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We revisit a theorem by Rockafellar on representing the relative interior of the graph of a convex
set-valued mapping in terms of the relative interior of its domain and function values. Then we ap-
ply this theorem to provide a simple way to prove many calculus rules of generalized differentiation
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orem by Rockafellar allows us to improve some results on generalized differentiation of set-valued
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1. Introduction

The notion of relative interior for convex sets in finite-dimensional spaces goes back
to Steinitz [18] and then has been systematically studied and applied in finite-
dimensional convex analysis and related areas; see, e.g., the seminal monograph by
Rockafellar [16] and the subsequent publications including the books by Borwein

* Funded by the Vietnam National Foundation for Science and Technology Development (NAFOS-
TED) under grant number 101.02-2020.20.

t Partly supported by the USA National Science Foundation under grant DMS-1808978, by the
Australian Research Council under grant DP-190100555, and by Project 111 of China under grant
D21024.

f Partly supported by the USA National Science Foundation under grant DMS-2136228.

ISSN 0944-6532 / $ 2.50 © Heldermann Verlag



2 D. V. Cuong et al. / Revisiting Rockafellar’s Theorem ...

and Lewis [4] and by Hiriart-Urruty and Lemaréchal [8] with further references and
commentaries. In contrast to the interior, the relative interior is nonempty for any
nonempty convex set in R”, while the latter notion shares many important properties
of the interior being very useful in applications. Relative interiors play a crucial role
in many aspects of convex analysis and optimization in finite dimensions such as
convex separation, generalized differential calculus, Fenchel conjugate, and Fenchel
and Lagrange duality; see, e.g., [1, 2, 4, 5, 7, 8, 10, 12, 14, 15, 17] and the references
therein.

Among many important results involving relative interiors is the theorem by Rocka-
fellar [16, Theorem 6.8] allowing us to represent the relative interior of a convex
set GG in R™ x R™ in terms of the the relative interiors of the image D of G under
the projection mapping (z,u) — x and the set S(z) := {u € R™ | (z,u) € G} for
xr € D. In the language of set-valued analysis, this theorem gives a representation
of the relative interior of the graph of a convex set-valued mapping in terms of the
relative interiors of its domain and the function’s values. The first proof of this result
was provided in the aforementioned book by Rockafellar as a consequence of several
other results involving relative interiors of convex sets. A more self-contained proof
was given by Rockafellar and Wets [17, Proposition 2.43]. In a recent paper [6], we
provided the third proof of this important theorem and explored its generalization to
locally convex topological vector spaces using a generalized relative interior concept
called the quasi-relative interior introduced in [3].

The first goal of the present paper is to revisit Rockafellar’s theorem and derive a
new result on relative interiors of graphs of generalized epigraphical mappings. Then
we employ these results and the geometric approach to convex analysis developed in
[13, 14] to provide a simple way to access many calculus rules of generalized differ-
entiation for set-valued mappings under new qualification conditions. The usage of
Rockafellar’s theorem and related developments allows us to improve, in particular,
a number of calculus rules obtained in [13] for coderivatives of convex set-valued
mappings. Our developments have a great potential for further implementations in
the field of set-valued optimization; see, e.g., the books [9, 11] and the references
therein for this and related areas of optimization theory and applications.

This paper is organized as follows. Section 2 contains basic concepts of convex
analysis in finite dimensions used throughout the paper. In Section 3, we revisit
Rockafellar’s theorem on relative interiors of convex graphs and derive a number of
new results with detailed proofs. Section 4 is devoted to employing this theorem
and the geometric approach to analysis in the study of generalized differentiation for
convex set-valued mappings and nonsmooth functions in finite dimensions. Some
applications to convex generalized equations, convex constraint systems, and opti-
mal value functions are presented in Section 5. In Section 6, we develop the convex
coderivative calculus for set-valued mappings obtained under relative interior quali-
fication conditions imposed on domains or ranges. These developments significantly
improve calculus rules in [13, Section 11] under relative interior qualification con-
ditions imposed on graphs. Throughout the paper, we use standard notation of
convex analysis in finite dimensions; see [4, 8, 14, 16]. In particular, (x,y) denotes
the inner product of x,y € R™; B(x;~) signifies the closed ball centered at x with
radius v > 0; the closure of a set 2 C R" is denoted by ; the convex hull of a set
2 is co(2); the cone generated by a set 2 is cone(Q2) := {tw |t > 0,w € Q}.
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2. Preliminaries

In this section, we recall a number of concepts and results of convex analysis in finite
dimensions used throughout the paper; see, e.g., [4, 8, 14, 16] and the references
therein.

A subset  of R™ is called convez if
A+ (1 =Ny eQforall z,y € Qand X € (0,1).

It follows directly from the definition that €2 is convex if and only if for any two
points z,y € €, the line segment (x,y) := {A\x+ (1 =Ny | A € (0,1)} is a subset of
Q. A subset 2 of R" is called affine if for any z,y € Q and for any A € R we have

Ax+ (1= Ny € Q,

which means that €2 is affine if and only if the line through any two points x,y € Q2
is a subset of €. It follows directly from the definition that any affine set is a convex
set. In addition, the intersection of any collection of affine sets is an affine set and
thus allows us to define the affine hull of a set S by

aff(S) = ﬂ{Q | 2 is affine and S C Q}.

The relative interior ri(§2) of a set {2 in R™ is defined as its interior within the affine
hull of €2, i.e., by

ri(Q) ;= {z € Q| Iv > 0 satisfying B(z;y) N aff () C Q}.
Let € be a nonempty convex subset of R” with z €(). The normal cone to 2 at ¥ is
N(z;Q):={veR" | (v,x—z) <0 forall z€Q}

with N(z;Q) :=0if z ¢ Q.

The following theorem provides several characterizations for the relative interior of
a convex set; see, e.g., [6, Theorem 2.2].

Theorem 2.1. (Ccharacterizations of relative interior for convex sets in R™) Let
Q be a nonempty convex set in R™ and let T € R™. The following properties are
equivalent:

(a) zeri(Q).

(b) z € Q and for every x € Q with x#x there exists u€Q such that T € (z,u).
(c) z € and cone(2 — Z) is a linear subspace of R™.

(d) z € and cone(2 — ) is a linear subspace of R™.

(

e) € and the normal cone N(z;Q) is a subspace of R".

The relative interior possesses several nice algebraic and topological properties, some
of which are presented in the theorem below; see, e.g., [16].
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Theorem 2.2. (Properties of relative interiors)

Let Q and ); foriv=1,...,m be nonempty convexr subsets of R™. Then

(a) r1i(Q) is nonempty and conver.
(b)  [a,b) C1i(Q) for any a € ri(Q) and b € Q, where
[a,b) :={ta+(1—t)b|0 <t <1}
deﬁnes the half-open interval connecting a,b € R™.

(c) ri(Q) and ri(Q) = ri(Q).

(@) n(n( ) = ().

(&) ri(X, ) = S0, wi().

(f)  ri(A(Q)) = A(ri(Q2)), where A: R™ — R™ is a linear mapping.
(g) (N ) =N, ri(Q;) provided that NI, ri(€2;) # 0.

It is worth noting that the relative interior may not inherit all properties of the
interior. For example, for two nonempty convex sets {2; and {25 in R” with €y C €25,
it is not true in general that ri(Q) C ri(Qy).

Another important role of the relative interior is in the study of convex proper
separation in R™. Recall that two nonempty convex sets 21, {2y C R" can be properly
separated if there exists v € R™ for which the following two inequalities hold:

sup { (v, w1) | wi € Y} <inf {(v,ws) | wy € Qa}, (1)

inf {(v,w1) | w1 € 2} < sup {(v,ws) | wy € D} (2)

Observe that condition (1) can be equivalently rewritten as
(v,wy) < (v, we) whenever wy € Qy, wy € o,

while (2) means that there exist w; € €y and wy € Qy such that

As a central theorem of convex analysis in finite dimensions, the following theorem
uses the relative interior to provide necessary and sufficient conditions for properly
separating two nonempty convex sets; see, e.g., [16, Theorem 11.3].

Theorem 2.3. (Relative interior and proper separation in finite dimensions) Let
Q1 and Qg be two nonempty convex subsets of R™. Then €y and €y can be properly
separated if and only if ri(21) Nri(Qe) = 0.

The relative interior plays a crucial role in many other issues of convex analysis.
For instance, a direct application of Theorem 2.3 for €2 and the single-point set
{z} shows that if z € Q\ ri(Q?), then N(z;€) # {0}. The relative interior and
the proper separation theorem can also be used in the statement and proof of the
normal cone intersection rule in the theorem below; see, e.g., [16, Corollary 23.8.1]
for more details.
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Theorem 2.4. (Normal cone intersection rule in finite dimensions)

Let Qy,...,Q, CR™ be conver sets satisfying the relative interior condition

m

(ri() #0,

i=1

where m > 2. Then we have the normal cone intersection rule
N(:f; N Q> =3 N(@ Q) forall 7€ ()9
i=1 i=1 i=1
Given a set-valued mapping F': R™ = R™, the graph of F is the set

gph(F) := {(x,y) e R" x R™ ! y € F(x)},

and it is called convex if gph(F") is a convex subset of the product space R™ x R™.
We also consider the domain and range of F' defined by

dom(F) := {z € R" | F(z) # 0} and rge(F) := U F(x),

respectively. It is easy to see that if F'is a convex set-valued mapping, then dom(F')
and rge(F') are a convex sets as well.

The coderivative of a convex set-valued mapping F' at (z,y) € gph(F) is defined by
D'F(@,5)(v) = {u € R" | (u,~v) € N((z,5);goh(F))}, v € R™.  (3)

The coderivative can be used to define the subdifferential of an extended-real-valued
convex function f:R"— (—o0,00]. Given z€dom(f):={x€R"| f(z) < oo}, define

Of(x) :=D*E(z, f(z))(1) = {veR" | (v,z—z) < f(z)— f(Z) for all zeR"}, (4)
where Ef(z) = [f(z),00) for z € R™ is the epigraphical mapping/multifunction
associated with f with gph(Ey) = epi(f) := {(z,\) e R" xR | f(x) < A}.

3. Rockafellar’s Theorem on relative interiors of convex graphs

In this section, we revisit the aforementioned theorem by Rockafellar on representing
relative interiors of graphs of convex set-valued mappings.

Theorem 3.1. (Rockafellar’s theorem on relative interiors of convex graphs) Let
F:R" =2 R™ be a convex set-valued mapping. Then we have the representation

ri (gph(F)) = {(z,y) € R" x R™ | z € ri (dom(F)), y € ri (F(x))}. (5)

Proof. We first prove the inclusion “C” in (5). Consider the projection mapping
P:R” x R™ — R" given by

P(x,y) := x for (z,y) € R" x R™.
It follows from Theorem 2.2(f) that
P(ri(gph(F)) = ri(P(gph(F))) = ri(dom(F)). (6)
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Now, take any (Z,y) € ri(gph(F’)) and get from (6) that z € ri(dom(F’)). Since
(z,y) € ri(gph(F')) C gph(F'), we have y € F(z). Fix any y € F(z) with y # 7.
Then (Z,y) € gph(F) with (z,y) # (Z,y). By the equivalence of (a) and (b) from
Theorem 2.1, there exists (u, z) € gph(F) and t € (0, 1) such that

(7, 9) = t(z,y) + (1 = 1)(u, 2).

Then & = tz + (1 — t)u, which implies (1 —¢)Z = (1 —t)u and so Z = w. In addition,
y=ty+ (1 —1t)z € (y,2), where z € F(z). Using the equivalence of (a) and (b)
from Theorem 2.1 again yields § € ri(F(Z)).

To verify next the reverse inclusion in (5), fix € ri(dom(F)) and y € ri(F(z)).
Arguing by contradiction, suppose that (Z,y) ¢ ri(gph(F')) and then find by Theo-
rem 2.3 a pair (u,v) € R" x R™ such that

(0,2) + (0,9) < (,7) + (0,5) whenever (z,y) € gph(F). (7)
In addition, it follows from the proper separation of {(z,y)} and gph(F’) that there
exists a pair (zg,yo) € gph(F') satisfying
(u, o) + (v,90) < (u, ) + (v, 9). (8)
Letting  := Z in (7) yields (v,y) < (v,y) for all y € F(z). Since z € ri(dom(F))
and zg € dom(F’), we deduce from Theorem 2.1 that there exists & € dom(F') such
that 7 = tzg + (1 — )& for some t € (0,1), which is is true even if xy = z. Choose
g € F(z) and consider the convex combination
y = tyo + (1 —1)7,

where y' € F(Z) since gph(F) is convex. Since (Z,7) € gph(F) we use (7) and (8)
to get
(u, ) + (v, 9) < (u, ) + (0,7),

(u, zo) + (v,90) < (u, =) + (v, 7).

Multiplying the first inequality above by 1 — ¢ and the second one by ¢, and then
adding them together give us the condition

(u, &) + (v, 9y < (u, Z) + (v, 7),

which yields (v, y') < (v, 7). From this along with (7) when z = z, we conclude that
the sets {y} and F(Z) can be properly separated. Applying Theorem 2.3 tells us
that ¢ ri(F(Z)), a contradiction that verifies (Z,7) € ri(gph(F)). O

Given a set-valued mapping F': R = R™, recall that the inverse of F' is the set-
valued mapping F~!': R™ =2 R" defined by

F'y)={zeR" } yEF(z)}, yeR™
The next corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. (Relative interiors of convex graphs and ranges) Let F': R" = R™
be a conver set-valued mapping. If (Z,y) € ri(gph(F)), then y € ri(rge(F)).

Proof. It is not hard to show that dom(F ') = rge(F) and that (z,y) € ri(gph(F))
if and only if (y,z) € ri(gph(F~')). Thus the conclusion follows directly from
Theorem 3.1. ]
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4. Relative interiors and coderivatives of generalized epigraphical
mappings

Let us now apply Theorem 3.1 to derive a representation for relative interiors of
generalized epigraphical mappings defined by

F(z):=Ef (z) x Egy(x) x -+ X By, (x), v € R, 9)

where Ef,(z) := [fi(x),00) for x € R", and f;: R" — (—o0,00] for i = 1,...,m are
extended-real-valued convex functions.

Theorem 4.1. (Relative interiors of generalized convex epigraphical graphs)

Let fi: R — (—o0,00] for i =1,...,m be extended-real-valued convex functions
satisfying m
(ri(dom(f;)) # 0.

=1

Then we have the following representation for the generalized epigraphical map (9):

T € mri(dom(fi)),

ri (gph(F)) = (#,A1,..., Ap) € R x R™ ;
filx) <N foralli=1,...,m

Proof. It follows from the definition of the generalized epigraphical mapping (9)
that dom(F) = (-, dom(f;) and

gph(F) = {(z,A) e R* x R™ | z € dom(F),\ € F(z)}

={(z. M., An) ER" X R™ |z € (dom(f;), fi(z) < A foralli=1,... m}.

i=1
For any x € dom(F'), it readily follows that

ri(F(z)) =i ([fi(2),00) x -+ x [fn(2),00)) = (f1(2),00) X -+ X (fin(2), 00).
Under the assumption that (), ri(dom(f;)) # 0, we employ Theorem 2.2 and get

ri <ﬁdom(fz)> = ﬁ ri(dom(f;)).

i=1
Applying finally Theorem 3.1 gives us ri(gph(F')) =

m

={(@ A, An) €R" X R™ |z €xi ((()(dom(f), (M,- .., Am) € 1i(F(2))}

i=1
= {(z, A1, .., An) ER™ x R™ | meﬂri(dom(fi)), filz) < N foralli=1,..,m},
i=1
which thus completes the proof of this theorem. 0

As a direct consequence of Theorem 3.1, we obtain in the corollary below a repre-
sentation for the relative interior of the epigraph of an extended-real-valued convex
function; see, e.g., [8, Proposition 1.1.9].
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Corollary 4.2. (Relative interiors of convex epigraphs) Let f: R" — (—o0, 0] be
an extended-real-valued convex function. Then

ri(epi(f)) = {(z,A) € R* x R | z € ri(dom(f)), f(z) < A}.

Given an extended-real-valued convex function f: R" — (—o0, 0], we define for
each T € dom(f) the operation

adf(z) ifa>0,

a©0of(7):= {8°Of(x) ifo =0,

where 0f () is the subdifferential of f at z defined in (4) and where 0 f(Z) is the
singular subdifferential of f at  defined by
0% f(z) == {v e R" | (v,0) € N((z, f(2);epi(f)) }-

In the proof of the next result, we employ a well-known representation of the subd-
ifferential of a convex function via the normal cone to its epigraph saying that

9f(#) = {v € R" | (v, 1) € N((z, f(2): epi(f))}, & € dom(f).

Proposition 4.3. (Coderivative of epigraphs for extended-real-valued functions)
Let f:R™ — (—00, 00| be an extended-real-valued convex function, and let F: R™ = R
be the set-valued mapping defined by F(z) := [f(x),00) for x € R™. Then for any
Z € dom(F') = dom(f) we have the representation

a®df(z) if a>0,

D*F(z, f(7))(a) = {@ if a<Oo.

Proof. It is easy to see that gph(F) = epi(f). The coderivative definition yields

D*F(z, f(7))(e) = {v € R" | (v,~a) € N((z, f(7));epi(f))}, @ € R (10)
We consider the following three possible choices for a:

e Ifa>0,then (v,—a) € N((z, f(Z));epi(f)) if and only if
(£.-1) € N((@. f(@):epilf):

This means that v/a € 0f(z), and hence v € adf(Z).

e If @« = 0, then the definition of the singular subdifferential yields the result
(v,—a) € N((z, f(Z));epi(f)) if and only if v € 0 f(Z).

« If a < 0, then we can show that D*F(Z, f(Z))(«) = (). Indeed, suppose that
this is not the case and find (v, —a) € N((z, f(Z));epi(f)). Then

(v,2 — ) — a(X — f(Z)) < 0 whenever (z,)) € epi(f).
Choosing (z, f(z)+1) € epi(f), we can see that —a < 0. This contradiction verifies
that D*F(z, f(z))(«) = 0.

Therefore, the representation of D*F(z, f(z))(«) follows from (10) and the above
definition of the operation a ® 9f(Z). O
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Now we are ready to obtain a useful coderivative representation for generalized
epigraphical set-valued mappings under the relative interior condition.

Theorem 4.4. (Coderivatives of generalized epigraphical mappings)

Let fi: R" — (—o0,00] fori = 1,...,m be extended-real-valued convex functions.
Consider the generalized epigraphical set-valued mapping F defined in (9) and sup-
pose that

m

(ri(dom(f;)) # 0.

i=1
Then for any & € dom(F') we have the representation

m

o Zai(D@fi(:i) if oa;>0forall i=1,...m,
D*F(z,9)(a) = { =

1) if «a; <0forsomei=1,...,m,

where § := (f1(Z),..., fm(Z)) and o := (o, ..., apy) € R™.

Proof. Define the sets
Q= {(x,A1,..., ) ER*xR™ [z €R", X > fi(2)}, i=1,...,m,
and observe that gph(F) = (", ;. It follows from Corollary 4.2 that
ri(Q) = {(z, A1, ..., Am) ER” x R™ | z € ri(dom(f;)), i > fi(z)}, i=1,...,m.
Choose zy € N/, ri(dom(f;)) and let \; == fi(x0) + 1 > fi(wo) fori=1,...,m.
Then (x, A1, ..., ) € (1o, 1i(€2), and hence (", ri(€;) # 0.

Applying now the normal cone intersection rule from Theorem 2.4 gives us
N((2,9);gph(F))) = N((z,9);( ) = > N((x,9); ).
i=1 i=1

It is easy to see that ; = epi(f;) x R™!, which gives us by [12, Proposition 2.11]

N((z,9); ) = N((z, f1(z)); epi(f1)) x {0}.
This means that (v, —a) € N ((z, 7); ) if and only if (v, —a;) € N ((z, f1(Z)); epi(f1))
and o; = 0 for j = 2,...,m. In general, we observe that (v, —a) € N((:i,gj); Q,) if
and only if (v, —ay) € N((z, fi(Z)); epi(fi)) and a; =0 for j € {1,...,m} \ {i}.

Finally, it follows from the coderivative construction and the proof of Proposition 4.3:

D'F(z,5)(0) = {v € B" | (v,—a) € N(z.):gph(F))}

Y a;©0f(z) if a;>0foralli=1..m,
=1

0 if «o; <Oforsomei=1,...,m,

which therefore completes the proof of the theorem. O
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5. Optimal value functions and generalized chain rules

Given a set-valued mapping F: R” = R™ and an extended-real-valued function
©: R™ — (=00, 00|, define the associated optimal value function by

p(z) =inf {o(y) |y € F(z)}, z € R™. (11)

Throughout this section, we assume that p(z) > —oo for all z € R™. For any
Z € dom(pu), consider the argminimum set

S(z):={yeF@) | mz) = ey}

We have the following exact formula for subdifferentiation of the optimal value
function under the relative interior qualification condition.

Proposition 5.1. (Subdifferentials of optimal value functions) Let u be the optimal
value function defined in (11), where F' is a convex set-valued mapping, and where
@ is an extended-real-valued convexr function. Then the function u is convex. In
addition, for any & € dom(u) and any y € S(z) we have

ouz) = |J DF(@5)()

v€IP(Y)
provided that there exists xo € ri(dom(F)) such that ri(F(x0)) Nri(dom(p)) # 0.

Proof. Define ¢: R" x R™ — (—o00, 00| by ¢(x,y) := ¢(y) for (z,y) e R" x R™.
Then v is clearly a convex function with dom(¢)) = R™ x dom(y), and hence we
get ri(dom(¢))) = R™ x ri(dom(y)). Choose yo € ri(F(zo)) Nri(dom(p)). Then
(70, y0) € ri(dom(v))), and it follows from Theorem 3.1 that (xq,yo) € ri(gph(F)).
Therefore, ri(gph(F)) N ri(dom(y)) # 0. Now we deduce the claimed result from
[13, Theorem 9.1]. O

Recall that ¢: R™ — (—o00, 00| is nondecreasing componentwise if we have
[z; <wiforalli=1,...,m] = [p(z1,...,2m) < @(ur,. .., un)].

The next theorem gives us a generalization of [8, Theorem 4.3.1] for a broad class of
composite extended-real-valued functions. We also provide a simpler proof of this
theorem applying the coderivative of generalized epigraphical mappings.

Theorem 5.2. (Subdifferentials of a composition with increasing extended-real-
valued functions of several variables) Let f;: R" — R fori=1,...,m be real-valued
convez functions, and let ¢: R™ — (—00, 00| be nondecreasing componentwise and
convex. Consider the composite function

g(x) = p(fi(z),..., fm(z)), z € R"™.

Then the function g: R" — (—o00, 00| is convex. Suppose in addition that there
exists (To, A1y ..y Am) € R™ X R™ such that N\; > fi(xo) for all i = 1,...,m and
(A1,..., Ap) € ri(dom(y)). Then for any = € dom(g) we have the subdifferential
formula

09(a) = { 050

where § := (f1(Z), ..., fm(T)).

(s 1) e&o(y)}?
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Proof. Define the set-valued mapping F(z) := [fi(x),00) X -+ X [fim(2),00) for
x € R™ and then deduce from the nondecreasing componentwise property of ¢ that

p(x) = g(x) for all x € R™,

where p is the optimal value function (11) generated by F' and ¢. Observe that in
this case we have that each function f; is continuous, and that v ® 0f;(z) = v f(x)
whenever 7 > 0 and z € R". Using the representation

ri(F(z)) = (fi(z),00) X -+ X (fi(x),00) for any z € R",

it follows from the imposed assumptions that there exists zq € ri(dom(F)) = R"
such that ri(F(zo)) Nri(dom(p)) # 0. Furthermore, Proposition 5.1 tells us that

og9(z) =op(®) = |J D'F@ 9.
¥€04 ()

The rest of the proof follows from the coderivative formula for F' in Theorem 4.4. []

6. Coderivative calculus in finite-dimensional spaces

In this section, under the relative interior conditions imposed on domains and ranges
of mappings, we establish major formulas of coderivative calculus including sum rule,
chain rule, and intersection rule for set-valued mappings in finite-dimensional spaces.
The obtained results improve those in [13] under more restrictive qualification con-
ditions.

Given two set-valued mappings Fi, Fy: R” = R™, their sum is defined by

(Fl + FQ)(iL’) = Fl(fE) + F2($) = {y1 + Y2 ‘ Y1 € Fl(x), Yo € FQ({E)}
It is easy to see that dom(F} + Fy) = dom(F;)Ndom(Fy), and that F) + F» is convex
provided that both F; and F, have this property.
Our first calculus result concerns representing coderivatives of sums F} + F; at a
given point (Z, y) € gph(F; + F,). To formulate this result, consider the nonempty set
S@,9) = {7, 5) ER™ X R™ | § =41 + ¥, 5 € Fi(z) for i =1,2}.

The following theorem gives us the coderivative sum rule for set-valued mappings
on finite-dimensional spaces. In this version, we use the relative interior qualifi-
cation condition on domains replacing the condition on graphs known from [13,
Theorem 11.1].

Theorem 6.1. (Coderivative sum rule via qualification condition on domains)

Let Fy, Fy: R™ = R™ be convex set-valued mappings. Imposing the relative interior

diti
conaon ri(dom(F})) N ri(dom(Fy)) # 0, (12)
we have the coderivative sum rule

DR+ FR)@nw =[] [DF@5) )+ D F(E 50 ()

(91,92)€5(2,9)

for all (z,y) € gph(Fy + F») and v € R™.
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Proof. Fix any u € D*(F; + F5)(Z,3)(v) and (41,72) € S(Z, %) for which we have
the inclusion (u, —v) € N((Z,9); gph(F1 + F3)). Consider the convex sets

Q= {(z,y1,52) ER* x R™" x R™ | y1 € Fi(2)},
Q= {(51373/1,1/2) €R" x R™ x R™ ‘ Y2 € Fz(m)}
and deduce from the normal cone definition that
(u, —v, —v) € N((Z, 71, 72); 21 N Q).
Now we intend to verify the inclusion
(u, —v, —v) € N((Z, 41, %2); ) + N((Z, T, §2); (o). (13)

Indeed, it follows from (12) that there exists x € ri(dom(F})) N ri(dom(Fy)), and
hence Theorem 2.2 implies that ri(Fi(z)) # 0 and ri(Fy(z)) # . Theorem 3.1
ensures that

ri(Q) = {(x,yl,yg) e R" x R™ x R™ } z € ri(dom(F})), 11 € ri(Fl(a;))},
ri(Q) = {(z,y1,52) € R* x R™ x R™ | z € ri(dom(F})), o € ri(F(x))},

which shows in turn that condition (12) yields ri(£2;) Nri(Q) # 0. This tells us by
Theorem 2.4 that (13) is satisfied, and therefore we get the relationships

(u, —v, —v) = (u1, —v, 0)+(ug, 0, —v) with (u;, —v) € N((Z, y;); gph(F;)) for i = 1,2.
This implies by the coderivative definition that
u=u +uy € D'F1(7,41)(v) + D" F(7,42)(v)

as desired. The reverse inclusion is obvious, and thus we verify the claimed sum
rule. [

Next we present the well-known subdifferential sum rule (see [16, Theorem 23.8] for
example), which can also be derived from Theorem 6.1.

Corollary 6.2. (Subdifferential sum rule) Let f;: R* — R, i = 1,2, be extended-
real-valued convex functions. Suppose that the relative interior qualification condition

ri(dom(f1)) Nri(dom(f2)) # 0 (14)
is satisfied. Then for all T € dom(f;) Ndom( fy) we have the subdifferential sum rule
(f1+ f2)(7) = 0f1(Z) + O f2(T). (15)

Proof. Define the convex set-valued mappings Fy, Fr: X = R by
Fy(z) == [fi(z),00) for i=1,2.

It is easy to see that gph(F;) = epi(f;) and dom(F;) = dom(f;) for i = 1,2. Fur-
thermore, the qualification condition (14) clearly implies the fulfillment of (12).

To proceed further, fix any & € dom(f;) Ndom(fs), and let g := f1(Z) + fo(Z).
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For every z* € O(f1 + f2)(Z) we have the coderivative inclusion
" € D*(F1 + F2)(Z,9)(1).
Applying to the latter Theorem 6.1 with y; = fi;(z) for i = 1,2 gives us
zt € D*F(Z,51)(1) + D"y (%, 32) (1) = 0£1(%) + 0 f2(T),
which verifies the inclusion “C” in (15). The reverse inclusion is obvious. ]

Now we define the composition of two set-valued mappings F': R" = R™ and

G: R™ = RY? by
(GoF)(x)= |J Gy):={2€G) |yeF(x)}, zeR",

yEF(z)

and observe that G o F' is convex provided that both F' and G have this property.
Given z € (G o F')(Z), we consider the set

M(z,2) := F(z) NG~ 1(2).

The following theorem establishes the coderivative chain rule for set-valued map-
pings in finite-dimensional spaces. In this version, we use the relative interior qual-
ification condition on domains and ranges replacing the one on graphs known from
[13, Theorem 11.2].

Theorem 6.3. (Coderivative chain rule via qualification condition on domains) Let
F:R" = R™ and G: R™ = RY be convex set-valued mappings satisfying the relative
interior qualification condition

ri (rge(F)) Nri (dom(G)) # 0. (16)
Then for any (z,z) € gph(G o F') and w € R? we have the coderivative chain rule
D(GoR)@ AW = () D'F@poDGEAw. (7
gEM(3,2)

Proof. Picking u € D*(G o F)(z,z)(w) and y € M(z,Zz) gives us the inclusion
(u, —w) € N((z, 2); gph(G o F')), which means that

(u,x — ) — (w,z — z) <0 for all (z,z) € gph(Go F).
Define two convex subsets of R” x R™ x R? by
Qy ;= gph(F) x R? and Q, :=R" x gph(G).
It is easy to see that
Q1 — Q =R" x (rge(F) — dom(G)) x R?. (18)
Using (18), we have the representation
ri(Q — Q2) = R" x i (rge(F) — dom(G)) x RY.
It follows from (16) due to the definitions of the sets €, and €, that
0 €ri(Q — ), and so 1i(2y) Nri(Qs) # 0. (19)
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We can directly deduce from the definitions that
(u,0,—w) € N((z,y,2); 2 N ).
Applying Theorem 2.4 with qualification (19) tells us that
(u,0,—w) € N((Z,9,2); 2 NQs) = N((Z,9,2); %) + N(z,7,2); Qa).

Thus using further the definitions of the sets 2; and §2, based on gph(F") and gph(G),
there exists a vector v € R™ such that we have the representation

(u,0, —w) = (u, —v,0) + (0, v, —w),
where (u, —v) € N((Z,9); gph(F)), (v,—w) € N((y, 2); gph(G)). This shows by the
coderivative definition (3) that
uw e D*F(z,y)(v) and v € D*G(y, 2)(w),
and so we verify the inclusion “C” in (17). The reverse inclusion is trivial. ]

Let F': R® = R™ be a set-valued mapping, and let © C R™ be a given set. The
preimage or inverse image of © under the mapping F' is given by

FHO)={zeR"| F(z)NO # 0}.

The next result gives us a representation of the normal cone to F~'(0) via the
normal cone of © and the coderivative of F. We use here the relative interior
qualification condition on ranges replacing the condition on graphs known from [13,
Proposition 10.1].

Proposition 6.4. (Representation of the normal cone to preimages)
Let F: R" = R™ be a convex set-valued mapping, and let © C R™ be a convex set.

S that
tppose T ri (rge(F)) Nri(©) # 0. (20)
Then for any T € F~Y(©) and ij € F(Z) N © we have the representation
N(z; F~(8)) = D"F(z,5)(N(5: ©)).

Proof. In the setting of Theorem 6.3, consider the set-valued mapping G: R™ = R¢Y
given by
0 ifzeo,

0 ifxd¢o.

It is clear that dom(Ag) = ©, gph(Ag) = © x {0} and that for any z € © we get
N((z,0); gph(Ag)) = N(z;0) x RY. Therefore,

G(z) := Ap(x) = {

D*Ag(Z,0)(v) = N(z;0) for all v € R%.
It is easy to check the composite representation
Ap-10)(z) = (Ag o F)(z) for all z € R",

where the map Ap-1g): R" = R? is given by Ap-1(g)(z) :=0if z € F71(O), and
Ap-16)(x) := 0 otherwise.
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Observe that the imposed relative interior qualification condition (20) guarantees
that ri(rge(F)) N ri(dom(G)) # @. Then the claimed formula for N(z; F~1(0))
follows from the coderivative chain rule of Theorem 6.3 with the outer mapping
G = Ao. O]

The last result of this section provides a precise representation formula for the normal
cone to sublevel sets of extended-real-valued convex functions.

Corollary 6.5. (Representation of the normal cone to sublevel sets)
Let f: R® = R be a convex function. For X\ € R, consider the sublevel set

Ly:={zeR"| f(z) <A}

Assume that f(z) = A, and that there exists & € ri(dom(f)) such that f(z) < A.
Then we have the representation

N(z; Lo) = | Ja o of(2).

a>0

Proof. Let F(z) := Ey(x) for z € R", and let © := (—o0, A]. Then £, = F~1(0).
Since z € ri(dom(f)) and f(z) < f(Z) = «, we can show that

ri (rge(F)) Nri(©) # 0.

Indeed, choose v € R such that f(Z) < v < A. By Corollary 4.2, we see that
(z,7) € ri(epi(f)) = ri(gph(F)), so v € ri(rge(F')) by Corollary 3.2. Thus we have
v € 1i (rge(F)) Nri(0). Since N(f(z);0) = N(X;0) = [0, 00), by Proposition 4.3

and Proposition 6.4 we have
N(7;Lo) = N(z; F7()) = D*F(z,3)(N(\: 9))
= D*F(z, [(2))([0,00)) = | D*F(z, f(2))(e) = | a 0 0f(2),

a>0 a>0
which completes the proof of the corollary. O
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