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Abstract

Transformer-based language models are
trained on large datasets to predict the next
token given an input sequence. Despite this
simple training objective, they have led to
revolutionary advances in natural language
processing. Underlying this success is the self-
attention mechanism. In this work, we ask:
What does a single self-attention layer learn
from next-token prediction? We show that
training self-attention with gradient descent
learns an automaton which generates the next
token in two distinct steps: (1) Hard re-
trieval: Given input sequence, self-attention
precisely selects the high-priority input to-
kens associated with the last input token. (2)
Soft composition: It then creates a convex
combination of the high-priority tokens from
which the next token can be sampled. Under
suitable conditions, we rigorously characterize
these mechanics through a directed graph over
tokens extracted from the training data. We
prove that gradient descent implicitly discov-
ers the strongly-connected components (SCC)
of this graph and self-attention learns to re-
trieve the tokens that belong to the highest-
priority SCC available in the context window.
Our theory relies on decomposing the model
weights into a directional component and a
finite component that correspond to hard re-
trieval and soft composition steps respectively.
This also formalizes a related implicit bias for-
mula conjectured in [Tarzanagh et al. 2023].
We hope that these findings shed light on
how self-attention processes sequential data
and pave the path toward demystifying more
complex architectures.

⇤Equal contribution. Proceedings of the 27th International
Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2024, Valencia, Spain. PMLR: Volume 238. Copy-
right 2024 by the author(s).

1 INTRODUCTION

Language modeling as enabled by Transformer architec-
ture (Vaswani et al., 2017) and seemingly simple train-
ing objectives such as next-token prediction (Radford
et al., 2018, 2019) have not only led to breakthroughs in
the field of natural language processing (NLP) (Brown
et al., 2020; Chowdhery et al., 2022; OpenAI, 2023; Tou-
vron et al., 2023), but rather straightforward adapta-
tions of this symbiosis between Transformers and next-
token prediction tasks have also realized remarkable
performance in other domains, including vision (Chen
et al., 2020), speech (Chung & Glass, 2020), reinforce-
ment learning (Chen et al., 2021), and even protein
design (Ferruz et al., 2022; Nijkamp et al., 2022). This
widespread empirical success is often attributed to the
(self-)attention mechanism of Transformers that pro-
duces high-quality contextual representations needed
to realize excellent prediction performance in a wide
range of domains. However, a rigorous understanding
of how Transformers can learn such high-quality rep-
resentations by solving next-token prediction task via
natural algorithms such as gradient descent is largely
missing from the literature.

This work aims to bridge this gap between the empirical
success and principled understanding of Transformer-
based language modeling by shedding light on the opti-
mization landscape and key implicit biases faced by the
self-attention mechanism in solving the next-token pre-
diction task. In particular, focusing on a single-layer
self-attention model with linear classification head, and
solving the next-token prediction task, we consider the
following questions:

• What relationships in the training data are cap-
tured by the single-layer self-attention model?

• How exactly do these relationships dictate the op-
timization geometry of natural algorithms such as
gradient descent?

We show that the answers to both of these questions are
intertwined which we achieve by significantly expanding
the recently proposed framework that connects learning
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Figure 1: Overview of our result on next-token prediction. We study the implicit bias of gradient descent where a 1-layer
self-attention model is trained until convergence. We prove that, during test-time, this model implements a hard retrieval
to precisely select the high-priority tokens and then outputs a convex combination of these as the output from which the
next token can be sampled. The notion of high-priority is formalized through the strongly-connected components of a
directed graph associated to the last input token.

with Transformers to the celebrated support vector
machines (SVMs) (Tarzanagh et al., 2023b,a).

As illustrated in Figure 1, given training data as a
collection of (input sequence, next token) pairs, self-
attention model learns to (1) retrieve the high-priority
tokens (highlighted with red color) to the last input
token; and then (2) build a convex combination of
these high-priority tokens. The notion of high-priority
is dictated by a directed graph learned from training
data. SGD training accomplishes this by learning hard
and soft components of the attention weights W to
execute (1) and (2) respectively. Concretely, the follow-
ing theorem dictates the evolution of attention weights
during gradient descent.

Theorem 1 (informal) Consider training a single-
layer self-attention model with gradient descent. The
combined attention weights W := WKW >

Q evolve as

WGD ⇡ C · Whard + Wsoft,

where C ·Whard is the hard retrieval component selecting
the high-priority tokens when C ! 1; and Wsoft is the
soft composition component allocating nonzero softmax
probabilities over selected tokens.

To capture the priority order among different tokens
as observed in Figure 1, we construct directed graphs
among the tokens in the vocabulary, namely token-
priority graphs (TPGs). An illustration is provided in
Figure 2, where a strongly connected component (SCC,
highlighted as dashed black rectangles) in a TPG corre-
sponds to the tokens that are reachable from each other,
indicating the absence of a strict priority among those
tokens. The hard retrieval component Whard captures
the topological order of different SCCs (orange arrows)
whereas the soft composition component Wsoft captures
the relationships of different tokens within each SCC

(black arrows). These TPGs will geometrically capture
the learning dynamics of self-attention. Specifically,
we propose the SVM problem (Graph-SVM), solution
of which describes the direction gradient descent con-
verges to. This way, SGD asymptotically enforces the
topological order between SCCs i.e. the C ·Whard term
in Theorem 1 as C ! 1. In practice, this implies that
self-attention model favors suppressing lower priority
tokens in favour of sampling higher priority tokens.

A conjecture on the decomposition in Theorem 1 was
first proposed in (Tarzanagh et al., 2023a)1. This
decomposition is also related to the implicit bias of lo-
gistic regression on non-separable data (Ji & Telgarsky,
2019a). Our theory fully formalizes this decomposition
under the next-token prediction setting and reveals
fundamental connections to graphical structure in data
(e.g. through SCCs, TPGs).

Overall, we carefully study the gradient descent and
regularization path algorithms for attention-based next-
token prediction and make the following contributions:

1. We study the optimization landscape of self-
attention with log-loss and show that the problem
is convex under suitable assumptions. We then es-
tablish a global convergence result to fully formal-
ize Theorem 1 in terms of a directional component
(Graph-SVM) and a finite component (see Sec 3).
Notably, results apply to arbitrary datasets as we
don’t require distributional assumptions.

2. Our theory reveals insightful connections between
continuous and discrete optimization, namely:
Self-attention implicitly discovers the strongly-
connected components of the TPGs during training.

1Their conjecture aims to characterize the impact of the
MLP layer that follow self-attention in a binary classification
setting. However, the high-level claim is same.
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Figure 2: A token-priority graph (TPG) is a directed graph derived from training data (see Sec 2.1 for definition).
The edges in TPG capture the input-output relationships between different tokens. A TPG can be partitioned into
several SCCs depicted as dashed black squares. In light of Theorem 1, black intra-SCC edges within each SCC induce
the soft-composition component of the attention weights whereas the orange edges induce the hard-retrieval component
enforcing the priority orders among various SCCs.

3. Under a general setting, we establish the implicit
bias of the solution obtained by vanishing regular-
ization (Rosset et al., 2003; Suggala et al., 2018;
Ji et al., 2020). This yields a result similar to
the gradient descent theory (see Sec 4). We also
show that, in general, gradient descent can exhibit
local directional convergence rather than global.
We characterize these local directions through the
SVM solutions of pseudo TPGs (see Sec 5).

2 PROBLEM SETUP

Notation. Let [n] denote the set {1, · · · , n}. For a
space S, let S

? denote the orthogonal complement of
S and ⇧S denote the projection operator on S with
respect to Euclidean distance.

Next-token prediction problem. Let K be the vo-
cabulary size with E =

⇥
e1 . . . eK

⇤>
2 RK⇥d denot-

ing the embedding matrix consisting of d-dimensional
token embeddings for the K tokens in the vocabu-
lary. The next-token prediction is a multi-class clas-
sification problem and the goal is to predict the ID
y 2 [K] of the next token given an input sequence
X = [x1 . . . xT ]> 2 RT⇥d, where xt 2 E for all
t 2 [T ].

Suppose that we have a training dataset DSET =�
(Xi, yi) 2 RTi⇥d

⇥ [K]
 n

i=1
consisting of n sequences

where we allow the sequences to have different lengths
Ti, i 2 [n]. Throughout this paper, we use xit 2 [K]
to denote the scalar token ID corresponding to the
t-th token xit 2 Rd of the input sequence Xi, i.e.,
xit = exit .

Self-attention model. We consider a single-layer
self-attention model when making a prediction on a
given input sequence X 2 RT⇥d. Following the pre-
vious work (Tarzanagh et al., 2023a), we denote the

combined key-query weights by a trainable W 2 Rd⇥d

matrix, and assume identity value matrix. Let x̄ := xT

be the last token of the input sequence X. Then, the
single-layer self-attention outputs the following embed-
ding to predict the next-token ID y:

fW (X) = X>S(XWx̄), (1)

where S(·) denotes the softmax operation which fa-
cilitates weighing tokens of X based on the data-
dependent probabilities S(XWx̄). Note that the out-
put embedding fW (X) 2 Rd in (1) is a weighted linear
combination of the input token embeddings in X.

Empirical risk minimization (ERM) problem.
Let ` : R ! R be the loss function. Given train-
ing dataset DSET, we consider the ERM problem with
the following objective:

L(W ) =
1

n

nX

i=1

`(c>

yi
X>

i S(XiWx̄i)). (ERM)

Throughout this paper, we fix the linear classification
head ck

2 and assume kckk is bounded for all k 2 [K].
Note that even though the classification head is linear,
the problem of learning attention parameters W via
ERM is not necessarily convex due to the softmax
operator. In this work, we focus on this exact problem
and consider the following two algorithms to optimze
for W :

2Specifically, we assume well-pretrained head c1, · · · , cK
such that `(c>y ek) returns the minimal risk when k = y.



Mechanics of Next Token Prediction with Self-Attention

1. Gradient descent: Given starting point
W (0) 2 Rd⇥d and step size ⌘ > 0, for ⌧ � 0,

W (⌧ + 1) = W (⌧) � ⌘rL(W (⌧)). (Algo-GD)

2. Regularization path: Given R > 0, W 2

Rd⇥d,

W̄R = arg min
kW kF R

L(W ). (Algo-RP)

The next-token prediction task aims to capture various
patterns present in the underlying dataset. Towards
this, we introduce token-priority graph (TPG) in the
following section that summarizes the sequential prior-
ity orders presented in the training data. As we will
see later, TPGs play a crucial role in characterizing
the optimization geometry for both (Algo-GD) and
(Algo-RP) algorithms.

2.1 Token-priority Graph of the Dataset

A token-priority graph (TPG) is a directed graph with
at most K nodes corresponding to the elements in
the vocabulary. We associate the dataset DSET =
{(Xi, yi)}n

i=1 with multiple TPGs {G
(k)

}
K
k=1, with each

TPG focusing on a subset of the dataset comprising of
those input sequences that agree on the last token x̄.
Concretely, we construct G

(k)’s as follows:

1. Split DSET into K subsets {DSET
(k)

}
K
k=1 with

DSET
(k) containing all input sequences that end

with the same last token x̄ = ek.

2. For each (X, y) 2 DSET
(k) and for all (x, y) pairs

in (X, y) where x is the corresponding token ID
of x 2 X, add a directed edge (y ! x) to G

(k).

An illustration is provided in Fig. 3, where we construct
two TPGs (G(1) and G

(2)) based on the last tokens (de-
picted in yellow), and the directed edges are presented
as arrows starting from labels (orange) to input tokens
(blue/yellow) within each sequence. Note that nodes of
each G

(k) constitute a subset of the indices [K]. The
edges in G

(k) capture the priorities across the tokens
in an extended data sequence, conditioned on the last
token of the input being x̄ = ek. We will see that if
there is a cycle, i.e., y ! x and x ! y are both direc-
tionally reachable in the graph, then the self-attention
learnt via next-token prediction task can assign com-
parable priorities to the tokens x and y. In contrast,
if y always dominates x, i.e., y ! x is reachable but
x 6! y, then, when x and y are both present in an
input sequence, self-attention will be learnt to suppress
x and select y through an SVM mechanism along the
line of Tarzanagh et al. (2023a).

Strongly-connected components in TPGs.To for-
malize the aforementioned SVM mechanism, we need
the notion of strongly-connected components (SCCs).
A directed graph is strongly connected if every node in
the graph is reachable from every other node. SCCs of
a directed graph form a partition into subgraphs that
are themselves strongly connected. Given the TPGs
{G

(k)
}

K
k=1 associated with the dataset DSET, we can

split the directed graph G
(k) into its SCCs, denoted

by {C
(k)
i }

Nk
i=1. Note that the number of SCCs in G

(k),
as denoted by Nk, is at most the number of nodes in
G

(k), which is upper bounded by the vocabulary size
K. Furthermore, by definition, different SCCs within a
graph consist of distinct nodes, i.e., C

(k)
i

T
C

(k)
j = ;, for

i 6= j. Now, returning to Fig. 3, each of the dashed grey
rectangle represents an SCC. G

(1)(left) contains four
SCCs and therefore, all tokens within the graph have
strict priority orders. In contrast, G

(2)(right) consists
of two SCCs, with one containing three nodes. Follow-
ing the arrows, we can see that all the tokens/nodes
within this specific SCC are directional reachable.

Before formally connecting TPGs and their SCCs to the
SVM mechanism that enables next-token prediction,
we introduce some necessary graph-related notation.
Given a directed graph G, for i, j 2 [K] such that i 6= j:

• i 2 G denotes that the node i belongs to G.

• (i ) j) 2 G denotes that the directed edge (i ! j)
is present in G but j ! i is not reachable.

• (i ⇣ j) 2 G means that both two nodes (i, j) are
in the same SCC of G.

From the construction, for any two distinct nodes i, j
in the same TPG, they either satisfy (i ) j)/(j )

i) or (i ⇣ j).

2.2 SVM Bias of Self-attention Learning

The main contribution of this paper is to establish
the SVM equivalence that captures the optimization
geometry of the next-token prediction problem. We
will show that the self-attention model learnt via either
(Algo-GD) or (Algo-RP) converges to the solution of
an SVM defined by the TPGs of the underlying dataset
DSET. In particular, given (G(k)

k )K
k=1, we introduce the

following SVM formulation:

W svm = arg min
W

kW kF (Graph-SVM)

s.t. (ei � ej)
>Wek

(
= 0 8(i ⇣ j) 2 G

(k)

� 1 8(i ) j) 2 G
(k)

8k 2 [K].

Fix last token ek, and consider any token IDs i, j 2 [K],
i 6= j. When (i ) j), token ID i has a higher priority
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Figure 3: Illustration of token-priority graph (TPG). Given the input sequences and labels (next tokens), we construct the
TPGs {G(k)}Kk=1 according to the last token. Two TPGs G(1) (left) and G(2) (right) are constructed using the samples with
e1 and e2 as the last tokens, respectively. In each graph, directed edges (label token!input token) are added between
tokens/nodes. Based on these directed edges, each graph can be partitioned into its strongly-connected components (SCCs,
highlighted as dashed grey rectangles). Each SCC is a set of tokens where each token is reachable from every other token
within that SCC. Further details are deferred to Section 2.1.

than j and hence, the SVM problem (Graph-SVM)
aims to find a W such that Wek achieves strictly
higher correlation to token embedding ei than ej , that
is, e>

i Wek � e>

j Wek +1, and then softmax operation
will assign higher probability to the token i. While if
(i ⇣ j), there is not strict priority order between i and j,
and hence we set the correlation difference equal to zero
to prevent the SVM solution W from distinguishing
them. The existence of the solution W svm ensures
the separability of tokens i’s from the j’s for all pairs
(i ) j) 2 G

(k). Additionally, if for all k 2 [K], the
number of SCCs3 Nk  1, then W svm = 0.

Lemma 1 Suppose that the embedding matrix E is
full row rank. Then, (Graph-SVM) is feasible.

Next focusing on the nodes i, j, with (i ⇣ j), we
introduce the following subspace definition.

Definition 1 (Cyclic subspace) Define cyclic sub-
space Sfin as the span of all matrices (ei � ej)e>

k for
all (i ⇣ j) 2 G

(k) and k 2 [K].

Note that since W svm satisfies all the “= 0” con-
straints in (Graph-SVM), if (Graph-SVM) is feasible
and W svm

6= 0, W svm
? Sfin.

2.3 Technical Assumptions

In what follows, we work with a few assumptions that
will make the optimization landscape of the underlying
learning problem more benign, and we introduce these
assumptions along with their justifications.

Assumption 1 For 8y, k 2 [K], k 6= y, c>
y ey = 1 and

c>
y ek = 0.

3Note that Nk = 0 implies that within DSET, there is
not training sample whose input sequence has ek as its last
token; or equivalently, DSET(k) = ;.

This assumption essentially enforces that the rows of
the prediction head C are aligned with the correspond-
ing vocabulary embeddings in E. This is a variation of
the weight tying strategy which is commonly employed
in language models (Press & Wolf, 2017; Vaswani et al.,
2017). It should be noted that Assumption 1 implies
K  d, which further establishes the feasibility of
(Graph-SVM) as demonstrated by Lemma 1. Given
objective (ERM) and a decreasing loss function `, our
ideal goal is for the attention (1) to output ey which
minimizes the training risk. Recall that single-layer
self-attention outputs a convex combination of the in-
put tokens (cf. (1)). If tokens are linearly independent,
the only way model can output the embedding ey cor-
responding to the target label y would be if ey was
among the input sequence. This motivates the following
realizability assumption.

Assumption 2 For any (X, y) 2 DSET, the token ey

is contained in the input sequence X.

In the scenario where (X, y) is not realizable, self-
attention would select eŷ 6= ey and the SVM formula
would be established via separating ŷ from the other
tokens in the sequence instead of the true label y. Ad-
ditionally, when Assumption 1 holds, the model can
only make a random prediction over the output labels
(since any output of the self-attention model would
result in the same training risk); consequently, such
non-realizable examples will not play roles in optimiz-
ing W , i.e. rW `(c>

yi
X>

i S(XiWx̄i)) = 0.

3 GLOBAL CONVERGENCE OF
GRADIENT DESCENT

In this section, we assume the log-loss function, i.e.,
`(u) = � log(u), and establish the gradient descent
convergence of attention weight W via the convexity
of L(W ). Note that although loss function ` is convex
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and the classification head is linear, due to the non-
convexity of softmax, the convexity of L(W ) is not
immediately clear. Towards this, we introduce the
following lemma:

Lemma 2 Suppose Assumptions 1 and 2 hold and
consider the log-loss `(u) = � log(u), then L(W ) is
convex. Furthermore, L(W ) is strictly convex on Sfin.

Let (X, y) 2 DSET be any sample and set �t = c>
y xt.

Assumption 1 guarantees that �t = 1 when xt = y,
otherwise �t = 0. Consider the attention output
c>

y X>S(XWx̄) (cf. (ERM)) and let softmax prob-
abilities be st = S(XWx̄)t, where

P
t st = 1. Then,

the loss of this single sample X is `(�̄) where �̄ =P
t �tst =

P
xt=y st. Given log-loss, note that when

�̄ ! 0+, � log(�̄) results in the infinite loss, which
suggests that, once attention weight W diverges to sat-
urate the softmax probability, the finite training risk is
achievable only when st 6! 0 for all t satisfying xt = y.
Given different label y for different input and recalling
the SCC definition in Section 2.1, attention selects all
xt’s within the same SCC as y. The following result
characterizes the global directional convergence of the
GD iterates to the solution of (Graph-SVM).

Theorem 2 Consider a dataset DSET and suppose
Assumptions 1 and 2 hold. Set loss function as
`(u) = � log(u). Let W svm

2 S
?

fin be the solution of
(Graph-SVM). Starting from any W (0) with con-
stant step size ⌘, the algorithm Algo-GD satisfies
lim⌧!1 kW (⌧)kF = 1 and

lim
⌧!1

⇧Sfin(W (⌧)) = W fin. (2)

Here W fin is the unique finite minima of the loss
L̃(W ) := limR!1 L(W + R · W svm) over Sfin. Addi-
tionally, if W svm

6= 0,

lim
⌧!1

W (⌧)

kW (⌧)kF

=
W svm

kW svmkF

.

Otherwise, ⇧S?

fin
(W (⌧)) remains unchanged throughout

the optimization.

This theorem demonstrates the directional convergence
of attention weight W , and the limits imply the decom-
position W (⌧) ⇡ C(⌧)·W svm+W fin for an appropriate
C(⌧) > 0 with lim⌧!1 C(⌧) = 1. Note that, for di-
rectional convergence to happen, we need W svm

6= 0
which happens if and only if (Graph-SVM) has “ � 100

constraints. That is, the token graph contains a strict
priority order. This is consistent with our Theorem 1
where W svm corresponds to the hard retrieval com-
ponent (Whard) that selects the high-priority tokens
and W fin is the soft composition component (Wsoft)

that determines the softmax probability assignments
among these selected tokens. Importantly, this is a
global convergence result thanks to the convexity of
the optimization problem, which is enabled by the log
likelihood optimization combined with Assumption 1.
In Section 5, we will demonstrate that global conver-
gence of gradient descent does not hold in general.

To illustrate Theorem 2, we conduct experiments with
results presented in Figure 4. We create embedding
tables with K = 6, d = 8 and randomly gener-
ate dataset with n = 6, T = 4. Here we choose
step size ⌘ = 0.01 and perform the normalized gra-
dient descent method to accelerate the increase in
the norm of attention weight, so that softmax can
easily saturate. Specifically, we update attention
weight W via W (⌧ + 1) = W (⌧) � ⌘ rL(W (⌧))

krL(W (⌧))kF
.

At each iteration ⌧ , correlation coefficient is computed
by hW (⌧),W svm

i /(kW (⌧)kF kW svm
kF ), and results

averaged over 100 random instances are displayed in
Fig. 4a, which end in correlation ⇡ 0.987 after training
with 4000 iterations. In addition to the directional
convergence of W (⌧), we also verify the convergence
of finite component by tracking the matrix distance���cW fin

� W fin
���

F
where cW fin = ⇧Sfin(W (⌧)), and re-

sults are displayed in Fig. 4b, which obtains < 0.01
final distance. Both results validate our Theorem 2.

4 IMPLICIT BIAS OF SELF-
ATTENTION

In Section 3, we have discussed that gradient descent
with log loss guarantees the global convergence. To
proceed, in this section, we discuss the implicit bias of
attention via analysis of regularization path (RP) as
employed in Algo-RP and identify the implicit bias of
self-attention on more general next-token prediction
problems.

Theorem 3 Consider any dataset DSET and suppose
Assumptions 1 and 2 hold. Additionally, assume loss
` : R ! R is strictly decreasing and |`0

| is bounded.
Let W svm

2 S
?

fin be the solution of (Graph-SVM) and
suppose W svm

6= 0. Then the solution of regularization
path Algo-RP obeys

lim
R!1

W̄R

R
=

W svm

kW svmkF

and lim
R!1

⇧Sfin(W̄R) 2 W
fin.

Here W
fin = arg minW2Sfin limR!1 L(W +R ·W svm)

and we assume that W
fin is a bounded set.

Here, we allow more general loss function ` which is
different from the log-loss employed in Section 3, and
the ERM problem (cf. (ERM)) is not guaranteed to
be convex.
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Figure 4: GD convergence of attention weight W when training with general
dataset. (a) shows the directional convergence of W (⌧); while (b) presents the
convergence of ⇧Sfin(W (⌧)).
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Figure 5: GD convergence of atten-
tion weight W when training with
acyclic dataset (Def. 2). Correlation
coefficient between W (⌧) and W svm

are presented.

4.1 Acyclic Dataset

Below, in contrast, we introduce the concept of acyclic
dataset which implies that the next-token prediction
task always encounters a strict priority order among
tokens within each TPG. This corresponds to the set-
ting where all SCCs ((C(k)

i )Nk
i=1)

K
k=1 are all singletons;

or equivalently, DSET = ;.

Definition 2 (Acyclic dataset) We call DSET
acyclic if all of its TPGs are directed acyclic graphs.

For an acyclic dataset, there are not i, j 2 [K] satisfying
(i ⇣ j) 2 G

(k), for all k 2 [K]. Thus, SVM formulation
(Graph-SVM) reduces to the following simpler form:

W svm = arg min
W

kW kF (Acyc-SVM)

s.t. (ei � ej)
>Wek � 1 8(i ) j) 2 G

(k), k 2 [K].

We next make the following assumption on the lin-
ear head. Notably, Assumption 1 is a special case of
Assumption 3.

Assumption 3 For 8y 2 [K], arg maxk2[K] c
>
y ek =

y.

Lemma 3 Consider acyclic dataset DSET per Def. 2
and suppose Assumptions 2 and 3 hold. Additionally,
assume loss function ` is strictly decreasing and |`0

| is
bounded. Then for any finite W 2 Rd⇥d, training risk
obeys L(W ) > L? := 1

n

Pn
i=1 `(c

>
yi

eyi). Additionally,
if (Acyc-SVM) is feasible, then for any W that satisfies
the constraints in (Acyc-SVM), limR!1 L(R · W ) =
L?.

Assumption 3 and Lemma 3 ensure that the best way
for attention to make a correct prediction on class k is to
output the vector ek, i.e., fW (X) = ek. The next the-
orem states the directional bias of self-attention on the
acyclic dataset towards the solution of (Acyc-SVM).

Theorem 4 Suppose DSET is acyclic per Definition 2
and Assumptions 2 and 3 hold. Additionally, assume
loss ` : R ! R is strictly decreasing and |`0

| is bounded.
Suppose (Acyc-SVM) is feasible with W svm denoting
its solution. Then, Algorithm Algo-RP satisfies

lim
R!1

W̄R

R
=

W svm

kW svmkF

.

Recall that a dataset being acyclic implies that there
is strict priority order among all tokens in each TPG.
Theorem 4 establishes the implicit bias of self-attention
model for next-token prediction problem in the pres-
ence of such strict priority order. It demonstrates
that once the SVM problem (Acyc-SVM) is feasible,
the regularized path of optimizing (ERM) converges
directionally toward it solution W svm.

Following the same implementation setting as in Sec-
tion 3, in Fig. 5, we again conduct 100 trials but with
randomly generated acyclic dataset DSET under the
setting of K = d = 8, n = 4 and T = 6. The results
averaged over 100 random instances are presented in
Fig. 5 with correlation coefficient exceeds 0.99 after
training with 4000 iterations. Note that in these ex-
periments, log-loss is employed as loss function and
Assumption 1 is satisfied which guarantee the convexity
of L(W ) following Lemma 2 and hence, the connection
between Algo-GD and Algo-RP is built by Ji et al.
(2020).

5 FURTHER INVESTIGATION ON
LOCAL CONVERGENCE

So far, we have proved the global GD convergence of
attention weight when one employs the log-loss (Sec-
tion 3) and studied the implicit bias of self-attention
over next-token prediction problem using RP analysis
(Section 4). In this section, we investigate further on
the convergence performance of GD and ask:
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Figure 6: Squared loss with general classifier
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Figure 7: Cross-entropy loss with general classifier

When does the GD exhibit local convergence rather
than global? Can we characterize its implicit bias?

Convergence performance of learning 1-layer attention
has been analyzed in the previous work Tarzanagh et al.
(2023b,a), and they have observed the local convergence
phenomenon, and also provided the theoretical explana-
tion and empirical evidence. Inspired by their work, we
define the pseudo TPGs for obtaining locally-optimal
SVM equivalence fW svm and cyclic component fW fin

as follows:

1. Given any dataset DSET, consider GD solution
W GD. For each training example (X, y) 2 DSET,
let s = S(XW GDx̄).

2. Construct TPGs based on s by adding directed
edge (xt1 ! xt2) to G

(k) if st1 > 0, where k, xt are
the token IDs of last token and xt, respectively.

Different from the TPGs defined in Section 2.1 which
is uniquely determined by the dataset and the ground
truth labels, pseudo-TPGs build edges based on the
tokens selected by GD solution W GD. To further in-
vestigate under which scenarios local convergence phe-
nomenon exists, we consider the following cases and
provide experimental evidence.

General loss function `. In Section 3, we analyze
the convergence performance of gradient descent when
employing log-loss. As we have discussed, such loss
guarantees the convexity of the problem and therefore,
GD of attention weight (directional) converges to its
global minima. Here, we investigate the performance
of more general loss function, i.e., squared loss, and
find empirical evidence of local convergence (Figures 6
and 7).

Extended linear head. In this work, GD experi-
ments are conducted under Assumptions 1 and 2, which
implies the convex training loss L(W ) and global con-
vergence performance. Now consider a more general
linear head (i.e., Assumption 3). As have also been
observed and discussed in Tarzanagh et al. (2023b,a),
Algo-GD can converge to a locally-optimal solution.

Figures 6 and 7 display our local convergence results
where Fig. 6 employs squared loss, i.e. `(u) = (1 � u)2

and Fig. 7 utilizes cross-entropy loss. Both apply gen-
eral head following Assumption 3. Similar to Fig. 4, we
present (directional) convergence performance of W
towards W svm and W fin. Results indicate that instead
of converging to the global solution (blue curves), atten-
tion weights trained via GD align more closely with the
locally-optimal SVM solution defined via the pseudo
TPGs constructed by W GD (orange curves). In Fig. 6b,
the norm difference to fW fin remains zero, indicating
that all SCCs in the pseudo TPGs are singleton and
GD optimizes attention weights towards selecting one
token per sequence. While in Fig. 7, multiple tokens
can be selected by W GD. Note that in Fig. 7b, the
norm of difference does not end with zero value on
average. The potential explanations can be: Due to
the non-convexity of training loss, training W with
GD may not fully capture its RP solution fW fin over
the cyclic subspace, and general classification head in-
duces correlation among tokens, leading the attention
mechanism to generate more intricate composed to-
kens. Nevertheless, our empirical results indicate that
W more closely aligns with the local fW fin within its
cyclic subspace. We defer a rigorous definition of local
fW fin and guarantees related to gradient descent for
future exploration. Experimental details are deferred
to the appendix.

6 RELATED WORK

Inspired by the increasing popularity of Transformer-
based models, a large number of research efforts have
focused on developing theoretical understanding of var-
ious aspects of such models. Yun et al. (2020a); Fu
et al. (2023); Bombari & Mondelli (2024) studied the
expressive power of Transformers and showed that they
are universal approximators for sequence-to-sequence
functions. A similar result for efficient variants of
Transformers based on sparse attention was presented
in Yun et al. (2020b). Edelman et al. (2022) stud-
ied bias of single attention layer towards representing
sparse functions of input sequence with favourable gen-
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eralization behaviour. Interestingly, Baldi & Vershynin
(2023) explored key building blocks of attention mech-
anism beyond modern neural networks and studied
the functional capacity of the resulting attention-based
models. Other lines of theoretical efforts have focused
on explaining various properties of Transformer-based
models, including rank collapse (Dong et al., 2021) and
realization of in-context learning (Xie et al., 2022; Garg
et al., 2022; Akyürek et al., 2023; Von Oswald et al.,
2023; Li et al., 2023c; Huang et al., 2023; Li et al.,
2023b; Collins et al., 2024; Jeon et al., 2024; Chen
et al., 2024; Li et al., 2024).

Unlike these prior work, we focus on optimization-
theoretic analysis of attention-based models for the
next-token prediction objective. Our work sheds light
on the implicit bias of underlying optimization prob-
lem towards SVM formulations, which builds on the
recent research efforts (Tarzanagh et al., 2023b,a). How-
ever, different from these prior efforts that deal with
traditional (supervised) classification tasks, we focus
on next-token prediction task – the main workhorse
of Transformer-based language modeling. The recent
work Thrampoulidis (2024) also explores the next-token
prediction problem under a classification-like setting,
employing a related SVM formulation. Since we study
transformers, the main messages are fairly different,
e.g., our theory relies on graph-theoretic concepts such
as SCCs and token-priority graphs to capture the gen-
erative process learned by SGD. Notably, several recent
efforts (Jelassi et al., 2022; Li et al., 2023a,d; Oymak
et al., 2023; Deora et al., 2023; Chen & Li, 2024) have
also analyzed optimization and generalization dynamics
of attention-based models. However, these works again
only focus on traditional classification tasks and con-
sider simplifications of the attention mechanism (Jelassi
et al., 2022) or work with strict statistical data assump-
tions (Jelassi et al., 2022; Li et al., 2023a; Oymak et al.,
2023). In contrast, we provide a detailed optimization-
theoretic treatment of the original (non-linear input
dependent) attention mechanism without any statisti-
cal assumption on the underlying data. Related work
by Tian et al. (2023) studies the training dynamics of
next-token prediction. Compared to us, their analysis
is restricted to a specific statistical data model, includ-
ing the requirement of long input sequences (T ! 1).
Ildiz et al. (2024); Makkuva et al. (2024) build connec-
tions between self-attention and Markov chains. In con-
trast, we characterize the implicit bias of self-attention
learning to novel SVM formulations without any such
assumptions on the data model or sequence lengths.

We would also like to note the rich literature on study-
ing implicit bias of gradient-based optimization meth-
ods (see, e.g., Soudry et al. (2018); Gunasekar et al.
(2018); Ji et al. (2020); Ji & Telgarsky (2021); Kini et al.

(2021); Li et al. (2019); Blanc et al. (2020); Qian &
Qian (2019); Wang et al. (2021) and references therein).
However, this prior work does not focus on the optimiza-
tion landscape of learning Transformer-based models
and thus, does not provide specific insights into their
inner-workings, which is the main objective of our work.

7 DISCUSSION

In this work we set out to demystify Transformer-based
language modeling via next-token prediction task. We
established that single-layer self-attention learning has
implicit bias towards the solution of a support vector
machine (SVM) formulation based on token-priority
graphs which encode the priority order among the to-
kens as per the training data. Our analysis shows
that a self-attention model learned via next-token pre-
diction objective implements a selection mechanism
to suppress the lower priority tokens in order to pre-
dict the higher priority tokens as the next-token for
an input sequence. At the same time, such an at-
tention model would distribute its softmax probabil-
ities among all equal priority tokens as modeled by
the strongly-connected components of the next-token
graph. Ultimately, our results comprehensively capture
the automaton implemented by a 1-layer self-attention
under realistic assumptions.

A natural future direction is relaxing our assumptions
in SGD analysis and providing a comprehensive char-
acterization of the training dynamics, accounting for
non-convexities. It would also be interesting to extend
our analysis to multi-layer multi-head self-attention
models or explore how feed-forward layers (a.k.a. MLP
layers) in Transformers affect the optimization dynam-
ics and aid in the aforementioned token selection and
composition mechanisms during next-token prediction.

Acknowledgements

This work was supported in part by the NSF grants
CCF-2046816, CCF-2212426, CNS-1932254, UMich’s
MIDAS PODS program, a Google Research Scholar
award, and an Adobe Data Science Research award.

References
Ekin Akyürek, Dale Schuurmans, Jacob Andreas,

Tengyu Ma, and Denny Zhou. What learning al-
gorithm is in-context learning? investigations with
linear models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:

//openreview.net/forum?id=0g0X4H8yN4I.

Pierre Baldi and Roman Vershynin. The quarks
of attention: Structure and capacity of neu-

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I


Mechanics of Next Token Prediction with Self-Attention

ral attention building blocks. Artificial In-
telligence, 319:103901, 2023. ISSN 0004-3702.
doi: https://doi.org/10.1016/j.artint.2023.103901.
URL https://www.sciencedirect.com/science/

article/pii/S0004370223000474.

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul
Valiant. Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like pro-
cess. In Conference on learning theory, pp. 483–513.
PMLR, 2020.

Simone Bombari and Marco Mondelli. Towards un-
derstanding the word sensitivity of attention lay-
ers: A study via random features. arXiv preprint
arXiv:2402.02969, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 1877–1901. Curran As-
sociates, Inc., 2020. URL https://proceedings.

neurips.cc/paper_files/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin
Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision
transformer: Reinforcement learning via sequence
modeling. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 15084–15097. Curran
Associates, Inc., 2021. URL https://proceedings.

neurips.cc/paper_files/paper/2021/file/

7f489f642a0ddb10272b5c31057f0663-Paper.pdf.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu,
Heewoo Jun, David Luan, and Ilya Sutskever. Gen-
erative pretraining from pixels. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pp. 1691–1703. PMLR, 13–18 Jul 2020. URL https:

//proceedings.mlr.press/v119/chen20s.html.

Sitan Chen and Yuanzhi Li. Provably learning
a multi-head attention layer. arXiv preprint
arXiv:2402.04084, 2024.

Siyu Chen, Heejune Sheen, Tianhao Wang, and
Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emer-
gence, convergence, and optimality. arXiv preprint
arXiv:2402.19442, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, et al. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

Yu-An Chung and James Glass. Generative pre-training
for speech with autoregressive predictive coding.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3497–3501. IEEE, 2020.

Liam Collins, Advait Parulekar, Aryan Mokhtari, Sujay
Sanghavi, and Sanjay Shakkottai. In-context learning
with transformers: Softmax attention adapts to func-
tion lipschitzness. arXiv preprint arXiv:2402.11639,
2024.

Puneesh Deora, Rouzbeh Ghaderi, Hossein Taheri, and
Christos Thrampoulidis. On the optimization and
generalization of multi-head attention. arXiv preprint
arXiv:2310.12680, 2023.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas
Loukas. Attention is not all you need: pure atten-
tion loses rank doubly exponentially with depth. In
Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 2793–2803. PMLR, 18–24
Jul 2021. URL https://proceedings.mlr.press/

v139/dong21a.html.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and
Cyril Zhang. Inductive biases and variable creation
in self-attention mechanisms. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings
of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 5793–5831. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/

v162/edelman22a.html.

Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Prot-
gpt2 is a deep unsupervised language model for pro-
tein design. Nature communications, 13(1):4348,
2022.

Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei.
What can a single attention layer learn? a study
through the random features lens. arXiv preprint
arXiv:2307.11353, 2023.

https://www.sciencedirect.com/science/article/pii/S0004370223000474
https://www.sciencedirect.com/science/article/pii/S0004370223000474
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.mlr.press/v119/chen20s.html
https://proceedings.mlr.press/v119/chen20s.html
https://proceedings.mlr.press/v139/dong21a.html
https://proceedings.mlr.press/v139/dong21a.html
https://proceedings.mlr.press/v162/edelman22a.html
https://proceedings.mlr.press/v162/edelman22a.html


Yingcong Li, Yixiao Huang, M. Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak

Shivam Garg, Dimitris Tsipras, Percy S Liang,
and Gregory Valiant. What can transform-
ers learn in-context? a case study of simple
function classes. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 30583–30598. Curran
Associates, Inc., 2022. URL https://proceedings.

neurips.cc/paper_files/paper/2022/file/

c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.

pdf.
Suriya Gunasekar, Jason Lee, Daniel Soudry, and

Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In Jennifer Dy
and Andreas Krause (eds.), Proceedings of the
35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 1832–1841. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/

v80/gunasekar18a.html.
Yu Huang, Yuan Cheng, and Yingbin Liang. In-

context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

M Emrullah Ildiz, Yixiao Huang, Yingcong Li,
Ankit Singh Rawat, and Samet Oymak. From
self-attention to markov models: Unveiling the dy-
namics of generative transformers. arXiv preprint
arXiv:2402.13512, 2024.

Samy Jelassi, Michael Eli Sander, and Yuanzhi Li. Vi-
sion transformers provably learn spatial structure.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural In-
formation Processing Systems, 2022. URL https:

//openreview.net/forum?id=eMW9AkXaREI.
Hong Jun Jeon, Jason D Lee, Qi Lei, and Benjamin

Van Roy. An information-theoretic analysis of in-
context learning. arXiv preprint arXiv:2401.15530,
2024.

Ziwei Ji and Matus Telgarsky. The implicit bias of
gradient descent on nonseparable data. In Conference
on learning theory, pp. 1772–1798. PMLR, 2019a.

Ziwei Ji and Matus Telgarsky. Risk and parameter
convergence of logistic regression. 2019b.

Ziwei Ji and Matus Telgarsky. Characterizing the
implicit bias via a primal-dual analysis. In Vi-
taly Feldman, Katrina Ligett, and Sivan Sabato
(eds.), Proceedings of the 32nd International Con-
ference on Algorithmic Learning Theory, volume
132 of Proceedings of Machine Learning Research,
pp. 772–804. PMLR, 16–19 Mar 2021. URL https:

//proceedings.mlr.press/v132/ji21a.html.
Ziwei Ji, Miroslav Dudík, Robert E Schapire, and Ma-

tus Telgarsky. Gradient descent follows the regu-

larization path for general losses. In Conference on
Learning Theory, pp. 2109–2136. PMLR, 2020.

Ganesh Ramachandra Kini, Orestis Paraskevas, Samet
Oymak, and Christos Thrampoulidis. Label-
imbalanced and group-sensitive classification under
overparameterization. Advances in Neural Informa-
tion Processing Systems, 34:18970–18983, 2021.

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu
Chen. A theoretical understanding of shallow vision
transformers: Learning, generalization, and sam-
ple complexity. In The Eleventh International Con-
ference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=jClGv3Qjhb.

Hongkang Li, Meng Wang, Songtao Lu, Hui Wan, Xi-
aodong Cui, and Pin-Yu Chen. Transformers as
multi-task feature selectors: Generalization analysis
of in-context learning. In NeurIPS 2023 Workshop on
Mathematics of Modern Machine Learning, 2023b.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui,
and Pin-Yu Chen. Training nonlinear transform-
ers for efficient in-context learning: A theoretical
learning and generalization analysis. arXiv preprint
arXiv:2402.15607, 2024.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris
Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-
context learning. In Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings
of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 19565–19594. PMLR, 23–29
Jul 2023c. URL https://proceedings.mlr.press/

v202/li23l.html.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards
explaining the regularization effect of initial large
learning rate in training neural networks. Advances
in Neural Information Processing Systems, 32, 2019.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do
transformers learn topic structure: Towards a mecha-
nistic understanding. In International Conference on
Machine Learning, pp. 19689–19729. PMLR, 2023d.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway
Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim, and
Michael Gastpar. Attention with markov: A frame-
work for principled analysis of transformers via
markov chains. arXiv preprint arXiv:2402.04161,
2024.

Erik Nijkamp, Jeffrey Ruffolo, Eli N Weinstein, Nikhil
Naik, and Ali Madani. Progen2: exploring the bound-
aries of protein language models. arXiv preprint
arXiv:2206.13517, 2022.

https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.mlr.press/v80/gunasekar18a.html
https://proceedings.mlr.press/v80/gunasekar18a.html
https://openreview.net/forum?id=eMW9AkXaREI
https://openreview.net/forum?id=eMW9AkXaREI
https://proceedings.mlr.press/v132/ji21a.html
https://proceedings.mlr.press/v132/ji21a.html
https://openreview.net/forum?id=jClGv3Qjhb
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html


Mechanics of Next Token Prediction with Self-Attention

OpenAI. Gpt-4 technical report. arXiv preprint-
arXiv:2303.08774, 2023.

Samet Oymak, Ankit Singh Rawat, Mahdi
Soltanolkotabi, and Christos Thrampoulidis.
On the role of attention in prompt-tuning. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp.
26724–26768. PMLR, 23–29 Jul 2023. URL https:

//proceedings.mlr.press/v202/oymak23a.html.
Ofir Press and Lior Wolf. Using the output embed-

ding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers. Association for Computational
Linguistics, 2017.

Qian Qian and Xiaoyuan Qian. The implicit bias of
adagrad on separable data. Advances in Neural In-
formation Processing Systems, 32, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

Saharon Rosset, Ji Zhu, and Trevor Hastie. Margin
maximizing loss functions. Advances in neural infor-
mation processing systems, 16, 2003.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya
Gunasekar, and Nathan Srebro. The implicit bias
of gradient descent on separable data. Journal of
Machine Learning Research, 19(70):1–57, 2018. URL
http://jmlr.org/papers/v19/18-188.html.

Arun Suggala, Adarsh Prasad, and Pradeep K Raviku-
mar. Connecting optimization and regularization
paths. Advances in Neural Information Processing
Systems, 31, 2018.

Robert Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972. doi: 10.1137/0201010. URL https://

doi.org/10.1137/0201010.
Davoud Ataee Tarzanagh, Yingcong Li, Christos

Thrampoulidis, and Samet Oymak. Transform-
ers as support vector machines. arXiv preprint
arXiv:2308.16898, 2023a.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang,
and Samet Oymak. Margin maximization in atten-
tion mechanism. arXiv preprint arXiv:2306.13596,
2023b.

Christos Thrampoulidis. Implicit bias of next-token
prediction. arXiv preprint arXiv:2402.18551, 2024.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon
Du. Scan and snap: Understanding training dynam-
ics and token composition in 1-layer transformer.
arXiv preprint arXiv:2305.16380, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.

neurips.cc/paper_files/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Johannes Von Oswald, Eyvind Niklasson, Ettore
Randazzo, Joao Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymy-
rov. Transformers learn in-context by gradient
descent. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the
40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 35151–35174. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/

v202/von-oswald23a.html.

Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan
Liu. The implicit bias for adaptive optimization
algorithms on homogeneous neural networks. In
Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 10849–10858. PMLR, 18–24
Jul 2021. URL https://proceedings.mlr.press/

v139/wang21q.html.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In Inter-
national Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=

RdJVFCHjUMI.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh
Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-
to-sequence functions? In International Confer-

https://proceedings.mlr.press/v202/oymak23a.html
https://proceedings.mlr.press/v202/oymak23a.html
http://jmlr.org/papers/v19/18-188.html
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v139/wang21q.html
https://proceedings.mlr.press/v139/wang21q.html
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI


Yingcong Li, Yixiao Huang, M. Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak

ence on Learning Representations, 2020a. URL
https://openreview.net/forum?id=ByxRM0Ntvr.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli,
Ankit Singh Rawat, Sashank Reddi, and Sanjiv Ku-
mar. O (n) connections are expressive enough: Uni-
versal approximability of sparse transformers. Ad-
vances in Neural Information Processing Systems, 33:
13783–13794, 2020b.

https://openreview.net/forum?id=ByxRM0Ntvr


Mechanics of Next Token Prediction with Self-Attention

Mechanics of Next Token Prediction with Transformers
Supplementary Materials

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]
(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Not Applicable]
(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.

[Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes]
(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random

seed after running experiments multiple times). [Not Applicable]
(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud

provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Not Applicable]
(b) The license information of the assets, if applicable. [Not Applicable]
(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.

[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if

applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation.

[Not Applicable]



Yingcong Li, Yixiao Huang, M. Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak

G
(1)

e4

e3e2

e1

G
(2)

e2

e2

e2

e1

e3 e1

e3

e3 e1

e2

e3

e2e4

e1 e1e2

e1

e1

e2

e3

e4

e3 e2

e4e3

Last token

DSET

e1

e3

e2 e4

DSET

e2

e4

e1

e2

e2

e2

e1

e3 e1

e3

e3 e1

e2

e3

e2

e1

e3

e2

e2e1

=)

Label

Strongly-connected 
component
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A AUXILIARY RESULTS

A.1 Soft-composition Component

In Section 3, we have theoretically shown that when training a single-layer self-attention model with gradient
descent and log-loss function, once W svm

6= 0, the composed attention weight W (⌧) will diverge in Frobenius norm
and W (⌧) converges towards direction W svm/ kW svm

kF ; while in the subspace of Sfin, ⇧Sfin(W (⌧)) converges
to a finite W fin which is the unique solution minimizing the training loss over subspace Sfin as described in
Theorem 2. Here, W svm follows the solution of (Graph-SVM) and plays a role in separating tokens from different
SCCs within the same TPG. Specifically, nodes satisfy (i ) j) 2 G

(k).

As for the nodes contained within the same SCC (e.g., (i ⇣ j)), to ensure that i and j will not suppress each
other, (Graph-SVM) solves the SVM problem with the constraint (ei �ej)>Wek = 0. This essentially disregards
the influence of distinct tokens within the same SCC. Consequently, W svm does not truly capture the essence of
the ERM solution. In the following, we introduce cyclic subdataset and the so-called cyclic-component, and an
equivalence between the cyclic term and W fin can be established under mild assumptions.

Definition 3 (Cyclic subdataset) Given any training sample (X, y) 2 DSET, we obtain the corresponding
sample (X 0, y) 2 DSET by removing all tokens in X that satisfy (y ) x) in the corresponding TPG.

In short, cyclic subdataset focuses on the input tokens that are part of the same SCC as the label token.
Fig. 8(Right) presents the cyclic subdataset DSET of DSET given in Fig. 8(Left), which is the same as Fig. 3. In
G

(1), all nodes are separated into different SCCs, and therefore, none of them is present in DSET; while in G
(2),

token e1, e2 and e3 are reachable from each other, and then are utilized to construct DSET while e4 is removed
from the dataset. Note that DSET provides a self-contained sub-problem that solely focuses on intra-SCC edges.

Definition 4 (Cyclic component) W
fin is obtained as the solution set of the ERM problem over the cyclic

subdataset DSET per Definition 3. Concretely,

W
fin = arg min

W2Sfin
L̄(W )

where L̄(W ) =
1

n

X

(X,y)2DSET

`(c>

y X>S(XWx̄)).

Lemma 4 Consider a dataset DSET and let W svm be the corresponding SVM solution of (Graph-SVM) with
W svm

6= 0. Then we have W svm
? Sfin, and for any W̄ fin

6= 0 2 W
fin, W̄ fin and W svm are orthogonal.

Lemma 5 Let W 2 Rd⇥d be an arbitrary matrix, then we have L̄(W ) = L̄(⇧Sfin(W )).

Lemma 6 Suppose Assumptions 1 and 2 hold, and loss function `(u) = � log(u), then for any finite W ,
L̃(W ) = L̄(W ) where L̃(W ) and L̄(W ) are defined in Theorem 2 and Definition 4, respectively.

A.2 Useful Notations

In this section, we introduce additional notations used in the subsequent proofs.

• Token index sets Oi, Ōi, Ri, R̄i, i 2 [n]. Consider dataset DSET. Throughout, for any sample (Xi, yi) 2 DSET,
i 2 [n], we define

Oi :=
n
t
��� xit = yi, 8t 2 [Ti]

o
and Ōi = [Ti] � Oi, (3a)

Ri := Oi

[n
t
��� (xit ⇣ yi) 2 G

(x̄i), 8t 2 [Ti]
o

and R̄i = [Ti] � Ri (3b)

where xit is the token ID of xit, Ti is the number of tokens in the input sequence Xi and G
(x̄i) is the corresponding

token-priority graph (TPG) associated with the last/query token of Xi. Concretely, Oi returns the token indices
of i-th input that have the same token ID as label yi, while Ri returns the token indices of i-th input that are
included in the same strongly-connected component (SCC) as label yi in the corresponding TPG. Then for any
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t 2 R̄i, we have (yi ) xit) 2 G
(x̄i). Take the last input sequence in Figure 8(left) as an example, where O = {3}

and R = {1, 3}.

• Datasets DSET, DSET and sample index set I, Ī. Recap the training dataset DSET = (Xi, yi)n
i=1. Based on

the relationships between input tokens and label token, following instructions in Section 2.1 we can construct the
TPGs of dataset DSET. Then, let I ✓ [n] be the sample index set such that for any i 2 I, Xi contains distinct
tokens from the same SCC as label yi in their corresponding TPG. Or equivalently,

I =
n
i
��� Ri � Oi 6= ;, i 2 [n]

o
and Ī = [n] � I. (4)

Then the cyclic subset defined in Definition 3 can be written by

DSET = (X̄i, yi)i2I , (5)

where X̄i is obtained by removing all input tokens of Xi that are in the different SCCs from the label token
yi, or equivalently, removing xit, t 2 R̄i. Hence, for all i 2 Ī, Xi only contains input tokens (ignoring the ones
with the same token ID as label) that have strictly lower priority than its label token, i.e., (yi ) xit) 2 G

(x̄i) for
t 2 Ōi. In Figure 8(left), we have I = {4, 5, 6, 7} and Ī = {1, 2, 3}.

• Token scores �i, i 2 [n] and loss L(W ) under Assumption 1. Let �i = Xicyi be the token score vectors.
Then under Assumption 1, we have

�it =

(
1, t 2 Oi

0, t 2 Ōi
for all i 2 [n]. (6)

Additionally, letting sW
i = S(XiWx̄i), we can rewrite the training risk as follows:

L(W ) =
1

n

nX

i=1

`

 
X

t2Oi

sWit

!
. (7)

A.3 Proof of Lemma 1

Proof. Recap the constraints in (Graph-SVM) problem:

(ei � ej)
>Wek

(
= 0 8(i ⇣ j) 2 G

(k)

� 1 8(i ) j) 2 G
(k)

for all k 2 [K]. (8)

Since E = [e1 e2 · · · eK ]> 2 RK⇥d is full row rank, then K  d and ek, k 2 [K] are linearly independent. Let
Ē 2 RK⇥d satisfying ĒE> = I. Then for any W̄ 2 RK⇥K , we get

(ei � ej)
>Ē>W̄ Ēek

(
= 0 8(i ⇣ j) 2 G

(k)

� 1 8(i ) j) 2 G
(k)

for all k 2 [K] (9)

and feasibility of (9) implies W 2 Rd⇥d in (8) is feasible. Since we can set W = Ē>W̄ Ē. Next let ui = Ēei

i 2 [K] be K-dimensional one-hot vectors. Then it remains to show that there exists W̄ 2 RK⇥K such that

(ui � uj)
>W̄uk

(
= 0 8(i ⇣ j) 2 G

(k)

� 1 8(i ) j) 2 G
(k)

for all k 2 [K] (10)

is feasible. Additionally, it is equivalent with showing that for any k 2 [K], there exists w 2 RK , such that

(ui � uj)
>w

(
= 0 8(i ⇣ j) 2 G

(k)

� 1 8(i ) j) 2 G
(k).

(11)
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To start with, we first derive the priority order of each graph (referring to the topological sorting of directed
graph). Let Mi be the order of ui where Mi’s i 2 [K] are positive integers. Then if (i ⇣ j), Mi = Mj ; if (i ) j),
Mi > Mj . Then let w =

P
i2[K] Miui. We obtain that for any k 2 [K],

8(i ⇣ j) 2 G
(k), (ui � uj)

>w = (ui � uj)
>(Miui + Mjuj) = Mi � Mj = 0

8(i ) j) 2 G
(k), (ui � uj)

>w = (ui � uj)
>(Miui + Mjuj) = Mi � Mj � 1

which indicates that (11) is feasible for any k 2 [K] and it completes the proof.

A.4 Proof of Lemma 4

Proof. Recall from Definition 1 that Sfin is the span of all matrices (ei � ej)e>

k for all (i ⇣ j) 2 G
(k) and

k 2 [K]. Then for any matrix W 2 Sfin, there exist aijk’s satisfying

W =
X

i,j,k

aijk(ei � ej)e
>

k

where (i ⇣ j) 2 G
(k) and k 2 [K]. Since W svm is the solution of (Graph-SVM) that satisfies the all “= 0”

constraints, for any matrix W 2 Sfin, we have

hW svm,W i =
X

i,j,k

aijk

⌦
W svm, (ei � ej)e

>

k

↵
= 0.

Therefore, W svm
? Sfin.

A.5 Proof of Lemma 5

Proof. Recap the definition of L̄(W ) from Def. 4 and I, X̄i from (4), (5). Then

L̄(W ) =
1

n

X

i2I

`(c>

yi
X̄>

i S(X̄iWx̄i)).

Let W ? = ⇧S?

fin
(W ) and W k = ⇧Sfin(W ). Then it remains to show that for any (X̄, y) 2 DSET, S(X̄Wx̄) =

S(X̄W kx̄).

For simplification, let x̄ = ek, and following the definition of TPG, SCC and DSET, we have that all tokens x 2 X̄
are in the same SCC and denote the token set as C

(k). Then Sfin spans the matrices (ei � ej)e>

k for i, j 2 C
(k).

For any i 2 C
(k), we get

e>

i Wek = e>

i W kek + e>

i W ?ek.

Next, let aik = e>

i W ?ek, i 2 C
(k). Since W ?

? Sfin, and (ei � ej)e>

k 2 Sfin, we obtain

(ei � ej)
>W ?ek = 0 (12)

=) e>

i W ?ek � e>

j W ?ek = 0

=) aik � ajk = 0

=) aik = ajk =: āk.

Then we have that for any x 2 X̄, x>W ?x̄ = āk where āk is associated with the last/query token x̄ and hence

X̄Wx̄ = X̄W kx̄ + X̄W ?x̄ = X̄W kx̄ + āk1

S(X̄Wx̄) = S(X̄W kx̄ + āk1) = S(X̄W kx̄),

which completes the proof.
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A.6 Proof of Lemma 6

In the following, we present an additional lemma that incorporates Lemma 6.

Lemma 7 Suppose Assumptions 1 and 2 hold and loss function ` : R ! R is strictly decreasing. For any finite
W , once DSET 6= DSET, we have that

L(W ) >
|Ī|

n
`(1) + L̄(W ). (13)

Additionally, we have

min
W 02S?

fin

L(W 0 + W ) = L̃(W ) =
|Ī|

n
`(1) + L̄(W ), (14a)

min
W

L(W ) = min
W

L̃(W ) =
|Ī|

n
`(1) + min

W
L̄(W ). (14b)

Proof. We start with proving that for any finite W , L(W ) �
|Ī|

n `(1) + L̄(W ). Let W ? = ⇧S?

fin
(W ), W k =

⇧Sfin(W ) where we have W = W ? +W k. Let ai = XiW ?x̄i, bi = XiW kx̄i and si = S(XiWx̄i) = S(ai + bi).
Following (7) and the definition of L̄(W ), training losses obey

L(W ) =
1

n

nX

i=1

`

 
X

t2Oi

sit

!
and L̄(W ) =

1

n

X

i2I

`

 P
t2Oi

sitP
t2Ri

sit

!
.

From proof of Lemma 5 (more specifically (12)), we have that for any t 2 Ri,

x>

itW
?x̄i = āi =) ait = āi, 8t 2 Ri

where āi is some constant associated with W ?. Then for any i 2 [n], we get

X

t2Oi

sit =

P
t2Oi

eāi+bit

P
t2Ri

eāi+bit +
P

t2R̄i
eait+bit

=

P
t2Oi

ebit

P
t2Ri

ebit +
P

t2R̄i
ebit+ait�āi



P
t2Oi

ebit

P
t2Ri

ebit
,

P
t2Oi

sitP
t2Ri

sit
=

P
t2Oi

eāi+bit

P
t2Ri

eāi+bit
=

P
t2Oi

ebit

P
t2Ri

ebit
.

Next following (4) we have that for i 2 Ī, Ri = Oi and therefore
P

t2Oi
sitP

t2Ri
sit

= 1 for all i 2 Ī.

Note that since ait, bit are finite and DSET 6= DSET, there exists i 2 [n] such that
P

t2Oi
sit <

P
t2Oi

sitP
t2Ri

sit
. Given

strictly decreasing loss function ` and any finite W , the training risks obey

L(W ) =
1

n

nX

i=1

`

 
X

i2Oi

sit

!
>

1

n

X

i2Ī

`(1) +
1

n

X

i2I

`

 P
t2Oi

sitP
t2Ri

sit

!
=

|Ī|

n
`(1) + L̄(W ).

It completes the proof of (13).

We next show that
min

W 02S?

fin

L(W 0 + W ) = L̃(W ) =
|Ī|

n
`(1) + L̄(W ).

Recap from Theorem 2 that L̃(W ) = limR!1 L(W +R·W svm). Let W ? = ⇧S?

fin
(W ), W k = ⇧Sfin(W ) where we

have W = W ? +W k. Let ai = XiW ?x̄i, bi = XiW kx̄i, ci = XiW svmx̄i and sR
i = S(Xi(R ·W svm+W )x̄i) =

S(ai + bi + R · ci). Similarly, for any t 2 Ri,

x>

itW
?x̄i = āi =) ait = āi, 8t 2 Ri
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where āi is some constant associated with W ?. Additionally, since W svm follows (Graph-SVM), we have

(xi⌧ � xit)
>W svmx̄i

(
= 0 8t 2 Ri

� 1 8t 2 R̄i
, for all ⌧ 2 Ri =)

(
cit = c̄i, 8t 2 Ri,

cit  c̄i � 1, 8t 2 R̄i.
(15)

Then for any i 2 [n], we get
X

t2Oi

sR
it =

P
t2Oi

eāi+bit+Rc̄i

P
t2Ri

eāi+bit+Rc̄i +
P

t2R̄i
eait+bit+Rcit

=

P
t2Oi

ebit

P
t2Ri

ebit +
P

t2R̄i
ebit+ait�āi+R(cit�c̄i)



P
t2Oi

ebit

P
t2Ri

ebit
.

Case 1: W svm = 0. Then for all i 2 [n], R̄i = ; and the equality holds for all i 2 [n].

Case 2: W svm
6= 0. Since ait, bit are finite and cit � c̄i  �1 for t 2 R̄i following (15), the equality holds when

R ! 1, and therefore we have for any i 2 [n],

lim
R!1

X

t2Oi

sR
it =

P
t2Oi

ebit

P
t2Ri

ebit

and

L̃(W ) = lim
R!1

L(R · W svm + W ) = lim
R!1

1

n

nX

i=1

`

 
X

i2Oi

sR
it

!

=
|Ī|

n
`(1) +

1

n

X

i2I

`

 P
t2Oi

ebit

P
t2Ri

ebit

!

=
|Ī|

n
`(1) + L̄(W ). (16)

Additionally, we have for any W 0
2 S

?

fin,

L(W 0 + W ) �
|Ī|

n
`(1) + L̄(W 0 + W ) =

|Ī|

n
`(1) + L̄(W )

where the inequality uses (13) and the equality comes from Lemma 5. Since bound is achievable (by choosing
W 0 = limR!1 R · W svm as in (16)), then combining it with (16) completes the proof of (14a). (14b) is directly
obtained from (14a).

B GLOBAL CONVERGENCE OF GRADIENT DESCENT

B.1 Supporting Results under the Setting of Theorem 2

In this section, we introduce results useful for the main proof. Recap the setting of Theorem 2 where `(u) = � log(u).
Therefore loss defined in (7) is

L(W ) = �
1

n

nX

i=1

log

 
X

t2Oi

sWit

!
(17)

where sW
i = S(XiWx̄i) and Oi’s follow (3).

• rL(W ) under the setting of Theorem 2. For any W 2 Rd⇥d, let hi = XiWx̄i, si = S(hi),�i = Xicyi .

rL(W ) =
1

n

nX

i=1

`0(�>

i si)X
>

i S0(hi)�ix̄
>

i

=
1

n

nX

i=1

�
1

�>

i si
X>

i (diag(si) � sis
>

i )�ix̄
>

i

=
1

n

nX

i=1

X

t2Ōi

sit(xit � eyi)x̄
>

i

(18)
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where the last equation uses the fact that for any example (Xi, yi) 2 DSET, i 2 [n],

X>

i (diag(si) � sis>

i )�i

�>

i si
=

X>

i diag(si)�i

�>

i si
� X>

i si

=

P
t2Oi

siteyiP
t2Oi

sit
� X>

i si

= eyi � X>

i si

=
X

t2Ōi

sit(eyi � xit).

Here, the second equality comes from (6).

• Lipschitzness of rL(W ) in (18). For any W , Ẇ 2 Rd⇥d, let si = S(XiWx̄i) and ṡi = S(XiẆ x̄i). Consider
bounded tokens and let M := maxk2[K] kekk. Following (18), we have:

���rL(W ) � rL(Ẇ )
���

F
=

������
1

n

nX

i=1

X

t2Ōi

(sit � ṡit)(xit � eyi)x̄
>

i

������
F


1

n

nX

i=1

X

t2Ōi

|sit � ṡit|
��(xit � eyi)x̄

>

i

��
F


2M2

n

nX

i=1

X

t2Ōi

|sit � ṡit|


2M2

n

nX

i=1

ksi � ṡik1


2M2

n

nX

i=1

p
Ti · ksi � ṡik.

(19)

Next for any s, ṡ, we get

ks � ṡk = kS(XWx̄) � S(XẆx̄)k

 kXWx̄ � XẆx̄k

 M2
���W � Ẇ

���
F
.

(20)

Combining results in that
���rL(W ) � rL(Ẇ )

���
F

 2M4
p

Tmax ·

���W � Ẇ
���

F
(21)

where Tmax := maxi2[n] Ti. Then let

L := 2M4
p

Tmax (22)

and rL(W ) is L-Lipschitz continuous.

B.2 Proof of Lemma 2

In this subsection, we provide and prove a general version of Lemma 2. To to that, we first introduce the following
new subspaces.

Definition 5 Define the subspace Sactive as the span of all matrices (ei � ej)e>

k for all (i ! j) 2 G
(k) and

k 2 [K].

Definition 6 (Cyclic subspace (Restated)) Define cyclic subspace Sfin as the span of all matrices (ei�ej)e>

k
for all (i ⇣ j) 2 G

(k) and k 2 [K].
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Observe that Sfin is a subspace of Sactive. This is because if two nodes i, j 2 G
(k) and i ⇣ j, this also implies that

i ! j and j ! i.

Definition 7 (SVM subspace) Define svm subspace Ssvm as the orthogonal complement of the subspace Sfin
inside the subspace Sactive.

Lemma 8 We have the following:

(i) Recall the definition of W svm in (Graph-SVM). W svm
2 Ssvm.

(ii) Let S
?

active be the orthogonal complement of Sactive inside Rd⇥d. Then,
���⇧S?

active
(rL(W ))

���
F

= 0, 8W 2 Rd⇥d.

Proof.

• (i): Recall the definition of W svm:

W svm = arg min
W

kW kF

s.t. (ei � ej)
>Wek

(
= 0 8(i ⇣ j) 2 G

(k)

� 1 8(i ) j) 2 G
(k)

for all k 2 [K].

Assume that the statement is not correct. Then, either k⇧Sfin(W
svm)kF > 0 or

���⇧S?

active
(W svm)

���
F
> 0.

By definition, k⇧Sfin(W
svm)kF = 0 since for all (i ⇣ j) 2 G

(k), (ei � ej)>W svmek = 0.

On the other hand, if
���⇧S?

active
(W svm)

���
F
> 0, then W svm

� ⇧S?

active
(W svm) also satisfies all of the constraints

of (Graph-SVM), and
���W svm

� ⇧S?

active
(W svm)

���
F
< kW svm

kF ,

which is a contradiction. Therefore, W svm
2 Ssvm.

• (ii): From (18), we know that

rL(W ) =
1

n

nX

i=1

X

t2Ōi

sit(xit � eyi)x̄
>

i

where Ōi is given by (3). By definition of Sactive,
���⇧S?

active
(xit � eyi)x̄

>

i

���
F

= 0 for any i 2 [n] and t 2 Ōi. As
rL(W ) is the summation of these terms, the advertised result is proved.

Now, we are ready to prove a stronger version of Lemma 2.

Lemma 9 (Stronger version of Lemma 2) Suppose Assumptions 1 and 2 hold and consider the log-loss
`(u) = � log(u), then L(W ) is convex. Furthermore, L(W ) is strictly convex on Sactive.

Proof. Let SK be the span of all eie>

j where i, j 2 [K].

• First Case: W 2 SK . Let g : SK �! RK⇥K such that g(W ) = EWE>. By definition, this function is linear.
In addition to that, this function g is invertible by Assumption 1 and the domain of the function is SK . Note
that Assumption 1 ensures rank(E) = K.

Let E0 = C 0 = Ik, (X 0

i, y
0

i) be a DSET such that y0

i = yi and X 0

i = XiE†. Then, for any W 0
2 RK⇥K , we have

the following:

L � g�1(W 0) =
1

n

nX

i=1

`
�
(c0

yi
)>(X 0

i)
>S(X 0

iW
0x̄i

0)
�
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Using Lemma 10 and 11, we know that L � g�1(W 0) is convex on RK⇥K and strictly convex on g(Sactive). Using
these two facts and Lemma 10, we have L(W ) is convex on SK and strictly convex on Sactive \ SK = Sactive.

• Second Case: W 62 SK . By definition of loss function in (ERM), we have

L(W ) =
1

n

nX

i=1

`(c>

yi
X>

i S(XiWx̄i)) =
1

n

nX

i=1

`(c>

yi
X>

i S(Xi⇧SK (W )x̄i)) = L(⇧SK (W )) (23)

Let W1,W2 2 Rd⇥d be arbitrary variables. For any 0 < � < 1, we have the following:

L(�W1 + (1 � �)W2) = L(�⇧SK (W1) + �⇧SK (W2)) (24)

Then, using (23) and (24), we have the following:

�L(W1) + (1 � �)L(W2) = �L(⇧SK (W1)) + (1 � �)L(⇧SK (W2))

(a)
� L(�⇧SK (W1) + �⇧SK (W2)) = L(�W1 + (1 � �)W2)

where (a) follows from the convexity of L(W ) inside SK . This implies that L(W ) is convex when W 62 SK . Note
that Sactive ⇢ SK , therefore we do not look at the strict convexity in this case.

Lemma 10 Let T : X �! Y be an invertible linear map. If a function f : Y �! R is convex/strictly convex on Y,
then f � T (x) is a convex/strictly convex function on X .

Proof. Let x1 6= x2 2 X be arbitrary variables. Let y1 = T (x1) and y2 = T (x2). Since T is an invertible map,
y1 6= y2. Since T is a linear map, T (�x1 + (1 � �)x2) = �y1 + (1 � �)y2 for 0 < � < 1. Then, we obtain the
following

�(f � T (x1)) + (1 � �)(f � T (x2)) = �f(y1) + (1 � �)f(y2)

(a)
> f(�y1 + (1 � �)y2)

= f � T (�x1 + (1 � �)x2)

where (a) follows from the strict convexity of the function f . This implies that f � T (x) is a strictly convex
function on X . Note that if y1 = y2, then we cannot achieve (a). Additionally, if f is convex instead of strictly
convex, then > in (a) is changed to �, and f � T (x) is convex.

Lemma 11 Suppose that Assumption 2 holds and E = Id. Let f : Rd⇥d
�! Rd2

be a linear transformation
defined as f(W ) = v where vi⇥d+j = e>

i Wej. Then, L � f�1(v) is convex. Furthermore, L � f�1(v) is strictly
convex on f(Sactive), where Sactive is defined in Definition 5.

Proof. • We first prove that L � f�1(v) is convex. Let ¯̀ : Rd2

⇥ RT⇥d
⇥ R �! R be defined as follows:

¯̀(v,X, y) := `
�
c>

y X>S(X
�
f�1(v)

�
x̄)
�
.

Then, using (ERM), we have the following:

L � f�1(v) =
1

n

nX

i=1

`
�
c>

yi
X>

i S(Xi

�
f�1(v)

�
x̄i)
�

=
1

n

nX

i=1

¯̀(v,Xi, yi). (25)

Note that the summation of convex functions is convex. Therefore, it is sufficient to prove the convexity of
L � f�1(v) by proving the convexity of ¯̀(v,X, y) for an arbitrary pair of input sequence and label (X, y). For
the simplicity of notation, we use ¯̀(v) instead of ¯̀(v,X, y). Let mj be the number of token ID j inside input
sequence X for j 2 [K]. Let k be the last token of X. By Assumption 1 and log-loss, we know that

¯̀(v) := ¯̀(v,X, y) = � log

 
my · evy⇥d+k

P
j2[K] mj · evj⇥d+k

!
= log

0

@
X

j2[K]

mj · evj⇥d+k

1

A� log(my · evy⇥d+k).



Mechanics of Next Token Prediction with Self-Attention

Let z 2 Rd2

be a vector such that the (j ⇥ d + k)th element of z is zj⇥d+k = mj · evj⇥d+k for k 2 [K], otherwise
zi = 0. Then, the Hessian matrix of ¯̀(v) is

r
2 ¯̀(v) =

1

(1>z)2
�
(1>z)diag(z) � zz>

�

For any u 2 Rd2

, we obtain that

u>
r

2 ¯̀(v)u =
1

(1>z)2

0

B@

0

@
d2X

j=1

zj

1

A

0

@
d2X

j=1

u2
jzj

1

A�

0

@
d2X

j=1

ujzj

1

A
2
1

CA � 0. (26)

Since zi � 0, i 2 [d2], (26) follows from the Cauchy-Schwarz inequality (↵>↵)(�>�) � (↵>�)2 applied to the
vectors with ↵i = ui

p
zi and �i =

p
zi. The equality condition holds k↵ = � for k 6= 0. This means that ¯̀(v) is

convex.

• Next, we will show that L � f�1(v) is strictly convex on f(Sactive). Assume that L � f�1(v) is not
strictly convex on f(Sactive). Using the convexity of L � f�1(v), this implies that there exist u,v 2 f(Sactive),
kuk2 > 0 such that

u>
�
r

2
L � f�1(v)

�
u = 0

Using the convexity of ¯̀(v) and (25), we have the following:

u>
�
r

2 ¯̀(v,Xi,yi)
�
u = 0 8i 2 [n] (27)

Now, we are going to prove that kuk2 = 0 if (27) holds. As u 2 f(Sactive), there exists W 2 Sactive such that
f(W ) = u. As the function f preserves the norm, kW kF > 0. By definition of Sactive, there exist ī, j̄, k̄ 2 [K] and
(Xn̄, yn̄) 2 DSET such that h(eī �ej̄)e

>

k̄
,W i > 0, Xn̄ includes the j̄th token, the last token of Xn̄ is the k̄th token,

and yn̄ = ī. On the other hand, by Assumption 2, zī⇥d+k̄ and zj̄⇥d+k̄ in (26) are non-zero for this input sequence
Xn̄. Using the equality condition of Cauchy-Schwartz Inequality in (26), we obtain that uī⇥d+k̄ � uj̄⇥d+k̄ = 0.
This implies that

0 = uī⇥d+k̄ � uj̄⇥d+k̄

= e>

ī Wek̄ � e>

j̄ Wek̄

= (eī � ej̄)
>Wek̄ = h(eī � ej̄)e

>

k̄ ,W i

which contradicts with the fact that kuk2 > 0. This completes the proof.

B.3 Divergence of k⇧Ssvm(W(⌧))kF

We first introduce the following lemmas establishing the descent property of gradient descent for L(W ) (Lemma 12)
and the correlation between rL(W ) and the solution of (Graph-SVM) W svm (Lemma 13) under the setting of
Theorem 2. The proofs in this section follow Appendix B.1 of Tarzanagh et al. (2023a).

Lemma 12 (Descent Lemma) Consider the loss in (17) and choose step size ⌘  1/L where L is the Lips-
chitzness of rL(W ) defined in (22). Then from any initialization W (0), Algorithm Algo-GD satisfies:

L(W (⌧ + 1)) � L(W (⌧))  �
⌘

2
krL(W (⌧))k2

F

for all ⌧ � 0. Additionally, it holds that
P

1

⌧=0 krL(W (⌧))k2
F < 1, and lim⌧!1 krL(W (⌧))k2

F = 0
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Proof. From (Algo-GD), for ⌧ � 0, we have that W (⌧ + 1) = W (⌧) � ⌘rL(W (⌧)). Since L(W ) is L-smooth
with L defined in (22), we get

L(W (⌧ + 1))  L(W (⌧)) + hrL(W (⌧)),W (⌧ + 1) � W (⌧)i +
L

2
kW (⌧ + 1) � W (⌧)k2

F

= L(W (⌧)) � ⌘ · krL(W (⌧))k2
F +

L⌘2

2
krL(W (⌧))k2

F

= L(W (⌧)) � ⌘

✓
1 �

L⌘

2

◆
krL(W (⌧))k2

F

 L(W (⌧)) �
⌘

2
krL(W (⌧))k2

F .

The inequality above also indicates that

1X

⌧=0

krL(W (⌧))k2
F 

2

⌘
(L(W (0)) � L

⇤) < 1, and lim
⌧!1

krL(W (⌧))k2
F = 0.

Lemma 13 Let W svm be the SVM solution of (Graph-SVM) and suppose W svm
6= 0. For any W with kW kF <

1, the training loss L(W ) in (17) obeys hrL(W ),W svm
i < 0. Equivalently, h⇧Ssvm(rL(W )),W svm

i < 0.

Proof. Recap Oi, Ōi,Ri, R̄i, i 2 [n] in (3). From (18), for any W 2 Rd⇥d, we obtain the gradient

rL(W ) =
1

n

nX

i=1

X

t2Ōi

sit(xit � eyi)x̄
>

i .

Then

hrL(W ),W svm
i =

1

n

X

i2[n]

X

t2Ōi

⌦
sit(xit � eyi)x̄

>

i ,W
svm↵

=
1

n

X

i2[n]

X

t2Ōi

sit · trace
�
(W svm)>(xit � eyi)x̄

>

i

�

=
1

n

X

i2[n]

X

t2Ōi

sit · (xit � eyi)
>W svmx̄i.

From the (Graph-SVM) formulation, we have that (xit �eyi)
>W svmx̄i = 0 for t 2 Ri and (xit �eyi)

>W svmx̄i 

�1 for t 2 R̄i. Then W svm
6= 0 ensures that there exists i 2 [n] such that R̄i 6= ;, which implies that

hrL(W ),W svm
i < 0.

Using the fact that W svm
2 Ssvm (Lemma 4) completes the proof.

The next theorem proves the divergence of norm of the iterates W (⌧).

Theorem 5 Consider the same setting as in Theorem 2, then there is no finite W 2 Rd⇥d satisfying rL(W ) = 0.
Furthermore, Algorithm Algo-GD with the step size ⌘  1/L where L is the Lipschitzness of rL(W ) defined in
(22) and any starting point W (0) satisfies lim⌧!1 k⇧Ssvm(W (⌧))kF = 1.

Proof. Following Lemma 12, when using log-loss `(u) = � log(u), for any starting point W (0), the Algo-
rithm Algo-GD satisfies lim⌧!1 krL(W (⌧))k2

F = 0. Moreover, assume that the first claim is wrong and that
there is a finite critical point W that satisfies rL(W ) = 0. We then have h⇧Ssvm(rL(W )),W svm

i = 0. This
leads to a contradiction with Lemma 13 which says that for any finite W , h⇧Ssvm(rL(W )),W svm

i < 0. This
implies that k⇧Ssvm(W (⌧))kF ! 1.
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B.4 Uniqueness and Finiteness of Wfin

Lemma 14 Consider the setting of Theorem 2. W fin defined in Theorem 2 is unique and finite.

Proof. Following Lemma 6, it is equivalent to show W
fin defined in Def. 3 has unique element W̄ fin and

W̄ fin = W fin is unique and finite. To start with, recap the definition of DSET (Definition 3). Denote I ⇢ [n] as
in (5), and let si = S(X̄iWx̄i) where (X̄i, yi) 2 DSET. What’s more, recap the ERM loss from (17) and loss
function `(u) = � log(u). Then we have

W̄ fin = arg min
W2Sfin

L̄(W ) where L̄(W ) =
1

n

X

i2I

� log

 
X

t2Oi

sit

!
. (28)

Different from (3), Oi for dataset DSET is defined as follows:

Oi :=
�
t | xit = yi, xit 2 X̄i, t 2 [T̄i]

 
,

where T̄i is the number of tokens – tokens that are in the same SCC as label token yi within their corresponding
TPG – in X̄i and if recap the notation of Ri in (3), here we have |Ri| = T̄i.

We will first prove that W̄ fin is finite by contradiction. Specifically, we will show that for any W 2 Sfin with
kW kF 6= 0, limR!1 L̄(R · W ) = 1 which implies that the optimal solution W̄ fin has to be finite.

Let W 2 Sfin be arbitrary attention weight. Following the definition of Sfin as in Def. 1, we have that
(ei � ej)e>

k 2 Sfin for all (i ⇣ j) 2 G
(k) and k 2 [K]. For any X̄, let O, Ō correspond to the token index sets.

Then we have

X

t2O

st =
|O|ee

>

y (R·W )ek

|O|ee
>
y (R·W )ek +

P
t2Ō

ee
>

t (R·W )ek
=

1

1 +
P

t2Ō
e(et�ey)>(R·W )ek/|O|

.

Given the sample loss ` = � log
�P

t2O
st

�
and to prevent it from divergence as R ! 1, that is,

P
t2O

st 6! 0,
we have X

t2Ō

e(et�ey)>(R·W )ek 6! 1 =) (ey � et)
>Wek � 0 for all t 2 Ō

where ey is the label token and et is any other token in Ō. Recap from the construction of TPG in Section 2.1,
the directed edge y ! t exists in the graph G

(k). Since SCC is bidirectionally reachable, which means there exists
route from t to y, e.g., t ! p1 ! p2 ! · · · pm ! y, similarly we have

(et � ep1)
>Wek, (ep1 � ep2)

>Wek, · · · , (epm � ey)>Wek � 0 =) (et � ey)>Wek � 0.

Combining results in that (et � ey)>Wek = 0. This implies that for all (i ⇣ j) 2 G
(k) and R ! 1, to ensure the

training loss L̄(R · W ) finite, (ei � ej)>Wek = 0, which contradicts the facts that W 2 Sfin and W 6= 0.

Next, we prove that there is at most one local minimum for L̄(W ) based on Lemma 2. Suppose to the contrary
that we have two optimal solutions satisfying minW L̄(W ) = L̄(W fin

1 ) = L̄(W fin
2 ),W fin

1 6= W fin
2 . From Lemma 2,

since L(W ) is strictly convex over subspace Sfin, for any W1,W2 2 Sfin,� 2 (0, 1), if W1 6= W2, we have

L̄((1 � �)W1 + �W2) < (1 � �)L̄(W1) + �L̄(W2) (29)

Substitute W1 = W fin
1 ,W2 = W fin

2 , we get

L̄((1 � �)W fin
1 + �W fin

2 ) < (1 � �)L̄(W fin
1 ) + �L̄(W fin

2 ) = min
W

L̄(W ) (30)

which leads to a contradiction to the assumption that W fin
1 and W fin

2 are both optimal solutions. Combining
this with the fact that W fin is not attained at infinity, there exists one unique and finite solution with W̄ fin =
arg minW2Sfin L̄(W ).
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B.5 Proof of Theorem 2

Lemma 15 Consider the same setting of Theorem 2. Given any ⇡ > 0, there exists R⇡ > 0 such that for any
W with

��⇧Sfin(W )
��

F
< 1 and

���⇧S?

fin
(W )

���
F
> R⇡,

L(W ) � L

0

@(1 + ⇡)

���⇧S?

fin
(W )

���
F

kW svmkF

W svm + ⇧Sfin(W )

1

A .

Proof. Recap Oi, Ōi,Ri, R̄i, i 2 [n] from (3) and recap from (17), we get that for any W ,

L(W ) = �
1

n

nX

i=1

log

 
X

t2Oi

sit

!

where si = S(XiWx̄i).

To obtain the result, we establish a refined softmax probability control by studying the distance to L̄(W ) as
defined in Definition 4. Let W k = ⇧Sfin(W ), W ? = W � W k,

��W ?
��

F
= R, and ⇥ = 1/ kW svm

kF . Let
bi = XiW kx̄i, a?

i = Xi((1 + ⇡)R⇥ · W svm)x̄i, and s?
i = S(Xi((1 + ⇡)R⇥ · W svm + W k)x̄i) = S(a?

i + bi).
Additionally, let ai = XiW ?x̄i, si = S(XiWx̄i) = S(ai + bi), �?

i := c>
yi

X>

i s?
i , and �i := c>

yi
X>

i si.

From proof of Lemma 5 (more specifically (12)), we get for all t, t0 2 Ri

(xit � xit0)
>V x̄i = 0 for any V ? Sfin =) a?

it � a?
it0 = ait � ait0 = 0.

Additionally, since W
kW kF

6= ⇥W svm, there exist i 2 [n], t 2 Oi, t0 2 R̄i such that (xit � xit0)>Wx̄i < R⇥. Then,

X

t2Oi

sit =

P
t2Oi

eait+bit

P
t2[Ti]

eait+bit


P
t2Oi

ebit

P
t2Ri

ebit + e�R⇥+bit0


ci

di + e�R⇥�b̄
, 9i 2 [n]

X

t2Oi

s?
it =

P
t2Oi

ea?
it+bit

P
t2[Ti]

ea?
it+bit

�

P
t2Oi

ebit

P
t2Ri

ebit +
P

t2R̄i
e�(1+⇡)R⇥+bit

�
ci

di + Te�(1+⇡)R⇥+b̄
, 8i 2 [n],

where ci =
P

t2Oi
ebit , di =

P
t2Ri

ebit , and b̄ := maxt2R̄i,i2[n] |bit|, and we have

L̄(W ) = L̄(W k) = �
1

n

X

i2I

log

✓
ci

di

◆
.

Then we obtain

L(W ) � L̄(W ) � �
1

n

✓
log

✓
ci

di + e�R⇥�b̄

◆
� log

✓
ci

di

◆◆

�
1

n
log
⇣
1 + e�R⇥�b̄/di

⌘

and let j := arg maxi2[n]

⇣
� log

�P
t2Oi

s?
it

�
+ log

⇣
ci
di

⌘⌘
. We can upper-bound the loss difference for (1 + ⇡)R⇥ ·

W svm + W k as follows:

L((1 + ⇡)R⇥ · W svm + W k) � L̄(W )  max
i2[n]

 
� log

 
X

t2Oi

s?
it

!
+ log

✓
ci

di

◆!

= log
⇣
1 + Te�(1+⇡)R⇥+b̄/dj

⌘
.

Combining them together results in that, L(W ) > L((1 + ⇡)R⇥ · W svm + W k) whenever

1

n
log
⇣
1 + e�R⇥�b̄/di

⌘
� log

⇣
1 + Te�(1+⇡)R⇥+b̄/dj

⌘
.
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Given that x/2  log(1 + x) for any 0  x  1, we get L(W ) > L((1 + ⇡)R⇥ · W svm + W k) whenever

e�R⇥�b̄

2ndi
�

Te�(1+⇡)R⇥+b̄

dj
when R � �

log(dj) + b̄

⇥

=)R > R⇡ := max

⇢
1

⇡⇥
log

✓
2nTdi

dj

◆
+

2b̄

⇡⇥
,�

log(dj) + b̄

⇥

�
. (31)

Here, since
��W k

��
F
< 1, di, dj , b̄ < 1.

Proof of Theorem 2. Now gathering all the results so far, we are ready to prove the gradient descent
convergence. The divergence of kW (⌧)kF as ⌧ ! 1 has been proven by Theorem 5.

• We first show that ⇧Sfin(W (⌧)) ! W fin. Lemma 6 has established the equivalence between W̄ fin and W fin.
Since L(W ) is convex following Lemma 2, we have that L(W (⌧)) ! L? := minW L(W ). Additionally, Lemma 2
shows that L(W ) is strictly convex on Sfin and Lemma 14 shows that W fin is the unique finite solution. Suppose
⇧Sfin(W (⌧)) 6! W fin. Let W be any matrix with ⇧Sfin(W ) 6= W fin. Then Lemma 7 and Lemma 5 give that
L(W ) � L̄(W ) = L̄(⇧Sfin(W )) > L? where L? = minW L(W ) = minW L̄(W ). Given that L? is achievable, the
proof is done by contradiction and we have that ⇧Sfin(W (⌧)) ! W fin.

• We next prove that when W svm = 0, ⇧S?

fin
(W (⌧)) = ⇧S?

fin
(W (0)). Recap the gradient in (18) where

rL(W ) =
1

n

nX

i=1

X

t2Ōi

sit(xit � eyi)x̄
>

i .

Since W svm = 0 implies that for all i 2 [n], R̄i = ;, then Ōi ✓ Ri. Additionally, since following definition of Sfin
from Def. 1, for any t 2 Ri, (xit � eyi)x̄

>

i 2 Sfin. Then we obtain

⇧Sfin(rL(W )) =
1

n

nX

i=1

X

t2Ōi

sit⇧Sfin

�
(xit � eyi)x̄

>

i

�
=

1

n

nX

i=1

X

t2Ōi

sit(xit � eyi)x̄
>

i = rL(W ).

Therefore, ⇧S?

fin
(rL(W )) = 0 for any W , which completes the proof.

• Last, we show that when W svm
6= 0, W (⌧)/ kW (⌧)kF ! W svm/ kW svm

kF .

Consider any W 2 Rd⇥d, and let W ? = ⇧S?

fin
(W ), W k = ⇧Sfin(W ), R =

��W ?
��

F
, and ⇥ = 1/ kW svm

kF . Next,
from Lemma 12, for any ⌧ � 0, L(W (⌧+1))  L(W (⌧)). Let W ?(⌧) = ⇧S?

fin
(W (⌧)) and W k(⌧) = ⇧Sfin(W (⌧)).

Following Lemma 7, since loss satisfies `(1) = � log(1) = 0, we obtain

L(W (⌧)) � L̄(W k(⌧)).

Since following Lemma 14, the training risk L̄(W k(⌧)) is infinite if
��W k(⌧)

��
F

! 1, which implies
��W k(⌧)

��
F
<

1 for any ⌧ � 0. Additionally, Theorem 5 proves the divergence of W (⌧) as ⌧ ! 1, hence we have
��W ?(⌧)

��
F

!

1.

Applying Lemma 15, as well as the fact that
��W k(⌧)

��
F
< 1 and

��W ?(⌧)
��

F
! 1, there exists sufficiently large

R⇡ as defined in (31) such that once
��W ?(⌧)

��
F

= R > R⇡, L(W (⌧)) � L((1 + ⇡)R⇥ · W svm + W k(⌧)) � 0.
Since L(W ) is convex following Lemma 2, we have that

L(W )  L((1 + ⇡)R⇥ · W svm + W k) +
D
rL(W ),W �

⇣
(1 + ⇡)R⇥ · W svm + W k

⌘E

= L((1 + ⇡)R⇥ · W svm + W k) +
⌦
rL(W ),

�
W ?

� (1 + ⇡)R⇥ · W svm�↵

= L((1 + ⇡)R⇥ · W svm + W k) +
D
⇧S?

fin
(rL(W )),

�
W ?

� (1 + ⇡)R⇥ · W svm�
E
.

(32)

Here, the first inequality uses the convexity of L(W ) and last equation is obtained from the fact that W svm
? Sfin.

It implies that once
��W ?(⌧)

��
F

= R > R⇡,
D
⇧S?

fin
(rL(W )),

�
W ?

� (1 + ⇡)R⇥ · W svm�
E

� 0.
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Now we choose ⌧0 such that for all ⌧ � ⌧0,
��W ?(⌧)

��
F
> R⇡. Then for ⌧ > ⌧0, we get

⌧
W ?(⌧ + 1) � W ?(⌧),

W svm

kW svmkF

�
�

1

1 + ⇡

⌧
W ?(⌧ + 1) � W ?(⌧),

W ?(⌧)

kW ?(⌧)kF

�
(33)

where
⌧

W ?(⌧ + 1) � W ?(⌧),
W ?(⌧)

kW ?(⌧)kF

�

=
1

2 kW ?(⌧)kF

⇣��W ?(⌧ + 1)
��2

F
�
��W ?(⌧)

��2

F
�
��W ?(⌧ + 1) � W ?(⌧)

��2

F

⌘

�

��W ?(⌧ + 1)
��2

F
�
��W ?(⌧)

��2

F

2 kW ?(⌧)kF

�
��W ?(⌧ + 1) � W ?(⌧)

��2

F
(34)

�
��W ?(⌧ + 1)

��
F

�
��W ?(⌧)

��
F

�
��W ?(⌧ + 1) � W ?(⌧)

��2

F
(35)

�
��W ?(⌧ + 1)

��
F

�
��W ?(⌧)

��
F

� kW (⌧ + 1) � W (⌧)k2
F (36)

�
��W ?(⌧ + 1)

��
F

�
��W ?(⌧)

��
F

+ 2⌘ (L(W (⌧ + 1)) � L(W (⌧))) . (37)

Here, (33) is obtained from (32) and holds for all ⌧ > ⌧0; (34) comes from the fact that
��W ?(⌧)

��
F
> 0.5; (35)

follows that for any a, b > 0, (a2
�b2)/2b > a�b; (36) follows the projection property that kW (⌧ + 1) � W (⌧)k2

F =��W ?(⌧ + 1) � W ?(⌧)
��2

F
+
��W k(⌧ + 1) � W k(⌧)

��2

F
; and (37) is obtained via Lemma 12.

Summing the above inequality over ⌧ � ⌧0 obtains
⌧

W ?(⌧) � W ?(⌧0),
W svm

kW svmkF

�
�

1

1 + ⇡

���W ?(⌧)
��

F
�
��W ?(⌧0)

��
F

+ 2⌘ (L(W (⌧)) � L(W (⌧0)))
�

=)

⌧
W ?(⌧)

kW ?(⌧)kF

,
W svm

kW svmkF

�
�

1

1 + ⇡

✓
1 +

C

kW ?(⌧)kF

◆

where
C :=

⌧
W ?(⌧0),

W svm

kW svmkF

�
�
��W ?(⌧0)

��
F

+ 2⌘ (L(W (⌧)) � L(W (⌧0))) .

Since
��W ?(⌧)

��
F

! 1 and 0 < L(W (⌧))  L(W (0)) < 1, we get

lim
⌧!1

⌧
W ?(⌧)

kW ?(⌧)kF

,
W svm

kW svmkF

�
�

1

1 + ⇡
. (38)

Choosing ⇡ ! 0 and combining (38) with the fact that lim⌧!1

��W k(⌧)
��

F
< 1 completes the proof.

C GLOBAL CONVERGENCE OF REGULARIZATION PATH

C.1 Proof of Theorem 3

Lemma 16 Suppose Assumptions 1 and 2 hold. Additionally, assume loss ` : R ! R is strictly decreasing and
|`0

| is bounded. Define W̄ ?

R := W̄ ?

R (W k) 2 S
?

fin by

W̄ ?

R := arg min
W2S?

fin,kW kF R
L(W + W k). (39)

Let W svm
6= 0 denote the solution of (Graph-SVM). Then we have that for any W k

2 Sfin with
��W k

��
F
< 1

lim
R!1

W̄ ?

R

R
=

W svm

kW svmkF

.
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Proof. Recap Oi, Ōi,Ri, R̄i, i 2 [n] from (3). Let �i = Xicyi where following Assumption 1 we have

�it = x>

itcyi =

(
1, t 2 Oi

0, t 2 Ōi.

Recap I, Ī from (4). To proceed, define �max
i as follows:

• Consider i 2 Ī. Given minW `(c>
yi

X>

i S(XiWx̄i)) � `(c>
yi

eyi), we define the maximal score �max
i := c>

yi
eyi =

1.

• Consider i 2 I.

1. Assumption 1 ensures that all tokens, excluding the ones with token ID xit = yi, return zero score, that
is, c>

yi
ek = 0 for k 6= yi.

2. From proof of Lemma 4, for any W ?
2 S

?

fin and t 2 Ri, x>

it(W
? + W k)x̄i = x>

itW
kx̄i + āi, where āi is

some constant associated with W ? and remains the same value within the same SCC. Let bi = XiW kx̄i.
Then the probabilities for t 2 Ri (if denoted by sit) obey

sitP
t02Ri

sit0
=

ebit+āi

P
t02Ri

ebit0+āi
=

ebit
P

t02Ri
ebit0

, (40)

which means that the probability distribution over set Ri remains the same with varying W ?.

Combining both, we define the maximal score as follows:

�max
i := |Oi| · s̄i where s̄i =

ee
>

yi
W kx̄i

P
t02Ri

ebit0
.

Note that if consider the cyclic subdataset DSET as in (5). Let (X̄i, yi) 2 DSET where X̄i is the corresponding
sequence by removing the tokens in R̄i. Then we have �max

i = c>
yi

X̄>

i S(X̄iW kx̄i).

Hence, given bi = XiW kx̄i, we obtain

�max
i =

8
<

:

1, i 2 Ī

|Oi|e
e>yi

Wkx̄i

P
t02Ri

ebit0
, i 2 I.

Then we define the optimal risk of (39) and its corresponding softmax probabilities smax
i , i 2 [n] as follows:

L
W k

? :=
1

n

nX

i=1

`(�max
i ), and smax

it =

8
<

:
0, t 2 R̄i

ebit
P

t02Ri
ebit0

, t 2 Ri
for all i 2 [n].

Note that we also have

�max
i = c>

yi
X>

i smax
i =

X

t2Oi

smax
it =

P
t2Oi

ebit

P
t2Ri

ebit
and L

W k

? =
1

n

X

i2Ī

`(1) + L̄(W k) (41)

where L̄(W k) is the empirical risk over cyclic subdataset defined in Definition 4.

In the following, we will complete the proof in three steps.

Step 1: We first show that limR!1 L(R · W svm + W k) = L
W k

? . It can be easily proven using Lemma 7 and
(41) by showing that for any W k with

��W k
��

F
< 1,

lim
R!1

L(R · W svm + W k) = min
W2S?

fin

L(W + W k) =
|Ī|

n
`(1) + L̄(W k) = L

W k

? .
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Step 2: Next, we will prove that for any W k
2 Sfin with

��W k
��

F
< 1, W̄ ?

R achieves the optimal risk as
R ! 1 – rather than problem having finite optima. It is to show that there is no finite R can achieve optimal
risk. Consider any W 2 S

?

fin with kW kF < 1. Let si := S(Xi(W + W k)x̄i) and �W
i := c>

yi
X>

i si. Then we
have that

�W
i =

X

t2Oi

sit =
X

t2Oi

P
t02Ri

sit0P
t02[Ti]

sit0
smax

it 

X

t2Oi

smax
it = �max

i

where the equality holds when Ri = [Ti]. Since W svm
6= 0, then there exists some i 2 [n] such that �W

i < �max
i .

Therefore, for any finite W 2 Rd⇥d and W 2 S
?

fin, since loss function is strictly decreasing

L(W + W k) =
1

n

nX

i=1

`(�W
i ) >

1

n

nX

i=1

`(�max) = L
W k

? .

Step 3: Now, it remains to show that W̄ ?

R converges in direction to W svm. Suppose convergence fails. We will
obtain a contradiction by showing that R · W svm/ kW svm

kF achieves a strictly superior loss compared to W̄ ?

R
given sufficiently large R. Since W̄ ?

R fails to converge to W svm, for some � > 0, there exists arbitrarily large
R > 0 such that ��W̄ ?

R · kW svm
kF /R � W svm��

F
� �.

Let W 0 = W̄ ?

R · kW svm
kF /R where we have kW 0

kF  kW svm
kF and W 0

6= W svm. Following Definition 1, we
obtain

(ei � ej)
>W 0ek = 0 where (i ⇣ j) 2 G

(k).

Then for some ✏ := ✏(�), there exists i, j, k such that

(ei � ej)
>W 0ek  1 � ✏ where (i ) j) 2 G

(k).

Now, we will argue that this leads to a contradiction by proving L(R · W svm/ kW svm
kF + W k) < L(W̄R + W k)

for sufficiently large R. Let ⇥ = 1/ kW svm
kF and we will show that L(R⇥ · W svm + W k) < L(R⇥ · W 0 + W k)

for sufficiently large R.

To obtain the result, we establish a refined softmax probability control by studying the distance to L
W k

? . Recap the
definitions of �max

i and smax
i , and let bi = XiW kx̄i, a?

i = Xi(R⇥ ·W svm)x̄i, s?
i = S(Xi(R⇥ ·W svm +W k)x̄i) =

S(a?
i +bi), and �?

i := c>
yi

X>

i s?
i . Additionally, let aR

i = Xi(R⇥·W 0)x̄i, sR
i = S(Xi(R⇥·W 0+W k)x̄i) = S(aR

i +bi),
and �R

i := c>
yi

X>

i sR
i .

Following Definition 1, we get for all t, t0 2 Ri

(xit � xit0)
>Wx̄i = 0 for any W ? Sfin =) a?

it � a?
it0 = aR

it � aR
it0 = 0.

Then
X

t2Oi

sR
it =

P
t2Oi

eaR
it+bit

P
t2[Ti]

eaR
it+bit



P
t2Oi

ebit

P
t2Ri

ebit + e�(1�✏)R⇥�b̄


ci

di + e�(1�✏)R⇥�b̄
, 9i 2 [n]

X

t2Oi

s?
it =

P
t2Oi

ea?
it+bit

P
t2[Ti]

ea?
it+bit

�

P
t2Oi

ebit

P
t2Ri

ebit +
P

t2R̄i
e�R⇥+bit

�
ci

di + Te�R⇥+b̄
, 8i 2 [n],

where ci =
P

t2Oi
ebit , di =

P
t2Ri

ebit , and b̄ := maxt2Ri,i2[n] |bit|, and we have �max
i = ci/di.

Since ` is strictly decreasing and |`0
| is bounded, let cdn  �`0

 cup for some constants cdn, cup > 0. Note that
cdn, cup are data-dependent. Then we have

L(R⇥ · W 0 + W k) � L
W k

? �
1

n

�
`(�R

i ) � `(�max
i )

�
�

cdn

n

�
�max

i � �R
i

�

=
cdn

n

 
�max

i �

X

t2Oi

sR
it

!

�
cdn�max

i

n

✓
1 �

1

1 + e�(1�✏)R⇥�b̄/di

◆
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and let j := maxi2[n] (`(�
?
i ) � `(�max

i )). We can upper-bound the loss difference for R⇥ · W svm + W k as follows:

L(R⇥ · W svm + W k) � L
W k

?  max
i2[n]

(`(�?
i ) � `(�max

i ))  cup
�
�max

j � �?
j

�

= cup

0

@�max
j �

X

t2Oj

s?
it

1

A

 cup�
max
j

✓
1 �

1

1 + Te�R⇥+b̄/dj

◆


cup�max

j T

dj
e�R⇥+b̄.

Combining them together results in that, L(R⇥ · W 0 + W k) > L(R⇥ · W svm + W k) whenever

cdn�max
i

n

✓
1 �

1

1 + e�(1�✏)R⇥�b̄/di

◆
>

cup�max
j T

dj
e�R⇥+b̄

=) R > R✏ :=
1

⇥ · min(✏, 1)
log

✓
2nTcup�max

j · max(di, 1)

cdn�max
i dj

◆
+

2b̄

⇥ · min(✏, 1)
. (42)

Note that since W k is finite, bit for all i 2 [n], t 2 [Ti] are bounded and fixed, and therefore, 0 < di < 1, for all
i 2 [n] and b̄ < 1. (42) completes the proof by contradiction.

Now, gathering all the results we have obtained so far, we are ready to prove Theorem 3.

Proof of Theorem 3. Recap the dataset DSET = (Xi, yi)n
i=1 and index sets Oi, Ōi,Ri, R̄i, i 2 [n] from (3).

Let �i = Xicyi denote the score vector of i-th input. Since Assumption 1 holds, then

�it = x>

itcyi =

(
1, t 2 Oi

0, t 2 Ōi.

Let sW
i = S(XiWx̄i). The regularization path solution of the ERM problem is defined as follows:

W̄R = arg min
kW kF R

L(W ) where L(W ) =
1

n

nX

i=1

`(c>

yi
X>

i S(XiWx̄i)) =
1

n

nX

i=1

`

 
X

t2Oi

sWit

!
.

Additionally, let W ?

R = ⇧S?

fin
(W̄R) and W k

R = ⇧Sfin(W̄R). Lemma 16 has shown that for any finite limR!1 W k

R,

lim
R!1

W̄R

R
= lim

R!1

W ?

Rr
R2 �

���W k

R

���
2

F

= lim
R!1

W ?

R��W ?

R

��
F

=
W svm

kW svmkF

.

Therefore it remains to prove that limR!1 W k

R 2 W
fin.

Suppose limR!1 W k

R := W 0
62 W

fin. Then for any W k
2 W

fin, applying Lemma 7, we obtain

min
W?2S?

fin

L(W ? + W 0) > min
W?2S?

fin

L(W ? + W k) = lim
R!1

L(R · W svm + W k).

Therefore, W 0 does not achieve the minimal loss as R ! 1.

C.2 Proof of Lemma 3

Proof. Let �i = Xicyi denote the score vector of i-th input and �it = x>

itcyi . Let �max
i = e>

yi
cyi = maxt2[Ti] �it

following Assumptions 2 and 3. What’s more, since loss ` is strictly decreasing, we define the optimal loss as
follows:

L? :=
1

n

nX

i=1

`(�max
i ).
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For any W 2 Rd⇥d, let si = XiWx̄i, i 2 [n]. If kW kF < 1, then mint2[Ti],i2[n] sit > 0 and for any i 2 [n]

s>

i �i =
TiX

t=1

sit�it < �max
i .

Since loss function ` is strictly decreasing, we get

L(W ) =
1

n

nX

i=1

`(s>

i �i) >
1

n

nX

i=1

`(�max
i ) = L?.

Let W be any attention weight satisfying all the “� 1” constraints in (Acyc-SVM). We next prove that
limR!1 L(R · W ) = L?. Recap Oi and Ōi from (3). Since token eyi is always contained in Xi following
Assumption 2, we have |Oi| � 1, i 2 [n], and Xi contains |Oi| optimal tokens eyi . Note that under acyclic data
setting, W separates tokens eyi from the rest of the tokens within Xi. Then limR!1 S(Xi(R ·W )x̄i) will output
1/|Oi| for t 2 Oi and zero for the left. Specifically, let sR

i := S(Xi(R · W )x̄i), and following the SVM objective
(Acyc-SVM) for any i 2 [n], we get

sR
it =

ex
>

it(R·W )x̄i

P
t2[Ti]

ex
>

it(R·W )x̄i
=

1

|Oi| +
P

t2Ōi
e(xit�eyi )

>(R·W )x̄i
�

1

|Oi| + e�R
for all t 2 Oi

and then,
X

t2Oi

sR
it =

|Oi|

|Oi| +
P

t2Ōi
e(xit�eyi )

>(R·W )x̄i
�

1

1 + e�R
.

Then limR!1

P
t2Oi

sR
it = 1 and therefore,

lim
R!1

sR
it = 1/|Oi| for t 2 Oi, and lim

R!1

sR
it = 0 for t 2 Ōi.

Hence we have
lim

R!1

X>

i sR
i =

X

t2Oi

1

|Oi|
eyi = eyi .

Since |`0
| is bounded, then limR!1 L(R · W ) = 1

n

Pn
i=1 `(c

>
yi

eyi) = 1
n

Pn
i=1 `(�

max
i ) = L?.

C.3 Proof of Theorem 4

Proof. Recap the dataset DSET = (Xi, yi)n
i=1. The regularization path solution of the ERM problem (per

Algo-RP and (ERM)) is defined as follows:

W̄R = arg min
kW kF R

L(W ) where L(W ) =
1

n

nX

i=1

`(c>

yi
X>

i S(XiWx̄i)).

The proof is similar to the proof of Theorem 2 in Tarzanagh et al. (2023a) by choosing opti = yi. However in our
work, we allow each sequence contains more than one optimal tokens, while Tarzanagh et al. (2023a) forces that
the optimal token is unique.

Following the proof in Lemma 3, let �i = Xicyi , �max
i = e>

yi
cyi = maxt2[Ti] �it, and the optimal training risk

L? :=
1

n

nX

i=1

`(�max
i ).

From Lemma 3, we have that for any finite W , L(W ) < limR!1 L(R · W svm) = L
?. Then the optimal risk

L? is achievable and to achieve the limit, R has to be infinite. Then it remains to prove that W̄R converges in
direction to W svm.

Suppose convergence fails. We will obtain a contradiction by showing that R ·W svm/ kW svm
kF achieves a strictly

superior loss compared to W̄R. Suppose W̄R fails to directionally converge towards W svm. For some � > 0, there
exists arbitrarily large R > 0 such that

��W̄R · kW svm
kF /R � W svm��

F
� �.
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Let W 0 = W̄R ·kW svm
kF /R where we have kW 0

kF  kW svm
kF and W 0

6= W svm. Since W svm is the min-norm
solution of (Acyc-SVM), then for some ✏ := ✏(�), there exists i, j, k such that

(ei � ej)
>W 0ek  1 � ✏ where (i ) j) 2 G

(k).

Now, we will argue that this leads to a contradiction by proving L(R ·W svm/ kW svm
kF ) < L(W̄R) for sufficiently

large R. Let ⇥ = 1/ kW svm
kF and we will show that L(R⇥ · W svm) < L(R⇥ · W 0) for sufficiently large R.

To obtain the result, we establish a refined softmax probability control as in the proof of Theorem 3 by studying
the distance to L?. Let a?

i = Xi(R⇥ ·W svm)x̄i, aR
i = Xi(R⇥ ·W 0)x̄i, s?

i := S(a?
i ), sR

i := S(aR
i ), �?

i := c>
yi

X>

i s?
i ,

and �R
i := c>

yi
X>

i sR
i . Recap that �max

i = e>
yi

cyi . Then

X

t2Oi

sR
it =

P
t2Oi

eaR
it

P
t2[Ti]

eaR
it


|Oi|

|Oi| + e�(1�✏)R⇥


1

1 + e�(1�✏)R⇥/T
, 9i 2 [n] (43)

X

t2Oi

s?
it =

P
t2Oi

ea?
it

P
t2[Ti]

ea?
it

�
|Oi|

|Oi| + (T � |Oi|)e�R⇥
�

1

1 + Te�R⇥
, 8i 2 [n]. (44)

Since ` is strictly decreasing and |`0
| is bounded, let cdn  �`0

 cup for some constants cdn, cup > 0. Note that
cdn, cup are data-dependent. Additionally, define the score minimal/maximal score gaps as

cmin = min
y,k2[K],y 6=k

(ey � ek)>cy, cmax = max
y,k2[K],y 6=k

(ey � ek)>cy

where cmax � cmin > 0. Then we have that there exists i 2 [n],

L(R⇥ · W 0) � L? �
1

n

�
`(�R

i ) � `(�max
i )

�
�

cdn

n

�
�max

i � �R
i

�

�
cdn

n
cmin

 
1 �

X

t2Oi

sR
it

!
�

cdncmin

n

1

1 + Te(1�✏)R⇥
(45)

and letting j := arg maxi2[n] (`(�
?
i ) � `(�max

i )), we can upper-bound the loss difference for R⇥ · W svm as follows:

L(R⇥ · W svm) � L?  max
i2[n]

(`(�?
i ) � `(�max

i ))  cup
�
�max

j � �?
j

�

 cupcmax

 
1 �

X

t2Oi

s?
it

!
 cupcmax

1

1 + eR⇥/T
 cupcmaxTe

�R⇥. (46)

Combining them together results in that, L(R⇥ · W 0) > L(R⇥ · W svm) whenever

cdncmin

n

1

1 + Te(1�✏)R⇥
> cupcmaxTe

�R⇥ =) R >
1

⇥ · min(✏, 1)
log

✓
2nT 2cupcmax

cdncmin

◆
.

This completes the proof by contradiction.

D IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

D.1 Implementation Details

In all the experiments, we train single-layer self-attention layer models using PyTorch and SGD optimizer. We
conduct normalized gradient descent method to enhance the increasing of the norm of attention weight, so that
softmax can easily saturate. Specifically, at each iteration ⌧ , we update attention weight W via

W (⌧ + 1) = W (⌧) � ⌘
rL(W (⌧))

krL(W (⌧))kF

.

All the results are averaged over 100 random trails and in each trail, we create the dataset and its corresponding
TPGs, SCCs as follows:
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1. Given dimension d and vocabulary size K, generate random embedding table E = [e1 · · · eK ]> 2 RK⇥d

such that each e 2 E is randomly sampled from unit sphere.

2. Given sample size n and sequence length T , create dataset DSET = (Xi, yi)n
i=1 and Xi = [xit · · · xiT ]> 2

RT⇥d where xit are randomly sampled from E. For acyclic setting, label eyi is determined by the token in
the Xi that has the highest priority order; while for general cyclic setting, eyi are also randomly sampled
from Xi.

3. Construct TPGs and apply Tarjan’s algorithm Tarjan (1972) to find SCCs of each TPG. For global convergence
experiments (Section 3), TPGs are created based on the token relations between xit’s and eyi ’s in the dataset
DSET; while for local convergence analysis (Section 5), we instead establish the token relations between xit’s
and êyi ’s following the instruction in Section 5, where êyi is determined by the GD solution.

4. DSET is created following Definition 3 based on the SCCs of the corresponding TPGs.

Here, we set the sequence length to be the same for all the samples in DSET, and we emphasize that though DSET

contains inputs with same number of tokens, the randomness in sampling xit and eyi will still result in a variety
of TPGs and SCCs, and DSET may contain inputs with varying sequence lengths (see Figure 3).

• Generating W fin and fW fin. Inspired by the convexity and finiteness of L̄(W ) per Definition 4 under the
setting of Theorem 2, we can derive W fin via gradient descent. Hence, to obtain W fin, we train separate models
but with the same architecture from zero initialization on the sub-dataset DSET. As for the experiments shown
in Section 5, we follow the same method as generating W fin. However, we emphasize that under the local
convergence setting, there is no guarantee that gradient descent will converge to the fW fin solution as problem is
more general, i.e., with nonconvex head, and dataset DSET might not be enough to capture the performance of
tokens within the same SCCs. Though, our results in Figures 6 and 7 indicate that fW fin can predict the GD
convergence performance better than W fin which is drawn from the dataset-based TPGs. We defer a rigorous
definition of local fW fin and guarantees related to gradient descent for future exploration.

• Local convergence experiments (Figures 6 and 7). To evaluate our local convergence conjecture, we
conduct random experiments with more general head (satisfying Assumption 3) and, and consider squared loss
`(u) = (1�u)2 in Figure 6 and cross-entropy loss in Figure 7. In both experiment, we create embedding tabels with
K = 8, d = 8 and datasets with n = 4, T = 6. We choose step size ⌘ = 0.1 and also conduct normalized gradient
descent. Correlations are reported in Figs. 6a and 7a and the distance of

���⇧ eSfin
(W (⌧)) � fW fin

���
F

are presented in

the orange curves in Figs. 6b and 7b. In both experiments, correlations between W (⌧)
kW (⌧)kF

and fW svm

kfW svmk
F

end with

> 0.99 values. Fig. 6b achieves 0 distance error since employing squared loss, attention is inclined to select tokens
that appear mostly frequently in the labels of the dataset, resulting in Ri = Oi for i 2 [n] and DSET = ;. While
in Fig. 7b, the global and local norm of difference is around 9.59 and 0.09 respectively, where DSET 6= ;. This
implies that the distance of ⇧ eSfin

(W (⌧)) is much closer to fW fin compared to the distance between ⇧Sfin(W (⌧))

and W fin.

D.2 Additional Experiments

Global convergence experiments on large K (Figures 9 and 10). Assumption 1 in our work requires
K  d, which helps make the optimization landscape more benign such that global convergence of GD is
guaranteed. Unlike previous work Tarzanagh et al. (2023b,a) that relies on strong equal score conditions to induce
global convergence, our assumption is much less strict. Empirically, we argue that this constraint is not necessary
as we can apply a mask M 2 Rn⇥K⇥T to directly collect the attention probability for each distinct token from
the attention map without explicitly calculating the linear head. Therefore, we can still impose Assumption 1
when K > d, which aligns more closely with the real-world setting. In Figs. 9 and 10, we repeat the global
convergence experiments by setting n = 16, T = 64, d = 128 and K = 10000. Results are averaged over 100
random instances. The averaged correlation is ⇡ 0.987 and the soft component error reaches 0.025. The results
again validate Theorem 2.
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SCC Structure on large n (Figure 11). When we increase the sample size n and fix others, more edges
and cycles will be added to the graphs. Different SCCs can then be merged into one. As illustrated in Fig. 11,
the graph eventually collapses to a single SCC.

Feasible condition of (Graph-SVM) (Figure 12). To verify that (Graph-SVM) is feasible when d � K
(Lemma 1), in Fig. 12, we run experiments with fixed n = 16, T = 128,K = 512 and varying d from 2 to 512.
Define Cy as the SCC that the label token belongs to. We calculate the proportion of selected tokens that are in
Cy to the size of Cy, and (Graph-SVM) is feasible when the value reaches 1. The interpretation is that: When d
is small, the problem focuses on separating an optimally feasible subset of training data from the others and the
empirical SVM bias is captured by a relaxed Graph-SVM solution with constraints based on the subset. As d
grows, the exact Graph-SVM becomes feasible. This is similar to the findings in Ji & Telgarsky (2019b).
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