
Proceedings of Machine Learning Research vol 211:1–23, 2023 5th Annual Conference on Learning for Dynamics and Control

Lie Group Forced Variational Integrator Networks

for Learning and Control of Robot Systems

Valentin Duruisseaux VDURUISS@UCSD.EDU
Department of Mathematics, University of California San Diego, La Jolla, CA 92093

Thai Duong TDUONG@UCSD.EDU
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093

Melvin Leok MLEOK@UCSD.EDU
Department of Mathematics, University of California San Diego, La Jolla, CA 92093

Nikolay Atanasov NATANASOV@UCSD.EDU

Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract

Incorporating prior knowledge of physics laws and structural properties of dynamical systems into
the design of deep learning architectures has proven to be a powerful technique for improving their
computational efficiency and generalization capacity. Learning accurate models of robot dynamics
is critical for safe and stable control. Autonomous mobile robots, including wheeled, aerial, and
underwater vehicles, can be modeled as controlled Lagrangian or Hamiltonian rigid-body systems
evolving on matrix Lie groups. In this paper, we introduce a new structure-preserving deep learning
architecture, the Lie group Forced Variational Integrator Network (LieFVIN), capable of learning
controlled Lagrangian or Hamiltonian dynamics on Lie groups, either from position-velocity or
position-only data. By design, LieFVINs preserve both the Lie group structure on which the dy-
namics evolve and the symplectic structure underlying the Hamiltonian or Lagrangian systems of
interest. The proposed architecture learns surrogate discrete-time flow maps allowing accurate and
fast prediction without numerical-integrator, neural-ODE, or adjoint techniques, which are needed
for vector fields. Furthermore, the learnt discrete-time dynamics can be utilized with computation-
ally scalable discrete-time (optimal) control strategies.
Keywords: Dynamics Learning, Variational Integrators, Symplectic Integrators, Structure-Preserving
Neural Networks, Physics-Informed Machine Learning, Predictive Control, Lie Group Dynamics

1. Introduction

Dynamical systems evolve according to physics laws which can be described using differential
equations. An accurate model of the dynamics of a control system is important, not only for pre-
dicting its future behavior, but also for designing control laws that ensure desirable properties such
as safety, stability, and generalization to different operational conditions.

This paper considers the problem of learning dynamics: given a dataset of trajectories from a
dynamical system, we wish to infer the update map that generates these trajectories and use it to pre-
dict the evolution of the system from different initial states. Models obtained from first principles are
used extensively in practice but tend to over-simplify the underlying structure of dynamical systems,
leading to prediction errors that cannot be corrected by optimizing over a few model parameters.
Deep learning provides very expressive models for function approximation but standard neural net-
works struggle to learn the symmetries and conservation laws underlying dynamical systems, and as

© 2023 V. Duruisseaux, T. Duong, M. Leok & N. Atanasov.

DURUISSEAUX DUONG LEOK ATANASOV

a result do not generalize well. Deep learning models capable of learning and generalizing dynam-
ics effectively (Willard et al., 2020) are typically over-parameterized and require large datasets and
substantial training time, making them prohibitively expensive for applications such as robotics.

A recent research direction has been considering a hybrid approach, which encodes physical
laws and geometric properties of the underlying system in the design of the neural network architec-
ture or in the learning process. Prior physics knowledge can be used to construct physics-informed
neural networks with improved design and efficiency and better generalization capacity, which take
advantage of the function approximation power of neural networks to handle incomplete knowledge.
In this paper, we consider learning controlled Lagrangian or Hamiltonian dynamics on Lie groups
while preserving the symplectic structure underlying these systems and the Lie group constraints.

Symplectic maps possess numerous special properties and are closely related to Hamiltonian
systems. Preserving the symplectic structure of a Hamiltonian system when constructing a discrete
approximation of its flow map ensures the preservation of many aspects of the system such as
total energy, and leads to physically well-behaved discrete solutions (Leimkuhler and Reich, 2004;
Hairer et al., 2006; Holm et al., 2009; Blanes and Casas, 2017). It is thus important to have structure-
preserving architectures which can learn flow maps and ensure that the learnt maps are symplectic.
Many physics-informed approaches have recently been proposed to learn Hamiltonian dynamics
and symplectic maps (Lutter et al., 2019b; Greydanus et al., 2019; Bertalan et al., 2019; Jin et al.,
2020; Burby et al., 2020; Chen et al., 2020; Cranmer et al., 2020; Zhong et al., 2020a,b, 2021;
Marco and Méhats, 2021; Rath et al., 2021; Chen et al., 2021; Offen and Ober-Blöbaum, 2022;
Santos et al., 2022; Valperga et al., 2022; Mathiesen et al., 2022; Duruisseaux et al., 2023a).

Our physics-informed strategy, inspired by (Forced) Variational Integrator Networks ((F)VINs)
(Sæmundsson et al., 2020; Havens and Chowdhary, 2021), differs from most of these approaches
by learning a discrete-time symplectic approximation to the flow map of the dynamical system,
instead of learning the vector field for the continuous-time dynamics. This allows fast prediction for
simulation, planning and control without the need to integrate differential equations or use neural
ODEs and adjoint techniques. Additionally, the learnt discrete-time dynamics can be combined with
computationally scalable discrete-time control strategies.

The novelty of our approach with respect to (F)VINs resides in the enforcement not only of
the preservation of symplecticity but also of the Lie group structure when learning a surrogate map
for a controlled Lagrangian system which evolves on a Lie group. This is achieved by working
in Lie group coordinates instead of Euclidean coordinates, by matching the training data to a pa-
rameterized forced Lie group variational integrator which evolves intrinsically on the Lie group.
More specifically, we extend the discrete-time Euclidean formulation of FVINs with control from
(Havens and Chowdhary, 2021) to Lie groups in a structure-preserving way, which is particularly
relevant when considering robot systems (e.g., wheeled, aerial, and underwater vehicles) since they
can often be modeled as controlled Lagrangian rigid-body systems evolving on Lie groups.

Given a learnt dynamical system, it is often desirable to control its behavior to achieve stabiliza-
tion, tracking, or other control objectives. Control designs for continuous-time Hamiltonian systems
rely on the Hamiltonian structure (Lutter et al., 2019a; Zhong et al., 2020a; Duong and Atanasov,
2021, 2022). Since the Hamiltonian captures the system energy, control techniques for stabilization
inject additional energy into the system via the control input to ensure that the minimum of the total
energy is at a desired equilibrium. For fully-actuated Hamiltonian systems, it is sufficient to shape
the potential energy only using energy-shaping and damping-injection (ES-DI) (Van Der Schaft and
Jeltsema, 2014). For under-actuated systems, both the kinetic and potential energies are shaped,

2

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

e.g., via interconnection and damping assignment passivity-based control (IDA-PBC) (Ortega et al.,
2002; Van Der Schaft and Jeltsema, 2014; Acosta et al., 2014; Cieza and Reger, 2019). The most
widely used control approach for discrete-time dynamics is based on Model Predictive Control
(MPC) (Borrelli et al., 2017; Grüne and Pannek, 2017). MPC techniques determine an open-loop
control sequence that solves a finite-horizon optimal control problem, apply the first few control in-
puts, and repeat the process. A key result in MPC is that an appropriate choice of terminal cost and
terminal constraints in the sequence of finite-horizon problems can guarantee recursive feasibility
and asymptotic optimality with respect to the infinite-horizon cost (Borrelli et al., 2017). The ability
to learn a structure-preserving discrete-time model of a dynamics system enabled by this paper, also
allows employing MPC techniques for optimal control of the learnt system dynamics.

2. Preliminaries

We first review the basic theory of continuous-time Lagrangian and Hamiltonian systems, before
describing their underlying symplectic structure and how variational integrators preserve that struc-
ture. Finally, we discuss how external forcing and control can be added to variational integrators.

2.1. Geometric Mechanics

The set of tangent vectors to a manifold Q at a point q 2 Q is a vector space called the tangent
space TqQ to Q at q. The disjoint union of all the tangent spaces to Q forms the tangent bundle
TQ = {(q, v)|q 2 Q, v 2 TqQ} of Q. The vector space dual to the tangent space TqQ is the
cotangent space T

⇤
q Q, and the vector bundle over Q whose fibers are the cotangent spaces of Q is

the cotangent bundle T
⇤Q = {(q, p)|q 2 Q, p 2 T

⇤
q Q}.

Given a manifold Q, a Lagrangian is a function L : TQ ! R. Hamilton’s Variational Principle
states that �

R T
0 L(q(t), q̇(t))dt = 0, where the variation is induced by an infinitesimal variation �q

that vanishes at the endpoints. Hamilton’s Principle is equivalent to the Euler–Lagrange equations

@L

@q
(q, q̇) � d

dt

✓
@L

@q̇
(q, q̇)

◆
= 0. (1)

Given a Lagrangian L, we define the conjugate momentum p 2 T
⇤Q via the Legendre transform

p = @L
@q̇ , and obtain a Hamiltonian H(q, p) =

Pn
j=1 pj q̇

j � L(q, q̇)
��
pi=

@L
@q̇i

on T
⇤Q. There is a

variational principle on the Hamiltonian side which is equivalent to Hamilton’s equations and to the
Euler–Lagrange equations (1) when the Legendre transform is diffeomorphic. For most mechanical
systems, the Legendre transform is diffeomorphic and thus the Lagrangian and Hamiltonian formu-
lations are equivalent. The approaches presented here are based on the Lagrangian formulation, but
also apply to the equivalent Hamiltonian systems whenever they are well-defined.

2.2. Symplecticity

A smooth mapping (q, p) 7! (q̄, p̄) is symplectic if it preserves the symplectic two-form, that isP
i=1 dq

i ^dpi =
P

i=1 dq̄
i ^dp̄i. Hamiltonian systems and symplectic flows are closely related:

solutions to Hamiltonian systems are symplectic flows (Poincaré, 1899), and symplectic flows are
locally Hamiltonian. When applied to Hamiltonian systems, symplectic integrators yield discrete
approximations of the flow that preserve the symplectic two-form, which results in the preservation
of many qualitative aspects of the dynamical system and leads to physically well-behaved solutions.

3

DURUISSEAUX DUONG LEOK ATANASOV

See (Leimkuhler and Reich, 2004; Hairer et al., 2006; Blanes and Casas, 2017) for a comprehensive
presentation of geometric numerical integration.

2.3. Variational Integrators

Variational integrators are obtained by discretizing Hamilton’s principle, instead of discretizing the
equations of motion, are thus symplectic, preserve many invariants, and exhibit excellent long-
time near-energy preservation (Marsden and West, 2001). The exact discrete Lagrangian generating
the time-h flow can be represented in boundary-value form as L

E
d (q0, q1) =

R h
0 L(q(t), q̇(t))dt,

where q(t) satisfies the Euler–Lagrange equations on [0, h] with q(0) = q0, q(h) = q1. After
constructing an approximation Ld to L

E
d , the Lagrangian variational integrator is defined implicitly

by the discrete Euler–Lagrange equation, D2Ld(qk�1, qk) + D1Ld(qk, qk+1) = 0, which can also
be written in Hamiltonian form, using discrete momenta pk, as pk = �D1Ld(qk, qk+1) and pk+1 =
D2Ld(qk, qk+1), where Di denotes a partial derivative with respect to the i-th argument. Many
properties of the integrator, such as momentum conservation and error analysis guarantees, can be
determined by analyzing the discrete Lagrangian, instead of analyzing the integrator directly.

Examples of variational integrators include Taylor (Schmitt et al., 2018), Galerkin (Marsden
and West, 2001; Leok and Zhang, 2011), prolongation-collocation (Leok and Shingel, 2012), and
constrained (Marsden and West, 2001; Duruisseaux and Leok, 2022) variational integrators. Varia-
tional integrators can also be developed for Hamiltonian dynamics (Lall and West, 2006; Leok and
Zhang, 2011; Schmitt and Leok, 2017; Duruisseaux et al., 2021), and can be used with prescribed
variable time-steps (Duruisseaux et al., 2021; Duruisseaux and Leok, 2023).

2.4. Forced Variational Integrators

External forcing and control can be added to variational integrators (Marsden and West, 2001; Ober-
Blöbaum et al., 2011). Let u(t) be the control parameter in some control manifold U, and consider
a Lagrangian control force fL : TQ ⇥ U ! T

⇤Q. Hamilton’s principle can be modified into the
Lagrange–d’Alembert Principle

�

Z T

0
L(q(t), q̇(t))dt+

Z T

0
fL(q(t), q̇(t), u(t)) · �q(t)dt = 0, (2)

where the variation is induced by an infinitesimal variation �q that vanishes at the endpoints. This
variational principle is equivalent to the forced Euler–Lagrange equations

@L

@q
(q, q̇) � d

dt

✓
@L

@q̇
(q, q̇)

◆
+ fL(q, q̇, u) = 0. (3)

Using a discrete Lagrangian Ld, and discrete Lagrangian control forces f±d : Q ⇥Q ⇥U ! T
⇤Q to

approximate the virtual work of the Lagrangian control force fL,
Z tk+1

tk

fL(q(t), q̇(t), u(t)) · �q(t)dt ⇡ f�d (qk, qk+1, uk) · �qk + f+d (qk, qk+1, uk) · �qk+1, (4)

one can obtain a forced variational integrator from the forced discrete Euler–Lagrange equations

D2Ld(qk�1, qk) +D1Ld(qk, qk+1) + f+d (qk�1, qk, uk�1) + f�d (qk, qk+1, uk) = 0, (5)

which can also be written in Hamiltonian form as

pk = �D1Ld(qk, qk+1) � f�d (qk, qk+1, uk), pk+1 = D2Ld(qk, qk+1) + f+d (qk, qk+1, uk). (6)

4

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

3. Problem Statement

We consider the problem of learning controlled Lagrangian dynamics. Given a position-velocity
dataset of trajectories, we wish to infer the flow map generating these trajectories, while preserving
the system’s symplectic structure and constraining the updates to the Lie group on which it evolves.
For example, a rigid-body robot system may be modeled as a Lagrangian system evolving on the
Lie group SE(3) of rigid-body transformations. Learning its dynamics from trajectory data should
respect kinematic and energy conservation. More precisely, we consider the following problem.

Problem 1 Let Q be a Lie group and DTQ be a distance metric on TQ. Given a dataset of position-

velocity updates
n⇣

q
(i)
0 , q̇

(i)
0 , u

(i)
0

⌘
7!
⇣
q
(i)
1 , q̇

(i)
1

⌘oN

i=1
for a controlled Lagrangian dynamical sys-

tem evolving on Q, we wish to find a symplectic mapping : TQ ⇥ U ! TQ which minimizes

NX

i=1

DTQ

⇣⇣
q
(i)
1 , q̇

(i)
1

⌘
,
⇣
q
(i)
0 , q̇

(i)
0 , u

(i)
0

⌘⌘
. (7)

4. Lie group Forced Variational Integrators Networks (LieFVINs)

To solve Problem 1, we introduce Lie group Forced Variational Integrators Networks (LieFVINs).
Our main idea is to parametrize the updates of a forced Lie group variational integrator and match
them with observed updates. We focus on specific forced SO(3) and SE(3) variational integrators,
but the general strategy extends to any Lie group forced variational integrator.

4.1. The SO(3) and SE(3) Lie Groups

The 3-dimensional special orthogonal group SO(3) = {R 2 R3⇥3|RR
> = I3, det (R) = 1},

where Ik denotes the k ⇥ k identity matrix, is the Lie group of rotations about the origin in R3. The
Lie algebra of SO(3) is the space of skew-symmetric matrices so(3) = {A 2 R3⇥3|A> = �A},
with the matrix commutator [A,B] = AB � BA as the Lie bracket. The sets R3 and so(3) are
isomorphic via the hat map S(·) : R3 ! so(3), defined by S(x)y = x ⇥ y for any x, y 2 R3.

The Special Euclidean group in 3 dimensions, SE(3), is a semidirect product of R3 and SO(3)
and is diffeomorphic to R3 ⇥ SO(3). Elements of SE(3) can be written as (x,R) 2 R3 ⇥ SO(3),
and the Lie algebra se(3) of SE(3) is composed of elements (y,A) 2 R3 ⇥ so(3).

The pose of a rigid body can be described by an element (x,R) of SE(3), consisting of position
x 2 R3 and orientation R 2 SO(3). See Duruisseaux et al. (2023b, Appendix A) for more details
about rigid-body kinematics.

4.2. Forced Variational Integrator on SO(3) and SE(3)

On SE(3), q = (x,R) and q̇ = (v,!) where x is position, R is orientation, v is velocity, and ! is
angular velocity. A Lagrangian on SE(3) is given by

L(x,R, v,!) =
1

2
v
>
mv +

1

2
!
>
J! � U(x,R), (8)

where m is mass, J 2 R3⇥3 is a symmetric positive-definite inertia matrix, U is potential energy.
Consider the continuous-time kinematics equation Ṙ = RS(!), with constant !(t) ⌘ !k for a

short period of time t 2 [tk, tk+1) where tk+1 = tk + h. Then, R(tk+1) = R(tk) exp(hS(!k)).

5

DURUISSEAUX DUONG LEOK ATANASOV

Thus, with Rk := R(tk), Rk+1 := R(tk+1) and Zk := exp(hS(!k)), we obtain Rk+1 = RkZk and
for sufficiently small h, we have Zk ⇡ I3 + hS(!k). With (xk, Rk) 2 SE(3), the discrete SE(3)
kinematic equations are given by Rk+1 = RkZk and xk+1 = xk + Rkyk where (yk, Zk) 2 SE(3),
which ensures that the sequence of updates {(xk, Rk)}k remains on SE(3).

Using the approximation S(!k) ⇡ 1
h(Zk � I3), we choose the discrete Lagrangian

Ld(xk, Rk, yk, Zk) =
m

2h
y
>
k yk +

1

h
tr ([I3 � Zk]Jd)

� (1 � ↵)hU(xk, Rk) � ↵hU(xk +Rkyk, RkZk),
(9)

where ↵ 2 [0, 1] and Jd = 1
2 tr(J)I3 � J . Equation (9) gives a simple approximation to the exact

SE(3) discrete Lagrangian, while maintaining some flexibility in the two-point quadrature weights
through the tunable parameter ↵. Higher-order approximations could also be used, but the resulting
discrete equations of motion would typically be more complicated and expensive to evolve.

We denote Uk = U(xk, Rk) and define ⇠k via S(⇠k) = @Uk
@Rk

>
Rk�R

>
k

@Uk
@Rk

. In Duruisseaux et al.
(2023b, Appendix B), we show that the forced discrete Euler–Lagrange equations associated to the
discrete Lagrangian (9) and discrete control forces f±dk ⌘ f±d (xk, Rk, uk) with R and x components
fR±
d , fx±d can be written in Hamiltonian form, using ⇡k = J!k and �k = mvk, as

hS(⇡k) + hS(fR�
dk

) + (1 � ↵)h2S(⇠k) = ZkJd � JdZ
>
k , (10)

Rk+1 = RkZk, (11)

⇡k+1 = Z
>
k ⇡k + (1 � ↵)hZ>

k ⇠k + ↵h⇠k+1 + Z
>
k fR�

dk
+ fR+

dk
, (12)

xk+1 = xk +
h

m
�k � (1 � ↵)

h
2

m

@Uk

@xk
� h

m
Rkf

x�
dk

, (13)

�k+1 = �k � (1 � ↵)h
@Uk

@xk
� ↵h

@Uk+1

@xk+1
+Rkf

x�
dk

+Rk+1f
x+
dk

. (14)

Given (xk, Rk, �k,⇡k, uk), we first solve equation (10) which is of the form S(a) = ZJd � JdZ
>

as outlined in Remark 1, and then get Rk+1 = RkZk. We then obtain ⇡k+1, xk+1 and �k+1

from equations (12)-(14). The discrete equations of motion can be rewritten as an update from
(xk, Rk, vk,!k, uk) to (xk+1, Rk+1, vk+1,!k+1) by using ⇡k = J!k and �k = mvk.

Remark 1 S(a) = ZJd � JdZ
> can be converted into an equivalent vector equation

�(z) ⌘ a+ a ⇥ z + z(a>z) � 2Jz = 0, z 2 R3
, (15)

as shown in Duruisseaux et al. (2023b, Appendix C), using the Cayley transform

Z = Cay(z) ⌘ (I3 + S(z))(I3 � S(z))�1 =
1

1 + kzk22

⇣
(1 � kzk22)I3 + 2S(z) + 2zz>

⌘
. (16)

The solution Z = Cay(z) to the original equation S(a) = ZJd � JdZ
> can be obtained after

solving this vector equation for z by using (typically 2 or 3 steps of) Newton’s method:

z(n+1) = z(n) �
h
r�(z(n))

i�1
�(z(n)), r�(z) = S(a) + (a>z)I3 + za> � 2J. (17)

6

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

4.3. Lie Group Forced Variational Integrator Networks (LieFVINs) on SE(3)

We now describe the construction of Lie group Forced Variational Integrator Networks (LieFVINs),
for the forced variational integrator on SE(3) presented in Section 4.2. The idea is to parametrize the
updates of the integrator and match them with observed updates. Here, we consider the case where
position-velocity data is available, in which case the LieFVIN is based on equations (10)-(14). The
case where only position data is available is presented in Duruisseaux et al. (2023b, Appendix E).

We parametrize m, f±d and U as neural networks. The inertia J is a symmetric positive-definite
matrix-valued function of (x,R) constructed via a Cholesky decomposition J = LL

> for a lower-
triangular matrix L implemented as a neural network. Given J , we also obtain Jd = 1

2 tr(J)I3 � J .
To deal with the implicit nature of equation (10), we propose two algorithms, based either on an
explicit iterative solver or by penalizing deviations away from equation (10):

Algorithm Ia. Given position-velocity data {(x0, R0, v0,!0, u0) 7! (x1, R1, v1,!1)}, minimize
discrepancies between the observed (x1, R1, v1,!1) quadruples and the predicted (x̃1, R̃1, ṽ1, !̃1)
quadruples, obtained as follows: for each (x0, R0, v0,!0, u0) data tuple,

1. Get fR±
d0

and fx±d0 from (x0, R0, u0), and ⇠0 from S(⇠0) =
@U0
@R0

>
R0 � R

>
0

@U0
@R0

2. Get Z0 = Cay(z) where z is obtained using a few steps of Newton’s method to solve the
vector equation (15) equivalent to hS(J!0) + hS(fR�

d0
) + (1 � ↵)h2S(⇠0) = ZJd � JdZ

>

3. Compute R̃1 = R0Z0, and then get ⇠1 from S(⇠1) =
@U1

@R̃1

>
R̃1 � R̃

>
1

@U1

@R̃1

4. Get !̃1 from J !̃1 = Z
>
0 J!0 + (1 � ↵)hZ>

0 ⇠0 + ↵h⇠1 + Z
>
0 fR�

d0
+ fR+

d0

5. Compute

x̃1

ṽ1

�
=


x0

v0

�
+ 1

m

"
hmv0 � (1 � ↵)h2m@U0

@x0
� hR0f

x�
d0

�(1 � ↵)h2 @U0
@x0

� ↵h
2 @U1
@x1

+R0f
x�
d0

+R1f
x+
d0

#

Algorithm Ib. Given position-velocity data {(x0, R0, v0,!0, u0) 7! (x1, R1, v1,!1)}, minimize

• Discrepancies between the observed (x1, v1,!1) triples and the predicted (x̃1, ṽ1, !̃1) triples

• Deviations away from the equation hS(J!0)+hS(fR�
d0

)+ (1�↵)h2S(⇠0) = JdZ0 �Z
>
0 Jd

where, for each (x0, R0, v0,!0, u0, R1) data tuple,

1. fR±
d0

and fx±d0 are obtained from (x0, R0, u0), and ⇠0, ⇠1 from S(⇠k) =
@Uk
@Rk

>
Rk � R

>
k

@Uk
@Rk

2. Z0 = R
>
0 R1 and !̃1 = J

�1
h
Z

>
0 J!0 + (1 � ↵)hZ>

0 ⇠0 + ↵h⇠1 + Z
>
0 fR�

d0
+ fR+

d0

i

3.

x̃1

ṽ1

�
=


x0

v0

�
+ 1

m

"
hmv0 � (1 � ↵)h2m@U0

@x0
� hR0f

x�
d0

�(1 � ↵)h2 @U0
@x0

� ↵h
2 @U1
@x1

+R0f
x�
d0

+R1f
x+
d0

#

This general strategy extends to any other Lie group integrator. In particular, LieFVINs on
SO(3) can be obtained from the algorithms above as the special case where x is constant, in which
case we can disregard all the variables and operations in green. Lie group variational integrator net-
works without forces (LieVINs) can be obtained by setting fR±

d0
= fx±d0 = 0. Note that the strategy

behind Algorithm Ia enforces the structure of the system in a stronger way than in Algorithm Ib.
However, for certain Lie groups and variational integrators, it might not be practical to use Newton’s
method to solve for the implicit updates, in which case Algorithm Ib is preferred.

7

DURUISSEAUX DUONG LEOK ATANASOV

4.4. Control Strategy

Given the discrete-time flow map learnt by a LieFVIN, we can formulate a Model Predictive
Control (MPC) problem to design a discrete-time control policy for the dynamical system:

At each step t` = `h,

1. Obtain an estimate (q̃`, ˙̃q`) of the current state.

2. Solve a N -step finite horizon optimal control problem starting at (q̃`, ˙̃q`), formulated as a
constrained optimization problem: Minimize the discrete cost function

Jd(U`) =
N�1X

k=0

Cd(q`+k, q`+k+1, q̇`+k, u`+k) + �d(q`+N�1, q`+N , q̇`+N , u`+N�1), (18)

over admissible discrete controls U` = {u`, u`+1, ..., u`+N�1}, subject to path constraints
Pd(q`+k, q`+k+1, q̇`+k, u`+k) � 0 for k = 1, ..., N � 1 and to the termination condition
Td(q`+N�1, q`+N , q̇`+N , u`+N�1) = 0, and where the evolution of the controlled system is
prescribed by the surrogate symplectic map learnt by the LieFVIN.

3. Apply the resulting optimal control u⇤` to the system in state (q̃`, ˙̃q`) until t`+1 = (`+ 1)h.

Note that the Lie group constraints do not need to be added as path constraints since they are
automatically satisfied to (almost) machine precision, by the design of the LieFVINs. In our exper-
iments, we use the PyTorch MPC framework1 (Tassa et al., 2014; Amos et al., 2018).

5. Evaluation

We now demonstrate our approach to learn and control a planar pendulum and a crazyflie quadrotor.
More details about our implementation can be found in Duruisseaux et al. (2023b, Appendix D), and
our Python/PyTorch code is available at https://thaipduong.github.io/LieFVIN/

5.1. Pendulum

We consider a planar pendulum with dynamics '̈ = �15 sin' + 3u, where ' is the angle with
respect to its downward position ' = 0 and u 2 R is a control input. The mass of the pendulum,
the potential energy, and input coefficient are given by m = 1/3, U(') = 5(1 � cos'), g(') = 1.
We collected {(cos', sin', '̇)} data from an OpenAI Gym environment (Zhong et al., 2020a).
LieFVIN was trained with position-velocity data as described in Algorithm Ia with ↵ = 0.5. The
forces were specified as fR+

d = 0 and fR�
d = g(q)u, where g(q) is a neural network.

Figures 1(a), (b), (c) show that the LieFVIN model learned the correct inertia matrix J , control
gain g(q), and potential energy U (up to a constant offset). Without control input, i.e., fR±

d = 0, we
use the dynamics model learnt from short-term trajectories of 10 steps of 0.02s to generate long-
term predictions (2000 steps, i.e. 40s). Figure 1(d) shows that the total energy of the learnt system
fluctuates but stays close to the ground truth value. The fluctuation comes from the discretization
errors in equations (10)-(14) and model errors for the learnt quantities J , U , and g(q). Note that the
SO(3) constraint errors remain very small, around 10�14 (see Figure 1(e)). The phase portraits and

1. Code: https://locuslab.github.io/mpc.pytorch/

8

https://thaipduong.github.io/LieFVIN/
https://locuslab.github.io/mpc.pytorch/

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

the learnt dynamics are close to the ground-truth ones, illustrating the ability to generate long-term
predictions using the model learnt from short-term data. Meanwhile, a Multilayer Perceptron black-
box model, described in Duruisseaux et al. (2023b, Appendix D.1), struggles to infer the SO(3)
constraints from data (Figure 1(e)(g)) and is not able to conserve the total energy (Figure 1(d)).

The learnt dynamics model is combined with MPC as described in Section 4.4 to drive the
pendulum from downward position ' = 0 to a stabilized upright position '

⇤ = ⇡, '̇⇤ = 0, with
input constraint |u|  20. Figure 1(h) plots the angle ', angular velocity '̇, and control input u,
showing that the pendulum is successfully stabilized using the learnt discrete dynamics model.

-4 -2 0 2 4

0

1

2

3

angle �

Ground Truth

J�1(q)[3, 3]

Other J�1(q)[i, j]

-4 -2 0 2 4
-4

-2

0

2

4

6

8

10

12

angle �

Ground Truth U(q)

-4 -2 0 2 4

0

0.5

1

1.5

angle �

g(q)[1] g(q)[2] g(q)[3]

0 5 10 15 20 25 30 35 40
3

4

5

6

7

t (in s)

Ground Truth Energy

Learned Total Energy (LieFVIN)

Learned Total Energy (black-box)

(a) (b) (c) (d)

0 5 10 15 20 25 30 35 40

1e-14

1e-11

1e-8

1e-5

1e-2

1e1

t (in s)

| det(R) � 1| (LieFVIN)

kRR� � Ik (LieFVIN)

| det(R) � 1| (black-box)

kRR� � Ik (black-box)

-1.5 -1 -0.5 0 0.5 1 1.5

-4

-2

0

2

4

(�, �̇) space

Ground Truth

LieFVIN

Black-box

0 1000 2000 3000 4000 5000 6000

1e0

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6
Iterations

Train Loss (LieFVIN)

Test Loss (LieFVIN)

Train Loss (black-box)

Test Loss (black-box)

(e)
(f) (g) (h)

Figure 1: Evaluation of SO(3) LieFVIN on a pendulum. We learned the inertia matrix (a), potential
energy (b), and input coefficient (c), with the loss function shown in (g). The learnt model
respects the energy conservation law (d), SO(3) constraints (e), and phase portraits (f).
The control from MPC is shown in (h). Meanwhile, a black-box model struggles to infer
the SO(3) constraints from data (e)(g) and is not able to conserve energy (d).

5.2. Crazyflie Quadrotor

We demonstrate that our SE(3) dynamics learning and control approach can achieve trajectory track-
ing for an under-actuated system by considering a Crazyflie quadrotor simulated using PyBullet
(Panerati et al., 2020). The control input u = [f, ⌧] includes the thrust f 2 R�0 and torque vector
⌧ 2 R3 generated by the 4 rotors. LieFVIN is trained as in Algorithm Ib with ↵ = 0.5. The forces
are specified as fx±d = 0.5gx(q)u and fR±

d = 0.5gR(q)u where gx(q), gR(q) are neural networks.
Figures 2(a)-(e) show that LieFVIN learned the correct mass m, inertia matrix J , control

gains gx(q) and gR(x), and potential energy U(q) (up to a constant offset). Without control in-
put, i.e., fR±

d = 0, we use the dynamics model learnt from short-term trajectories of 5 steps of 0.02s
to generate long-term predictions (2000 steps, i.e. 40s). Figure 2(f) shows that the total energy of
the system has bounded fluctuations while SO(3) constraint errors are around 10�14, verifying the
near-energy conservation and manifold constraints guaranteed by our approach.

The learnt model is then combined with MPC as in Section 4.4 to track a diamond-shaped
trajectory, with control input constraints 0  f  0.595, |⌧ |  10�3[5.9 5.9 7.4]>. Figure 3
displays the robot trajectory and plots the tracking errors over time, showing that the quadrotor
successfully completes the task.

9

DURUISSEAUX DUONG LEOK ATANASOV

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

30

32

34

36

38

40

t (in s)

Ground Truth m�1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

10000

20000

30000

40000

t (in s)

J�1[1, 1]

J�1[2, 2]

J�1[3, 3]

Other J�1 entries

Ground Truth

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t (in s)

Ground Truth

Other gx(q) entries

gx(q)[3, 1]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t (in s)

gR(q)[4, 2]

gR(q)[5, 3]

gR(q)[6, 4]

Other gR(q) entries

Ground Truth

(a) (b) (c) (d)

0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33

-2.08

-2.06

-2.04

-2.02

-2.00

-1.98

z component of position x

Learnt U(q)

Ground-truth U(q) - 2.1

0 5 10 15 20 25 30 35 40

-0.57

-0.56

-0.55

-0.54

t (in s)

Learnt Total Energy

0 5 10 15 20 25 30 35 40
0

2e-15

4e-15

6e-15

8e-15

1e-14

t (in s)

| det(R) � 1|
kRR� � Ik

0 5000 10000 15000 20000

1e1

1e-0

1e-1

1e-2

1e-3 Iterations

Train Loss

Test Loss
(e) (f) (g) (h)

Figure 2: LieFVIN learns the correct mass m (a), inertia matrix J (b), input coefficients gx(q) (c)
and gR(q) (d), potential energy U(q) (e). The learnt model respects the energy conserva-
tion law (f), SO(3) constraints (g). The evolution of the loss function is shown in (h).

Figure 3: Trajectory tracking with the learned quadrotor model. The tracking errors (left) between
reference trajectory (orange) and the actual trajectory, and the robot trajectory (lower
right) show that the task is completed successfully.

6. Conclusion

We introduced a new structure-preserving deep learning strategy to learn discrete-time flow maps for
controlled Lagrangian or Hamiltonian dynamics on a Lie group, from position-velocity or position-
only data. The resulting maps evolve intrinsically on the Lie group and preserve the symplecticity
underlying the systems of interest, which allows to generate physically well-behaved long-term
predictions based on short-term trajectories data. Learning discrete-time flow maps instead of vector
fields yields better prediction without requiring the use of a numerical integrator, neural ODE, or
adjoint techniques. The proposed approach can also be combined with discrete-time optimal control
strategies, for instance to achieve stabilization and tracking for robot systems on SE(3). Possible
future directions include extensions to multi-link robots and multi-agent systems (e.g. on (SE(3))n).

10

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

Acknowledgments

The authors gratefully acknowledge support from NSF under grants CCF-2112665, DMS-1345013,
DMS-1813635 and from AFOSR under grant FA9550-18-1-0288.

References

J. A. Acosta, M. I. Sanchez, and A. Ollero. Robust control of underactuated aerial manipulators via
IDA-PBC. In IEEE Conference on Decision and Control (CDC), 2014.

B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter. Differentiable MPC for End-to-end
Planning and Control. In Advances in Neural Information Processing Systems, 2018.

T. Bertalan, F. Dietrich, I. Mezić, and I. G. Kevrekidis. On learning Hamiltonian systems from
data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12):121107, 2019. doi:
10.1063/1.5128231.

S. Blanes and F. Casas. A Concise Introduction to Geometric Numerical Integration. 2017. ISBN
9781482263442. doi: 10.1201/b21563.

F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems. Cam-
bridge University Press, 2017.

J. W. Burby, Q. Tang, and R. Maulik. Fast neural Poincaré maps for toroidal magnetic fields. Plasma
Physics and Controlled Fusion, 63(2):024001, 2020. doi: 10.1088/1361-6587/abcbaa.

Y. Chen, T. Matsubara, and T. Yaguchi. Neural symplectic form: learning Hamiltonian equations
on general coordinate systems. In Advances in Neural Information Processing Systems, 2021.

Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou. Symplectic Recurrent Neural Networks. Interna-
tional Conference on Learning Representations, 2020.

O. B. Cieza and J. Reger. IDA-PBC for underactuated mechanical systems in implicit Port-
Hamiltonian representation. In European Control Conference (ECC), 2019.

M. Cranmer, S. Greydanus, S. Hoyer, P. W. Battaglia, D. N. Spergel, and S. Ho. Lagrangian neural
networks. ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equa-
tions, 2020.

T. Duong and N. Atanasov. Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For
Dynamics Learning and Control. In Proceedings of Robotics: Science and Systems, 2021. doi:
10.15607/RSS.2021.XVII.086.

T. Duong and N. Atanasov. Adaptive control of SE(3) Hamiltonian dynamics with learned distur-
bance features. IEEE Control Systems Letters, 2022.

V. Duruisseaux and M. Leok. Accelerated optimization on Riemannian manifolds via discrete con-
strained variational integrators. Journal of Nonlinear Science, 32(42), 2022.

11

DURUISSEAUX DUONG LEOK ATANASOV

V. Duruisseaux and M. Leok. Time-adaptive Lagrangian variational integrators for accelerated
optimization on manifolds. Journal of Geometric Mechanics, 15(1):224–255, 2023. ISSN 1941-
4889.

V. Duruisseaux, J. Schmitt, and M. Leok. Adaptive Hamiltonian variational integrators and appli-
cations to symplectic accelerated optimization. SIAM Journal on Scientific Computing, 43(4):
A2949–A2980, 2021.

V. Duruisseaux, J. W. Burby, and Q. Tang. Approximation of nearly-periodic symplectic maps
via structure-preserving neural networks. Scientific Reports, Collection on “Physics-informed
Machine Learning and its real-world applications”, 2023a. doi: 10.1038/s41598-023-34862-w.

V. Duruisseaux, T. Duong, M. Leok, and N. Atanasov. Lie group forced variational integrator
networks for learning and control of robot systems. Extended version, arXiv preprint: https:
//arxiv.org/pdf/2211.16006.pdf, 2023b.

J. Gallier and J. Quaintance. Differential Geometry and Lie Groups: A Computational Perspective.
Geometry and Computing. Springer International Publishing, 2020. ISBN 9783030460402.

S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks. In Advances in Neural
Information Processing Systems, volume 32, 2019.

L. Grüne and J. Pannek. Nonlinear model predictive control. Springer, 2017.

E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration, volume 31 of Springer
Series in Computational Mathematics. Springer-Verlag, 2006.

A. Havens and G. Chowdhary. Forced variational integrator networks for prediction and control of
mechanical systems. arXiv preprint arXiv:2106.02973, 2021.

D. Holm, T. Schmah, and C. Stoica. Geometric Mechanics and Symmetry: From Finite to Infinite
Dimensions. Oxford Texts in Applied and Engineering Mathematics. OUP Oxford, 2009. ISBN
9780199212910.

P. Jin, Z. Zhang, A. Zhu, Y. Tang, and G. E. Karniadakis. SympNets: Intrinsic structure-preserving
symplectic networks for identifying Hamiltonian systems. Neural Networks, 132(C), 12 2020.
doi: 10.1016/j.neunet.2020.08.017.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2014.

S. Lall and M. West. Discrete variational Hamiltonian mechanics. J. Phys. A, 39(19):5509–5519,
2006.

T. Lee. Computational geometric mechanics and control of rigid bodies. Ph.D. dissertation, Uni-
versity of Michigan, 2008.

T. Lee, M. Leok, and N. H. McClamroch. Global Formulations of Lagrangian and Hamiltonian
Dynamics on Manifolds: A Geometric Approach to Modeling and Analysis. Interaction of Me-
chanics and Mathematics. Springer International Publishing, 2017. ISBN 9783319569536.

12

https://arxiv.org/pdf/2211.16006.pdf
https://arxiv.org/pdf/2211.16006.pdf

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics, volume 14 of Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University Press, 2004.

M. Leok and T. Shingel. Prolongation-collocation variational integrators. IMA J. Numer. Anal., 32
(3):1194–1216, 2012.

M. Leok and J. Zhang. Discrete Hamiltonian variational integrators. IMA Journal of Numerical
Analysis, 31(4):1497–1532, 2011.

M Lutter, K Listmann, and J Peters. Deep Lagrangian Networks for end-to-end learning of energy-
based control for under-actuated systems. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019a.

M. Lutter, C. Ritter, and J. Peters. Deep Lagrangian networks: Using physics as model prior for
deep learning. In International Conference on Learning Representations, 2019b.

D. Marco and F. Méhats. Symplectic learning for Hamiltonian neural networks. arXiv preprint
arXiv:2106.11753, 2021.

J. E. Marsden and T. S. Ratiu. Introduction to mechanics and symmetry, volume 17 of Texts in
Applied Mathematics. Springer-Verlag, New York, second edition, 1999.

J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numer., 10:
357–514, 2001.

F. B. Mathiesen, B. Yang, and J. Hu. Hyperverlet: A symplectic hypersolver for Hamiltonian
systems. Proceedings of the AAAI Conference on Artificial Intelligence, 36(4):4575–4582, June
2022. doi: 10.1609/aaai.v36i4.20381.

S. Ober-Blöbaum, O. Junge, and J. E. Marsden. Discrete mechanics and optimal control: An
analysis. ESAIM: Control, Optimisation and Calculus of Variations, 17(2):322–352, 2011. doi:
10.1051/cocv/2010012.

C. Offen and S. Ober-Blöbaum. Symplectic integration of learned Hamiltonian systems. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 32(1):013122, 2022. doi: 10.1063/5.0065913.

R. Ortega, M. W. Spong, F. Gómez-Estern, and G. Blankenstein. Stabilization of a class of under-
actuated mechanical systems via interconnection and damping assignment. IEEE Transactions
on Automatic Control, 47(8), 2002.

J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schöllig. Learning to fly: a PyBullet
gym environment to learn the control of multiple nano-quadcopters. https://github.com/
utiasDSL/gym-pybullet-drones, 2020.

H. Poincaré. Les méthodes nouvelles de la mécanique céleste, Volume 3. Gauthier-Villars, Paris,
1899.

K. Rath, C. G. Albert, B. Bischl, and U. von Toussaint. Symplectic Gaussian process regression of
maps in Hamiltonian systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(5):
053121, 2021. doi: 10.1063/5.0048129.

13

https://github.com/utiasDSL/gym-pybullet-drones
https://github.com/utiasDSL/gym-pybullet-drones

DURUISSEAUX DUONG LEOK ATANASOV

S. Sæmundsson, A. Terenin, K. Hofmann, and M. P. Deisenroth. Variational integrator networks for
physically structured embeddings. In AISTATS, 2020.

S. Santos, M. Ekal, and R. Ventura. Symplectic momentum neural networks - using discrete varia-
tional mechanics as a prior in deep learning. In Learning for Dynamics and Control Conference,
pages 584–595, 2022.

J. M. Schmitt and M. Leok. Properties of Hamiltonian variational integrators. IMA Journal of
Numerical Analysis, 38(1):377–398, 03 2017.

J. M. Schmitt, T. Shingel, and M. Leok. Lagrangian and Hamiltonian Taylor variational integrators.
BIT Numerical Mathematics, 58:457–488, 2018. doi: 10.1007/s10543-017-0690-9.

Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential dynamic programming. In IEEE
International Conference on Robotics and Automation (ICRA), pages 1168–1175, 2014.

R. Valperga, K. Webster, D. Turaev, V. Klein, and J. Lamb. Learning reversible symplectic dynam-
ics. In Learning for Dynamics and Control Conference, volume 168, pages 906–916. PMLR,
2022.

A. Van Der Schaft and D. Jeltsema. Port-Hamiltonian systems theory: An introductory overview.
Foundations and Trends in Systems and Control, 1(2-3), 2014.

J. D. Willard, X. Jia, S. Xu, M. S. Steinbach, and V. Kumar. Integrating physics-based modeling
with machine learning: A survey. arXiv preprint arXiv:2003.04919, 2020.

Y. D. Zhong, B. Dey, and A. Chakraborty. Symplectic ODE-Net: Learning Hamiltonian dynamics
with control. In International Conference on Learning Representations, 2020a.

Y. D. Zhong, B. Dey, and A. Chakraborty. Dissipative SymODEN: Encoding Hamiltonian dynamics
with dissipation and control into deep learning. In ICLR 2020 Workshop on Integration of Deep
Neural Models and Differential Equations, 2020b.

Y. D. Zhong, B. Dey, and A. Chakraborty. Benchmarking energy-conserving neural networks for
learning dynamics from data. In Learning for Dynamics and Control, volume 144, pages 1218–
1229. PMLR, 2021.

14

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

Appendix A. Rigid-body kinematics on SE(3)

We present a brief introduction to rigid-body kinematics on SE(3), mostly extracted from Chapters
2, 6, 7 of Lee et al. (2017).

A rigid body is an idealization of a real mechanical system, defined as a collection of material
particles such that the relative distance between any two particles in the body does not change (i.e,
the body does not deform). The configuration of a rigid body is a representation of its position and
attitude in 3-D space. The kinematics of a rigid body describe how its configuration changes under
the influence of linear and angular velocity.

A.1. Rotational Rigid-Body Motion

If a rigid body has fixed position but can rotate arbitrarily in R3, then its configuration can be rep-
resented by a rotation matrix. Hence, the manifold of rotation matrices, SO(3), is the configuration
manifold for rigid-body rotational motion. Since the dimension of SO(3) is three, rigid-body rota-
tions have three degrees of freedom.

We use two Euclidean frames: an arbitrary reference frame and another frame fixed to the rigid
body which rotates with along with it (with origin selected at the center of mass of the rigid body).
A rotation matrix R 2 SO(3) is a linear transformation on R3 between the body-fixed and reference
frames:

• if v 2 R3 represents a vector in the body frame, then Rv 2 R3 represents the same vector in
the reference frame,

• if v 2 R3 represents a vector in the reference frame, then R
>
v 2 R3 represents the same

vector in the body frame.

We can describe the rotation of the rigid body through the rotation of the body-fixed frame: the
configuration of a rotating rigid body is the linear transformation that relates the representation of
a vector in the body-fixed frame to its representation in the reference frame. Suppose that R(t) 2
SO(3) represents the rotational motion of a rigid body. Differentiating the orthogonality condition
R

>
R = I3, we get Ṙ>

R = �R
>
Ṙ which implies that R>

Ṙ remains skew-symmetric at all time.
Thus, there exists a skew-symmetric matrix ⇠(t) 2 so(3) such that R>

Ṙ = ⇠, from which we can
obtain the rotational kinematics:

Ṙ = R⇠. (19)

Using the isomorphism between the Lie algebra so(3) and R3 given by ⇠ = S(!) for ! 2 R3 and
⇠ 2 so(3), we can rewrite the rotational kinematics as

Ṙ = RS(!), (20)

where ! 2 R3 is referred to as the angular velocity vector of the rigid body expressed in the body
frame. Thus, the rotational kinematics describe the rate of change Ṙ of the configuration in terms
of the angular velocity ! 2 R3 represented in the body frame.

A.2. General Rigid-Body Motion

General rigid-body motion can be described by a combination of rotations and translations. As
before, we use two inertial frames: a first arbitrary reference frame and another frame fixed to the

15

DURUISSEAUX DUONG LEOK ATANASOV

rigid body which translates and rotates with the rigid body (with origin usually selected at the center
of mass of the rigid body). The trasnlational configuration of the rigid body characterizes the motion
of the body-fixed frame origin and an be selected to lie in the configuration manifold R3.

The configuration manifold for a rigid-body that is simultaneously translating and rotating can
be selected as the semidirect product of R3 and SO(3). We can represent the configuration via
Therefore, we can (R, x) 2 SE(3) in the sense that R 2 SO(3) is the orientation and x 2 R3 is the
position of the body-fixed frame in the reference frame. Consequently, SE(3) can be viewed as the
configuration manifold for general rigid-body motion.

As before, the rotational kinematics describe the rate of change Ṙ of the configuration in terms
of the angular velocity vector ! 2 R3 of the rigid body represented in the body-fixed frame:

Ṙ = RS(!). (21)

Now, the translational velocity vector v 2 R3 of the rigid body (i.e., of the origin of the body-fixed
frame) is the time derivative of the position vector from the origin of the reference frame to the
origin of the body-fixed frame. In the reference frame, the translational velocity vector ẋ 2 R3 of
the rigid body is

ẋ = Rv. (22)

These are referred to as the translational kinematics of the rigid body. Altogether, we obtain the
kinematics for general rigid-body motion:

Ṙ = RS(!), ẋ = Rv. (23)

Appendix B. Derivation of the forced variational integrator on SE(3)

In this appendix, we will derive the forced discrete Euler–Lagrange equations in Lagrangian form
(equations (77)-(79)) and in Hamiltonian form (equations (10)-(14)) associated to the discrete La-
grangian Ld and discrete control forces f±d on SE(3) presented in Section 4.2.

Consider a Lie group G with associated Lie algebra g = TeG. In what follows, L : G⇥G ! G

denotes the left action on G, defined by Lqh = qh for all q, h 2 G. The adjoint operator is denoted
by Adq : g ! g, and Ad⇤q : g⇤ ! g⇤ denotes the corresponding coadjoint. We refer the reader
to (Marsden and Ratiu, 1999; Lee et al., 2017; Gallier and Quaintance, 2020) for a more detailed
description of Lie group theory and mechanics on Lie groups.

Given a discrete Lagrangian Ld(gk, zk) on the Lie group G, the forced discrete Euler–Lagrange
equations are given by

gk+1 = gk ? zk, (24)

T⇤
eLzk�1D2Ldk�1

� Ad⇤
z�1
k

(T⇤
eLzkD2Ldk) + T⇤

eLgkD1Ldk + f�dk + f+dk�1
= 0, (25)

where Ldk = Ld(gk, zk) and f±dk = f±d (gk, gk+1, uk).

Using the discrete Legendre transform

µk = Ad⇤
z�1
k

(T⇤
eLzkD2Ldk) � T⇤

eLgkD1Ldk � f�dk , (26)

we can rewrite the equations of motion in Hamiltonian form as

µk = Ad⇤
z�1
k

(T⇤
eLzkD2Ldk) � T⇤

eLgkD1Ldk � f�dk , (27)

16

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

µk+1 = T⇤
eLzkD2Ldk + f+dk = Ad⇤zk(µk + T⇤

eLgkD1Ldk + f�dk) + f+dk , (28)

gk+1 = gk ? zk. (29)

On SE(3), with gk = (xk, Rk) 2 SE(3) and zk = (yk, Zk) 2 SE(3), the discrete kinematics
equations gk+1 = gk ? zk are given by

Rk+1 = RkZk and xk+1 = xk +Rkyk, (30)

so that {(xk, Rk)} remains on SE(3). Using the kinematics equation Ṙ = RS(!), the matrix S(!k)
can be approximated via

S(!k) = R
>
k Ṙk ⇡ R

>
k
Rk+1 � Rk

h
=

1

h
(Zk � I3). (31)

With the discrete Lagrangian

Ld(xk, Rk, yk, Zk) =
m

2h
y
>
k yk +

1

h
tr ([I3 � Zk]Jd)

� (1 � ↵)hU(xk, Rk) � ↵hU(xk +Rkyk, RkZk),
(32)

it can be shown by proceeding as in (Lee, 2008) that the forced discrete Euler–Lagrange equations
are given by

1

h
(JdZk�1 � Z

>
k�1Jd) � 1

h
(ZkJd � JdZ

>
k) + hS(⇠k) + S(fR�

dk
) + S(fR+

dk�1
) = 0, (33)

m

h
R

>
k (xk � xk�1) � m

h
R

>
k (xk+1 � xk) � hR

>
k
@Uk

@xk
+ fx�dk + fx+dk�1

= 0, (34)

Rk+1 = RkZk, (35)

where fx±dk and fR±
dk

denote the x and R components of the discrete forces f±dk .
This can be simplified into the forced discrete Euler–Lagrange equations

h
2
S(⇠k) + hS(fR�

dk
) + hS(fR+

dk�1
) + (JdZk�1 � Z

>
k�1Jd) = ZkJd � JdZ

>
k , (36)

xk+1 = 2xk � xk�1 � h
2

m

@Uk

@xk
+

h

m
Rk(f

x�
dk

� fx+dk�1
), (37)

Rk+1 = RkZk. (38)

Using the discrete Legendre transforms

S(⇡k) =
1

h
(ZkJd � JdZ

>
k) � (1 � ↵)hS(⇠k) � S(fR�

dk
), (39)

⌫k =
m

h
R

>
k (xk+1 � xk) + (1 � ↵)hR>

k
@Uk

@xk
� fx�dk , (40)

we get

S(⇡k+1) =
1

h
(JdZk � Z

>
k Jd) + ↵hS(⇠k+1) + S(fR+

dk
), (41)

17

DURUISSEAUX DUONG LEOK ATANASOV

⌫k+1 =
m

h
R

>
k+1(xk+1 � xk) � ↵hR

>
k+1

@Uk+1

@xk+1
+ fx+dk . (42)

With � = R⌫, equation (42) can be rewritten as

�k+1 =
m

h
(xk+1 � xk) � ↵h

@Uk+1

@xk+1
+Rk+1f

x+
dk

. (43)

Overall, we obtain the following implicit discrete equations of motion in Hamiltonian form:

S(⇡k) =
1

h
(ZkJd � JdZ

>
k) � (1 � ↵)hS(⇠k) � S(fR�

dk
), (44)

�k =
m

h
(xk+1 � xk) + (1 � ↵)h

@Uk

@xk
� Rkf

x�
dk

, (45)

Rk+1 = RkZk, (46)

S(⇡k+1) =
1

h
(JdZk � Z

>
k Jd) + ↵hS(⇠k+1) + S(fR+

dk
), (47)

�k+1 =
m

h
(xk+1 � xk) � ↵h

@Uk+1

@xk+1
+Rk+1f

x+
dk

. (48)

Equations (44) and (45) give

hS(⇡k) + (1 � ↵)h2S(⇠k) = ZkJd � JdZ
>
k � hS(fR�

dk
), (49)

xk+1 = xk +
h

m
�k � (1 � ↵)

h
2

m

@Uk

@xk
� h

m
Rkf

x�
dk

. (50)

Equation (47) can be rewritten using equation (44) as:

S(⇡k+1) = Z
>
k S(⇡k)Zk + (1 � ↵)hZ>

k S(⇠k)Zk + ↵hS(⇠k+1) + Z
>
k S(fR�

dk
)Zk + S(fR+

dk
). (51)

Since Z
>
S(⌘)Z = S(Z>

⌘) for any Z 2 SO(3) and ⌘ 2 so(3), we get

⇡k+1 = Z
>
k ⇡k + (1 � ↵)hZ>

k ⇠k + ↵h⇠k+1 + Z
>
k fR�

dk
+ fR+

dk
. (52)

Finally, equation (48) can be rewritten using equation (45) as

�k+1 = �k � (1 � ↵)h
@Uk

@xk
� ↵h

@Uk+1

@xk+1
+Rkf

x�
dk

+Rk+1f
x+
dk

. (53)

Overall, this gives the forced variational integrator (10)-(14):

hS(⇡k) + (1 � ↵)h2S(⇠k) = ZkJd � JdZ
>
k � hS(fR�

dk
), (54)

Rk+1 = RkZk, (55)

⇡k+1 = Z
>
k ⇡k + (1 � ↵)hZ>

k ⇠k + ↵h⇠k+1 + Z
>
k fR�

dk
+ fR+

dk
, (56)

xk+1 = xk +
h

m
�k � (1 � ↵)

h
2

m

@Uk

@xk
� h

m
Rkf

x�
dk

, (57)

�k+1 = �k � (1 � ↵)h
@Uk

@xk
� ↵h

@Uk+1

@xk+1
+Rkf

x�
dk

+Rk+1f
x+
dk

. (58)

18

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

Appendix C. Transforming the equation S(a) = ZJd � JdZ>

Plugging the Cayley transform

Z = Cay(z) ⌘ (I3 + S(z))(I3 � S(z))�1
, (59)

into the equation
S(a) = ZJd � JdZ

>
, (60)

and using the fact that (I3 ± S(z))> = (I3 ⌥ S(z)) gives

S(a) = (I3 + S(z))(I3 � S(z))�1
Jd � Jd(I3 + S(z))�1(I3 � S(z)). (61)

Now, (I3 ± S(z)) and (I3 ⌥ S(z))�1 commute, so we can rewrite the previous equation as

S(a) = (I3 � S(z))�1(I3 + S(z))Jd � Jd(I3 � S(z))(I3 + S(z))�1
. (62)

Multiplying both sides of equation (62) on the left by (I3 � S(z)) and on the right by (I3 + S(z))
gives

(I3 � S(z))S(a)(I3 + S(z)) = (I3 + S(z))Jd(I3 + S(z)) � (I3 � S(z))Jd(I3 � S(z)), (63)

which can be simplified into

S(a) � S(z)S(a) + S(a)S(z) � S(z)S(a)S(z) = 2S(z)Jd + 2JdS(z). (64)

Using S(z)Jd + JdS(z) = S(Jz) and the general formulas

�S(y)S(x) + S(x)S(y) = S(S(x)y), S(x)S(y)S(x) = �(y>x)S(x), (65)

we can simplify equation (64) into

S(a) + S(S(a)z) + (a>z)S(z) = 2S(Jz). (66)

This can be rewritten in the desired vector form

a+ a ⇥ z + (a>z)z � 2Jz = 0. (67)

Appendix D. Implementation details

In this appendix, we provide additional details concerning the implementation of the LieFVINs for
the planar pendulum on SO(3) and for the crazyflie quadrotor on SE(3). In particular, we detail the
structure of the neural networks, the data generation process, and the training process.

To train the dynamics model with Algorithm Ia, we minimize the loss function

LIa(✓) =
NX

i=1

kx1 � x̃1k2 +
����log

⇣
R̃1R

>
1

⌘_����
2

+ kv1 � ṽ1k2 + k!1 � !̃1k2, (68)

19

DURUISSEAUX DUONG LEOK ATANASOV

while we use the following loss function for Algorithm Ib

LIb(✓) =
NX

i=1

kx1 � x̃1k2 + kv1 � ṽ1k2 + k!1 � !̃1k2

+
���hS(J!0) + hS(fR�

d0
) + (1 � ↵)h2S(⇠0) � JdZ0 + Z

>
0 Jd

���
2
.

(69)

The network parameters ✓ are updated using Adam (Kingma and Ba, 2014), where the gradients
@L/@✓ are calculated by back-propagation.

In the descriptions of the network architectures below, the first number is the input dimension
while the last number is the output dimension. The hidden layers are listed in-between with their
dimensions and activation functions.

D.1. Pendulum

We use neural networks to represent the inertial matrix J(q) = L(q)L(q)>+ ✏, the potential energy
U(q) and the input gains g(q) as follows:

• L(q): 9 - 10 Tanh - 10 Tanh - 10 Linear - 6

• U(q): 9 - 10 Tanh - 10 Tanh - 10 Linear - 1

• g(q): 9 - 10 Tanh - 10 Tanh - 10 Linear - 3

The training data of the form {(cos', sin', '̇)} was collected from an OpenAI Gym environment,
provided by (Zhong et al., 2020a). The control inputs are sampled in [�3, 3] and applied to the
planar pendulum for 10 time intervals of 0.02s to generate 512 state-control trajectories. The SO(3)
LieFVIN, as described in Algorithm Ia with ↵ = 0.5, was trained with a fixed learning rate of 10�3

for 10000 iterations.
For comparison, we also learned the dynamics using a black-box model which is a multilayer

perceptron MLP(q, q̇, u) with architecture [22 - 1000 Tanh - 1000 Tanh - 1000 Linear - 18].
To drive the pendulum from downward position ' = 0 to a stabilized upright position '

⇤ = ⇡,
'̇
⇤ = 0, with input constraint |u|  20, the running cost Cd and terminal cost �d in the MPC

problem are chosen to be

Cd(R`+k,!`+k, u`+k) = tr(I3 � R
⇤>

R`+k) + 0.1k!`+kk2 + 10�4ku`+kk2, (70)

�d(R`+k,!`+k, u`+k) = tr(I3 � R
⇤>

R`+k) + 0.1k!`+kk2 + 10�4ku`+kk2. (71)

*

D.2. Crazyflie Quadrotor

We use neural networks to represent the mass m = r
2, inertial matrix J(q) = LL

>+✏, the potential
energy U(q) and the input gains g(q) =

⇥
gx(q) gR(q)

⇤
as follows:

• r: 1D pytorch parameter

• L: 3 ⇥ 3 upper-triangular parameter matrix

20

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

• U(q): 9 - 10 Tanh - 10 Tanh- 10 Tanh - 10 Linear - 1

• g(q): 9 - 10 Tanh - 10 Tanh- 10 Tanh - 10 Linear - 24

To obtain the training data, the quadrotor was controlled from a random starting point to 36
different desired poses using a PID controller, yielding 36 4-second trajectories. The trajectories
were used to generate a dataset of N = 2700 position-velocity updates {(q0, q̇0, u0) 7! (q1, q̇1)}
with time step 0.02s. The SE(3) LieFVIN, as described in Algorithm Ib with ↵ = 0.5, was trained
with a decaying learning rate initialized at 5 ⇥ 10�3 for 20000 iterations.

To track a diamond-shaped trajectory using the model learnt by the LieFVIN, with control input
constraints 0  f  0.595, |⌧ |  10�3[5.9 5.9 7.4]>, the running cost Cd and terminal cost �d in
the MPC problem are chosen to be

Cd(x`+k, R`+k, v`+k,!`+k, u`+k) = 1.2kx`+kk2 + 10�5 tr(I3 � R`+k) + 1.2kv`+kk2

+ 10�4k!`+kk2 + 10�6ku`+kk2,
(72)

�d(x`+k, R`+k, v`+k,!`+k, u`+k) = 1.2kx`+kk2 + 10�5 tr(I3 � R`+k) + 1.2kv`+kk2

+ 10�4k!`+kk2 + 10�6ku`+kk2.
(73)

Appendix E. Learning and controlling Lagrangian systems from position data

E.1. Problem Statement

We now consider the problem of learning controlled Lagrangian dynamics only from position data:
given a position-only dataset of trajectories for a Lagrangian system, we wish to infer the update map
that generates these trajectories, while preserving the symplectic structure underlying the dynamical
system and constraining the updates to the Lie group on which it evolves. More precisely, we wish
to solve the following problem:

Problem 2 Given a dataset of position-only updates
n⇣

q
(i)
0 , q

(i)
1 , u

(i)
0 , u

(i)
1

⌘
7! q

(i)
2

oN

i=1
for a con-

trolled Lagrangian system evolving on the Lie group Q, we wish to find a symplectic mapping
 : Q ⇥ Q ⇥ U ⇥ U ! Q which minimizes

NX

i=1

DQ

⇣
q
(i)
2 ,

⇣
q
(i)
0 , q

(i)
1 , u

(i)
0 , u

(i)
1

⌘⌘
, (74)

where DQ is a distance metric on Q.

E.2. Forced Variational Integrator in Lagrangian Form

As before, we choose the discrete Lagrangian

Ld(xk, Rk, yk, Zk) =
m

2h
y
>
k yk +

1

h
tr ([I3 � Zk]Jd)

� (1 � ↵)hU(xk, Rk) � ↵hU(xk +Rkyk, RkZk),
(75)

21

DURUISSEAUX DUONG LEOK ATANASOV

where ↵ 2 [0, 1] and Jd = 1
2 tr(J)I3 � J . We also define Uk and ⇠k via

Uk = U(xk, Rk) and S(⇠k) =
@Uk

@Rk

>
Rk � R

>
k
@Uk

@Rk
. (76)

It is shown in Appendix B that the forced discrete Euler–Lagrange equations associated to the
discrete Lagrangian (75) and the discrete control forces f±dk ⌘ f±d (xk, Rk, uk) are given by

h
2
S(⇠k) + hS(fR�

dk
) + hS(fR+

dk�1
) + (JdZk�1 � Z

>
k�1Jd) = ZkJd � JdZ

>
k , (77)

xk+1 = 2xk � xk�1 � h
2

m

@Uk

@xk
+

h

m
Rk(f

x�
dk

� fx+dk�1
), (78)

Rk+1 = RkZk. (79)

Since (JdZk�1 � Z
>
k�1Jd) 2 so(3), equation (77) can be rewritten as S(a) = ZkJd � JdZ

>
k

with
a = h

2
⇠k + hfR�

dk
+ hfR+

dk�1
+ S

�1(JdZk�1 � Z
>
k�1Jd). (80)

Given (xk�1, xk, Rk�1, Rk, uk�1, uk), we first solve S(a) = ZJd � JdZ
> for Z = Zk as outlined

in Remark 1, and then get Rk+1 = RkZk. We then update xk+1 using equation (78).

E.3. Lie Group Forced Variational Integrator Networks (LieFVINs)

We now describe the construction of Lie group Forced Variational Integrator Networks for the forced
variational integrator on SE(3) presented in Appendix E.2, in the case where only position data is
available. The LieFVIN is based on the discrete forced Euler–Lagrange equations (77)-(79). As
before, the main idea is to parametrize the updates of the forced variational integrator and match
them with the observed updates.

We parametrize m, f±d and U as neural networks, and the matrix J is a symmetric positive-
definite matrix-valued function of (x,R) constructed via a Cholesky decomposition J = LL

> for
a lower-triangular matrix L implemented as a neural network. We can also get Jd = 1

2 tr(J)I3 � J .
To deal with the implicit nature of equation (77), we propose two algorithms, based either on an
explicit iterative solver or by penalizing deviations away from equation (77):

Algorithm IIa. Given (x0, x1, R0, R1, u0, u1) 7! (x2, R2) data, minimize discrepancies between
the observed (x2, R2) pairs and the predicted (x̃2, R̃2) pairs obtained as follows:

For each (x0, x1, R0, R1, u0, u1) data tuple,

1. Get fR±
d0

, fR±
d1

, fx±d0 ,fx±d1 from (x0, x1, R0, R1, u0, u1), and S(⇠1) =
@U1
@R1

>
R1 � R

>
1

@U1
@R1

2. Get R̃2 = R1Cay(z) where z is obtained using a few steps of Newton’s method to solve the
vector equation (15) equivalent to

h
2
S(⇠1) + hS(fR�

d1
+ fR+

d0
) + (JdZ0 � Z

>
0 Jd) = ZJd � JdZ

3. Compute x̃2 = 2x1 � x0 � h2

m
@U1
@x1

+ h
mR1(f

x�
d1

+ fxd0)

22

LIE GROUP FORCED VARIATIONAL INTEGRATOR NETWORKS

Algorithm IIb. Given (x0, x1, R0, R1, u0, u1) 7! (x2, R2) data, minimize

• Discrepancies between observed x2 and predicted x̃2 = 2x1�x0� h2

m
@U1
@x1

+ h
mR1(f

x�
d1

+fxd0)

• Deviations away from the equation

Jd(R
>
0 R1+R

>
2 R1)�(R>

1 R0+R
>
1 R2)Jd+h

2

@U1

@R1

>
R1 � R

>
1
@U1

@R1

!
+hS(fR�

d1
+fR+

d0
) = 0

This general strategy extends to any other Lie group integrator. In particular, LieFVINs on
SO(3) can be obtained from the algorithms above as the special case where x is constant, in which
case we can disregard all the variables and operations in green. Lie group variational integrator net-
works without forces (LieVINs) can be obtained by setting fR±

d0
= fx±d0 = 0. Note that the strategy

behind Algorithm IIa enforces the structure of the system in a stronger way than in Algorithm IIb.
However, for certain Lie groups and variational integrators, it might not be practical to use Newton’s
method to solve for the implicit updates, in which case Algorithm IIb is preferred.

When combined with MPC as described in Section 4.4, the initial conditions (q`�1, q`) for
the optimal control problems can be obtained either from the position estimates (q̃`�1, q̃`) or from
(position,velocity) estimates (q̃`, ˙̃q`) with finite difference approximations. As before, the Lie group
constraints for the system do not need to be added as path constraints since they are automatically
satisfied to (almost) machine precision, by the design of the LieFVINs.

23

	Introduction
	Preliminaries
	Geometric Mechanics
	Symplecticity
	Variational Integrators
	Forced Variational Integrators

	Problem Statement
	Lie group Forced Variational Integrators Networks (LieFVINs)
	The SO(3) and SE(3) Lie Groups
	Forced Variational Integrator on SO(3) and SE(3)
	Lie Group Forced Variational Integrator Networks (LieFVINs) on SE(3)
	Control Strategy

	Evaluation
	Pendulum
	Crazyflie Quadrotor

	Conclusion
	Rigid-body kinematics on SE(3)
	Rotational Rigid-Body Motion
	General Rigid-Body Motion

	Derivation of the forced variational integrator on SE(3)
	Transforming the equation S(a) = Z Jd - Jd Z
	Implementation details
	Pendulum
	Crazyflie Quadrotor

	Learning and controlling Lagrangian systems from position data
	Problem Statement
	Forced Variational Integrator in Lagrangian Form
	Lie Group Forced Variational Integrator Networks (LieFVINs)

