

Proof. First notice that an upper bound for the Hessian loss computed on a group a € A can be
derived as:

o _ 1 ¢ 1 ¢
) =AMy X E <y 3 () (14)

where Hf; represents the Hessian loss associated with a sample € D, from group a. The above
follows Weily’s inequality which states that for any two symmetric matrices A and B, A\(A+ B) <
A(A) + X(B).

20



Next, we will derive an upper bound on the Hessian loss associated with a sample x. First, based
on the chain rule a closed-form expression for the Hessian loss associated with a sample x can be
written as follows:

HY =V (fo: (),y) [Vefern(w) (Vefe;fn(w))q + Vil (for, (), y) Vi for (). (15)
The next follows from that

Vit (fo;,(x),y) = (fo;, () — v),
Vil (fo5,(2),y) = fos, () (1= foy, ()
Applying the Weily inequality again on the R.H.S. of Equation 15, we obtain:
A(HY) < for (z) (1 = for, (x)) x HV@fe,*n(w)H2 + A (for, () — y) x Vi for ()
< fo;, () (1 = fo;, (%)) x Hvofe:n(m)HQ + | for, () — y| A (Vi for, () (16)

The statement of Theorem 2 is obtained combining Equations 16 with 14. O

Proposition 2.1. Consider a binary classifier fo,, (x) trained on one reference hardware m. For a
given sample x € D, the term fo- (x)(1 — fox (x)) is mazimized when fg- () = 0.5 and minimized
when fo: (x) € {0,1}.

Proof. First, notice that fg- () € [0,1], as it represents the soft prediction (that returned by the
last layer of the network), thus fe: (z) > fa. (). It follows that:

for, () (1= for (@) = for, () — f5: (x) > 0. (17)
In the above, it is easy to observe that the equality holds when either fg- (x) =0 or fo: (z) = 1.

Next, by the Jensen inequality, it follows that:

2
for.(®) (1 — for (®)) < (for, () + 14— for(®))" _ i .

The above holds when fg: (x) = 1— fox (), in other words, when fg: () = 0.5. Notice that, in the
case of binary classifier, this refers to the case when the sample x lies on the decision boundary. [

B Choice of Hardware

We report experiments across widely adopted GPU types: Tesla T4 (NVIDIA, 2018a), Tesla V100
(NVIDIA, 2017a), Ampere A100 (NVIDIA, 2021) and Ada L4 GPU (NVIDIA, 2023). We choose
this hardware because it represents a valuable variety of different design choices at a system level,
and is also widely adopted across research and industry. Below we include additional context about
how the design of this hardware differs.

NVIDIA V100 GPU. The NVIDIA V100 GPU, built upon the Volta microarchitecture (NVIDIA,

2017b), introduced Tensor Cores as a notable innovation. Tensor Cores are specialized units that
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Feature/Specification Tesla V100 (NVIDIA, 2017a) Ampere A100 (NVIDIA, 2021) Tesla T4 (NVIDIA, 2018a) Ada L4 (NVIDIA, 2023)

Hardware Architecture Volta Ampere Turing Ada Lovelace
CUDA Cores 5,120 6,912 2,560 7,424
Streaming Multiprocessors 80 108 40 58

Total Threads 163,840 221,184 81,920 -

Tensor Cores 640 432 (improved) 320 232 (4th Gen)
Memory 16GB/32GB HBM2 40GB/80GB HBM2 16GB GDDR6 24GB GDDR6 w/ ECC
Memory Bandwidth Up to 900 GB/s Up to 2,000 GB/s Up to 320 GB/s 300 GB/s

FP32 Performance 15.7 TFLOPS 19.5 TFLOPS 8.1 TFLOPS 30.3 TFLOPS
Interconnect NVLink 2.0, 300 GB/s NVLink 3.0, 600 GB/s PCle Gen 3 (32GB/s), No NVLink -

TDP 300W 400W (variant-dependent) TOW 72 Watts

Table 1: Comparison of the feature design and system specifications of the hardware evaluated
across all experiments.

perform Fused-Multiply Add (FMA) operations, enabling the multiplication of two FP16 4x4 ma-
trices with the addition of a third FP16 or FP32 matrix.

NVIDIA Tesla T4 GPU. The T4 is based upon the Turing Microarchitecture (NVIDIA, 2018b),
presented second-generation Tensor Cores capable of conducting FMA operations on INT8 and
INT4 matrices. Despite both the T4 and the V100 sharing the same CUDA Core version and an
equal number of CUDA cores per Streaming Multiprocessor (SM), the Tesla T4 GPU is specifically
designed for inference workloads. Consequently, it incorporates only half the number of CUDA
cores, SM Units, and Tensor Cores compared to the V100 GPU. Additionally, it utilizes slower
GDDR6 memory, resulting in reduced memory bandwidth, but it is much more efficient in power
consumption terms making it desirable for inference workloads.

The generous memory of the V100 GPU relative to the T4 leads to increased speed of processing of
the V100 GPU. This is because tensor cores are relatively fast, and typically the delay in processing
is attributable to waiting for inputs from memory to arrive. With smaller memory, this means more
retrieval trips.

NVIDIA A100 GPU. The A100 GPU is based on the Ampere microarchitecture (NVIDIA, 2021)
and presents significant improvements relative to the V100 and T4. The A100 features faster up to
80 GB HBM2e memory, compared to the V100’s upper limit of 20 GB HBM2 memory. The A100
provides more memory capacity and higher memory bandwidth, which allows for handling larger
datasets and more complex models.

Although the number of Tensor cores per group was reduced from 8 to 4, compared to the Turing
V100 GPU, these Third-generation Tensor Cores exhibit twice the speed of their predecessors and
support newer data types, including FP64, TF32, and BF16. Furthermore, the Ampere architecture
increased the number of CUDA cores and SM Units to 6,912 and 108, respectively, resulting in a
notable 35% increase in the number of threads, compared to the V100 GPU, that can be processed
in parallel.

NVIDIA L4 GPU. The Ada Lovelace Microarchitecture (NVIDIA, 2023), was designed on TSMC’s
5nm Process Node, leading to an increased Performance Per Watt Metric. This allowed Nvidia to
pack in more CUDA Cores within a single Streaming Multiprocessor (SM), leading to an increased
FLOPS Throughput. The L4 GPU, of the Ada Lovelace Microarchitecture, is an inference-friendly
GPU, Leading to TDP being fixed at 72 Watts, allowing High Energy Efficiency. To reduce cost,
Nvidia opted for the GDDR6 Memory instead of the High Performance HBM, found in their flag-
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ship GPUs. The Fourth-generation Tensor Cores support new Datatypes like FP8 (With Sparsity),
allowing a much higher throughput. Also, the number of Tensor Cores per SM has been increased.
L4 is a substantial improvement from the previous inference-friendly GPU T4.

B.1 Datasets

CIFAR10. (Krizhevsky, 2009) are datasets which contain colored natural images of size 32 x 32.
In CIFARI10, there are 10 classes of objects with a total of 60000 images (50000 train - 5000 per
class, 10000 test — 1000 per class).

Imbalanced versions. For our experiments we benchmark two versions of the CIFAR10 dataset,
a ’'Balanced’ version which is the original dataset described above, and an 'Imbalanced’ version.
The 'Imbalanced’ version is a modified version of the original where the class 8 (Ship - CIFAR10)
has been reduced to 20% of their original size. The other classes are not modified.

UTKFace. The UTKFace (Zhang et al., 2017) is a large-scale dataset of face images. This dataset
has 20,000 images with annotations for age, gender, and ethnicity and images taken in a variety
of conditions and image resolutions. It is naturally imbalanced with respect to ethnicity, which
provides a challenging and informative setting for our experiments. In this paper, we investigated
classification using the ethnicity annotation. The task we perform is image classification — there
are 5 class labels: Asian, Indian, White, Black and Others. This is a useful task as it allows us to
investigate the disparate effect of tooling on a task where the dataset is naturally imbalanced and
highlights a sensitive use case involving protected attributes.

CelebA. The CelebA (Liu et al., 2015) is an image dataset that consists of around 202,599 face
images with 40 associated attribute annotations. For this task, we aim to classify face images into
4 distinct classes: 'Blond Male’, 'Blond Female’, 'Non-Blond Male’, and 'Non-Blond Female.” This
is also a naturally imbalanced task, with ‘Blond Male’ being the minority class. Here, gender is a
protected attribute and our goal is to understand how hardware amplifies the bias.

B.2 Architectures

SmallCNN. We use a custom Convolutional Neural Network with 5 convolutional layers, 3 linear
layers and one MaxPooling layer with stride = 2. Using SmallCNN as the base architecture enabled
us to explore an extensive ablation grid while making effective use of computational resources.

ResNet18, ResNet34 and ResNet50 (He et al., 2015). These architectures include residual
blocks and has become an architecture of choice for developing computer vision applications. We
evaluate two variants, namely ResNet18 and ResNet34 and ResNetb0 with 18, 34 and 50 layers
respectively. The versions used in this code were the default implementations available in the
torchvision library maintainers & contributors (2016).

Controlling model stochasticity. Stochasticity is typically introduced into deep neural network
optimization by factors including algorithmic choices, hardware, and software (Zhuang et al., 2022).
Our goal is to precisely measure the impact of tooling on the fairness and performance of the
model. Hence, we seek to control stochasticity introduced by algorithmic factors, to disambiguate
the impact of noise introduced by hardware.
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Figure 11: Left: Hardware Sensitivity for CelebA (ResNet34). Right: Class-wise accuracy

The stochasticity arising from algorithmic factors was controlled as follows: the experimental setup
maintained a fixed random seed across all Python libraries, including PyTorch (Paszke et al., 2019)
2.0, ensuring consistency. We ensure that the data loading order and augmentation properties were
controlled using a fixed seed through FFCV-SSL (Bordes et al., 2023), a fork of FFCV (Leclerc
et al., 2022).

A critical part of our analysis requires that there is a fair comparison between different hardware
platforms used for both training and inference. To ensure consistent experimental configuration
acorss hardware platforms, we fix the parameters related to the training harness for a given dataset
and model. It includes but is not limited to batch size, learning rate, initialization, and optimizer.
The models trained on UTKFace and CIFAR-10 for both settings were in full-precision (FP32) for
both training and inference. Models trained on the CelebA dataset, we employed mixed-precision
training due to memory and time constraints. For these experiments, we use float16 as the inter-
mediate data type. The inference, however, takes place in full precision (FP32). Reported metrics
were averaged across runs gathered from approximately five random seeds.

While the theoretical analysis focuses on the notion of disparate impacts under the lens of hardware
sensitivity with respect to the risk functions, the empirical results that we report are differences
in the accuracy of the resulting models across different hardware. This way the empirical results
thus reflect the setting commonly adopted when measuring accuracy parity Zhao & Gordon (2019)
across groups. In addition, we also report metrics on gradient norm, Hessian’s max eigenvalue, and
the average distance from the decision boundary for various groups in the datasets which highlights
optimization differences amplified by tooling, which could lead to an increase in hardware sensitivity
and shown in the paper, unfairness.
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Figure 12: Left: Hardware Sensitivity for UTKFace Ethnicity (ResNet34). Right: Class-wise
accuracy
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Figure 13: Accuracy Difference for groups pre and post-mitigation. Notice the Maximum Accuracy
Difference between the maximum and minimum accuracy within groups is reduced post-mitigation
averaged across hardware. CelebA on ResNet50.
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