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Abstract

Decision-focused learning (DFL) is an emerging paradigm in machine learning which
trains a model to optimize decisions, integrating prediction and optimization in an end-to-
end system. This paradigm holds the promise to revolutionize decision-making in many
real-world applications which operate under uncertainty, where the estimation of unknown
parameters within these decision models often becomes a substantial roadblock. This paper
presents a comprehensive review of DFL. It provides an in-depth analysis of the various
techniques devised to integrate machine learning and optimization models, introduces a
taxonomy of DFL methods distinguished by their unique characteristics, and conducts an
extensive empirical evaluation of these methods proposing suitable benchmark dataset and
tasks for DFL. Finally, the study provides valuable insights into current and potential
future avenues in DFL research.

1. Introduction

Real-world applications frequently confront the task of decision-making under uncertainty,
such as planning the shortest route in a city, determining optimal power generation sched-
ules, or managing investment portfolios (Sahinidis, 2004; Liu & Liu, 2009; Kim, Lewis, &
White, 2005; Hu, Wang, & Gooi, 2016; Delage & Ye, 2010; Garlappi, Uppal, & Wang, 2006).
In such scenarios, estimating unknown parameters often poses a significant challenge.

Machine Learning (ML) and Constrained Optimization (CO) serve as two key tools
for these complex problems. ML models estimate uncertain quantities, while CO models
optimize objectives within constrained spaces. This sequential process, commonly referred

∗. JM and JK should both be considered first authors.
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Figure 1: Decision-making under uncertainty involves both predictive and prescriptive an-
alytics. In the predictive stage, the uncertain parameters are predicted from the feature
variables using an ML model. In the prescriptive stage, a decision is prescribed by solving
a CO problem using the predicted parameters.

to as predictive and prescriptive modeling, as illustrated in Figure 1, is prevalent in fields
like operations research and business analytics (den Hertog & Postek, 2016). For instance,
in portfolio management, the prediction stage forecasts asset returns, while the prescriptive
phase optimizes returns based on these predictions.

A commonly adopted approach involves handling these two stages—prediction and
optimization—separately and independently. This “two-stage” process first involves train-
ing an ML model to create a mapping between observed features and the relevant parameters
of a CO problem. Subsequently, and independently, a specialized optimization algorithm is
used to solve the decision problem, which is specified by the predicted problem parameters.
The underlying assumption in this methodology is that superior predictions would lead to
precise models and consequently, high-quality decisions. Indeed, if the predictions of pa-
rameters were perfectly accurate, they would enable the correct specification of CO models
which can be solved to yield fully optimal decisions. However, ML models often fall short
of perfect accuracy, leading to suboptimal decisions due to propagated prediction errors.
Thus, in many applications, the predictive and prescriptive modelings are not isolated but
rather, deeply interconnected, and hence should ideally be modeled jointly.

This is the goal of the decision-focused learning (DFL) paradigm, which directly
trains the ML model to make predictions that lead to good decisions. In other words,
DFL integrates prediction and optimization in an end-to-end system trained to optimize a
criterion (i.e., a loss function) that is based on the resulting decisions.

Since many ML models, including neural networks (NNs), are trained via gradient-based
optimization, the gradients of the loss must be backpropagated through each constituent
operation of the model. In DFL, the loss function is dependent on the solution of an
optimization model, thus the optimization solver is embedded as a component of the ML
model. In this integration of prediction and optimization, a key challenge is di↵erentiating
through the optimization problem. An additional challenge arises from decision models
operating on discrete variables, which produce discontinuous mappings and hinder gradient-
based learning. Hence, examining smooth surrogate models for these discrete mappings,
along with their di↵erentiation, becomes crucial. These two challenges are the core emphasis
and central focal points in DFL.

2



Decision-Focused Learning: A Survey

This manuscript presents a comprehensive survey of decision-focused learning and makes
several contributions. First, to navigate the complex methodologies developed in recent
years, the paper proposes the first categorization of DFL methods into four distinct classes:
(1) analytical di↵erentiation of optimization mappings, (2) analytical smoothing of opti-
mization mappings, (3) smoothing by random perturbations, and (4) di↵erentiation of sur-
rogate loss functions. This categorization, as illustrated in Figure 4, serves as a framework
for comprehending and organizing various DFL methodologies. Next, the paper compiles
a selection of problem-specific DFL models, making them publicly available to facilitate
broader access and usage. An integral part of this paper involves benchmarking the per-
formance of various available methodologies on seven distinct problems. This provides an
opportunity for comparative understanding and assists in identifying the relative strengths
and weaknesses of each approach. The code and data used in the benchmarking are acces-
sible through https://github.com/PredOpt/predopt-benchmarks. Finally, this survey
addresses the critical need to look forward, by discussing the outstanding challenges and
o↵ering an outlook on potential future directions in the field of DFL.

Paper organization.

Following this introduction, the paper is structured as follows. Preliminary concepts are
discussed in Section 2, which introduces the problem setting and explicates the challenges
in implementing DFL. The subsequent Section 3 o↵ers a comprehensive review of recently
proposed methodologies for handling these challenges, neatly organized into broad classes of
related techniques. Secion 4 presents interesting real-world examples of DFL applications.
Section 5 brings forth seven benchmark DFL tasks from public datasets, with a comparative
evaluation of eight DFL methodologies presented in the following section. The manuscript
concludes by providing a discourse on the current challenges and possible future directions
in DFL research.

2. Preliminaries

This section presents an overview of the problem setting, along with preliminary concepts
and essential terminology. Then, the central modeling challenges are discussed, setting
the stage for a review of current methodologies in the design and implementation of DFL
solutions. Throughout the manuscript, vectors are denoted by boldface lowercase letters,
such as x, while scalar components within the vector x are represented with a subscript i,
denoting the ith item within x as xi. Similarly, the vectors 1 and 0 symbolize the vector of
all-ones and all-zeros, respectively.

2.1 Problem Setting

In operations research and business analytics, decisions are often quantitatively modeled
using CO problems. These problems model various decision-making scenarios, but may not
be e�ciently solvable and often demand specialized solution algorithms that are tailored to
their specific form. In many real-world applications, some parameters of the CO problems
are uncertain and must be inferred from contextual data (hereafter referred to as features).
The settings considered in this manuscript involve estimating those parameters through
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predictive inferences made by ML models, and subsequently, the final decisions are modeled
as the solution to the CO problems based on those inferences.

In this setting, the decision-making processes can be described by parametric CO prob-
lems, defined as,

x?(c) = argmin
x

f(x, c) (1a)

s.t. g(x, c)  0 (1b)

h(x, c) = 0. (1c)

The goal of the optimization problem above is to find a solution x?(c) 2 Rn, a minimizer of
the objective function f , satisfying a set g of inequality and a set h of equality constraints.
The parametric problem formulation defines x?(c) as a function of the parameters c 2 Rk. In
the present setting, this function can naturally be interpreted as part of an overall composite
function that encompasses ML inference and decision-making, and returns optimal decisions
given feature variables as input.

CO problems can be categorized in terms of the forms taken by the functions defining
their objectives (1a) and constraints (1b-1c). These forms also determine important prop-
erties of the optimization mapping c ! x?(c) when viewed as a function from problem
parameters to optimal solutions, such as its continuity, di↵erentiability, and injectivity.

In this manuscript, it is assumed that the constraints are fully known prior to solving,
i.e., h(x, c) = h(x) and g(x, c) = g(x), and restrict the dependence on c to the objective
function only. This is the setting considered by almost all existing works surveyed. While
it is also possible to consider uncertainty in the constraints, this leads to the possibility of
predicting parameters that lead to solutions that are infeasible with respect to the ground-
truth parameters. The learning problem has not yet been well-defined in this setting (unless
a recourse action to correct infeasible solutions is used (Hu, Lee, & Lee, 2022, 2023a)). For
this reason, in the following sections, only f is assumed to depend on c, so that g(x)  0
and h(x) = 0 are satisfied for all outputs of the decision model. For notational convenience,
the feasible region of the CO problem in (1), will be denoted by F (i.e., x 2 F if and only
if g(x)  0 and h(x) = 0).

If the true parameters c are known exactly, the corresponding ‘true’ optimal decisions
may be computed by solving (1). In such scenarios, x?(c) will referred to as the full-
information optimal decisions (Bertsimas & Kallus, 2020). This paper, instead, considers
problems where the parameters c are unknown but can be estimated as a function of empiri-
cally observed features z. The problem of estimating c falls under the category of supervised
machine learning problems. In this setting, a set of past observation pairs {(zi, ci)}Ni=1 is
available and used to train a ML model m! (with trainable parameters !), so that pa-
rameter predictions take the form ĉ = m!(z). Then, a decision x?(ĉ) can be made based
on the predicted parameters. x?(ĉ) is referred to as a prescriptive decision. The overall
learning goal is to optimize the set of prescriptive decisions made over a distribution of
feature variables z ⇠ Z, with respect to some evaluation criterion on those decisions. Thus,
while the machine learning model m! is trained to predict ĉ, its performance is evaluated
on the basis of the corresponding optimal solutions x?(ĉ). This paper uses the terminol-
ogy Predict-Then-Optimize problem to refer to the problem of predicting ĉ, to improve the
evaluation of x?(ĉ).
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2.2 Learning Paradigms

The defining challenge of the Predict-Then-Optimize problem setting is the gap in modeling
between the prediction and the optimization components: while m! is trained to predict ĉ,
it is evaluated based on the subsequently computed x?(ĉ). Using standard ML approaches,
learning of the predictions ĉ = m!(z) can only be supervised by the ground-truth c under
standard loss functions L, such as mean squared error or cross-entropy. In principle, it is
favorable to train m! to make predictions ĉ that optimize the evaluation criterion on x?(ĉ)
directly. This distinction motivates the definition of two alternative learning paradigms for
Predict-Then-Optimize problems.

Prediction-focused learning (PFL). A straightforward approach to this supervised
ML problem is to train the model to generate accurate parameter predictions ĉ with respect
to ground-truth values c. This paper introduces the term prediction-focused learning to refer
to this approach (also called two-stage learning (Wilder, Dilkina, & Tambe, 2019a)) because
the model is trained with a focus on the accuracy of the parameter predictions preceding
the decision model. Here, the training is agnostic of the downstream optimization problem.
At the time of making the decision, the pre-trained model’s predictions ĉ are passed to
optimization routines which solve (1) to return x?(ĉ). Typical ML losses, such as the mean
squared error (MSE) or binary cross entropy (BCE), are used to train the prediction model
in this case.

MSE(ĉ, c) =
1

N
kc� ĉk2 (2)

Such loss functions, like Eq. (2), which measure the prediction error of ĉ with respect to
c, are referred to as prediction losses. Algorithm 1 illustrates prediction-focused learning
using the MSE loss.

Decision-focused learning (DFL). By contrast, in decision-focused learning, the ML
model is trained to optimize the evaluation criteria which measure the quality of the re-
sulting decisions. As the decisions are realized after the optimization stage, this requires
the integration of prediction and optimization components, into a composite model which
produces full decisions. From this point of view, generating the predicted parameters ĉ is
an intermediary step of the integrated approach, and the accuracy of ĉ is not the primary
focus in training. The focus, rather, is on the error incurred after optimization. A measure
of error with respect to the integrated model’s prescriptive decisions, when used as a loss
function for training, is henceforth referred to as a task loss. The essential di↵erence from
the aforementioned prediction loss is that it measures the error in x?(ĉ), rather than in ĉ.

The objective value achieved by using the predicted x?(ĉ) is generally suboptimal with
respect to the true objective parameters c. Often, the end goal is to generate predictions
ĉ with an optimal solution x?(ĉ) whose objective value in practice (i.e., f(x?(ĉ), c)) comes
close to the full-information optimal value f(x?(c), c). In such cases, a salient notion of task
loss is the regret, defined as the di↵erence between the full-information optimal objective
value and the objective value realized by the prescriptive decision. Equivalently, it is the
magnitude of suboptimality of the decision x?(ĉ) with respect to the optimal solution x?(c)
under ground-truth parameters c:

Regret(x?(ĉ), c) = f(x?(ĉ), c)� f(x?(c), c) (3)
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Note that minimizing regret is equivalent to minimizing the value of f(x?(ĉ), c), since the
term f(x?(c), c) is constant with respect to the prediction model. While regret may be
considered the quintessential example of a task loss, other task losses can arise in practice.
For example, when the ground-truth target data are observed in terms of decision values
x, rather than parameter values c, they may be targeted using the typical training loss
functions such as MSE(x?(ĉ),x).

Relationship between prediction and task losses. As previously mentioned, an ML
model is trained without considering the downstream CO problem in prediction-focused
learning for Predict-Then-Optimize tasks; still the ML model is evaluated at test time on
the basis of its resulting CO problem solutions. This is based on an underlying assumption
that generating accurate predictions with respect to a standard prediction loss will result
in good prescriptive decisions. Note that zero prediction loss always implies zero task loss,
since ĉ = c implies x?(ĉ) = x?(c). However, in practice, it is impossible to learn a model
that makes no prediction error on any sample. The model error can only be minimized in
one metric, and the minimization of the prediction error and the resulting decision error
do not in general coincide (Wilder et al., 2019a). Furthermore, the prediction loss and the
task loss are, in general, not continuously related. These principles are illustrated by the
following example:

Example. The shortcomings of training with respect to prediction errors can be illus-
trated with a relatively simple CO problem. For this illustration, consider a knapsack
problem (Pisinger & Toth, 1998). The objective of the knapsack problem is to select a
subset of maximal value from an overall set of items, each having its own value and unit
weight, subject to a capacity constraint. The capacity constraint imposes that the sum of
the weights of the selected items cannot be higher than the capacity C. This knapsack
problem with unit weights can be formulated as follows:

x?(c) = argmax
x2{0,1}

c>x s.t.

X

i

xi  Capacity (4)

In a Predict-Then-Optimize variant of this knapsack problem, the item weights and
knapsack capacity are known, but the item values are unknown and must be predicted
using observed features. The ground-truth item value c implies the ground-truth solution
x?(c). Overestimating the values of the items that are chosen in x?(c) (or underestimating
the values of the items that are not chosen) increases the prediction error. Note that these
kind of prediction errors, even if they are high, do not a↵ect the solution, and thus do not
a↵ect the task loss either. On the other hand, even low prediction errors for some item
values may change the solution, a↵ecting the task loss. That is why after a certain point,
reducing prediction errors does not decrease task loss, and sometimes may increase it. DFL
aims to address this shortcoming of PFL: by minimizing the task loss directly, prediction
errors are implicitly traded o↵ on the basis of how they a↵ect the resulting decision errors.

The discrepancy between the prediction loss and the task loss has been exemplified in
Figure 2 for a very simple knapsack problem with only two items. For this illustration,
assume that both the items are of unit weights and the capacity of the knapsack is one, i.e.,
only one of the two items can be selected. The true values of the first and second items are
2.5 and 3 respectively. The point (2.5, 3), marked with Q, represents the true item values. In
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Figure 2: An illustrative numerical example with a knapsack problem with two items to
exemplify the discrepancy between prediction error and regret. The figure illustrates that
two points can have the same prediction error but di↵erent regret. Furthermore, it demon-
strates that overestimating the values of the selected items or underestimating the values
of the items that are left out does not change the solution, and thus does not increase the
regret, even though the prediction error does increase.

this case the true solution is (0, 1), which corresponds to selecting only the second item. It
is evident that any prediction in the blue shaded region leads to this solution. For instance,
the point (1.5, 3), marked with :, corresponds to predicting 1.5 and 3 as values of the two
items respectively and this results in selecting the second item. On the other hand, the
point (2.5, 2), marked with 6, triggers the wrong solution (1, 0), although the squared error
values of : and 6 are identical. Also, note that overestimating the value of the second item
does not change the solution. For instance, the point (1.5, 4), marked with s, corresponds
to overestimating the value of the second item to 4 while keeping the value of the first item
the same as the point in :. This point is positioned directly above the point in : and still
stays in the blue-shaded region. Similarly, the point (0.5, 3), marked with t, results from
underestimating the value of the first item and is in the blue shaded region too. Although
these two points have higher values of squared error than the point marked with 6, they
trigger the right solution, resulting in zero regret.

Empirical risk minimization and bilevel form of DFL. The minimization of either
the prediction loss in PFL or the task loss in DFL, can be expressed as an empirical risk
minimization (ERM) (Vapnik, 1999) problem over a training dataset containing feature
variables and their corresponding parameters D ⌘ {(zi, ci)}Ni=1. For concreteness, the re-
spective ERM problems below assume the use of the MSE and regret loss functions, but
the principles described here hold for a wide range of alternative loss functions.
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PFL, by minimizing the prediction error with respect to the ground-truth parameters
directly, takes the form of a standard regression problem:

min
!

1

N

NX

i=1

km!(zi)� cik
2, (5)

which is an instance of unconstrained optimization. In the case of DFL, it is natural to
view the ERM as a bilevel optimization problem:

min
!

1

N

NX

i=1

⇣
f(x?(ĉi), ci)� f(x?(ci), ci)

⌘
(6a)

s.t. ĉi = m!(zi); x?(ĉi) = argmin
x2F

ĉ>i x. (6b)

The outer-level problem (6a) minimizes task loss on the training set while the inner-level
problem (6b) computes the mapping c ! x?(c). Solving (6) is computationally more
challenging than solving (5) in the prediction-focused paradigm. In both cases, optimization
by stochastic gradient descent (SGD) is the preferred solution method for training neural
networks.

Algorithms 1 and 2 compare the gradient descent training schemes for each of these
problems. Algorithm 1 is a standard application of gradient descent, in which the deriva-
tives of Line 6 are generally well-defined and can be computed straightforwardly (typically
by automatic di↵erentiation). Line 7 of Algorithm 2 shows that direct di↵erentiation of the
mapping c! x?(c) can be used to form the overall task loss gradient dL

d! , by providing the

required chain rule term dx?(ĉ)
dĉ . However, this di↵erentiation is nontrivial as the mapping

itself lacks a closed-form representation. Further, many interesting and practical optimiza-
tion problems are inherently nondi↵erentiable and even discontinuous as functions of their
parameters, precluding the direct application of Algorithm 2 to optimize (6) by gradient
descent. The following subsections review the main challenges of implementing Algorithm
2.

Algorithm 1 Gradient-descent in
prediction-focused learning
Input: training data D⌘
{(zi, ci)}Ni=1
Hyperparams: ↵- learning rate

1: Initialize !.
2: for each epoch do
3: for each instance (z, c) do
4: ĉ = m!(z)
5: L = (ĉ� c)2

6: !  ! � ↵dL
dĉ

dĉ
d!

7: end for
8: end for

Algorithm 2 Gradient-descent in decision-
focused learning with regret as task loss

Input: F , training data D ⌘ {(zi, ci,x?(ci)}Ni=1;
Hyperparams: ↵- learning rate

1: Initialize !.
2: for each epoch do
3: for each instance (z, c,x?(c)) do
4: ĉ = m!(z)
5: x?(ĉ) = argminx2F f(x, ĉ)
6: L = f(x?(ĉ), c)� f(x?(c), c)

7: !  ! � ↵ dL
dx?(ĉ)

dx?(ĉ)
dĉ

dĉ
d!

8: end for
9: end for
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2.3 Challenges to Implement DFL

Di↵erentiation of CO mappings. To minimize a task loss by gradient descent training,
its partial derivatives with respect to the prediction model parameters ! must be computed
to carry out at the parameter update at Line 7 of Algorithm 2. Since the task loss L is
a function of x?(ĉ), the gradient of L with respect to ! can be expressed in the following
terms by using the chain rule of di↵erentiation:

dL(x?(ĉ), c)

d!
=

dL(x?(ĉ), c)

dx?(ĉ)

dx?(ĉ)

dĉ

dĉ

d!
(7)

The first term in the right side of (7), can be computed directly as L(x?(ĉ), c) is typically
a di↵erentiable function of x?(ĉ). A deep learning library (such as TensorFlow (Abadi,
Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfel-
low, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore,
Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan,
Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, & Zheng, 2015), PyTorch (Paszke, Gross,
Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, et al., 2019)) computes
the last term by representing the neural network as a computational graph and applying
automatic di↵erentiation (autodi↵) in the reverse mode (Baydin, Pearlmutter, Radul, &

Siskind, 2018). However, the second term, dx?(ĉ)
dĉ , may be nontrivial to compute given the

presence of two major challenges: (1) The mapping ĉ ! x?(ĉ), as defined by the solution
to an optimization problem, lacks a closed form which can be di↵erentiated directly, and
(2) for many interesting and useful optimization models, the mapping is nondi↵erentiable
in some points, and has zero-valued gradients in others, precluding the straightforward use
of gradient descent. As shown in the next subsection, even the class of linear programming
problems, widely used in decision modeling, is a↵ected by both issues. Section 3 details the
various existing approaches aimed at overcoming these challenges.

Computational cost Another major challenge in decision-focused learning is the com-
putational resources required to train the integrated prediction and optimization model.
Note that Line 5 in Algorithm 2 evaluates x?(ĉ). This requires solving and di↵erentiating
the underlying optimization problem for each observed data sample, in each epoch. This
imposes a significant computational cost even when dealing with small-scale and e�ciently
solvable problems, but can become an impediment in the case of large and (NP-)hard op-
timization problems. Section 3 reviews the techniques proposed thus far for reducing the
computational demands of DFL and improving scalability.

2.4 Optimization Problem Forms

The e↵ectiveness of solving an optimization problem depends on the specific forms of the
objective and constraint functions. Considerable e↵ort has been made to developing e�cient
algorithms for certain optimization forms. Below, the readers are provided an overview of
the key and widely utilized types of optimization problem formulations.
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dL(x�(ĉ), c)

d x�(ĉ)
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Figure 3: In decision-focused learning, the neural network model is trained to minimize the
task loss

2.4.1 Convex optimization

In convex optimization problems, a convex objective function is to be optimized over a
convex feasible space. This class of problems is distinguished by the guarantee that any
locally optimal is also globally optimal (Boyd, Boyd, & Vandenberghe, 2004). Since many
optimization methods converge provably to local minima, convex problems are considered
to be reliably and e�ciently solvable relative to nonconvex problems. Despite this, convex
optimization mappings still impose significant computational overhead on Algorithm 2 since
they must be solved for each data sample in each epoch, and most convex optimizations
are orders of magnitude more complex than conventional neural network layers (Amos
& Kolter, 2017). Like all parametric optimization problems, convex ones are implicitly
defined mappings from parameters to optimal solutions, lacking a closed form that can be
di↵erentiated directly. However as detailed in Section 3.1, they can be canonicalized to
a standard form, which facilitates automation of their solution and backpropagation by a
single standardized procedure (Agrawal, Amos, Barratt, Boyd, Diamond, & Kolter, 2019a).

The class of convex problems is broad enough to include some which yield mappings
x?(ĉ) that are di↵erentiable everywhere, and some which do not. The linear programs, which
are convex and form nondi↵erentiable mappings with respect to their objective parameters,
are notable examples of the latter case and are discussed next. The portfolio optimization
problem (44), which contains both linear and quadratic constraints, provides an example
of a parametric convex problem which admits useful gradients over some regions of its
parameter space and not others. Where the (quadratic) variance constraint (44b) is not
active, it behaves as a linear program. Elsewhere, the optimal solution is a smooth function
of its parameters.

2.4.2 Linear programming

Linear programs (LPs) are convex optimization problems whose objective and constraints
are composed of a�ne functions. These programs are predominant as decision models in op-
erations research, and have endless industrial applications since the allocation and transfer
of resources is typically modeled by linear relationships between variables (Bazaraa, Jarvis,
& Sherali, 2008). The parametric LPs considered in this manuscript take the following
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form:

x?(c) = argmin
x

c>x (8a)

s.t. Ax = b (8b)

x � 0 (8c)

Compared to other classes of convex problems, LPs admit e�cient solution methods, even
for large-scale problems (Bazaraa et al., 2008; Ignizio & Cavalier, 1994). From a DFL stand-
point, however, LPs pose a challenge, because the mapping c! x?(c) is nondi↵erentiable.
Although the derivatives of mapping (8) are defined almost everywhere, they provide no
useful information for gradient descent training. To see this, first note the well-known fact
that a linear program always takes its optimal value at a vertex of its feasible set (Bazaraa
et al., 2008). Since the number of vertices in any such set is finite, (8) maps a continuous
parameter space to a discrete set of solutions. As such, it is a piecewise constant mapping.
Therefore its derivatives are zero almost everywhere, and undefined elsewhere. Prevalent
strategies for incorporating linear programs in decision-focused learning thus typically rely
on di↵erentiating smooth approximations to the LP, as detailed in Section 3.2.

Many operations research problems, such as the allocation and planning of resources, can
be modeled as LPs. Also many prototypical problems in algorithm design (e.g., sorting and
top-k selection) can be formulated as LPs with continuous variables, despite admitting only
discrete integer solutions, by relying on the total unimodularity of the constraint matrices
(Bazaraa et al., 2008). In what follows, some examples of machine learning models of LPs
and how they might occur in a Predict-Then-Optimize context are given.

Shortest paths. Given a directed graph with a given start and end node, the goal in
the shortest path problem is to find a sequence of arcs of minimal total length that
connects the start end the end node. The decision variables are binary indicators of
each edge’s inclusion in the path. The linear constraints ensure [0, 1] bounds on each
indicator, as well as flow balance through each node. These flow balance constraints
capture that, except for the start and end node, each node has as many incoming
selected arcs as outgoing selected arcs. For the start node, there is one additional
outgoing selected arc, and for the end node, there is one more incoming selected arc.
The parameters in the linear objective represent the arc lengths. In many realistic
settings—as well as in several common DFL benchmarks (Elmachtoub & Grigas, 2022;
Pogančić, Paulus, Musil, Martius, & Rolinek, 2020)—these are unknown, requiring
them to be predicted from features before a shortest path can be computed. This
motivating example captures the realistic setting in which the shortest route between
two locations has to be computed, but in which the road traversal times are uncertain
(due to unknown tra�c conditions, for example), and have to be predicted from known
features (such as day of the week, time of day and weather conditions).

Bipartite matching. Given is a graph consisting of two sets of nodes, and arcs connect-
ing each node of the first set to each node of the second. The arcs are weighted but
the weights are unknown and must be predicted. The optimization task is to choose
a subset of arcs such that each node from each set is involved in a selected arc at
most once, and the total weight of the selected arcs is maximized. The variables lie in
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[0, 1] and indicate the inclusion of each edge. The constraints ensure that each node
is involved at most once in a selected arc. The objective parameters represent arc
weights. With a complete bipartite graph, matchings can be construed as permuta-
tions, and are presented a permutation matrices, which can be employed in tasks such
as learning to rank (Kotary, Fioretto, Van Hentenryck, & Zhu, 2022).

Sorting and Ranking. The sorting of any list of predicted values can be posed as a
linear program over a feasible region whose vertices correspond to all of the possible
permutations of the list. The related ranking, or argsort problem assigns to any length-
n list a permutation of sequential integers [n] which sorts the list. By smoothing
the linear program, these basic operations can be di↵erentiated and backpropagated
(Blondel, Teboul, Berthet, & Djolonga, 2020).

Top-k selection. Given a set of items and item values that must be predicted, the task is
to choose the subset of size k with the largest total value in selected items. In addition
to [0, 1] bounds on the indicator variables, a single linear constraint ensures that the
selected item indicators sum to k. A prevalent example can be found in multilabel
classification (Amos, Koltun, & Kolter, 2019; Martins & Astudillo, 2016).

Computing the maximum. This is a special case of top-k selection where k = 1. When
the LP’s objective is regularized with the entropy term H(x) = x · logx, the mapping
from predicted values to optimal solutions is equivalent to a softmax function (Agrawal
et al., 2019a).

Max-flow/ min-cut. Given a network with predefined source and sink nodes, and pre-
dicted flow capacities on each arc, the task is to find the maximum flow rate that
can be channeled from source to sink. Here the predicted flow capacities occupy the
right-hand side of the linear constraints, which is not in line with the DFL problem
description given in subsection 2.1. However, in the related min-cut problem—which
is equivalent to the dual linear program of the max-flow problem—the flow capacities
are the parameters in the objective function. The max-flow problem can thus be cast
as an equivalent min-cut problem and DFL can be used to learn to predict the flow
capacities.

2.4.3 Integer linear programming

Integer Linear Programs (ILPs) are another mainstay in operations research and computer
science. ILPs di↵er from LPs in that the decision variables x are restricted to integer
values, i.e., x 2 Zk where Zk is the set of integral vectors of appropriate dimensions. Like
LPs, ILPs are challenging to use in DFL because they yield discontinuous, nondi↵erentiable
mappings. Computationally however, they are more challenging due to their NP-hard
complexity, which may preclude the exact computation of the mapping ĉ ! x?(ĉ) at each
step of Algorithm 2. Their di↵erentiation is also significantly more challenging, since the
discontinuity of their feasible regions prevents many smoothing techniques that can be
applied in DFL with LPs.

In the following, examples of how ILPs may occur in a Predict-Then-Optimize setting
are provided.
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Knapsack. The knapsack problem has been used as a benchmark in several papers about
DFL (Mandi, Demirović, Stuckey, & Guns, 2020; Mandi & Guns, 2020; Demirović,
Stuckey, Bailey, Chan, Leckie, Ramamohanarao, & Guns, 2019). Given are weights
of a set of items, as well as a capacity. The items also have associated values, which
have to be predicted from features. The optimization task involves selecting a subset
of the items that maximizes the sum of the weights associated with the selected items,
whilst ensuring that the sum of the associated weights does not exceed the capacity.

Travelling salesperson problem In the travelling salesperson problem, the list of cities,
and the distances between each pair of cities, is given. The goal is to find a path
of minimal length that visits each city exactly once. In the Predict-Then-Optimize
setting, the distances between the cities first have to be predicted (Pogančić et al.,
2020) from observable empirical data.

Combinatorial portfolio optimization. Portfolio optimization involves making optimal
investment decisions across a range of financial assets. In the combinatorial Predict-
Then-Optimize variant, the decisions are discrete, and must be made on the basis
of the predicted next period’s increase in the value of several assets (Ferber, Wilder,
Dilkina, & Tambe, 2020).

Diverse bipartite matching. Diverse bipartite matching problems are similar to the bi-
partite matching problems described in 2.4.2, but are subject to additional diversity
constraints (Ferber et al., 2020; Mulamba, Mandi, Diligenti, Lombardi, Bucarey, &
Guns, 2021; Mandi, Bucarey, Tchomba, & Guns, 2022) In this variant, edges have
additional properties. The diversity constraints enforce lower and upper bounds on
the proportion of edges selected with a certain property. This precludes the LP for-
mulation, and makes the use of ILP more interesting.

Energy-cost aware scheduling. Energy-cost aware scheduling involves scheduling a set
of tasks across a set of machines in a way that minimizes the overall energy cost in-
volved. As future energy costs are unknown, they first have to be predicted (Mulamba
et al., 2021; Mandi et al., 2020, 2022; Mandi & Guns, 2020).

2.4.4 Integer nonlinear programming

In integer nonlinear programming, the objective function and/or the constraints are nonlin-
ear. Performing DFL on integer nonlinear programs faces the same challenges as perform-
ing DFL on ILPs: integer nonlinear programs are computationally expensive to solve, are
implicit mappings with zero-valued gradients almost everywhere, and have discontinuous
feasible regions, hindering the use of the smoothing techniques that can be applied in DFL
with LPs. Additionally, because of their nonlinear nature, many of the techniques devel-
oped for DFL with ILPs, which assume linearity, do not work on integer nonlinear programs
(Elmachtoub & Grigas, 2022; Pogančić et al., 2020). To the best of our knowledge, no DFL
method has specifically been developed for or tested on integer nonlinear programs. The
most closely related work is (Ferber, Huang, Zha, Schubert, Steiner, Dilkina, & Tian, 2022),
which learns an approximate ILP surrogates for integer nonlinear programs, which could
then in turn be used in a DFL loop.
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3. Review of Decision-focused Learning Methodologies

To the best of our knowledge, this manuscript is the first to provide a comprehensive review
of methods developed for and suitable for DFL in gradient-based training. Concurrently
with this paper, Sadana, Chenreddy, Delage, Forel, Frejinger, and Vidal (2023) survey
recently proposed approaches to address Predict-Then-Optimize problems (referred to as
contextual optimization within it). While Sadana et al. (2023) also cover some of the works
to be surveyed later, this manuscript goes beyond by presenting an extensive review solely
focused on DFL methods and proposing the first categorization of existing DFL methods.

This section will describe several methodologies which address the challenge of di↵er-
entiating an optimization mapping for DFL in gradient-based training. In essence, di↵er-
ent approaches propose di↵erent smoothed surrogate approximations of dx?(ĉ)

dĉ or dL(x?(ĉ))
dĉ ,

which is used for backpropagation. This paper proposes the first categorization of existing
DFL approaches into the following four distinct classes:

Analytical Di↵erentiation of Optimization Mappings: Methodologies under this cat-
egory aim to compute exact derivative for backpropagation by di↵erentiating the op-
timality conditions for certain optimization problem forms, for which the derivative
exists and non-zero.

Analytical Smoothing of Optimization Mappings: These approaches deal with com-
binatorial optimization problems (for which the analytical derivatives are zero almost
everywhere) by performing smoothing of combinatorial optimization problems, which
results in approximate problems that can be di↵erentiated analytically.

Smoothing by Random Perturbations: Methodologies under this category utilize im-
plicit regularization through perturbations, constructing smooth approximations of
optimization mappings.

Di↵erentiation of Surrogate Loss Functions: Methodologies under this category pro-
pose convex surrogate loss functions of specific task loss such as regret.

Decision-Focused Learning without Optimization in the Loop: These methodolo-
gies bypass the need for computing dL(x?(ĉ))

dĉ by utilizing surrogate losses, which reflect
the quality of the decisions, but do not require computing the solution of the opti-
mization problem for di↵erentiation.

Figure 4 presents key characteristics of these four methodology classes, highlighting the
types of problems that can be addressed within each class. Next, each category is thoroughly
described.

3.1 Analytical Di↵erentiation of Optimization Mappings

As discussed before, di↵erentiating through parametric CO problems comes with two main
challenges. First, since CO problems are complex, implicitly defined mappings from pa-
rameters to solutions, computing the derivatives is not straightforward. Second, since some
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Figure 4: An overview of the categorization of DFL methodologies in four classes.

CO problems result in piecewise-constant mappings, their derivatives are zero almost ev-
erywhere, and do not exist elsewhere.

This subsection pertains to CO problems for which the second challenge does not ap-
ply, i.e., problems that are smooth mappings. For these problems, all that is required to
implement DFL is direct di↵erentiation of the mapping in Eq. (1).

Di↵erentiating unconstrained relaxations. An early work discussing di↵erentiation
through constrained argmin problems in the context of machine learning is (Gould, Fer-
nando, Cherian, Anderson, Cruz, & Guo, 2016). It first proposes a technique to di↵erentiate
the argmin of a smooth, unconstrained convex function. When V (c) = argminx f(c,x), it
can be shown that when all second derivatives of f exist,

dV (c)

dc
= �

fcx(c, V (c))

fxx(c, V (c))
(9)

where fcx is the second partial derivative of f with respect to c followed by x. This follows
from implicit di↵erentiation of the first-order optimality conditions

df

dx
(c, V (c)) = 0 (10)

with respect to c, and rearranging terms. Here the variables c are the optimization problem’s
defining parameters, and the variables x are the decision variables.
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This technique is then extended to find approximate derivatives to constrained problems
with inequality constraints gi(c,x)  0, 1  i  m, by first relaxing the problem to an
unconstrained problem, by means of the log-barrier function

F (c,x) = f(c,x)� µ
X

i

log(�gi(c,x)) (11)

and then di↵erentiating argminx F (c,x) with respect to c for some choice of the scaling fac-
tor µ. Since this approach relies on approximations and requires hyperparameter tuning for
the factor µ, subsequent works focus on di↵erentiating constrained optimization problems
directly via their own global conditions for optimality, as discussed next.

Di↵erentiating KKT conditions of quadratic programs. More recent approaches
are based on di↵erentiating the optimality conditions of a CO problem directly, i.e., without
first converting it to an unconstrained problem. Consider an optimization problem and its
optimal solution:

x? = argmax
x

f(x) (12a)

s.t. g(x)  0 (12b)

h(x) = 0 (12c)

and assume that f , g and h are di↵erentiable functions of x. The Karush–Kuhn–Tucker
(KKT) conditions are a set of equations expressing optimality conditions for a solution x?

of problem (12) (Boyd et al., 2004):

rf(x?) +
X

i

wirhi(x
?) +

X

j

ujrgj(x
?) = 0 (13a)

gj(x
?)  0 8j (13b)

hi(x
?) = 0 8i (13c)

uj � 0 8j (13d)

ujgj(x
?) = 0 8j (13e)

OptNet is a framework developed by Amos and Kolter (2017) to di↵erentiate through
optimization mappings that are convex quadratic programs (QPs) by di↵erentiating through
these KKT conditions. In convex quadratic programs, the objective f is a convex quadratic
function and the constraint functions g, h are linear over a continuous domain. In the most
general case, each of f , g and h are dependent on a distinct set of parameters, in addition
to the optimization variable x:

f(c, Q,x) =
1

2
x>Qx + c>x (14a)

g(A,b,x) = Rx� s (14b)

h(R, s,x) = Ax� b (14c)

When x 2 Rk and the number of equality constraints is Min and Meq, respectively, a QP
problem is specified by parameters Q 2 Rk⇥k, c 2 Rk, R 2 Rk⇥Min , s 2 RMin , A 2 Rk⇥Meq ,
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and b 2 RMeq . Note that for this problem to be convex, Q must be positive-semidefinite
always, which can be ensured by learning instead parameters q 2 Rk and taking Q = q>q.

A defining characteristic of quadratic programs such as (14) is their straightforward
parameterization. This is due to the fact that any linear or quadratic function can be fully
specified by a square matrix or a vector of parameters, respectively. Here, problem (12) is
viewed as a mapping (Q, c, R, s, A,b)! x?(Q, c, R, s, A,b), which parameterizes the space
of all possible quadratic programs and their solutions. The presence of such a canonical
form allows for separation of a problem’s inherent structure from its parameters (Grant &
Boyd, 2008), and is key to creating a di↵erentiable mapping from parameters to optimal
solutions in an automated way, without necessitating additional analytical transformations.

The gradients are sought with respect to each of the parameters in (Q, c, R, s, A,b). For
this purpose, Amos and Kolter (2017) argue that the inequalities (13b) and (13d) can be
dropped, resulting in a system of equalities representing optimality conditions for x?.

Exact gradients dx?

dP
for any P 2 {Q, c, R, s, A,b} can then be retrieved by solving the

di↵erential KKT conditions:
2

4
Q R> A>

D(w⇤)R D(Rx⇤
� s) 0

A 0 0

3

5

2

4
dx
dw
du

3

5 = �

2

4
dQx⇤ + dc + dR>w⇤ + dA>u⇤

D(w⇤)dRx⇤
�D(w⇤)ds

dAx⇤
� db

3

5 (15)

where the shorthand d stands for the derivative d

dP
. This is another example of implicit dif-

ferentiation, and requires solving a linear system of equations. Later, Konishi and Fukunaga
(2021) extended the method of Amos and Kolter (2017), where they compute the second or-
der derivative of the solution. This allows to train gradient boosting models, which require
the gradient as well as the Hessian matrix of the loss.

In summary, the techniques in this category compute the derivatives of the solution with
respect to the parameters (if they exist) by leveraging implicit di↵erentiation of the KKT
conditions.

Di↵erentiating optimality conditions of conic programs. Another class of problems
with a parametric canonical form are the conic programs, which take the form:

x?(A,b, c) = argmax
x

c>x (16a)

s.t. Ax� b 2 K (16b)

where K is a nonempty, closed, convex cone.
A framework for di↵erentiating the mapping (16) for any K is proposed in (Agrawal,

Barratt, Boyd, Busseti, & Moursi, 2019c), which starts by forming the homogeneous self-
dual embedding of (16), whose parameters form askew-symmetric block matrix composed of
A, b, and c. Following (Busseti, Moursi, & Boyd, 2019), the solution to this embedding is
expressed as the problem of finding a zero of a mapping containing a skew-symmetric linear
function and projections onto the cone K and its dual. The zero-value of this function is
implicitly di↵erentiated, in a similar manner to the KKT conditions of a quadratic program
as in (Amos & Kolter, 2017). The overall mapping (16) is viewed as the composition
of function that maps (A,b, c) onto the skew-symmetric parameter space of the self-dual
embedding, the rootfinding problem that produces a solution to the embedding, and a
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transformation back to a solution of the primal and dual problems. The overall derivative
is found by a chain rule applied over this composition.

Subsequent work (Agrawal et al., 2019a) leverages the above-described di↵erentiation
of cone programs to develop a more general di↵erentiable convex optimization solver—
Cvxpylayers. It is well known that conic programs of the form (16) can provide canonical
representations of convex programs (Nemirovski, 2007). The approach described by Agrawal
et al. (2019a) is based on this principle; that a large class of parametric convex optimization
problems can be recast as equivalent parametric cone programs, with an appropriate choice
of the cone K. A major benefit of this representation is that it allows a convex program to
be separated with respect to its defining parameters (A,b, c) and its structure K, allowing
a generic procedure to be applied for solving and di↵erentiating the transformed problem
with respect to A, b and c.

The framework for transforming convex programs to cone programs of the form (16) is
drawn from (Grant & Boyd, 2008), which is based on two related concepts. First is the no-
tion of disciplined convex programming, which assists the automation of cone transforms by
imposing a set of rules or conventions on how convex programs can be represented. Second
is the notion of graph implementations, which represent functions as optimization problems
over their epigraphs, for the purpose of generically representing optimization problems and
assisting conversion between equivalent forms. The associated software system called cvx

allows for disciplined convex programs to be converted to cone programs via their graph im-
plementations. Subsequently, the transformed problem is solved using conic optimization
algorithms, and its optimal solution is converted to a solution of the original disciplined
convex program. Di↵erentiation is performed through each operation and combined by the
chain rule. The transformation of parameters between respective problem forms, and the
solution recovery step, are di↵erentiable by virtue of being a�ne mappings (Agrawal et al.,
2019a). The intermediate conic program is di↵erentiated via the methods of (Agrawal et al.,
2019c).

Solver unrolling and fixed-point di↵erentiation. While the methods described above
for di↵erentiation through CO problems are generic and applicable to broad classes of prob-
lems, other practical techniques have been proven e↵ective and even advantageous in some
cases. A common strategy is that of solver unrolling, in which the solution to (1) is found
by executing an optimization algorithm in the computational graph of the predictive model.
Then, the mapping (1) is backpropagated simply by automatic di↵erentiation or ‘unrolling’

through each step of the algorithm, thus avoiding the need to explicitly model dx?(c)
dc (Domke,

2012). While this approach leads to accurate backpropagation in many cases, it su↵ers dis-
advantages in e�ciency due to the memory and computational resources required to store
and apply backpropagation over the entire computational graph of an algorithm that re-
quires many iterations (Amos & Kolter, 2017). Additionally, it has been observed that
unrolling over many solver iterations can leads to vanishing gradient issues reminiscent of
recurrent neural networks (Monga, Li, & Eldar, 2021). On the other hand, unrolling allows
for the learning of unspecified algorithm parameters, such as gradient descent step sizes or
weights in an augmented lagrangian, which can be exploited to accelerate the forward-pass
convergence of the optimization solver. A comprehensive survey of algorithm unrolling for
image processing applications is provided in (Monga et al., 2021).
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Another way in which a specific solution algorithm may provide gradients though a cor-
responding optimization mapping, is by implicit di↵erentiation of its fixed-point conditions.
Suppose that the solver iterations

xk+1(c) = U(xk(c), c) (17)

converge as k !1 to a solution x?(c) of the problem (1), then the fixed-point conditions

x?(c) = U(x?(c), c) (18)

are satisfied. Assuming the existence of all derivatives on an open set containing c to satisfy
the implicit function theorem, it follows by implicit di↵erentiation with respect to c that

(I � �)
dx?

dc
=  , (19)

which is a linear system to be solved for dx?

dc , in terms of � = dU
dx? (x?(c), c) and  =

dU
c (x?(c), c).

The relationship between unrolling and di↵erentiation of the fixed-point conditions is stud-
ied by Kotary, Dinh, and Fioretto (2023), which shows that backpropagation of (1) by
unrolling (17) is equivalent to solving the linear system (19) by fixed-point iteration. As
such, the convergence rate of the backward pass in unrolling is determined by the con-
vergence rate of the equivalent linear system solve, and can be calculated in terms of the
spectral radius of �.

Discussion. In contrast to most other di↵erentiable optimization methods surveyed in
this article, the analytical approaches in this subsection allow for backpropagation of co-
e�cients that specify the constraints as well the objective function. For example, Amos
and Kolter (2017) propose parametric quadratic programming layers whose linear objective
parameters are predicted by previous layers, and whose constraints are learned through the
layer’s own embedded parameters. This is distinct from most cases of DFL, in which the
optimization problems have fixed constraints and no trainable parameters of their own.

Furthermore, the techniques surveyed in this subsection are aimed at computing exact
gradients of parametric optimization mappings. However, many applications of DFL contain
optimization mappings that are discontinuous and piecewise-constant. Such mappings,
including parametric linear programs (8), have gradients that are zero almost everywhere
and thus do not supply useful descent directions for SGD training. Therefore, the techniques
of this subsection are often applied after regularizing the problem analytically with smooth
functions, as detailed in the next subsection.

3.2 Analytical Smoothing of Optimization Mappings

To di↵erentiate through combinatorial optimization problems, the optimization mapping
first has to be smoothed. While techniques such as noise-based gradient estimation (sur-
veyed in Section 3.3) provide smoothing and di↵erentiation simultaneously, analytical dif-
ferentiation first incorporates smooth analytical terms in the optimization problem’s for-
mulation, and then analytically di↵erentiates the resulting optimization problem using the
techniques discussed in Section 3.1.
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Analytical smoothing of linear programs. Note that while an LP problem is convex
and has continuous variables, only a finite number of its feasible solutions can potentially
be optimal. These points coincide with the vertices of its feasible polytope (Bazaraa et al.,
2008). Therefore the mapping x?(ĉ) in (8), as a function of ĉ, is discontinuous and piecewise
constant, and thus requires smoothing before it can be di↵erentiated through. An approach
to do so was presented in Wilder et al. (2019a), which proposes to augment the linear
LP objective function with the Euclidean norm of its decision variables, so that the new
objective takes the following form

x?(c) = argmax
x

c>x� µkxk22 (20a)

= argmin
x
kx�

c

µ
k
2
2 (20b)

where the above equality follows from expanding the square and cancelling constant terms,
which do not a↵ect the argmax. This provides an intuition as to the e↵ect of such a
quadratic regularization: it converts a LP problem into that of projecting the point c

µ
onto

the feasible polytope, which results in a continuous mapping ĉ ! x?(ĉ). Wilder et al.
(2019a) then train decision-focused models by solving and backpropagating the respective
quadratic programming problem using the framework of (Amos & Kolter, 2017), in order
to learn to predict objective parameters with minimal regret. At test time, the quadratic
smoothing term is removed. This article refers to such regret-based DFL with quadratically
regularized linear programs as the Quadratic Programming Task Loss method (QPTL).

Other forms of analytical smoothing for linear programs can be applied by adding di↵er-
ent regularization functions to the objective function. Some common regularization terms
for LPs include the entropy function H(x) =

P
i
xi log xi and the binary entropy function

Hb(x) = H(x) + H(1� x). To di↵erentiate the resulting smoothed optimization problems,
the framework of Agrawal et al. (2019a) can be used. Alternatively, problem-specific ap-
proaches that do not employ (Agrawal et al., 2019a) have also been proposed. For example,
(Blondel et al., 2020) proposes a method for problems where H smooths an LP for di↵eren-
tiable sorting and ranking, and (Amos et al., 2019) proposes a way to di↵erentiate through
problems where Hb is used in a multilabel classification problem. Both works propose fast
implementations for both the forward and backward passes of their respective optimization
problems.

In a related approach, Mandi and Guns (2020) propose a general, di↵erentiable LP
solver based on log-barrier regularization. For a parametrized LP of standard form (8),
gradients are computed for the regularized form in which the constraints x � 0 are replaced
with log-barrier approximations:

x?(c) = argmin
x

c>x + �
X

i

xi (21a)

s.t. Ax = b (21b)

While similar in this sense to (Gould et al., 2016), this method exploits several e�ciencies
specific to linear programming, in which the log-barrier term serves a dual purpose of
rendering (21) di↵erentiable and also aiding its solution. Rather than forming and solving
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this regularized LP problem directly, the solver uses an interior point method to produce a
sequence of log-barrier approximations to the LP’s homogenous self-dual (HSD) embedding.
Early stopping is applied in the interior point method, producing a solution to (21) for some
�, which serves as a smooth surrogate problem for di↵erentiation. A major advantage of
this technique is that it only requires optimization of a linear program, making it in general
more e�cient than direct solution of a regularized problem as in the approaches described
above.

Analytical smoothing of integer linear programs. To di↵erentiate through ILPs,
Wilder et al. (2019a) propose to simply drop the integrality constraints, and to then smooth
and di↵erentiate through the resulting LP relaxation, which is observed to give satisfactory
performance in some cases. Ferber et al. (2020) later extended this work by using a more
systematic approach to generate the LP relaxation of the ILP problem. They use the
method of cutting planes to discover an LP problem that admits the same solution as
the ILP. Subsequently, the method of (Wilder et al., 2019a) is applied to approximate the
LP mapping’s derivatives. Although this results in enhanced performance with respect to
regret, there are some practical scalability concerns, since the cut generation process is time
consuming but also must be repeated for each instance in each training epoch.

3.3 Smoothing by Random Perturbations

A central challenge in DFL is the need for smoothing operations of non-smooth optimization
mappings. Techniques that perform the smoothing operation by adding explicit regular-
ization functions to the optimization problems’ objective function have been surveyed in
Section 3.2. This section instead surveys techniques, which use implicit regularization via
perturbations. These techniques construct smooth approximations of the optimization map-
pings by adopting a probabilistic point of view. To introduce this point of view, the CO
problem in this section is not viewed as a mapping from c to x?(c). Rather, it is viewed
as a function that maps c onto a probability distribution over the feasible region F . From
this perspective, x?(c) can be viewed as a random variable, conditionally dependent on c.
The motivation behind representing x?(c) as a random variable is that the rich literature
of likelihood maximization with latent variables, in fields such as Probabilisic Graphical
Models (PGMs) (Koller & Friedman, 2009), can be exploited.

Implicit di↵erentiation by perturbation. One seminal work in the field of PGMs is
by Domke (2010). This work contains an important proposition, which deals with a setup
where a variable ✓1 is conditionally dependent on another variable ✓2 and the final loss L

is defined on the variable ✓1. Let p(✓1|✓2) and E[✓1|✓2] be the conditional distribution and
the conditional mean of ✓1. The loss L is measured on the conditional mean E[✓1|✓2] and
the goal is to compute the derivative of L with respect to ✓2. Domke (2010) proposes that
the derivative of L with respect to ✓2 can be approximated by the following finite di↵erence
method:

dL

d✓2
⇡

1

�

 
E[✓1|

�
✓2 + �

d

d✓1

�
L(E[✓1|✓2]

��
]� E[✓1|✓2]

!
(22)

where d

d✓1
[L(E[✓1])] is the derivative L with respect to ✓1 at E[✓1]. Notice that the first

term in (22) is the conditional mean after perturbing the parameter ✓2 where magnitude of
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the perturbation is modulated by the derivative of L with respect to ✓1. Taking inspiration
from this proposition, by defining a conditional distribution p(x?(ĉ)|ĉ), one can compute
the derivative of the regret with respect to ĉ in the context of DFL.

To perfectly represent the deterministic mapping c! x?(c), the straightforward choice
is to define a Dirac mass distribution, which assigns all probability mass to the optimal
point and none to other points, i.e.,

p(x|c) =

(
1 x = x?(c)

0 otherwise
(23)

Di↵erentiation of blackbox combinatorial solvers. Note that with the distribution
in (23) Ex⇠p(x|c)[x|c] = x?(c). Hence, using conditional probability in the proposition in

(22), dL(x?(ĉ))
dĉ can be computed in the following way:

dL(x?(ĉ))

dĉ
⇡ r

(DBB)
L(x?(ĉ)) =

 
x?

⇣
ĉ + �

dL(x?(ĉ))

dx?(ĉ)

⌘
� x?

⇣
ĉ
⌘!

(24)

The gradient computation methodology proposed by Pogančić et al. (2020) takes the form
of (24). They interpret it as substituting the jump-discontinuous optimization mapping
with a piece-wise linear interpolation. It is a linear interpolation of the mapping ĉ! x?(ĉ)

between the points ĉ and ĉ+� dL(x?(ĉ))
dx |x=x?(ĉ). Pogančić et al. (2020) call this ‘di↵erentiation

of blackbox’ (DBB) solvers, because this approach considers the CO solver as a blackbox
oracle, i.e., it does not take cognizance of how the solver works internally.

In a subsequent work, Sahoo, Paulus, Vlastelica, Musil, Kuleshov, and Martius (2023)

propose to treat dx?(ĉ)
dĉ as a negative identity matrix while backpropagating the loss. How-

ever, they notice that such an approach might run into unstable learning for scale-invariant
optimization problems such as LPs and ILPs. To negate this e↵ect, they suggest multi-
plying the cost vector with the matrix of the invariant transformation. In case of LPs and
ILPs this can be achieved by normalizing the cost vector through projection onto the unit
sphere.

Perturb-and-MAP. However, at this point it is worth mentioning that Domke (2010)
assumes, in his proposition, that the distribution p(✓1|✓2) in (22) belongs to the exponential
family of distributions (Barndor↵-Nielsen, 1978). Note that the distribution defined in
(23) is not a distribution of the exponential family. Nevertheless, a tempered softmax
distribution belonging to exponential family can be defined to express the mapping in the
following way:

p⌧ (x|c) =

(
exp(�f(x,c)/⌧)P

x02F exp(�f(x0,c)/⌧) x 2 F

0 otherwise
(25)

In this case, the log unnormalized probability mass at each x 2 F is proportional to
exp(�f(x, c)/⌧), the exponential of the negative of the tempered objective value. The
idea behind (25) is to assign a probability to each feasible solution such that solutions with
a better objective value have a larger probability. The parameter ⌧ a↵ects the way in which
objective values map to probabilities. When ⌧ ! 0, the distribution becomes the argmax
distribution in (23), when ⌧ ! 1, the distribution becomes uniform. In other words,
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the value of ⌧ determines how drastically the probability changes because of a change in
objective value. Good values for ⌧ are problem-dependent, and thus tuning ⌧ is advised.

Note that (22) deals with conditional expectation. As in the case of tempered softmax
distribution, the conditional expectation is not always equal to the solution to the CO
problem, it must be computed first to use the finite di↵erence method in (22). However,
computing the probability distribution function in (25) is not tractable, as the denominator
(also called the partition function) requires iterating over all feasible points in F . Instead,
Papandreou and Yuille (2011) propose a novel approach, known as perturb-and-MAP, to
estimate the probability using perturbations. It states that the distribution of the maximizer
after perturbing the log unnormalized probability mass by i.i.d. Gumbel(0, ✏) noise has the
same exponential distribution as (25). To make it more explicit, if c̃ = c + ⌘, where the

perturbation vector ⌘
i.i.d.
⇠ Gumbel(0, ✏),

P[x = argmax
x0

�f(x0, c̃)] = p✏(x|c) (26)

The perturb-and-MAP framework can be viewed as a method of stochastic smoothing (Aber-
nethy, Lee, & Tewari, 2016). A smoothed approximation of the optimization mapping is
created by considering the average value of the solutions of a set of nearby perturbed points.
With the help of (26), the conditional distribution and hence the conditional mean can be
approximated by Monte Carlo simulation.

Di↵erentiable perturbed optimizers. Berthet, Blondel, Teboul, Cuturi, Vert, and
Bach (2020) propose another approach for perturbation-based di↵erentiation. They name it
di↵erentiable perturbed optimizers (DPO). They make use of the perturb-and-MAP frame-
work to draw samples from the conditional distribution p(x|c). In particular, they use the
reparameterization trick (Kingma & Welling, 2014; Rezende, Mohamed, & Wierstra, 2014)
to generate samples from p(x|c). The reparameterization trick uses a change of variables to
rewrite x as a deterministic function of c and a random variable ⌘. In this reformulation, x
is still a random variable, but the randomness comes from the variable ⌘. They consider ⌘ to
be a random variable having a density proportional to exp(�⌫(⌘)) for a twice-di↵erentiable
function ⌫. Moreover, they propose to multiply the random variable ⌘ with a temperature
parameter ✏ > 0, which controls the strength of perturbing c by the random variable ⌘.
In summary, first c is perturbed with random perturbation vector ✏⌘, where ⌘ is sampled
from the aforementioned density function, and then the maximizer of the perturbed vector
c + ✏⌘ is viewed as a sample from the conditional distribution for given values of c and ✏,
i.e., x?

✏ (c) = x?(c + ✏⌘) is considered as a sample drawn from p(x|c) for a given ✏. They
call x?

✏ (c) a perturbed optimizer. Note that, for ✏ ! 0, x?
✏ (c) ! x?(c). Like before, x?

✏ (c)
can be estimated by Monte Carlo simulation by sampling i.i.d. random noise ⌘(m) from the
aforementioned density function. The advantage is that the Monte Carlo estimate is contin-
uously di↵erentiable with respect to c. This Monte Carlo estimate x̄?

✏ (c) can be expressed
as:

x̄?

✏ (c) =
1

M

MX

m=1

x?

⇣
c + ✏⌘(m)

⌘
(27)
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Moreover, its derivative can be estimated by Monte Carlo simulation too

dx̄?
✏ (c)

dc
=

1

✏

1

M

MX

m=1

x?(c + ✏⌘(m))⌫ 0(⌘(m))> (28)

where ⌫ 0 is the first order derivative of ⌫. They can approximate dx?(c)
dc by dx̄?

✏ (c)
dc to imple-

ment the backward pass. As mentioned before, if ✏! 0, the estimation will be an unbiased
estimate of x?(c). However, in practice, for low values of ✏, the variance of the Monte-Carlo
estimator will increase, leading to unstable and noisy gradients. This is in line with the
smoothing-versus-accuracy trade-o↵ mentioned before. Berthet et al. (2020) use this DPO
framework to di↵erentiate any optimization problem with linear objective. For a CO prob-
lem with discrete feasible space, they consider the convex hull of the discrete feasible region.
Furthermore, Berthet et al. (2020) construct the Fenchel-Young loss function and show for
Fenchel-Young loss function, the gradient can be approximated in the following way:

rL
FY (x?(ĉ)) = �

�
x̄?

✏ (ĉ)� x?(c)
�

(29)

In a later work, Dalle, Baty, Bouvier, and Parmentier (2022) extend the perturbation
approach, where they consider multiplicative perturbation. This is useful when the cost
parameter vector is restricted to be non-negative, such as in the applications of shortest
path problem variants. The work of Paulus, Choi, Tarlow, Krause, and Maddison (2020)
can also be viewed as an extension of the DPO framework. They introduce stochastic
softmax tricks (SST), a framework of Gumbel-softmax distribution, where they propose
di↵erentiable methods by sampling from more complex categorical distributions.

Implicit maximum likelihood estimation (I-MLE). Niepert, Minervini, and Franceschi
(2021) also use the perturb-and-MAP framework. However, they do not sample noise from
the Gumbel distribution, rather they report better results when the noise ⌘� is sampled
from a Sum-of-Gamma distribution with hyperparameter �. Combining the finite di↵erence
approximation (22) with the perturb-and-MAP framework, the gradient takes the following
form:

dL(x?(ĉ))

dĉ
⇡ r

(IMLE)
L(x?(ĉ)) =

 
x?

⇣
ĉ + �

dL(x?(ĉ))

dx?(ĉ)
+ ✏⌘�

⌘
� x?

⇣
ĉ + ✏⌘�

⌘!
(30)

where ✏ > 0 is a temperature parameter, which controls the strength of noise perturbation.
Clearly, (30) turns into (24) when there is no noise perturbation, i.e., if ⌘� = 0.

Discussion. One major advantage of the methodologies explained in this subsection is
that for gradient computation they call the optimization solver as a blackbox oracle and
only use the solution returned by it for gradient computation. In essence, these techniques
are not concerned with how the CO problem is solved. The users can utilize any techniques
of their choice—constraint programming (CP) (Rossi, van Beek, & Walsh, 2006), Boolean
satisfiability (SAT) (Gomes, Kautz, Sabharwal, & Selman, 2008) or linear programming
(LP) and integer linear programming (ILP) to solve the CO problem.
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3.4 Di↵erentiation of Surrogate Loss Functions

The methodologies explained in the preceding subsections can be viewed as implemen-
tations of di↵erentiable optimization layers, which solve the CO problem in the forward
pass and return useful approximations of dx?(ĉ)

dĉ in the backward pass. Consequently, those
methodologies can be used to introduce optimization layers anywhere in a neural network
architecture, and can be combined with arbitrary loss functions. In contrast, the method-
ologies that will be introduced next can only be used to di↵erentiate regret (3)—a specific
task loss. Hence, models can only be trained in an end-to-end fashion using these techniques
when the CO problem occurs in the final stage of the pipeline, as in the case of Predict-
Then-Optimize problems. Also note that the computation of the regret requires both the
ground-truth cost vector c; as well as ground-truth solution x?(c). If c is observed, x?(c)
can be computed. However, if only x?(c) is observed, c cannot directly be recovered. Hence,
the techniques that will be discussed next are not suitable when the true cost vectors c are
not observed in the training data.

Smart “Predict, Then Optimize”. Elmachtoub and Grigas (2022) developed Smart
“Predict, Then Optimize” (SPO), a seminal work in DFL. As the gradient of the regret
with respect to cost vector ĉ is zero almost everywhere, SPO instead uses a surrogate loss
function that has subgradients which are useful in training. They start by proposing a
convex surrogate upper bound of regret, which they call the SPO+ loss.

LSPO+(x?(ĉ)) = 2ĉ>x?(c)� c>x?(c) + max
x2F

{c>x� 2ĉ>x} (31)

Then, they derive the following useful subgradient of LSPO+(x?(ĉ)):

x?(c)� x?(2ĉ� c) 2 @LSPO+ (32)

This subgradient is used in place of to update the model parameters in the backward pass.
From a theoretical point of view, the SPO+ loss has the Fisher consistency property with

respect to the regret, under certain distributional assumptions. A surrogate loss function
satisfies the Fisher consistency property if the function that minimizes the surrogate loss
also minimizes the true loss in expectation (Zou, Zhu, & Hastie, 2008). Concretely, this
means that minimizing the SPO+ loss corresponds to minimizing the regret in expectation.
While training ML models with a finite dataset, an important property of considerable
interest would be risk bounds (Massart & Nédélec, 2006). Liu and Grigas (2021) develop
risk bounds for SPO+ loss and show that low excess SPO+ loss risk translates to low excess
regret risk. Furthermore, El Balghiti, Elmachtoub, Grigas, and Tewari (2019) develop worst-
case generalization bounds of the SPO loss.

The SPO framework is applicable not only to LPs, but to any CO problems where the cost
parameters appear linearly in the objective function. This includes QPs, ILPs and MILPs.
Mandi et al. (2020) empirically investigated how the framework performs on ILP problems.
However, as these problems are much more computationally expensive to solve than the ones
considered by Elmachtoub and Grigas (2022), they compared the regular SPO methodology
with a variant in which, it is significantly cheaper to solve the CO problem during training.
To be specific, they consider LP relaxations of the ILPs These LP relaxations are obtained
by considering the continuous relaxation of the ILPs, i.e., they are variants of the ILPs
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in which the integrality constraints are dropped. Using the LP relaxations significantly
expedite training, without any cost: Mandi et al. (2020) did not observe a significant
di↵erence in the final achieved regret between these two approaches, with both of them
performing better than the prediction-focused approach. However, one should be cautious
to generalize this result across di↵erent problems, as it might be dependent on the integrality
gap between the ILP and its LP relaxation.

Next, within this category, a di↵erent type of DFL technique is being surveyed. In
these DFL techniques, the surrogate loss functions are supposed to reflect the decision
quality, but their computations do not involve solving the CO problems, thereby avoiding
the zero-gradient problem.

Noise contrastive estimation. One such approach is introduced by Mulamba et al.
(2021). Although their aim is still to minimize regret, computation of rĉRegret(x?(ĉ), c)
has been avoided by using a surrogate loss function. In their work, the CO problem is viewed
from a probabilistic perspective, as in (25). However, instead of maximum likelihood esti-
mation, the noise contrastive estimation (NCE) (Gutmann & Hyvärinen, 2010) method is
adopted. NCE has been extensively applied in many applications such as language mod-
eling (Mnih & Teh, 2012), information retrieval (Huang, He, Gao, Deng, Acero, & Heck,
2013) and entity linking (Gillick, Kulkarni, Lansing, Presta, Baldridge, Ie, & Garcia-Olano,
2019). Its basic idea is to learn to discriminate between data coming from the true un-
derlying distribution and data coming from a noise distribution. In the context of DFL,
this involves contrasting the likelihood of ground-truth solution x?(c) and a set of negative
examples S. In other words, the following ratio is maximized:

max
ĉ

X

x02S

p⌧ (x?(c)|ĉ)

p⌧ (x0|ĉ)
(33)

where x0
2 S is a negative example. Because the probability p⌧ (x?(c)|ĉ) is defined as in

(25), when ⌧ = 1, maximizing (33) corresponds to minimizing the following loss:

LNCE(ĉ, c) =
X

x02S
f(x?(c), ĉ)� f(x0, ĉ) (34)

In other words, this approach learns to predict a ĉ for which ground-truth solution x?(c)
achieves a good objective value, and for which other feasible solutions x0 achieve worse
objective values. Note that when f(x?(c), ĉ)  f(x0, ĉ) for all x0

2 F , it holds that x?(c) =
x?(ĉ), and thus the regret is zero. Also note that computing LNCE(ĉ, c) does not involve
computing x?(ĉ), circumventing the zero-gradient problem.

As an alternative to NCE, Mulamba et al. (2021) also introduce a maximum a posteriori
(MAP) approximation, in which they only contrast the ground-truth solution with the most
probable negative example from S according to the current model:

LMAP (ĉ, c) = max
x02S

f(x?(c), ĉ)� f(x0, ĉ)

= f(x?(c), ĉ)� f(x0, ĉ) where x0 = argmin
x2S

f(x, ĉ) (35)

Note that whenever x?(ĉ) 2 S, it holds that LMAP (ĉ, c) = f(x?(c), ĉ)�f(x?(ĉ), ĉ). This is
also known as self-contrastive estimation (SCE) (Goodfellow, 2015) since the ground-truth
is contrasted with the most likely output of the current model itself.
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Also note that for optimization problems with a linear objective, the losses are LNCE(ĉ, c) =P
x02S ĉ>(x?(c)� x0) and LMAP (ĉ, c) = ĉ>(x?(c)� x0), where x0 = argminx2S f(x, ĉ). In

order to prevent the model from simply learning to predict ĉ = 0, the following alternate
loss functions are proposed for these kinds of problems:

L
(ĉ�c)
NCE

(ĉ, c) =
X

x02S
(ĉ� c)>(x?(c)� x0) (36)

L
(ĉ�c)
MAP

(ĉ, c) = max
x02S

(ĉ� c)>(x?(c)� x0) (37)

Construction of S. Forming S by sampling points from the feasible region F is a crucial
part of using the contrastive loss functions. To this end, Mulamba et al. (2021) proposes
to construct S by caching all the optimal solutions in the training data. That is why they
name S as ‘solution cache’. While training, more feasible points are gradually added to S
by solving for some of the predicted cost vectors. However, in order to avoid computational
cost, the solver call is not made for each predicted cost during training. Whether to solve for
a predicted cost vector is decided by pure random sampling, i.e., is based on a biased coin
toss with probability psolve. Intuitively, the psolve hyperparameter determines the proportion
of instances for which the CO problem is solved during training. Experimentally, it has
been reported that psolve = 5% of the time is often adequate, which translates to solving
for only 5% the predicted instances. This translates to reducing the computational cost
by approximately 95%, since solving the CO problems represents the major bottleneck in
terms of computation time in DFL training.

Approximation of a solver by solution-cache. Furthermore, Mulamba et al. (2021)
propose a solver-free training variant for any methodology that treats the optimization
solver as a blackbox oracle. Such methodologies include the aforementioned I-MLE, DBB,
SPO. In this solver-free implementation, solving the optimization problem is substituted
with a cache lookup strategy, where the minimizer within the cache S ⇢ F is considered as
a proxy for the solution to the optimization problem (i.e., the minimizer within F). This
significantly reduces the computational cost as solving an optimization problem is replaced
by a linear search within a limited cache. Such an approximation can be useful in case the
optimization problem takes long to solve.

DFL as a learning to rank (LTR) problem. In a later work, Mandi et al. (2022)
observe that LNCE (34) can be derived by formulating DFL as a pairwise learning to rank
task (Joachims, 2002). The learning to rank task consists of learning the implicit order over
the solutions in S invoked by the objective function values achieved by the solutions with
respect to c. In other words, it involves learning to predict a ĉ that ranks the solutions in S
similarly to how c ranks them. In the pairwise approach, x?(c) and any x0

2 S are treated
as a pair and the model is trained to predict ĉ such that the ordering of each pair is the
same for c and ĉ. The loss is considered to be zero if ĉ>x?(c) is smaller than ĉ>x0 by at
least a margin of ⇥ > 0. The pairwise loss is formally defined in the following form:

LPairwise(ĉ, c) =
X

x02S
max

�
0,⇥+ (f(x?(c), ĉ)� f(x0, ĉ))

�
(38)

27



Mandi, Kotary, et al.

Another loss function is formulated by considering the di↵erence in di↵erences between
the objective values at the true optimal x?(c) and non-optimal x0 with c and ĉ as the
parameters.

LPairwiseDi↵erence(ĉ, c) =
X

x02S

✓�
f(x?(c), ĉ)� f(x0, ĉ)

�
�
�
f(x?(c), c)� f(x0, c)

�◆2

(39)

Further, motivated by listwise learning to rank task (Cao, Qin, Liu, Tsai, & Li, 2007),
a loss function is proposed by Mandi et al. (2022) where the ordering of all the items in
S is considered, rather than the ordering of pairs of items. Cao et al. (2007) define this
listwise loss based on a top-one probability measure. The top-one probability of an item is
the probability of it being the best of the set. Note that such probabilistic interpretation in
the context of DFL is already defined in Section 3.3. Mandi et al. (2022) make use of the
tempered softmax probability defined in (25). Recall that this p⌧ (x|c) can be interpreted as
a probability measure of x 2 F being the minimizer of f(x, c) in F for a given c. However,
as mentioned before, direct computation of p⌧ (x|c) requires iterating over all feasible points
in F , which is intractable. Therefore Mandi et al. (2022) compute the probability with
respect to S ⇢ F . This probability measure finally is used to define a listwise loss—the
cross-entropy loss between p⌧ (x|c) and p⌧ (x|ĉ), the distributions obtained for ground-truth
c and predicted ĉ. This can be written in the following form:

LListwise(ĉ, c) =

✓
�

1

|S|

X

x02S
p⌧ (x

0
|c) log p⌧ (x

0
|ĉ)

◆
(40)

The main advantage of (34), (35), (38), (39) and (40) is that they are di↵erentiable and
can be computed directly by any neural network library via automatic di↵erentiation. Also
note that the computation and di↵erentiation of the loss functions are solver-free, i.e., they
need not solve the optimization problem to compute the loss or its derivative.

Learning e�cient surrogate solvers. Another research direction without optimization
in the loop is based on reducing the computational cost associated with repeatedly solv-
ing optimization problems, by learning e�ciently computable and di↵erentiable surrogate
losses that approximate and replace the true task loss. Shah, Wang, Wilder, Perrault, and
Tambe (2022) propose to learn a surrogate of the regret function by parametric local losses.
Due to the di�culty of learning a single convex surrogate function to estimate regret, a
convex local surrogate is learned for each data sample in training. By design, the surrogate
losses are automatically di↵erentiable, and thus they eliminate the need for a di↵erentiable
optimization solver.

3.5 Discussion

So far, in this section, an extensive overview of di↵erent DFL methodologies have been
provided. For the ease of the readers, a summary of some of the key DFL techniques,
discussed so far, have been provided in Table 1. The second column of Table 1 highlights the
form of the CO problem applicable to the technique. Note that although some techniques
are generally applicable to any optimization problem forms, most techniques have been
evaluated so far using CO problems with linear objective functions. The third column
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Methodology CO Problem Forms Computation of Gradient
Di↵erentiable
Optimization

Layer

OptNet
(Amos & Kolter, 2017)

Convex QPs
Implicit di↵erentiation of

KKT conditions
4

Cvxpylayers
(Agrawal et al., 2019a)

Convex problems
Implicit di↵erentiation of
HSD of conic programs

4

Fold-opt
(Kotary et al., 2023)

Convex and nonconvex
problems

Implicit di↵erentiation
based on unrolling

4

QPTL
(Wilder et al., 2019a)

LPs, ILPs
Implicit di↵erentiation

after transforming into QPs
by adding regularizer

4

Intopt
(Mandi & Guns, 2020)

LPs, ILPs
Implicit di↵erentiation of
HSD of (relaxed) LPs by

adding log-barrier relaxation
4

Mipaal
(Ferber et al., 2020)

ILPs
Conversion of ILPs into LPs
by method of cutting planes

before applying QPTL
4

DBB
(Pogančić et al., 2020)

Optimization problems
with a linear objective

Di↵erentiation of
linear interpolation

of optimization mapping
4

Negative identity
(Sahoo et al., 2023)

Optimization problems
with a linear objective

Treating the CO solver as
negative identity mapping

4

I-MLE
(Niepert et al., 2021)

Optimization problems
with a linear objective

Finite di↵erence approximation
with perturb-and-MAP

4

DPO
(Berthet et al., 2020)

Optimization problems
with a linear objective

Di↵erentiation of
perturbed optimizer

4

FY
(Berthet et al., 2020)

Optimization problems
with a linear objective

Di↵erentiation of perturbed
Fenchel-Young loss

8

SPO
(Elmachtoub & Grigas, 2022)

Optimization problems
with a linear objective

Di↵erentiation of
surrogate SPO+ loss

8

NCE
(Mulamba et al., 2021)

Generic optimization
problems

Di↵erentiation of
surrogate contrastive loss

8

LTR
(Mandi et al., 2022)

Generic optimization
problems

Di↵erentiation of
surrogate LTR loss

8

LODL
(Shah et al., 2022)

Generic optimization
problems

Di↵erentiation of a
learned convex local surrogate loss

8

Table 1: A concise overview of gradient modeling techniques in key DFL methodologies
that use gradient-based learning.
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summarizes the gradient computation technique. The fourth column indicates whether
that particular technique is compatible with any generic task loss. Techniques, termed as
implementations of di↵erentiable optimization layers, can be embedded in any stage of an
NN architecture. The other techniques are applicable where optimization is the final stage
of the pipeline (such as in Predict-Then-Optimize problem formulations) and a particular
loss (most often regret) is used as the task loss.

3.6 Other Aspects of Decision-Focused Learning

In the following, some aspects related to DFL, that have not yet been discussed in this
manuscript, will be highlighted. To begin with, it should be noted that certain CO problems
may have multiple non-unique optimal solutions for a given cost vector. This can occur
when the cost vector of an LP is parallel to one of the faces of the feasible polyhedron.
Moreover, problems involving symmetric graphs often exhibit multiple optimal solutions,
especially when the problems’ solution can be transformed into other solutions through
automorphisms (Weisstein, 2000). It is important to note that if the predicted cost vector
has multiple non-unique optimal solutions, each of these solutions may have di↵erent value
of regret. In such scenarios, Elmachtoub and Grigas (2022) propose to consider the worst-
case regret. To do so, the set of optimal solutions of ĉ can be represented by X

?(ĉ). And
then the worst-case regret can be defined in the following form:

Regret(x?(ĉ), c) = max
x?(ĉ)2X ?(ĉ)

f(x?(ĉ), c)� f(x?(c), c) (41)

Having addressed the possibility of the presence of multiple non-unique optimal solutions
in a CO problem, the focus now turns to other important facets of DFL.

3.6.1 Prediction-focused vs. Decision-focused learning

DFL methodologies are expected to deliver lower regret than a PFL approach in Predict-
Then-Optimize problems, as the ML model is directly trained to achieve low regret. How-
ever, as discussed before, the implementation of DFL poses significant challenges. In fact,
practitioners may be tempted to resort to a PFL approach to circumvent the computational
costs associated with DFL, when dealing with real-world Predict-Then-Optimize problems.
To encourage practitioners to adopt DFL methodologies, it is crucial to investigate scenarios
where DFL methodologies outperform the PFL approach. To this end, Elmachtoub, Lam,
Zhang, and Zhao (2023) conduct a theoretical comparison of the limiting distributions of
the optimality gaps between the two approaches in the context of stochastic optimization.
They show the PFL approach that does not consider optimization while training the model
asymptotically outperforms the integrated prediction and optimization approach, employed
by DFL methodologies, if the underlying prediction model is well-specified. This is in-
tuitive, as a well-specified model tends to produce highly accurate predictions, which can
contribute to the success of the PFL approach. In such cases, the DFL methodologies might
perform worse than PFL since training in DFL involves approximate gradients (because the
true gradient is zero almost everywhere), whereas the gradient is well-defined for a PFL
approach. On the other hand, they show that if the model is not well-specified, a PFL ap-
proach perform suboptimally compared to the DFL approach. Hence, it is recommended to
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use DFL when there exists aleatoric or epistemic uncertainty. As most real-world settings
include various sorts of uncertainty—both aleatoric and epistemic—DFL methodologies
are expected to outperform the PFL approach. In a separate work, Cameron, Hartford,
Lundy, and Leyton-Brown (2022) show that the suboptimality of the PFL becomes more
pronounced in the presence of correlations between the predicted parameters.

3.6.2 Alternatives to gradient-based decision-focused learning

The methodologies explained so far implement DFL by gradient descent training, which
is the go-to approach for training neural networks. However, note that there exist other
machine learning frameworks, such as tree-based methods, which do not require gradient-
based training. To avoid the problem of zero-valued gradients altogether, several works
have considered alternatives to gradient-based learning instead.

In SPO Trees (SPOTs) (Elmachtoub, Liang, & McNellis, 2020), the predictive model
is a decision tree or ensemble of decision trees. Such models can be learned by recursive
partitioning with respect to the regret directly, and thus do not require the use of the SPO+
surrogate loss function introduced by Elmachtoub and Grigas (2022). Alternatively, the tree
learning problem can be posed as a MILP and be solved by an o↵-the-shelf solver, in the
same spirit as Jeong, Jaggi, Butler, and Sanner (2022). Jeong et al. (2022) formulate the
problem of minimizing regret as a mixed-integer linear program (MILP), when the predictive
model is linear. They start from the bilevel optimization formulation, introduced in (6a)
and (6b). First, the transition points where the solution of the lower level program (6b)
changes are identified, and then the solution space is exhaustively partitioned, and for each
partition the solution is annotated. This paves the way to construct a MILP formulation
of the outer program (6a). This MILP problem is solved to learn the parameters ! of the
linear predictive model. The resulting model is guaranteed to be globally optimal, which is
not the case for gradient-based methods that might get stuck in a local optimum. However,
their method is limited to ML models that are linear and optimization problems that are
binary MILPs.

Demirović, Stuckey, Guns, Bailey, Leckie, Ramamohanarao, and Chan (2020) consider
linear ML models and represent the objective function of the CO problem as a piece-wise
linear function of the ML parameters. In this proposed technique, the ML parameters are
updated via coordinate descent algorithm, where each component of the cost vector is up-
dated at a time to minimize the regret keeping other components fixed. This technique
requires identifying the transition points, where regret changes, as function of each compo-
nent of the cost parameter. Demirović et al. (2020) consider CO problems that can be solved
by dynamic programming and identify the transition points using dynamic programming.
In a later work, Guler, Demirović, Chan, Bailey, Leckie, and Stuckey (2022) extend this
technique by employing a ‘divide-and-conquer’ algorithm to identify the transition points
for CO problems whose objective function is a bilinear function of the decision variables
and the predicted parameters. This development generalizes the previous work (Demirović
et al., 2020) to cover much broader class of CO problems and o↵ers a substantial speed im-
provement. The ‘branch & learn’ approach proposed by HU, Lee, Lee, and Zhong (2022),
which consider CO problems that can be solved by recursion, also extends this technique.
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3.6.3 Predicting parameters in the constraints

The majority of the works in DFL aim to predict parameters in the objective function
and assume that the feasible space is precisely known. However, in many applications
the unknown parameters occur in the constraints as well as in the objectives. When the
parameters in the constraints are predicted and prescribed decisions are made using the
predicted parameters, one major issue is that the prescribed decisions might turn out to
be infeasible with respect to the true parameters. In this case, the task loss should not
only minimize the suboptimality of the prescribed decisions, but it should also penalize if
the prescribed decisions become infeasible. Hence designing DFL algorithms suitable for
such problems entails a few additional considerations. The first consideration deals with
quantifying the extent of infeasibility when the prescribed decisions become infeasible with
respect to the true parameters. In this regard, Garcia, Street, Homem-de Mello, and Muñoz
(2021) propose to add artificial slack variables with high penalty costs in the objective
function to penalize infeasible decisions. In a recent work, Hu et al. (2022) introduce the
notion of post-hoc regret, wherein a non-negative penalty is added to regret to account for
the conversion of infeasible solutions into feasible ones. This idea of a penalty function shares
a fundamental resemblance to the concept of recourse action in stochastic programming
(Ruszczyński & Shapiro, 2003). In a later work, Hu, Lee, and Lee (2023b) apply the
‘branch & learn’ (HU et al., 2022) to minimize post-hoc regret in CO problems, solvable by
recursion.

The second consideration is formulating a task loss that strikes a balance between trad-
ing o↵ suboptimality and the measure of infeasibility. The next consideration is computing
the gradients of this task loss with respect to the parameters in the constraints. Some of
the techniques discussed in Section 3.1 can be utilized for this purpose. For example, the
gradient can be obtained by solver unrolling. Tan, Delong, and Terekhov (2019) compute
the gradient by unrolling a LP. As the parameters in the constraints are also present in the
the KKT conditions (13), it is possible to compute the gradients for optimization problems,
with di↵erentiable constraint functions by di↵erentiating the KKT conditions using the
techniques discussed in Section 3.1. Hu et al. (2022) shows how the gradient can be com-
puted by di↵erentiating the KKT conditions for packing and covering LPs. For an LP, Tan,
Terekhov, and Delong (2020) provide a empirical risk minimization formulation considering
both the suboptimlaity of the prescribed decision and the feasibility of the true optimal
decisions. This formulation takes the form of a non-linear optimization program and they
propose to compute the derivative by considering its sequential quadratic programming
(SQP) approximation.

The task of computing the gradients of the task loss with respect to the parameters in
the constraints is particularly challenging for combinatorial optimization problems, which
often involves discrete feasible space. For combinatorial optimization problems, it might
happen that no constraints are active at the optimal point. So, slight changes of the pa-
rameters in the constraints do not change the optimal solution leading towards the problem
of zero gradients. Hence coming up with meaningful gradients for back-propagation is a
big challenge for combinatorial optimization problems. Paulus, Roĺınek, Musil, Amos, and
Martius (2021) develop a di↵erentiable optimization layer for ILPs, which considers the
downstream gradient of the solution as an input and returns the directions of the updating
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the parameters in the backward pass. They update the parameters along the directions so
that the Euclidean distance between the solution of the updated parameter and the up-
dated solution with the downstream gradient is minimized. For ILPs, Nandwani, Ranjan,
Mausam, and Singla (2023) view the task of constraint learning from the lens of learning
hyperplanes, which is common in classification tasks. Such an approach requires negative
samples. However, the negative samples in this setting must also include infeasible points,
which is di↵erent from the framework proposed by Mulamba et al. (2021).

3.6.4 Model robustness in decision-focused learning

The issue of model robustness arises often in deep learning. As has been shown in many
works, it is often possible for malicious actors to craft inputs to a neural network in such a
way that the output is manipulated (evasion attacks) (Goodfellow, Shlens, & Szegedy, 2014),
or to generate training data which cause adverse e↵ects on the performance of the trained
model (poisoning attacks). As a subset of machine learning, some adversarial settings also
apply in DFL.

Evasion attacks, despite being the most commonly studied adversarial attacks, do not
generalize straightforwardly to DFL since they inherently pertain to classification models
with finite output spaces. On the other hand, it is shown by Kinsey, Tuck, Sinha, and
Nguyen (2023) that e↵ective poisoning attacks can be made against DFL models. The
paper shows that while such attacks can be e↵ective, they are computationally expensive
due to the optimization which must be repeatedly evaluated to form the attacks. On the
other hand, it is also demonstrated that poisoning attacks designed against two-stage models
can be transferred to fully integrated DFL models.

Separately, Johnson-Yu, Wang, Finocchiaro, Taneja, and Tambe (2023) study robust-
ness of decision-focused learning under label noise. The paper provides bounds on the
degradation of regret when test-set labels are corrupted by noise relative to those of the
training set. An adversarial training scheme is also proposed to mitigate this e↵ect. The
robust training problem is equivalent to finding the equilibrium solution to a Stackelberg
game, in which a figurative adversary applies label noise that is optimized to raise regret,
while the main player seeks model parameters that minimize regret.

3.6.5 Stochastic optimization

Settings in decision-focused learning based on stochastic optimization models are studied
by Donti, Kolter, and Amos (2017). In contrast to more typical settings, the downstream
decision model is considered to be a stochastic optimization problem. In this formulation, it
is only possible to predict parameters of a random distribution that models the parameters
of an optimization problem. For instance, the mean and variance of load demands in a power
scheduling problem could be modeled as parameters of the optimization problem. Their
work shows how such problems can be converted to DFL with deterministic decision models
and solved using the techniques described in this article. To this end, it also introduces an
e↵ective technique for approximating the derivatives through arbitrary convex optimization
problems, by forming and di↵erentiating their quadratic programming approximations, as
computed by sequential quadratic programming.
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3.6.6 Problems other than optimization problems

Furthermore, we believe that DFL can be further extended to encompass problems beyond
optimization problems, thereby broadening its applicability. For instance, to integrate sym-
bolic reasoning into neural network architectures, Wang, Donti, Wilder, and Kolter (2019)
make use of MAXSAT solvers and perform end-to-end training of the neural network by
di↵erentiating through the semidefinite program (SDP) relaxations of the MAXSAT prob-
lems. Wilder, Ewing, Dilkina, and Tambe (2019b) consider the K-means clustering in a
graph as the optimization problem, i.e., the optimization problem in their case is to cluster
the nodes of a given graph into K segments. They embed the K-means clustering as a layer
in a neural network architecture by di↵erentiate through the clustering layer. Wang, Shah,
Chen, Perrault, Doshi-Velez, and Tambe (2021) further extend DFL, for sequential decision
making problems, where the decision making problems have been formulated as Markov
decision processes (MDPs). In such cases, the DFL problem deals with the challenge of
predicting the unknown parameters in the MDPs.

3.6.7 Active learning algorithm for DFL

Active learning concerns with ML problems where labeled data are scarce or expensive to
obtain. To address the challenge of limited training data, active learning algorithms choose
the most informative instances for labeling (Settles, 2009). Liu, Grigas, Liu, and Shen
(2023) study active learning in DFL paradigm. To choose datapoints for which to ask for
a label, they propose to use notion of ‘distance to degeneracy’ (El Balghiti et al., 2019).
Distance to degeneracy measures how far the predicted cost vector is from the set of cost
vectors that have multiple optimal solutions. They argue that if distance to degeneracy is
higher at a datapoint, there is more certainty regarding the solution (of the CO problem);
hence they propose to acquire the label of a datapoint if its distance to degeneracy is lower
than a threshold.

3.6.8 Multi-task decision-focused learning

In most DFL works, a single task is considered. For instance, in the shortest path benchmark
considered by Elmachtoub and Grigas (2022), the grid structure and the start and end nodes
are the same in all instances. However, one often has to deal with multiple tasks at once, in
which it would be convenient to make decision-focused predictions, without having to train
a separate model for each task. A first step in this direction was recently taken in (Tang
& Khalil, 2023a). This paper proposes a way of training a model in a decision-focused
way with respect to multiple tasks at once. They consider two kinds of architectures. The
first is a regular multi-layer perceptron that outputs a single vector ĉ which is used in the
di↵erent tasks. The di↵erent resulting task losses then get aggregated to inform the update
to weights !, i.e., the weights ! are trained to produce a ĉ that generally works well for
the di↵erent tasks considered. The second architecture is a multi-headed one, consisting of
one or more shared first layers, followed by a dedicated head for every task. This means
that a di↵erent vector ĉi is produced for every task. Their results show that they can train
a model that can make e↵ective decision-focused predictions for multiple tasks at once, and
that this is particularly beneficial when not that many training data are available. However,
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a remaining limitation is that the model can still not be trained with the aim of generalizing
to new tasks.

4. Applications of Decision-Focused Learning

The Predict-Then-Optimize problem occurs in many real-world applications, as optimal
decisions can be found by solving CO problems and due to the presence of uncertainty,
some parameters of the CO problems must be estimated. Having seen the development of
DFL for Predict-Then-Optimize problems in the preceding section, practical uses of DFL
in various application domains will be presented below. As DFL techniques, which predict
cost parameters have been reviewed in Section 3, applications, presented below, focus on
the task of predicting only the cost parameters.

Computer vision. The DBB framework (Pogančić et al., 2020) (reviewed in Section 3.3)
has been used by Rolinek, Musil, Paulus, Vlastelica, Michaelis, and Martius (2020a) for
di↵erentiating rank-based metrics such as precision and recall and by Roĺınek, Swoboda,
Zietlow, Paulus, Musil, and Martius (2020b) and Kainmueller, Jug, Rother, and Myers
(2014) for di↵erentiating bipartite matching in deep graph and multi-graph matching prob-
lems respectively in the application of semantic keypoint matching of images.

Fair Learning to Rank. In learning to rank (LTR), a machine learning model must
produce rankings of documents in response to users’ search queries, in which those most
relevant to a given query are placed in the highest ranking positions. In this setting, the
relevance of documents to queries is often measured empirically by historical user click
rates (Cao et al., 2007). In fair learning to rank (FLTR), this relevance-based matching
must be performed subject to strict constraints on the relative exposure between predefined
groups. Due to the di�culty of enforcing such constraints on the outputs of a machine
learning model, many FLTR frameworks resort to a two-stage approach in which prediction
of query-document relevance scores is learned by a typical LTR model without constraints
on fairness of exposure. At test time, the predicted relevance scores inform the objective of
a separate fair ranking optimization program (Singh & Joachims, 2018). Kotary, Fioretto,
Van Hentenryck, and Zhu (2021) use DFL to unify the prediction of relevance scores with
the subsequent optimization of fair rankings, in an end-to-end model trained by SPO which
learns to map user queries directly to the fair ranking policies that optimize user relevance.
The result is a FLTR model which outperforms previous penalty-based models in terms
of both user relevance and fairness, with the ability to directly control their trade-o↵s by
modifying the fairness constraints of the optimization layer.

Route optimization. Ferber, Gri�n, Dilkina, Keskin, and Gore (2023) present an inter-
esting application, where DFL is used to combat the challenge of wildlife tra�cking. They
consider the problem of predicting the flight trajectory of tra�ckers based on a given pair of
source and destination airports. It is framed as a shortest path problem in a graph, where
each node is an airport. In the prediction stage, the probability of using a directed edge
(i, j) to leave the node i is predicted. In the optimization stage, the most likely path from
the source to the destination is found by solving a shortest path problem where the negative
log probabilities are used as edge weights. In this Predict-Then-Optimize formulation, the
probabilities are predicted via DFL, using the DBB framework for gradient computation.
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Solving a shortest path problem by considering the negative log probabilities as edge
weights has also been explored by Mandi, Canoy, Bucarey, and Guns (2021). In (Mandi
et al., 2021), the objective is to prescribe most preferred routing in capacitated vehicle
routing problem (CVRP) (Toth & Vigo, 2015) for last-mile delivery applications. A high
probability value for the edge (i, j) indicates that it is the preferred edge to leave the node
i. However, they do not observe any advantage of DFL paradigm over PFL paradigm and
attribute this to the lack of training data instances (fewer than 200 instances). DFL is used
for last-mile delivery applications by Chu, Zhang, Bai, and Chen (2021) too. However, there
the objective is to minimize total travel time. In the prediction stage, the travel times of
all the edges are predicted and in the optimization stage, the CVRP is solved to minimize
the total travel time. The underlying model is trained using the SPO framework to directly
minimize the total travel time.

Maritime transportation. The inspection of ships by port state control has been framed
as a Predict-Then-Optimize problem by Yang, Yan, and Wang (2022). Due to limited
number of available personnel, the aim is to identify non-compliant ships with high detention
risk beforehand and select those ships for inspection. A ship can be found to be non-
compliant by port state control in multiple categories. If a ship is found to be non-compliant
for a category, the deficiency number for that category will be recorded as one. In the
prediction stage, a linear model is built to identify deficiency numbers of the ships in all the
categories and in the optimization stage, a CO problem is solved to select ships maximizing
the total number of deficiencies. Due to the nature of the large-scale optimization problem,
training in the SPO framework is not practical. Therefore, they employ pairwise-comparison
based loss function, similar to Eq. (38) to implement DFL. Ship maintenance activities by
ship owners have been framed as Predict-Then-Optimize problems by Tian, Yan, Liu, and
Wang (2023). The ship owners have to schedule regular maintenance activities to remain
compliant. However, as maintenance activities are expensive, the objective of identifying
categories that may warrant immediate detentions has been considered. To do so, in the
prediction stage, a random forest model is built to predict the deficiency number (likelihood
of non-compliance) for each category. In the optimization stage, a CO problem is formulated
considering maintenance cost and detention cost to determine whether maintenance activity
should be scheduled for each category. The random forest models are trained to directly
minimize regret using SPOTs (Elmachtoub et al., 2020).

Planning and Scheduling. Wahdany, Schmitt, and Cremer (2023) provide a use-case of
DFL in renewable power system application. In their work, the prediction stage involves the
task of generating wind power forecasts. As these forecasts are further used in power system
energy scheduling, the task of minimizing power system operating costs has been considered.
Cvxpylayers (Agrawal, Amos, Barratt, Boyd, Diamond, & Kolter, 2019b) has been used
to directly train the model with the objective of minimizing power system operating costs.
DFL is applied in power system application by Sang, Xu, Long, Hu, and Sun (2022) also.
In the prediction stage electricity prices are predicted and the optimization stage deals with
optimal energy storage system scheduling to maximize arbitrage benefits. Lower values of
regret have been reported when the prices are predicted using the SPO framework.

Communication technology. DFL is applied in mobile wireless communication tech-
nology application by Chai, Wong, Tong, Chen, and Zhang (2022). Fluid antenna system
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Methodology Constraint Functions Decision Variables CO SOlver Predictive Model

Shortest path problem
on a 5⇥ 5 grid

Linear Continuous OR-Tools Linear

Portfolio optimization Quadratic Continuous Gurobi Linear

Warcraft shortest path Linear Continuous
Customized python

implementation of Dijkstra
CNN

Energy-cost aware
scheduling

Linear Discrete Gurobi Linear

Knapsack problem Linear Discrete OR-Tools Linear
Diverse bipartite matching Linear Discrete OR-Tools Multi-layer NN
Subset selections Linear Continuous Gurobi Linear

Table 2: Brief overview of the test problems considered for experimental evaluation. The
objective functions are linear for all the optimization problem.

(Wong, Tong, Zhang, & Zhongbin, 2020) is one of the recent development in mobile wire-
less communication technology. However, its e↵ectiveness depends on the position of the
radiating element, known as the port. Chai et al. (2022) frame the port selection problem
as a Predict-Then-Optimize problem, where in the prediction stage signal-to-noise ratio for
each position of the port is predicted and then the optimal position of the port is decided
in the optimization stage. They use LSTM as the predictive model and report the SPO
framework is very e↵ective for such port selection applications.

Solving non-linear combinatorial optimization problems. Ferber et al. (2022) study
the problem of learning a linear surrogate optimizer to solve non-linear optimization prob-
lems. The objective is to learn a surrogate linear optimizer whose optimal solution is the
same as the solution to the non-linear optimization problem. Learning the parameters
of the surrogate linear optimizer entails backpropagating through the optimizer, which is
implemented using Cvxpylayers (Agrawal et al., 2019b).

Interested readers are referred to (Qi & Shen, 2022) for more applications of Predict-
Then-Optimize problems in various areas within operations management.

5. Experimental Evaluation on Benchmark Problemsets

DFL recently has received increasing attention. The methodologies discussed in Section 3
have been tested so far on several di↵erent datasets. Because a common benchmark for the
field has not yet been set up, comparisons among methodologies are sometimes inconsistent.
In this section, an e↵ort is made to propose several benchmark test problems for evaluating
DFL methodologies. 1 Then some of the methodologies explained in Section 3 are compared
on these test problems.

1. During the course of writing this manuscript, we have become aware of the PyEPO project (Tang &
Khalil, 2023b), which develops an interface for benchmarking DFL methodologies. However, it is impor-
tant to emphasize that our work di↵ers significantly from PyEPO. While PyEPO focuses on providing
an interface for implementing DFL methodologies, our paper serves as a comprehensive survey that goes
beyond benchmarking.
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5.1 Problem Descriptions

All the test problems, which are selected for benchmarking, have been previously used in the
DFL literature and their datasets are publicly available. Needless to say, all these problems
encompass the two stages—prediction and optimization. Table 2 provides an overview of
the experimental setups associated with each test problem, including the specification of
the CO problem and the type of predictive model. Next, these test problems are described
in detail.

5.1.1 Shortest path problem on a 5⇥ 5 grid

This experiment is adopted from the work of Elmachtoub and Grigas (2022). It is a shortest
path problem on a 5⇥ 5 grid, with the objective of going from the southwest corner of the
grid to the northeast corner where the edges can go either north or east. This grid consists
of 25 nodes and 40 edges.

Formulation of the optimization problem. The shortest path problem on a graph
with a set V of vertices and a set E of edges can be formulated as an LP problem in the
following form:

min
x

c>x (42a)

s.t.Ax = b (42b)

x � 0 (42c)

Where A 2 R|V |⇥|E| is the incidence matrix of the graph. The decision variable x 2 R|E| is
a binary vector whose entries are 1 only if the corresponding edge is selected for traversal.
b 2 R|V | is the vector whose entry corresponding to the source and sink nodes are 1 and
�1 respectively; all other entries are 0. The constraint (42b) must be satisfied to ensure
the path will go from the source to the sink node. The objective is to minimize the cost of
the path with respect to the (predicted) cost vector c 2 R|E|.

Synthetic data generation process. In this problem, the prediction task is to predict
the cost vector c from the feature vector z. The feature and cost vectors are generated
according to the data generation process defined by Elmachtoub and Grigas (2022). For
the sake of completeness, the data generation process is described below.2 Each problem
instance has cost vector of dimension |E| = 40 and feature vector of dimension p = 5. The
training data consists of {(zi, ci)}Ni=1, which are generated synthetically. The feature vectors
are sampled from a multivariate Gaussian distribution with zero mean and unit variance,
i.e., zi ⇠ N(0, Ip) To generate the cost vector, first a matrix B 2 R|E|⇥p is generated, which
represents the true underlying model. The cost vectors are then generated according to the
following formula:

cij =

✓
1
p

p

�
Bzi

�
+ 3

◆Deg

+ 1

�
⇠j
i

(43)

where cij is the jth component of cost vector ci. The Deg parameter specifies the extent
of model misspecification, because a linear model is used as a predictive model in the

2. The generator in https://github.com/paulgrigas/SmartPredictThenOptimize is used to generate the
dataset.
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experiment. The higher the value of Deg, the more the true relation between the features
and objective parameters deviates from a linear one and the larger the prediction errors will
be. Finally, ⇠j

i
is a multiplicative noise term sampled randomly from the uniform distribution

[1�#, 1+#]. The experimental evaluation involves five values of the parameter Deg, which
are 1, 2, 4, 6 and 8, and the noise-halfwidth parameter # being 0.5. Furthermore, for each
setting, a di↵erent training set of of size 1000 is used. In each case, the final performance
of the model is evaluated on a test set of size 10, 000.

Predictive model. In each setting, the underlying predictive model is a one-layer feed-
forward neural network without any hidden layer, i.e., a linear model. Basically the input
to the model is a p dimensional vector, and output is a |E| dimensional vector. Note that a
multi-layer neural network model can be used to to improve the accuracy of the predictive
model. The intuition behind using a simple predictive model is to test the e�cacy of the
DFL methods when the predictions are not 100% accurate. The DFL methods are trained
to minimize the regret and the prediction-focused model is trained by minimizing the MSE
loss between the true and predicted cost vector.

5.1.2 Portfolio optimization problem

A classic problem that combines prediction and optimization is the Markowitz portfolio
optimization problem, in which asset prices are predicted by a model based on empirical
data, and then subsequently, a risk-constrained optimization problem is solved for a port-
folio which maximizes expected return. This experiment is also adopted from the work of
Elmachtoub and Grigas (2022).

Formulation of the optimization problem. In portfolio optimization problem, the
objective is to choose a portfolio of assets having highest return subject to a constraint on
the total risk of the portfolio. The problem is formulated in the following form:

max
x

c>x (44a)

s.t. x>⌃x  � (44b)

1>x  1 (44c)

x � 0 (44d)

where 1 is the vector of all-ones of same dimension as x, ĉ is the vector of asset prices,
and ⌃ is a predetermined matrix of covariances between asset returns. The objective (44a)
is to maximize the portfolio’s total value. Eq. (44b) is a risk constraint, which bounds
the overall variance of the portfolio, and (44c), (44d) model x as a vector of proportional
allocations among assets.

Synthetic data generation process. Synthetic input-target pairs (z, c) are randomly
generated, according to a random function with a specified degree of nonlinearity Deg 2 N.
The procedure for generating the random data as follows:

Given a number of assets d and input features of size p, input samples xi 2 Rp are
sampled element wise from i.i.d. standard normal distributions N(0, 1). A random matrix
B 2 Rd⇥p, whose elements Bij 2 {0, 1} are drawn from i.i.d. Bernoulli distributions which
take the value 1 with probability 0.5, is created. For a chosen noise magnitude #, L 2 Rn⇥4
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whose entries are drawn uniformly over [�0.0025#, 0.0025#] is generated. Asset returns are
calculated first in terms of their conditional mean c̄ij as

c̄ij := (
0.05
p

p
(Bzi)j + (0.1)

1
Deg )Deg (45)

Then the observed return vectors ci are defined as cij := r̄i + Lf + 0.01#⇠, where f ⇠
N(0, I4) and noise ⇠ ⇠ N(0, Id) This causes the cij to obey the covariance matrix ⌃ :=
LL> + (0.01⇣)2I, which is also used to form the constraint (44b), along with a bound on
risk, defined as � := 2.25 e>⌃e where e is the equal-allocation solution (a constant vector).
Four values of the parameter Deg—1, 4, 8, 16 have been used in the experimal evaluation.
The value of noise magnitude parameter # is set to 1. It is assumed that the covariance
matrix of the asset returns does not depend on the features. The values of ⌃ and � are
constant, and randomly generated for each setting.

Predictive model Like the previous experiment, the underlying predictive model is a
linear model, whose input is a feature vector z 2 Rp and output is the return vector c 2 Rd.

5.1.3 Warcraft shortest path problem

This experiment was adopted from the work of Pogančić et al. (2020). Each instance in this
problem is an image of a terrain map using the Warcraft II tileset (Guyomarch, 2017). Each
image represents a grid of dimension d ⇥ d. Each of the d2 pixels has a fixed underlying
cost, which is unknown and to be predicted. The objective is to identify the minimum cost
path from the top-left pixel to the bottom-right pixel. From one pixel, one can go in eight
neighboring pixels—up, down, front, back, as well as four diagonal ones. Hence, it is a
shortest path problem on a graph with d2 vertices and O(d2) edges.

Formulation of the optimization problem. Note that this is a node-weighted shortest
path problem, where each node (pixel) in the grid is assigned a cost value; whereas in the
previous shortest path problem, each edge is assigned a cost value. However, this problem
can be easily reduced to the more familiar edge weighted shortest path problem by ‘node
splitting’. ‘Node splitting’ splits each node into two separate nodes—entry and exit nodes
and adds an edge, that has a weight equal to the node weight, from the entry node to the
exit node. For each original edge, an edge, with null weight, from the exit node of the source
node to the entry node of the sink node, is constructed.

Predictive model. The prediction task is to predict the cost associated with each pixel.
The actual cost ranges from from 0.8 to 9.2 and is dependent on visible characteristics of
the pixel. For instance, cost changes depending on whether the pixel represents a water-
body, land or wood. The predictive model used in this case is a convolutional neural
network (CNN), which predicts the cost of each node (pixel). The model takes the d ⇥ d
image as an input and outputs costs of the d2 pixels. The ResNet18 (He, Zhang, Ren, &
Sun, 2016) architecture is slightly modified to form the ML model. The first five layers
of ResNet18 are followed by a max-pooling operation to predict the underlying cost of
each pixel. Furthermore, a Relu activation function (Agarap, 2019) is used to ensure the
predicted cost remains positive, thereby avoiding the existence of negative cycles in the
shortest path edge weights.
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5.1.4 Energy-cost aware scheduling

This experiment setup was adopted from the work of Mandi et al. (2020). This is a
resource-constrained day-ahead job scheduling problem (Simonis, O’Sullivan, Mehta, Hur-
ley, & Cauwer, 1999) with the objective of minimizing energy cost. Tasks must be assigned
to a given number of machines, where each task has a duration, an earliest start, a latest
end, a resource requirement and a power usage. Each machine has a resource capacity con-
straint. Also, tasks cannot be interrupted once started, nor migrated to another machine
and must be completed before midnight. The scheduling is done in one-day advance. So,
the prediction task is to predict the energy prices of the next day.

Formulation of the optimization problem. The scheduling problem is formulated as
an ILP. Let J be the set of tasks to be scheduled on a set of machines I while maintaining
resource requirement of W resources. The tasks must be scheduled over T number of time

slots. Each task j is specified by its duration ⇣j , earliest start time ⇣(1)
j

, latest end time

⇣(2)
j

, power usage �j . Let ⇢jw be the resource usage of task j for resource w and qiw is
the capacity of machine i for resource w. Let xjit be a binary variable which possesses 1
only if task j starts at time t on machine i. The objective of minimizing energy cost while
satisfying the required constraints can be expressed by the following ILP:

min
xjit

X

j2J

X

i2I

X

t2T
xjit

⇣ X

tt0<t+⇣j

�jct0
⌘

(46a)

s.t.

X

i2I

X

t2T
xjit = 1 , 8j2J (46b)

xjit = 0 8j2J8i2I8
t<⇣

(1)
j

(46c)

xjit = 0 8j2J8i2I8
t+⇣j>⇣

(2)
j

(46d)
X

j2J

X

t�⇣j<t0t

xjit0⇢jw  qiw, 8i2I8w2W8t2T (46e)

xjit 2 {0, 1}8j2J8i2I8t2T (46f)

The (46b) constraint ensures each task is scheduled once and only once. The constraints in
(46c) and (46d) ensure that the task scheduling abides by earliest start time and latest end
time constraints. (46e) imposes the constraints of resource requirement.

Data description. The prediction task is to predict the energy prices one day advance.
The energy price dataset comes from the Irish Single Electricity Market Operator (SEMO)
(Ifrim, O’Sullivan, & Simonis, 2012). This dataset consists of historical energy price data at
30-minute intervals starting from midnight on the 1st of November, 2011 until the 31st of
December, 2013. In this setup, each day forms an optimization instance, which comprises
of 48 time slots, corresponding to 48 half-hour slots. Each half-hour instance of the data
has calendar attributes, day-ahead estimates of weather characteristics, SEMO day-ahead
forecasted energy-load, wind-energy production and prices, actual wind-speed, temperature
and CO2 intensity, which are used as features. So, the dimension of feature vector is 8.
Note that, in this dataset, each ct in the cost vector is associated with an eight dimensional
feature vector, i.e., c 2 R48 and z 2 R48⇥8.
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Predictive model. As energy prices of each half-hour slot is associated with 8 features,
the input to the predictive model is a feature vector of dimension 8 and output is a scalar.
In this case also, the predictive model is a linear model, i.e., a feed forward neural network
without any hidden layer.

5.1.5 Knapsack problem

This problem setup was also adopted from the work of Mandi et al. (2020). The objective
of the knapsack problem is to choose a maximal value subset from a given set of items,
subject to a capacity constraint. In this case, the weights of all items and the knapsack
capacity are known. What are unknown are the values of the items. Hence, the prediction
task is to predict item values of each item.

Formulation of the optimization problem. The formulation of the knapsack opti-
mization problem with unit weights has already been provided in Eq. (4). However, in
general the weights of all items are not equal. So, a general knapsack optimization problem
can be formulated as follows:

max
x

c>x (47a)

s.t. w>x  Capacity (47b)

x 2 {0, 1} (47c)

where w, c are the vector of weights and values respectively.

Data description. For this problem again, the dataset is adapted from the Irish Single
Electricity Market Operator (SEMO) (Ifrim et al., 2012). In this setup, each day forms
an optimization instance and each half-hour corresponds to a knapsack item. So the cost
vector c and the weights w are of length 48, corresponding to 48 half-hours. Similar to
the energy scheduling problem, each item of the cost vector is associated with a feature
vector of dimension 8. The weight vector is fixed. The weights are generated synthetically
as done by Mandi et al. (2020). The data generation is as follows. First a weight wi is
assigned to each of the 48 half-hour slots, by sampling from the set {3, 5, 7}. In order
to introduce correlation between the item weights and the item values, the energy price
vector is multiplied with the weight vector and then a randomness is incorporated by adding
Gaussian noise ⇠ ⇠ N(0, 25), which produces the final item values ci. The motivation behind
introducing correlation between the item weights and the item values stems from the fact
that solving a knapsack problem with correlated item weights and values is considered to
be hard to solve (Pisinger, 2005). The sum of the weights of each instance is 240. 60, 120,
and 180 are the three values of capacity with which the experiments are performed.

Predictive model. Like the previous problem, the predictive model here also is a linear
model, i.e., a feed forward neural network without any hidden layer.

5.1.6 Diverse bipartite matching

This experimental setup is adopted from Ferber et al. (2020). In this problem, two disjoint
sets of nodes are provided and the objective is to match between the nodes of the two sets.
The graph topologies are taken from the CORA citation network (Sen, Namata, Bilgic,
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Getoor, Galligher, & Eliassi-Rad, 2008), where a node represent a publication and an edge
represent a citation. So the matching problem is to identify the citation between the two sets
of publications. Furthermore, the matching must obey diversity constraints, as described
later.

Note that this problem falls under the category of structured output prediction tasks
(Nowozin & Lampert, 2011), which requires capturing dependencies and relationships be-
tween di↵erent parts of the output. In this matching problem, each edge does not have an
associated cost in the true sense. Therefore, in the prediction-focused approach the model
is trained by directly predicting the presence or absence of each edge. On the other hand,
the DFL approaches consider the likelihood of the existence of each edge as the edge weights
and then determine which edges should be present while ensuring all the constraints are
satisfied.

Optimization problem formulation. Let S1 and S2 denote the two sets. The matching
must satisfy the following diversity constraints: a minimum ⇢1% and ⇢2% of the suggested
pairings should belong to same and distinct fields of study respectively. Let cij be the
likelihood of an edge existing between article i and j, 8i 2 S1, j 2 S2.

With this likelihood value, the matching can be performed by solving the following ILP,
which ensures the diversity constraints:

max
x

X

i,j

cijxij (48a)

s.t.

X

j

xij  1 8i 2 S1 (48b)

X

i

xij  1 8j 2 S2 (48c)

X

i,j

�i,jxij � ⇢1
X

i,j

xij (48d)

X

i,j

(1� �ij)xij � ⇢2
X

i,j

xij (48e)

xij 2 {0, 1} 8i 2 S1, j 2 S2 (48f)

where �ij is an indicator variable, which takes the value 1 only if article i and j are of same
field, and 0 if they belong to two di↵erent fields.

Data description. The network is divided into 27 disjoint topologies, each containing
100 nodes. Each of the instant form an optimization instance. In each instance, the 100
nodes are split into two sets of 50 nodes S1 and S2; so each instance forms a bipartite
matching problem between two sets of cardinality 50. Each publication (node) has 1433
bag-of-words features. The feature of an edge is formed by concatenating features of the
two corresponding nodes. The prediction task is to estimate cij values. In this problem,
each individual cij is associated with a feature vector of length 2866.

Predictive model. The predictive model is a neural network model. The input to the
neural network is a 2866 dimensional vector and final output is a scalar between 0 and 1.
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The neural network has one hidden layer and uses a sigmoid activation function on the
output.

5.1.7 Subset selections

This experiment is a structured prediction task, in which the object is to learn a mapping
from feature vectors to binary vectors which represent subset selections. Unlike the other
experiments above, the ground-truth data take the form of optimal solutions to an opti-
mization problem, rather than its corresponding problem parameters. Thus, the regret loss
is not suitable for training a prediction model. Instead, a task loss based on the error of
the predicted solutions with respect to ground-truth solutions is used in this experiment.

Optimization problem formulation. For any c 2 Rn, the objective of the optimization
problem is to output a binary vector in Rn, where the non-zero values correspond to the
top-k values of c. This can be formulated as an LP problem in the following form:

argmax
x

c>x (49a)

s.t. 1>x = k (49b)

0  x  1 (49c)

As a totally unimodular linear program with integral parameters, this problem has (binary)
integer optimal solutions. This mapping is known for its ability to represent subset selections
in structured prediction, and is useful for multilabel classification (Amos et al., 2019) .

Data Description. Let U(0, 1) be a uniform random distribution; then a collection of
feature vectors z are generated by z ⇠ U(0, 1)n. For each z, its corresponding target data
is a binary vector containing unit values corresponding to the top-k values of z, and zero
values elsewhere. Three datasets are generated, each of 1000 training samples, in which the
selection problem takes size n = 25, n = 50, and n = 100 respectively. The subset size k is
chosen to be one fifth of n, in each case.

Predictive model. Like the previous problem, the predictive model here also is a linear
model, i.e., a feed forward neural network without any hidden layer. In this problem, the
task loss to train the predicative model is the negated inner product between true selection
x and prescribed selection x̂, i.e., L(x̂,x) = x̂ · x, which is minimized when x̂ = x. Since
the model is not regret-based, and does not assume access to the ground-truth parameters
c, techniques which rely on such assumptions are not tested on this problem.

5.2 Experimental Results and Analysis

In this subsection, results of comparative evaluations of some of the methodologies intro-
duced in Section 3 on the datasets mentioned in Section 5 are presented. The following
methodologies are considered for evaluations: 1. Prediction-focused (PF) approach, 2.
Smart “Predict, Then Optimize” (32) [SPO], 3. Di↵erentiation of blackbox combinatorial
solvers (24) [DBB], 4. Implicit maximum likelihood estimation (30) [I-MLE], 5. Fenchel-
Young loss (29) [FY], 6. Di↵erentiation of homogeneous self-dual embedding (21) [HSD],
7. Quadratic programming task loss (20) [QPTL], 8. Listwise LTR loss (40) [Listwise], 9.
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Hyperparameter
Methodologies Utilizing

the Hyperparameter
Range

learning rate All {5⇥ 10�4, 1⇥ 10�3, 5⇥ 10�3, 0.01, 0.05, 0.1, 0.5, 1.0}

� I-MLE, DBB {0.1, 1, 10, 100}

✏ I-MLE, FY {0.05, 0.1, 0.5, 1, 2, 5}

 I-MLE {5, 10, 50}

⌧ Listwise {0.05, 0.1, 0.5, 1, 2, 5}

⇥ Pairwise {0.01, 0.05, 0.1, 1., 10., 50.}
µ QPTL, HSD {0.01, 0.1, 1., 10., }

damping HSD {1⇥ 10�4, 0.01, 0.1, 1., 10}

Table 3: The range of hyperparameters for hyperparameter tuning by grid search.

Pairwise LTR loss (38) [Pairwise], 10. Pairwise di↵erence LTR loss (39) [Pairwise(di↵)], 11.
Maximum a posteriori contrastive loss (37) [MAP]. The reason behind including prediction-
focused approach is that it is considered as a benchmark. Note that among these method-
ologies, Listwise, Pairwise, Pairwise(di↵), and MAP make use of a solution cache. The
solution cache is implemented using the procedure proposed by Mulamba et al. (2021). In
this approach, the solution cache is initialized by caching all the solutions in the training
data and the cache is later expanded by employing a psolve parameter value greater than
zero. As in (Mulamba et al., 2021; Mandi et al., 2022) it is reported that psolve = 5%
is adequate for most applications, the value of psolve is set to 5%. Next, the procedure
systematically followed for the empirical evaluations is explained.

Experimental setup and procedures. The performance of a methodology is sensitive
to the choice of the methodology specific hyperparameters as well as some other fundamental
hyperparameters, common in any neural network training such as learning rate. These are
called hyperparameters because they cannot be estimated by training the model, rather
they must be selected before training begins. Tuning hyperparameters is the process of
identifying the set of hyperparameter values that are expected to produce the best model
outcome. In the experimental evaluations, hyperparameter tuning is performed via grid
search. In the grid search, each of the hyperparameters is tried for a set of values. The set
of values to be tested on for each hyperparameter is predetermined. Grid search su↵ers from
the curse of dimensionality in the hyperparameter space, as the number of combinations
grows exponentially with the number of hyperparameters. However, it is possible to train the
di↵erent models for di↵erent combination of hyperparameter in parallel as the combinations
are independent.

The hyperparameter of each model for each experiment is selected based on performance
on the validation dataset. For each hyperparameter a range of values as defined in Table 3
is considered. The hyperparameter combination which produces the lowest average regret
on the validation dataset is considered to be the ‘optimal’ one. For both validation and
testing, 10 trials are run where in every trial the network weights are initialized with a
di↵erent seed. To be specific, values of seed from 0 to 9 have been considered. Each model
for each setup is trained using Pytorch (Paszke et al., 2019) and PyTorch-Lightning

(Falcon et al., 2019) with Adam optimizer (Kingma & Ba, 2014) and ‘ReduceLROn-
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Plateau’(PyTorch, 2017) learning rate scheduler. As mentioned before, the learning rate
of Adam optimizer is treated as a hyperparameter. For QPTL, the QP problems are solved
using Cvxpylayers (Agrawal et al., 2019b). For other methodologies, which treat the CO
solver as a blackbox solver, Gurobi (Gurobi Optimization, 2021) or OR-Tools (Perron
& Furnon, 2020) is used as the solver. For MAP and LTR losses, the experiments are run
with psolve being 5%.

Evaluation metric. After selecting the ‘optimal’ hyperparameter combination for each
test problem, 10 trials of all the methodologies with the ‘optimal’ hyperparameter com-
bination are run on test dataset. Unless otherwise mentioned the comparative evaluation
is made based on relative regret on the test dataset. The relative regret is defined as
follows:

1

Ntest

NtestX

i=1

ci>(x?(ĉi)� x?(ci))

ci>x?(ci)
. (50)

In practice, c (or ĉ) can have non-unique optimal solutions. However, note that if all the
entries in c are continuous, it is very unlikely that c will have non-unique solutions. For
instance, in the case of an LP, the only circumstance in which the LP can have multiple
solutions is when c is parallel to one of the faces of the LP polyhedron. Nevertheless, if
the cost vector is predicted by an ML model, a pathological case might occur, especially at
the beginning of model training, when all the cost parameters are zero. This results in all
feasible solutions being optimal with zero cost. However, to avoid this complexity in the
experiments, it is assumed that the solution x?(ĉ) is obtained by calling an optimization
oracle and that if there exist non-unique solutions, the oracle returns a single optimal
solution by breaking ties in a pre-specified manner. This is true if a commercial solver such
as Gurobi is used to solve the CO problem.

5.2.1 Comparative Evaluations

Next, the performances of the 11 methodologies in the 7 problems are presented with
insights.

Shortest path problem on a 5⇥ 5 grid. The comparative evaluation for the synthetic
shortest path problem in is shown in Figure 5 with the aid of box plots. To conserve space,
boxplots for two values of Deg are shown in Figure 5. The boxplots for all the five degrees
are shown in Figure A1 the Appendix. In Figure 5, the value of #, the noise- halfwidth
parameter is 0.5 for all the experiments and the training set for each Deg contains of 1000
instances. The predictive model is a simple linear model implemented as a neural network
model with no hidden layers. For Deg 1, the linear predictive model perfectly captures
the data generation process. Consequently the PF approach is very accurate and it results
in the lowest regret. SPO has slightly higher regret than the PF approach. All the other
models have considerable higher regrets. It is followed by MAP and FY. For Deg 8, FY
has the lowest regret, closely followed by I-MLE. Then comes Listwise and Pairwise ranking
losses followed by QPTL and DBB. In this case, SPO performs poorer than them. MAP
and HSD have very high regret but still lower than the PF approach. The relative regret
worsens for the PF approach, as the value of Deg parameter is increased. For Deg 2, both
PF and SPO have lowest regret. However, their di↵erences with other models reduce in
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(a) Deg = 1

(b) Deg = 8

Figure 5: Comparative evaluations on the synthetic shortest path problem with noise-
halfwidth parameter # = 0.5. The boxplots show the distributions of relative regrets.

this case. FY, MAP and I-MLE come at the next three places respectively. For Deg 4, the
PF model starts to result in high regret. In this case, I-MLE has the lowest regret, closely
followed by FY and SPO. The next three spots are taken by MAP, Listwise and Pairwise
respectively. DBB and HSD perform worse than the PF approach. For Deg 6, the best one
FY, although its test regret is not very di↵erent from SPO, I-MLE and QPTL. Listwise,
DBB, Pairwise and MAP come next.

Overall, FY and I-MLE are the top two best-performing approaches, for Deg > 2. For
Deg values of 1 and 2, the PF approach has the lowest regret. Note that the performance
of SPO is very consistent too. It performs considerably worse than I-MLE and FY only
for Deg 8. On the other hand, HSD exhibits higher regret than the other DFL approaches.
In fact it does better than the PF approach only for Deg 6 and 8. It also exhibits higher
variances.

Portfolio optimization problem. Note that this is an optimization problem with con-
tinuous decision variables having quadratic constraints and a linear objective function.
Hence, the HSD approach is not applicable for this problem, as it cannot handle non-
linear constraints. The boxplots of test regrets for noise magnitude parameter # being 1
are shown in Figure 6.

In this problem, in some problem instances, all the return values are negative, which
makes a portfolio with zero return to be the optimal portfolio. In such cases, relative regret
turns infinite as the denominator is zero in Eq. (50). Hence, for this problem set, the
absolute regret instead of relative regret is reported in Figure 6. The boxplots for Deg
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(a) Deg = 1

(b) Deg = 16

Figure 6: Comparative evaluations on the synthetic portfolio optimization problem with
noise magnitude # = 1. The boxplots show the distributions of absolute regrets.

values of 1 and 16 are shown in The boxplots for all the four degrees are shown in Figure
A2 the Appendix.

Apparently the PF approach performs very well in this problem; but SPO manages
to outperform PF slightly in all cases except for Deg 1. It is evident in Figure 6 that
DBB, I-MLE, FY and QPTL perform miserably as they generate regret even higher than
the PF approach. All these methodologies were proposed considering problems with linear
constraints. Hence the concerns arise that these methodologies be suitable in the presence
of quadratic constraints. On the other hand, LTR losses—Pairwise and Pairwise(di↵) and
contrastive loss function, MAP, perform even better than SPO for Deg 16. For Deg 16,
again Pairwise is the best performing model, followed by Listwise, Pairwise(di↵), MAP and
SPO, in that order. For Deg 1, PF is the best followed by MAP and SPO. For Deg 4 and
8, Pairwise loss function has the lowest regret, closely followed by Pairwise(di↵), MAP and
SPO. For Deg 1, PF is the best one, followed by MAP, SPO, Pairwise and Pairwise(di↵), in
that order. The Listwise loss function exhibits high variance for Deg 1 and for Deg values
of 4 and 8 it generates high regret for few instances. For Deg 16, it generates average test
regret lower than SPO. In general, Figure 6 reveals DBB, I-MLE, FY and QPTL perform
poorly in this problem, whereas, SPO, MAP Pairwise and Pairwise(di↵) seem to be suitable
methodologies for this problem.

Warcraft shortest path problem. Recall that this a shortest path problem in an image
with dimension d⇥d. The optimization problem can be e�ciently solved using Dijkstra’s al-
gorithm (Dijkstra, 1959), as underlying costs of all the pixel values are non-negative. Hence
the shortest path problem is solved using Dijkstra’s algorithm for the methodologies which
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(a) Image Size 12⇥ 12

(b) Image Size 30⇥ 30

Figure 7: Comparative evaluations on the Warcraft shortest path problem instances. The
boxplots show the distributions of relative regrets.

view the CO solver as a blackbox oracle. However, HSD and QPTL require the problem
to be formulated as an LP and require a primal-dual solver. Note in this experiment, the
predictive ML model is a CNN, which predicts the cost of each pixel. In this case, training
of the ML model is challenging due to the large number of parameters. Hence combining
this ML model with computation-intensive modules such as interior point optimizer poses
significant challenges. We could not run the experiments with HSD and QPTL because of
this computational burden.

The dataset contains four values of d: 12, 18, 24, 30. Clearly, as the value of d increases,
the optimization problem contains more number of parameters. The boxplots of compara-
tive evaluations are summarized in Figure 7. The boxplots of other two values of d can be
found in Figure A3 in the Appendix. First note that the PF approach, which is trained by
minimizing mse loss between the predicted cost and true cost performs significantly worse
than the DFL methodologies. In fact, the performance of the PF approach deteriorates
as the image size increases. As the size of the image increases, the same level of predic-
tion error induces greater inaccuracies in the solution. This is because an increase in the
area of the image involves dealing with a greater number of decision variables in the CO
problem. When the level of prediction error remains constant, the probability of the error
in prediction changing at least one of the decision variables also increases. Consequently,
there is a higher likelihood of error in the final solution. As the regret of the PF approach
is significantly higher, note that the scale of the y-axis is changed to fit it into the plot.

Among the DFL methodologies, Listwise performs best for sizes 12, 18, and 30 and
SPO performs best for size 30. In fact, for sizes 12, 18, and 24, there are not many
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(a) Instance 1

Figure 8: Comparative evaluations on the energy-cost aware scheduling problem instances.
This boxplot shows the distributions of relative regrets.

variations between SPO, Listwise, and MAP. After them, the next three best-performing
methodologies are Pairwise (di↵), I-MLE and DBB. However, for size 30, DBB comes third
after Listwise and MAP, followed by Pairwise (di↵), SPO, and I-MLE in that order. FY
and Pairwise perform slightly worse than the other DFL methodologies. In general, this set
of experiments shows the advantage of the DFL approaches as all of them outperform the
PF approach.

Energy-cost aware scheduling. There are three instances of this scheduling problem.
All the instances have 3 machines. The first, second, and third instances contain 10, 15, and
20 tasks, respectively. In this problem, the underlying ML model is a simple linear model
implemented as a neural network model with no hidden layers. The boxplot of comparative
evaluations for the first instance is presented in Figure 8. The boxplots of the other instances
can be found in Figure A4 in the Appendix.

Note that the scheduling problem is an ILP problem. For HSD and QPTL, the LPs
obtained by relaxing the integrality constraints have been considered. For the first instance,
MAP and SPO result in the lowest average regret, closely followed by I-MLE. DBB, FY,
and Pairwise(di↵) perform better than the PF approach. The performances of the Listwise
and Pairwise rankings are worse than the PF. QPTL and HSD also perform poorly in all
three instances, probably because in this case the LP obtained by relaxing by removing
the integrality is not a proper representation of the ILP. In fact, QPT fails to learn in this
problem instance. In the second instance, FY, SPO, and I-MLE are the best three perform-
ing models. Then comes MAP and DBB, followed by Pairwise(di↵). Again, performances
of the Listwise and Pairwise rankings are worse than the PF. In the third instance, again,
MAP and SPO deliver the lowest average regret. Then comes I-MLE and FY. The test
regret of these two models is very similar. In this case, the performance of Pairwise(di↵)
is slightly worse than the PF approach, whereas, like before, performances of Listwise and
Pairwise ranking are significantly worse. In general, across the three problem instances,
it is possible to identify some common patterns. The first one is relaxing the integrality
constraints fails to capture the essence of the combinatorial nature of the LP. Consequently,
HSD and QPTL perform poorly. Secondly, Listwise and Pairwise ranking performances
are significantly worse than the PF approaches. The learning curve suggests (refer to B),
these models fail to converge in these problem instances, although in some epochs, they are
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(a) Capacity= 60

Figure 9: Comparative evaluations on the knapsack problem instances. This boxplot shows
the distributions of relative regrets

(a) ⇢1 = ⇢2 = 50%

Figure 10: Comparative evaluations on the diverse bipartite matching problem instances.
This boxplot shows the distributions of relative regrets.

able to perform significantly better than the PF approach, their pheromones never plateau.
Lastly, SPO, MAP, FY, and I-MLE perform consistently better than the other models.

Knapsack problem. Three instantiations of the knapsack problem are considered for the
experiment—each instantiation with a di↵erent capacity. The three capacity values are—
60, 120 and 180. The boxplot corresponding to capacity value 60 is presented in Figure 9.
The boxplots of the other two capacities can be found in Figure A5 in the Appendix. With
a capacity of 60, the best three models are QPTL, DBB, and I-MLE, in that order. HSD,
SPO, and MAP come next and perform better than the PF approach. FY and LTR losses
perform worse than the PF approach. With a capacity of 120, the top three models are DBB,
I-MLE, and QPTL. Then comes SPO, HSD and MAP. The Pairwise(di↵) model performs
slightly better than the PF approach, but the other two LTR losses and FY perform worse.
With a capacity of 180, the best three models are DBB, I-MLE and SPO. HSD and QPTL
perform better than the PF approach, but MAP, LTR losses, and FY perform worse. In
general, for this problem, DBB and I-MLE are the best-performing models across the three
capacity values. QPTL, SPO, HSD also consistently perform better than the PF approach
in all three cases. However, FY and the LTR losses perform poorly in this problem.
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Diverse bipartite matching. Three instantiations of the diverse bipartite matching
problem are formed by changing the values of ⇢1 and ⇢2. The values of (⇢1, ⇢2) for the
three instantiations are (10%, 10%), (25%, 25%), (50%, 50%) respectively. The boxplot of
comparative evaluations for (⇢1, ⇢2) being (50%, 50%), is presented in Figure 10. As men-
tioned before, in this problem, each edge is not associated with an edge weight in the true
sense. Hence, the PF approach is trained by directly learning to predict whether an edge
exists. So the loss used for supervised learning for the PF approach is BCE loss. The DFL
approaches consider the predicted probability of each edge as the edge weight and then aim
to minimize regret.

In this problem instance QPTL is the best-performing model. FY, Pairwise(di↵) and
Listwise take the next three places. MAP, Pairiwse, I-MLE and SPO also perform better
than the PF approach. The performances of HSD and DBB are similar to that of the PF
approach. Also note that the relative regrets of all the models are very high (higher than
80%) for all three instances. With ⇢1 and ⇢2 being 10%, I-MLE performs considerably better
than all the other models. Then comes HSD, FY, Pairwise and Pairwise(di↵) followed by
SPO, MAP, DBB and Listwise. When ⇢1 and ⇢2 take the value of 25%, QPTL, I-MLE
and HSD are the top there models, with significantly lower regret than the rest. In this
instance, the regrets of Listwise, Pairwise, SPO, FY and MAP are higher than the PF
approach. Across the instances, the performances of I-MLE and QPTL are consistently
better than the PF approach. In the first two instances, other than I-MLE and QPTL,
other DFL models do not significantly better than the PF approach. DFL approaches such
as FY, Listwise, Pairwise and MAP perform considerably better than the PF approach
only in the third instances. On the other hand, the test regret of DBB is smilar to the PF
approach across the instances.

Learning subset selections. Subset selection problems of three dimensions: n = 25,
n = 50, and n = 100 are considered for evaluation. In each case, the subset size k is chosen
to be n

5 . The error of any predicted subset x̂, with respect to ground truth x, is considered
to be the fraction of items which are selected in x but not in x̂. Such occurrences are
referred to as mismatches.

Figure 11 shows the average mismatch rates over the size n = 25 instances that were
achieved by each DFL methodology listed in Table 1, excluding those which assume ground-
truth data in the form of problem parameters. Here, the ground-truth data are optimal
solutions of (49) representing subset selections. For each assessed method, a distribution of
results is shown, corresponding to 10 di↵erent randomly generated training datsets. Figure
A7 shows similar results over the larger problem instances.

Note that it is suggested in (Amos et al., 2019) that the entropy function H(x) =P
i
xi log xi is particularly well-suited as a regularizer of the objective in (49), for the pur-

pose of multilabel classification, which is identical to the task in terms of its optimization
component and the form of its target data. Hence a Cvxpylayers implementation of this
model is included and referred to as ENT.

Figure A7 shows that most of the assessed methods perform similarly, with DBB per-
forming worst regardless of the problem’s dimension. HSD is most sensitive with respect to
the randomly generated training set; the rest show consistent performance across datasets.
QPTL and IMLE each show a marginal advantage over the other methods, but DPO and
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Figure 11: Comparative evaluations on the subset selection problem instances of Size 25.
This boxplot shows the distributions of mismatch rates.

ENT are also competitive. Across all methods, variation in performance over the randomly
generated datasets tends to diminish as problem size increases.

5.2.2 Comparison on Runtime

While coming up with a useful gradient is considered to be the primary challenge of DFL, as
mentioned in Section 2.3, computational cost associated with repeatedly solving CO prob-
lems gives rise to the second challenge. DFL methodologies with low computational cost
are essential for scalability for implementing DFL for real-world large-scale Predict-Then-
Optimize problems. The importance of scalability and low computational cost becomes
significant while dealing with large-scale CO problems, especially NP-hard combinatorial
optimization problems. Note that while the shortest path and the knapsack problems
are relatively easy to solve; the energy-cost aware scheduling problem is much more chal-
lenging and can be considered an example real-world large-scale NP-hard combinatorial
optimization problems. That is why the scheduling problem is considered to compare the
computational costs of the DFL methodologies.

The median training time of an epoch during training of each methodology for two
instances of the scheduling problem are shown Figure 12. Recall that the first, second and
third instances contain 10, 15 and 20 tasks respectively. So, the first one is the easiest of
the three and the third one is the hardest one. The complexity of the scheduling problem
is evident from the fact that a single instance of the the knapsack problem takes 0.001
seconds to solve, while solving the most di�cult instance of the scheduling problem takes
0.1 seconds, both using Gurobi MIP solver. The readers are cautioned against placing
excessive emphasis on the absolute values of training times in Figure 12, as they are subject
to system overhead. However, some general conclusions can be drawn from the relative
ordering of the training times. It is not surprising that the training time of the PF approach
is the lowest, as it does not require solving the CO problem for model training. Training
times of SPO, DBB, I-MLE and FY are almost 100 times higher than the PF approach.
Although QPTL and HSD consider the relaxed LP problem, it is not always the case that
they have lower training times. Recall that QPTL and HSD solve and di↵erentiate the
optimization problem using primal-dual solver, which involves matrix factorization. On the
other hand, SPO, DBB, I-MLE and FY can leverage faster commercial optimization solvers,
as they only require the optimal solution. However, for Instance 3, it seems solving the ILP
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(a) Instance 2

(b) Instance 3

Figure 12: Comparative evaluations of per epoch training time of di↵erent DFL method-
ologies on the energy-cost aware scheduling problem.

problem is more computationally expensive than solving di↵erentiating the underlying QP
problem using Cvxpylayers.

On the other hand, Listwise, Pairwise, Pairwise(di↵) and MAP, all of which are run with
psolve = 5%, exhibit significantly lower training time than the other DFL methodologies. In
fact, the training time of these methodologies are comparable to the PF approach. From
this perspective, these methodologies can be viewed as bridging the gap between between
PF and DFL approaches. The same conclusion generally holds true for other experiments
as well. However, for relatively easier CO problems, the system overhead time sometime
dominates over model training time, which might disrupt the ordering of the model training
time.

5.2.3 Discussion

The experimental evaluations reveal that no single methodology performs the best across all
experiments. Certain methodologies excel on specific test problems, while others perform
better on di↵erent test problems. Nevertheless, certain interesting characteristics emerge
from the experimental evaluations. Firstly, the performance of SPO is consistently
robust across the test problems, even though it may not outperform other techniques
in every experiment. Secondly, MAP demonstrates consistent performance across
most test problems too; it only exhibits low quality performance specifically in the
knapsack problem for Capacity=180 and in the bipartite matching problem when ⇢1 and
⇢2 are 25%. Additionally, among the LTR losses, Listwise and Pairwise often exhibit high
variances, especially in the scheduling and the knapsack problems. The performance of
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Pairwise(di↵) stands out among the LTR losses due to its lower variance. Its performance
is comparable to or slightly worse than MAP for most problems other than the synthetic
shortest path problem with high values of Deg, i.e., when the underlying predictive model
is completely misspecified. Surprisingly, I-MLE, FY, DBB and QPTL perform worse than
the PF approach for the portfolio optimization problem, where a quadratic constraint is
present. Across the remaining problems, the performance of I-MLE is comparable
to that of SPO and MAP. DBB performs considerably worse than I-MLE only in the
bipartite matching problem. On the other hand, FY performs well in certain cases, but
it is more susceptible to higher variance compared to I-MLE. This is particularly evident
in the knapsack problem. Moreover, QPTL demonstrates robust performance in
most experiments. In fact, QPTL outperforms other models by a substantial margin
in the bipartite matching problem. However, QPTL performs poorly compared to others
in the scheduling problem, which is an ILP. In this case, the poor performance may be
attributed to the fact that QPTL considers a relaxation of the ILP. In this problem the
LP solution might di↵er significantly from the true ILP solution. This is not the case for
the knapsack problem, because the solution of the relaxed LP does not deviate significantly
from the ILP solution for the knapsack problem. HSD also considers relaxed LPs for ILP
problems. However, it performs worse than QPTL for all but the scheduling problem, where
it performs considerably better than QPTL. Finally, due to the limitation of computational
resources, we were unable to run QPTL and HSD on the Warcraft shortest path problem.
This highlights the advantage of DFL methodologies which can make use of any blackbox
combinatorial solver (Dijkstra’s shortest path solver for instance) to solve the CO problem.
Continuing on this topic of computational cost, MAP and the LTR losses are considerably
faster and less computationally intensive when they are run with low values of psolve. As
MAP tends to have regret as low as SPO for most test problem, it may be considered a
favorable DFL technique for tackling large-scale real-world Predict-Then-Optimize problems.

6. Future Research Directions

While there is increasing interest in decision-focused learning research, it still need to evolve
to incorporate new characteristics to tackle real-world problems. This section aims to sum-
marize the wide range of challenges that remain open. A few promising research directions
for future investigations that could be exploited in the upcoming days, are presented next.

DFL for related tasks/ Task generalization. In the current DFL framework, the ML
model is tailored to a particular optimization task. However, in many applications the CO
problem might slightly di↵er in di↵erent instantiations. For example, in the recent MIT-
Amazon Last Mile Routing Challenge (Merchán, Arora, Pachon, Konduri, Winkenbach,
Parks, & Noszek, 2022), a TSP problem is solved every day for deciding the routing of last
mile package delivery, but nodes of the TSPs change every day as the delivery locations vary.
An interesting research direction would be to investigate how a model, which is trained to
minimize regret of one optimization problem, would perform if evaluated on a similar but
di↵erent optimization problems. Future work need to advance the approach proposed by
Tang and Khalil (2023a) by training the ML model with the aim of generalizing to new
tasks.
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Noise contrastive loss functions to learn parameters in the constraints. One
key advantage of the noise contrastive loss functions (called MAP in the experimental
evaluations) proposed by Mulamba et al. (2021) is that it is di↵erentiable. They view the
DFL problem by learning to contrast the likelihood of ground-truth solution and a set of
negative examples. However, this work does not consider the case of predicting parameters
in the constraints. In future studies, there is potential to extend noise contrastive estimation
approach by considering the prediction of parameters within the constraints. This can be
achieved by learning to contrast the likelihood of feasible points with that of infeasible ones.
However, the e�cacy of such an approach may rely on how the infeasible points are selected
and that is why an empirical investigation into this aspect would provide valuable insights.

Robust decision-focused learning framework to learn parameters in the con-
straints. While predicting parameters in the constraints of an optimization problem, the
prescribed optimal decision might not be feasible with respect to the true parameters. In
such scenarios, an interesting direction would be to recommend a solution which is feasible
under extreme distributional variations of the parameters. We believe a framework for op-
timizing average performance and minimizing worst-case constraint violations could reveal
new tracks for theoretical research as well as practical applications. The research in this
regard can take inspiration from the well-established field of robust optimization (Ben-Tal,
El Ghaoui, & Nemirovski, 2009).

Surrogate loss functions in the absence of ground-truth cost parameters. In may
real-world applications, the true cost parameters of the objective function might be latent
variables. In such cases the parameters are not observed, only the solutions are observed.
So, the parameters would not be available for supervised learning, which entails the use of a
task loss other than regret. DFL frameworks, which implement di↵erentiable optimization
layer, such as DBB, QPTL or I-MLE are compatible with any task loss. However, the SPO
approach, which comes with a theoretical proof of convergence, requires the ground-truth
cost vector for gradient computation. This is also true for noise contrastive and LTR losses,
whose computation and di↵erentiation do not involve solving the CO problem. Development
of surrogate loss functions, which neither require solving nor the true cost vector, would be
a valuable contribution with potentials in real-world applications.

Decision-focused learning by score function gradient estimation. Most of the
DFL techniques focus on computing the derivative dx?(ĉ)

dĉ analytically or construct a sur-
rogate task that provides useful gradients. However, there exists another alternative way
to estimate the gradient—zeroth-order estimation of the gradient. A widely used approach
to zeroth-order optimization is the score function gradient estimation (Williams, 1992). In
order to apply score function gradient estimation in DFL, one has to assume the predicted
parameter follows a distribution and then compute Monte Carlo estimate of regret by sam-
pling cost vector from that distribution. The score function gradient estimation would
return a gradient that moves the parameters of the distribution in directions that facilitate
sampling the cost vector with low values of regret (or task loss in general). Although score
function gradient estimation provides unbiased gradient; a major challenge of using this
technique is it su↵ers from high variances, which might destabilize the learning. Hence,
conducting further research to examine the potential application of score function gradient
estimation in DFL would be a valuable contribution.
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Non-linear objective function. Most of the works in DFL, consider optimization prob-
lems with linear objectives. This is the primary reason such problems have been considered
for experimental evaluations in this work. Any convex optimization problem with non-
linear objective function can be di↵erentiated through Cvxpylayers (Agrawal et al., 2019a).
However, no DFL technique considers nonlinear objectives with discrete decision variables.
As many real-world problems in OR are combinatorial optimization problems with dis-
crete decision variables, developing ML techniques for such problems in the future could
be beneficial in real life. For examples, the problem of optimally locating substations in an
electrical network to minimize the costs of distribution is formulated as nonlinear program-
ming (Lakhera, Shanbhag, & McInerney, 2011). Another classic OR problem, which does
not have a linear objective function is the minimization of makespan in flowshop schedul-
ing. Most of the methodologies discussed in this paper are not applicable to handle such
problems.

Bilevel optimization techniques for DFL. As mentioned in Section 2.2, the empirical
regret minimization problem can be cast as a pessimistic bilevel optimization problem. We
believe that by understanding the mathematical object behind the learning process can lead
to better algorithms for DFL, leaving a door open to the bilevel optimization community
to tackle this problem.

Optimization as an intermediate layer within neural networks. In a Predict-
Then-Optimize problem, the final task is to make a decision by solving a CO problem.
However, in many other applications the optimization task may appear as an intermediate
task. For instance, consider the task of selecting relevant patches in high resolution images,
where the patches are being used for a downstream image recognition task. In (Cordonnier,
Mahendran, Dosovitskiy, Weissenborn, Uszkoreit, & Unterthiner, 2021) the patch selection
task is modeled as a Top-k selection CO problem. Note that the Top-k selection is embedded
as an intermediate layer between two neural networks; where the upstream neural network
assign score to each patch and the downstream neural network performs the recognition task.
Techniques such as I-MLE, DBB, QPTL, DPO, which are implementation of di↵erentiable
optimization layer can be applied to tackle problems like this. Although the existence of
downstream layer after the CO problem may give rise to novel challenges, embedding the
CO problem as an intermediate layer could find extensive use across various domains.

Construction of solution cache. The loss functions which utilize solution cache are very
e↵ective to address the computational cost of DFL and promising for large NP-hard real-
world Predict-Then-Optimize problems. However, we believe there is a space for research
to study the trade-o↵ between the solution cache size and solution quality.

7. Conclusion

The survey article begins by underscoring the significance of Predict-Then-Optimize prob-
lem formulations, wherein an ML model is followed by a CO problem. The Predict-Then-
Optimize problem has emerged as a powerful driving force in numerous real-world applica-
tions of artificial intelligence, operations research and business analytics. The key challenge
in Predict-Then-Optimize problems is predicting the unknown CO problem parameters in
a manner that yields high-quality solutions, in comparison to the retrospective solutions

57



Mandi, Kotary, et al.

obtained when using the groundtruth parameters. To address this challenge, the DFL
paradigm has been proposed, wherein the ML models are directly trained considering the
CO problems using task losses that capture the error encountered after the CO problems.
However to date, there is no comprehensive survey on DFL. This survey provides a com-
prehensive overview of DFL, highlighting recent technological advancements, applications
and identifying potential future research directions. In Section 2, the problem description
has been laid out with examples and then the fundamental challenges in decision-focused
learning have been presented. Afterward, Section 3 has presented a categorization with
four categories of DFL techniques, which have been thoroughly explained highlighting the
trade-o↵s among these four categories. Then, in Section 4, some examples of applications
of DFL techniques to address real-world Predict-Then-Optimize problems, across di↵erent
domains have been provided. Furthermore, extensive comparative evaluations on di↵erent
problem sets between 11 DFL techniques have been provided in Section 5. Finally, a dis-
cussion of some of the open problems in DFL and an outline of potential research directions
have been presented in Section 6. While there has been significant recent progress in DFL,
there remain challenges that need to be addressed. For instance, the development of DFL
techniques, which can handle uncertain parameters occurring anywhere within a generic
CO problem, will have a significant impact on various industrial applications.

We hope this survey article will assist readers to understand the paradigm of decision-
focused learning and grasp the fundamental challenges of implementing it in many real-world
applications. We aspire this survey to potentially act as a catalyst, inspiring the application
of decision-focused learning in diverse domains and contexts as well as stimulating further
methodological research and advancements.
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Figure A1: Comparative evaluations on the synthetic shortest path problem with noise-
halfwidth parameter # = 0.5. These boxplots show the distributions of relative regrets.

Appendix A. Results on All Problem Instances

In the main text, boxplots of some problem instances are presented to save space in the
main text. In this section of Appendix, the boxplots of all the instances are provided. Fig-
ure A1, Figure A2, Figure A3, Figure A4, Figure A5, Figure A6, and Figure A7 display the
boxplots for all the instances of the grid shortest path problem, the portfolio optimization
problem, the Warcraft shortest path problem, the energy-cost aware scheduling problem,
the knapsack problem, the diverse bipartite matching problem, and the subset selection
problem respectively.

Appendix B. Learning Curves of LTR Losses on the Energy-cost Aware
Scheduling Problems

In this section, the learning curves of the LTR loss functions on the three instances of
the scheduling problem are presented. Figure A8 reveals that learning with Pairwise (di↵)
ranking loss is stable whereas learning with Listwise and Pairwise ranking losses do not
stabilize.
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Figure A2: Comparative evaluations on the synthetic portfolio optimization problem with
noise magnitude # = 1. These boxplots show the distributions of absolute regrets.
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Figure A3: Comparative evaluations on the Warcraft shortest path problem instances.
These boxplots show the distributions of relative regrets.
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Figure A4: Comparative evaluations on the energy-cost aware scheduling problem instances.
These boxplots show the distributions of relative regrets.
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Figure A5: Comparative evaluations on the knapsack problem instances. These boxplots
show the distributions of relative regrets.
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Figure A6: Comparative evaluations on the diverse bipartite matching problem instances.
These boxplots show the distributions of relative regrets.
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Figure A7: Comparative evaluations on the subset selection problem instances. This boxplot
shows the distributions of mismatch rates.
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Figure A8: Learning Curves on the energy scheduling problem instances of for the LTR
losses.
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Deg 1 2 4 6 8

PF
(lr)

1. 0.05 0.05 1. 0.05

SPO
(lr)

0.01 0.05 0.1 1. 1.

DBB
(lr, �)

(0.1, 10.) (0.1,1.) (0.05, 1.) (0.05, 0.1) (0.1, 0.1)

I-MLE
(lr, �, ✏, )

(0.5, 100, 1, 5) (0.5, 100, 0.1, 5) (0.5, 100.,2.,5) (0.5, 10., 0.5, 5) (0.5, 100., 2., 5)

FY
(lr, ✏)

(1., 5) (0.1, 0.1) (0.1, 0.1) (0.05, 5.) (0.1, 5.)

HSD
(lr, µ, damping)

(0.1, 0.001, 1.0) (0.1, 0.1, 0.01) (0.1, 10�6, 0.1) (0.1, 0.001, 10�6) (0.1, 10., 1.)

QPTL
(lr, µ)

(0.1, 10.) (0.5, 10.) (0.1, 1.) (0.1, 10.) (0.1, 10.)

Listwise
(lr, ⌧)

(0.1, 0.1) (0.1, 0.1) (1., 0.1) (0.1, 1.) (1., 1.)

Pairwise
(lr, ⇥ )

(1., 1.) (0.1, 0.5) (0.1, 1.) (1., 10.) (1., 10.)

Pairwise(di↵)
(lr)

0.1 0.1 0.5 0.1 1.

MAP
(lr)

0.1 0.1 1. 1. 1.

Table A1: Optimal Hyperparameter Combination for the shortest path problems on a 5⇥5
grid.

Appendix C. Details about Hyperparameter Configuration

The hyperparameters for each methodology in each experiment are selected through grid
search, as described in Section 5.2. For the sake of reproducibility, this section provides the
lists of optimal hyperparameter combinations found by grid search and used to evaluate all
the methodologies. Table A1, Table A2, Table A3, Table A4, Table A5, Table A6 present
the hyperaprameter combinations for the instances of the shortest path problem on the
grid, portfolio optimization problem, Warcraft shortest path problem, energy-cost aware
scheduling, knapsack problem and diverse bipartite matching problem respectively.
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Deg 1 4 8 16

PF
(lr)

0.01 0.05 0.1 0.05

SPO
(lr)

0.5 1. 0.5 0.5

DBB
(lr, �)

(1., 0.1) (1., 0.1) (1., 0.1) (1., 0.1)

I-MLE
(lr, �, ✏, )

(0.5, 0.1, 0.1, 5) (0.5, 0.1, 0.5, 5) (0.5, 0.1, 0.05,5) (0.5, 0.1, 0.05,5)

FY
(lr, ✏)

(0.1, 0.01) (0.5, 0.01) (1, 0.01) (1., 2.)

QPTL
(lr, µ)

(0.1, 10.) (0.05, 10.) (0.1, 10.) (0.05, 10.)

Listwise
(lr, ⌧)

(0.1, 0.01) (0.1, 0.01) (0.1, 0.01) (0.05, 0.005)

Pairwise
(lr, ⇥ )

(0.01, 0.01) (0.01, 0.1) (0.01, 0.01) (0.1, 0.05)

Pairwise(di↵)
(lr)

0.1 0.1 0.1 0.05

MAP
(lr)

0.01 1. 0.05 1.

Table A2: Optimal Hyperparameter Combination for the portfolio optimization problem
instances.
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Image Size 30 24 18 12

PF
(lr)

0.01 0.001 0.0005 0.001

SPO
(lr)

0.0005 0.005 0.01 0.005

DBB
(lr, �)

(0.005, 10.) (0.001, 100.) (0.001, 10.) (0.001, 10.)

I-MLE
(lr, �, ✏, )

(.001, 100, 0.05, 50) (0.001, 10., 0.05, 50) (0.01, 10., 0.05, 5) (0.001, 10., 0.05, 50)

FY
(lr, ✏)

(0.001, 0.01) (0.01, 0.01) (0.01, 0.01) (0.01, 0.01)

Listwise
(lr, ⌧)

(0.005, 1.) (0.005, 0.5) ( 0.005, 0.05) (0.005, 0.5)

Pairwise
(lr, ⇥ )

(0.01, 0.1) (0.01 ,0.1) (0.005, 0.1) (0.01, 0.1)

Pairwise(di↵)
(lr)

0.005 0.005 0.005 0.005

MAP
(lr)

0.01 0.005 0.005 0.005

Table A3: Optimal Hyperparameter Combination for the Warcraft shortest path problem
instances.
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Instance 1 2 3

PF
(lr)

0.5 0.5 0.5

SPO
(lr)

1. 0.5 0.5

DBB
(lr, �)

(0.01, 0.1) (0.5, 1.) (0.5, 1.)

I-MLE
(lr, �, ✏, )

(0.5, 1., 2., 5) (0.5, 1., 1., 5) (0.5, 1., 1., 5)

FY
(lr, ✏)

(0.01, 0.1) (0.5, 5) (0.01, 0.1)

HSD
(lr, µ, damping)

(0.1, 0.1, 10�6 ) (0.1, 0.001, 10�6) (0.1, 0.1, 0.1)

QPTL
(lr, µ)

(0.1, 1.) (0.1, 1.) (0.1, 1.)

Listwise
(lr, ⌧)

(0.1, 5.) (0.1, 5.) (0.1, 5.)

Pairwise
(lr, ⇥ )

(0.1, 1.) (0.1, 5.) (0.1, 50.)

Pairwise(di↵)
(lr)

0.5 0.5 0.1

MAP
(lr)

0.5 0.5 0.5

Table A4: Optimal Hyperparameter Combination for the energy-cost aware scheduling
problem instances.
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Capacity 60 120 180

PF
(lr)

0.5 1. 1.

SPO
(lr)

0.5 1. 1.

DBB
(lr, �)

(0.5, 0.1) (1., 1.) (0.5, 1.)

I-MLE
(lr, �, ✏, )

(0.5, 0.1, 0.5, 5) (0.5, 0.1, 0.1, 5) (0.5, 0.1, 5., 5)

FY
(lr, ✏)

(1., 0.005) (1., 0.5) (0.5, 0.5)

HSD
(lr, µ, damping)

(0.5, 0.01, 10.) (0.5, 0.1, 10.) (1., 0.01, 0.1)

QPTL
(lr, µ)

(0.5, 10.) (0.5, 1.) (0.5, 0.1)

Listwise
(lr, ⌧)

(1., 0.001) (1., 0.001) (0.5, 0.0001)

Pairwise
(lr, ⇥ )

(0.5, 10.) (0.5, 10.) (0.5, 10.)

Pairwise(di↵)
(lr)

1. 1. 1.

MAP
(lr)

1. 1. 1.

Table A5: Optimal Hyperparameter Combination for the knapsack problem instances.
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(⇢1, ⇢2) (10%, 10%) (25%, 25%) (50%, 50%)

PF
(lr)

0.01 0.01 0.0005

SPO
(lr)

0.001 0.001 0.005

DBB
(lr, �)

(0.01, 10.) (0.01, 0.1) (0.01, 1.)

I-MLE
(lr, �, ✏, )

(0.001, 100, 0.5, 5) (0.001, 100., 0.5, 5) ( 0.001, 100., 0.5, 5)

FY
(lr, ✏)

( 0.001, 0.5) (0.001, 0.01) (0.001, 5.)

HSD
(lr, µ, damping)

(0.001, 1., 0.1) (0.05, 0.1, 10.) (0.001, 0.1, 0.1)

QPTL
(lr, µ)

( 0.01, 100.) (0.001. 10.) (0.001, 10.)

Listwise
(lr, ⌧)

(0.001, 5.) (0.01, 5.) (0.01, 5.)

Pairwise
(lr, ⇥ )

( 0.005, 5) (0.01, 50.) (0.01, 50.)

Pairwise(di↵)
(lr)

0.001 0.01 0.005

MAP
(lr)

0.001 0.01 0.005

Table A6: Optimal Hyperparameter Combination for the diverse bipartite matching prob-
lem instances.
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