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Multi-Player Resource-Sharing Games with

Fair Reward Allocation

Mevan Wijewardena, Michael J. Neely

Abstract

This paper considers a multi-player resource-sharing game with a fair reward allocation model.

Multiple players choose from a collection of resources. Each resource brings a random reward equally

divided among the players who choose it. We consider two settings. The first setting is a one-slot game

where the mean rewards of the resources are known to all the players, and the objective of player 1 is to

maximize their worst-case expected utility. Certain special cases of this setting have explicit solutions.

These cases provide interesting yet non-intuitive insights into the problem. The second setting is an online

setting, where the game is played over a finite time horizon, where the mean rewards are unknown to

the first player. Instead, the first player receives, as feedback, the rewards of the resources they chose

after the action. We develop a novel Upper Confidence Bound (UCB) algorithm that minimizes the

worst-case regret of the first player using the feedback received.

Index Terms

Resource-sharing games, congestion games, potential games, fair reward allocation, worst-case

expected utility maximization, online games

I. INTRODUCTION

In this paper, we consider the following game with m ≥ 2 players A1, A2, . . . , Am, and

n ≥ 2 resources 1, 2, · · · , n. The state of the game is described by the random reward vector

W = (W1,W2, ...,Wn)
⊤, where Wk is the reward random variable of resource k. Each player

selects r resources without knowing the other player’s selection (assume that 0 < r < n). The

per-player reward of the resource k is Wk/Sk, where Sk is the number of players who selected
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resource k. The sum of all the per-player rewards of resources a player selects is their utility.

We consider two settings.

The first setting is a one-slot game where the players have knowledge of the means of the

reward random variables but do not observe the realizations before taking action. In this setting,

we solve the problem of maximizing the worst-case expected utility of player A1. The general

case can be solved using a simple gradient descent algorithm. The more intriguing scenario in this

setting is that some of the special cases have non-trivial explicit solutions that provide insight into

the problem. The problem of maximizing the worst-case expected utility is motivated by the fact

that player A1 does not place any assumptions on the incentives of the opponent, which makes

worst-case expected utility an important objective that is different from the equilibrium-based

objectives such as Nash-equilibrium [1], [2] and correlated equilibrium [3], [4], [5].

The second setting is an online scenario, where the game is played over a finite time horizon

in the presence of feedback. In this setting, we assume that the reward vector of the resources

in each time slot is independent and identically distributed. Player A1 takes action without

knowledge about the mean rewards of the resources. Instead, player A1 receives the reward of

the resources they chose as feedback after each action. The goal of player A1 is to minimize

their worst-case regret over time. This setting is inspired by the UCB algorithm of [6] for

the problem of zero-sum matrix games with bandit feedback. We provide an algorithm for the

above setting that minimizes worst-case regret by learning the mean rewards of the resources.

When implemented in a time horizon of T time-slots, the algorithm achieves a worst-case regret

of nD
√
T + 4n

√

2rT log(2nrCT 3(T + 1)) + 1, where C and D are known constants. The

problem of finding an approximate Nash equilibrium of a congestion game with bandit feedback

has been considered in [7]. However, implementing the algorithms in [7] requires cooperation

among players. The proposed algorithm requires no cooperation among the players since player

A1 focuses on maximizing the worst-case regret.

The game model discussed for the above two settings has been studied for the non-stochastic

case under the more general framework of resource-sharing games [8], also known as congestion

games. In these games, the per-player reward of a resource is a general function of the number

of players selecting the resource. Also, an action for a player is a subset of the resources,

where the allowed subsets make up the action space of the player. Resource-sharing games have

also been extended to various stochastic settings [9], [10]. Problems similar to our work have
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been studied in the context of adversarial resource-sharing games. The work of [11] considers an

adversarial resource-sharing game where each player chooses a single resource from a collection

of resources, after which an adversary chooses the resource chosen by the maximum number

of players. Also, non-atomic congestion games with malicious players have been considered

through the work of [12].

In our model, we have done two simplifications to the resource-sharing game models described

above. First, we assume a fair-reward allocation model, where we have assumed the existence

of a reward for each resource, which is divided equally between the players selecting it. Second,

we have assumed simple action spaces for players by allowing each player to select an arbitrary

subset of r resources. Additionally, we assume a non-cooperative model where player A1 does

not place any assumptions on the incentives of the opponents. The above simplifications of the

general model have several consequences.

First, the simplified model has various real-world applications. The work of [13] discusses

different real-world applications of the game in the special case m = 2, r = 1 (and without

considering the online setting). These examples are also relevant to the general case of the

problem. One example is multiple access control (MAC) in communication systems, where

communication channels are accessed by multiple users, and the data rate of a channel is shared

amongst the users who select it [14]. Here, a channel can be shared using Time Division Multiple

Access (TDMA) or Frequency Division Multiple Access (FDMA), where in TDMA, the channel

is time-shared among the users [15], [16], whereas in FDMA, the channel is frequency-shared

among the users [17]. In both cases, the total data rate supported by the channel can be considered

the utility of the channel. Both game settings of this paper are relevant here: The one-slot setting

can be used when the mean data rate is known to the users; The online setting is applicable

when the mean data rate is unknown to the users, but they receive feedback on the actual data

rate after transmission.

An application in the area of economics, discussed in [13], is a scenario where a firm chooses

a market to enter from a pool of market options. Another firm may also choose the same

market. This example assumes a simplified model with a total revenue for each market, and

the total revenue is divided equally among the firms entering the market. Our treatment of the

case m > 2, r > 1 is relevant to this application example because, in a real-world scenario, a

firm may compete with multiple firms. The online setting treated in this paper is also useful for
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learning based on repeated market competitions.

Another consequence of our model is that in the one-slot setting, certain special cases have

explicit solutions, which provide valuable insights into the problem. The work of [13] discusses

the special case m = 2, r = 1. The current paper extends the analysis to special cases m = 2

with general r, and m = 3, r = 1. The explicit solutions obtained in these cases are non-intuitive;

hence, the problem is complex, even for simple cases.

It should be noted that resource-sharing games with special per-player reward definitions

have been considered in the literature. One such notable case is when the per-player reward of

a resource is non-decreasing in the number of players selecting the resource. These games are

called cost-sharing games [18]. The particular case when the total cost of a resource is divided

equally among the players choosing it is called fair cost-sharing games. In such a model, a

player would prefer to select resources selected by many players. In the fair reward allocation

model considered in our work, players have the opposite incentive to select resources selected

by a small number of players.

Below, we list the major contributions of this paper

• We consider the problem of worst-case expected utility maximization of resource-sharing

games with a fair-reward allocation model. We provide explicit solutions to certain special

cases of the problem. These cases, in addition to providing an efficient approach to solving

the problem, provide valuable insights into the solution structure of the problem. For

instance, for the two-player case, it can be observed that the set of resources can be divided

into four groups where each group contains resources with higher mean rewards compared

to the next group. Each resource in the first and third group is chosen with probability 1.

Each resource in group 2 is chosen with a non-zero probability, whereas the resources in

the last group are never chosen. For the general case, we provide an algorithmic solution

by solving a concave-non-convex max-min optimization problem, where the non-concave

problem is an integer optimization problem that can be solved explicitly.

• We consider an online scenario of the above problem where the game is played over a

finite time horizon of T time slots, and player A1 does not know the mean rewards of the

resources. Instead, the player A1 takes action using the feedback received after each action on

the rewards of the resources they chose. We propose an upper confidence bound algorithm

that achieves O(
√

T log(T )) worst-case regret. This problem shares certain similarities
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with the problems of stochastic convex optimization [19], online-convex optimization [20],

online-convex optimization with multi-point bandit feedback [21], and adversarial bandit

problems [6], [22]. It differs from the first three cases due to the differences in the feedback

received. In particular, in the first three cases, the agent first queries the environment with

points in the domain of the function to be optimized, after which the environment provides

information about the function at the particular points as feedback. In our setting, the agent

receives noisy partial information about the function in each iteration. Also, we cannot utilize

the algorithms developed for strongly convex/concave objectives (see, for example [19])

since the function we optimize is piece-wise linear and hence is not strongly concave. The

problem also differs from classical adversarial bandit problems since our problem requires

a different definition of regret. Our problem is more similar to the work of [22] on zero-

sum matrix games with bandit feedback. However, the above work considers a two-player

scenario where both players receive as feedback the actions and the rewards of themselves

and the opponent. Nevertheless, a similar UCB algorithm can be adopted for our case.

A. Background on Resource-Sharing Games

The resource-sharing game was first studied in [8]. These games, also known as congestion

games, fall under the general category of potential games [23]. In potential games, the effect

of any player changing strategies is captured by the change of a global potential function.

Various extensions to the classical resource sharing game introduced in [8] have been studied

in the literature [24]. Some such extensions are stochastic resource-sharing games [9], [10],

weighted resource-sharing games [25], games with player-dependent reward allocation [26],

games with resources having preferences over players [27], and singleton games, where each

player is only allowed to choose a single resource [28], [29]. Also similar to resource-sharing

games are resource allocation games [30], [31]. In these games, a resource has to be fairly

divided among a set of claimants claiming a certain portion of the resource.

Resource-sharing games have applications in multiple-accesses [14], [32], [33], network selec-

tion [34], network design [35], spectrum sharing [36], resource sharing in wireless networks [37],

load balancing networks [38], [39], radio access selection [40], service chains [41], congestion

control [42], and migration of species [43].
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B. Notation

We use calligraphic letters to denote sets. Vectors and matrices are denoted in boldface char-

acters. For integers n and m, we denote by [n : m] the set of integers between n and m inclusive.

Also, we use N = {1, 2, 3, . . . } to denote the set of positive integers and N0 = {0, 1, 2, . . .} to

denote the set of non-negative integers.

II. FORMULATION

In this section, we formulate the model for the one-slot setting. We extend this model to the

online setting in Section IV. Let Ek = E{Wk} for all 1 ≤ k ≤ n. Let us denote by α ∈ {0, 1}n

the action of player A1, where αj = 1 if player 1 chooses resource j and αj = 0 otherwise.

Notice that the actions of the other players will also have the same structure. Notice that, α ∈ J1,

where,

Jq =

{

x ∈ {0, 1, . . . , q}n
∣

∣

∣

∣

∣

n
∑

j=1

xj = qr

}

, (1)

for q ∈ {1, 2, . . .}.
Now fix 1 ≤ q as a positive integer and imagine q players each choosing vectors (actions) in

J1. For each i ∈ {1, 2, . . . , q}, let αi ∈ J1 denote the vector (action) chosen by the i-th player.

Consider the following set,

Aq =

{

q
∑

i=1

αi : αi ∈ J1 for all i ∈ {1, 2, . . . , q}
}

. (2)

Then we have the following lemma.

Lemma 1: We have that,

1) Aq = Jq for q ∈ {1, 2, . . . , }, where Aq and Jq are defined in (2) and (1), respectively.

2) Conv(J1) = I, where I is the (n, r)-hypersimplex,

I =

{

p ∈ [0, 1]n

∣

∣

∣

∣

∣

n
∑

k=1

pk = r

}

. (3)

.

Proof: 1) We complete the proof using the following two claims.

Claim 1 Aq ⊆ Jq: This follows directly from the fact that αi ∈ J1 for all i ∈ {1, 2, . . . , q} and

the definition of sets Aq and Jq.

June 2023 DRAFT
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Claim 2 Jq ⊆ Aq: We use induction. The case q = 1 trivially follows from the fact that α1 ∈ J1.

Assume that the statement is true for q ≥ 1. We establish the statement is true for q + 1.

Pick any x ∈ Jq+1. Hence, xi ∈ {0, 1, . . . , q + 1} for each 1 ≤ i ≤ q + 1, and
∑q+1

i=1 xi =

r(q + 1). Hence, it should be clear that x has at least r non-zero entries. Define αq+1 ∈ J1

with exactly r ones in locations i with the highest xi. Hence, x−αq+1 is a non-negative vector.

Now, we claim that x − αq+1 ∈ Jq. Since x ∈ Jq+1 and αq+1 ∈ J1, it can be easily seen that
∑n

i=1(xi − αq+1
i ) = rq. Hence, we are only required to prove that the largest element of the

vector x−αq+1 is at most q. Assume the contrary and let k be the index of the largest element,

so xk − αq+1
k ≥ q + 1. Since, x ∈ Jq+1, we know xk ≤ q + 1. This means αq+1

k = 0, and

xk = q + 1. Since αq+1 was constructed by selecting the largest elements of x, and an element

with size q + 1 was not selected, we must have for all indices i that αq+1
i = 1 =⇒ xi = q + 1.

This means that
n
∑

i=1

xi ≥
∑

i∈[1:n]

α
q+1

i =1

xi + xk = (r + 1)(q + 1) > r(q + 1), (4)

which is a contradiction. Hence, we have that x − αq+1 ∈ Jq as desired. Hence, from the

induction hypothesis x − αq+1 ∈ Aq. Hence, there exists a set of actions α1, α2, . . . , αq ∈ J1

such that,
∑q

i=1 α
i = x− αq+1, which implies that

∑q+1
i=1 α

i = x. Hence, x ∈ Aq+1 as desired.

2) See Appendix B.

Now, let αi ∈ J1 denote the action of player Ai for i ∈ {2, 3, . . . , m}. Let us define the vector

X ∈ R
n as

X =
m
∑

i=2

αi. (5)

We assume that the triplet (α,X,W ) are mutually independent. Nevertheless, our formulation

allows the random variables W1,W2, . . . ,Wn to be correlated, and the players [2 : m] to cooperate

in order to make their decision. Notice that from Lemma 1-1, we have that X ∈ Jm−1.

A. Expected Utility

Given the player A1 uses possibly randomized action α ∈ J1 and X is defined according to

(5), the expected utility of player A1 can be written as

E

{

n
∑

k=1

Wk1(αk=1)

1 +Xk

}

=(a)

n
∑

k=1

EkpkE

{

1

1 +Xk

}

(6)

June 2023 DRAFT
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where

pk = E{1(αk=1)} (7)

for 1 ≤ k ≤ n, and the expectation is taken with respect to the possibly randomized action

αk. The equality (a) follows since (α,X,W ) are mutually independent. Hence, notice that the

expected utility depends on the action of player A1 only through p defined in (7). Let us define

the function, f : Rn × Z
n → R as,

f(p,x) =

n
∑

k=1

Ekpk
1 + xk

. (8)

Hence, we have that the expected utility of player A1 is equal to E{f(p,X)}, where p is defined

in (7) and X is defined in (5).

Notice that the set of all possible vectors p in (7) is Conv(J1), which is equal to I defined

in (3) by Lemma 1-2. Given p ∈ I, in Appendix A, we provide an algorithm to sample a set α

of r resources from {1, 2, · · · , n}, such that E{1(αk=1)} = pk is satisfied for all k ∈ [1 : n]. In

particular, the algorithm finds a distribution over the elements of J1 defined in (1) for a given p.

The answer in [44] establishes that the found mixture of elements of J1 contains at most n+1

elements.

B. Worst-Case Expected Utility

This section focuses on finding the worst-case expected utility of player A1 for fixed p ∈ I,

used by player A1. Notice that to obtain the worst-case expected utility of player A1, we have

to minimize E{f(p,X)} over all possibly randomized actions of players A2, . . . , Am. Define

the function,

fworst(p) = min
x∈Jm−1

f(p,x), (9)

where function f is defined in (8).

Lemma 2: For p ∈ I, the worst-case expected utility of player A1 is fworst(p).

Proof: Fix p ∈ I. Define x∗ = argminx∈Jm−1
f(p,x). Hence, fworst(p) = f(p,x∗).

Consider a possibly randomized set of actions for players A2, . . . , Am, and define X according to

(5). Recall that the expected utility of player A1 is E{f(p,X)}. Notice that for any x ∈ Jm−1, we

have that f(p,x∗) ≤ f(p,x). Hence, we have that f(p,x∗) ≤ f(p,X). Taking the expectations,

June 2023 DRAFT
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Algorithm 1: Algorithm to find fworst(p) and x∗ = argminx∈Jm−1
f(p,x) for p ∈ I

1 Initialize x = [0, 0, . . . , 0] ∈ N
n

2 Initialize f = 0

3 for each iteration k ∈ [1 : (m− 1)r] do

4 Increase xi by 1 where,

i = arg min
k∈[1:n]
xk<m−1

{

pkEk

1 + xk

− pkEk

2 + xk

}

(10)

5 end

6 Output fworst(p) = f(p,x) and x.

we have that, f(p,x∗) ≤ E{f(p,X)}. Hence, the expected utility of player A1 is bounded below

by f(p,x∗). Now consider the deterministic policy for players A2, . . . , Am that yields X = x∗.

Notice that such a policy exists from Lemma 1-1. This policy will yield an expected utility of

f(p,x∗) for player A1. Hence, f(p,x∗) is in fact the worst-case expected utility.

It should be noted that for a given p ∈ I, finding fworst(p) in (9) and x∗ = argminx∈Jm−1
f(p,x)

is an optimization over a non-convex discrete set x ∈ Jm−1. However, it has a classical separable

structure that is well-studied in the literature and can be solved exactly using either a O(n +

mr log(n)) greedy incremental algorithm or an improved O(n log(mr)) algorithm [45]. For

completeness, we summarize an O(nmr) algorithm in Algorithm 1. For improved algorithms,

refer to [45]. It should be noted that fworst(p) for p ∈ I has an explicit formula in certain special

cases. Such cases will be discussed in Section V.

In the following two sections (Section III and Section IV), we introduce the two settings, after

which we move onto special cases of the one-slot setting in Section V.

III. ONE-SLOT GAME

For this setting, we assume that none of the players observe W , but all the players know

E. Notice that the worst-case expected utility maximization problem can be represented as the

max-min problem,

(P1): max
p

min
x

f(p,x)

June 2023 DRAFT
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Algorithm 2: Algorithm to solve (P1)

1 Initialize p1 = [ r
n
, r
n
, ..., r

n
]

2 for each iteration t ∈ [1 : T ] do

3 Find xt = minx∈Jm−1
f(pt,x), using Algorithm 1.

4 Obtain pt+1 by using,

pt+1 = ΠI

(

pt + β∇pf(p
t,xt)

)

, (13)

where the function ΠI is the projection onto I, function f is defined in (8) (For a

given vector y ∈ R, we provide an algorithm to calculate ΠI(y) in Appendix F).

5 end

6 Output p̃, x̃ = argmax{f(pt,xt); 1 ≤ t ≤ T}.

p ∈ I,x ∈ Jm−1, (11)

where the function f is defined in (8), the sets I and Jm−1 are defined in (3) and (1) respectively.

Notice that the inner minimization of the above problem amounts to evaluating the function fworst

defined in (9), which admits an exact solution for each p ∈ I. Hence, the problem can also be

rephrased using the following maximization.

(P2): max
p

fworst(p)

s.t. p ∈ I,
(12)

where the function fworst is defined in (9). First notice, that for fixed x ∈ Jm−1, f(p,x) is

linear in p. Since Jm−1 is a finite set and since the minimum operation is continuous, from the

definition of the function fworst in (9), we have that fworst is continuous. This, combined with the

fact that I is a compact domain, we have that (P2) admits an optimal solution p∗. Hence, (P1)

admits an optimal solution (p∗,x∗), where x∗ = argminx∈Jm−1
f(p∗,x). However, it should be

noted that (p∗,x∗) is not in general a saddle point of f .

Since the inner minimization of (P1) can be solved using Algorithm 1, the min-oracle algorithm

can be used to solve the (P1) [46]. Although this algorithm has been studied in the literature,

we provide the algorithm (Algorithm 2) along with a focused convergence analysis tailored for

this problem (Theorem 1) for clarity and completeness.
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Theorem 1: The output p̃, x̃ of Algorithm 2 satisfies,

1) x̃ = argminx∈Jm−1
f(p̃,x),

2) fmaximin − f(p̃, x̃) ≤ ‖p1−p
∗‖2

2βT
+ β

2
(
∑n

k=1E
2
k),

where fmaximin is the optimal value of (P1), T is the number of iterations of Algorithm 2 and

β is the step-size used in (13). Hence, for fixed ε > 0, choosing β = ε, and T ≥ 1/ε2, the

maximum error is O(ε).
Proof: Part 1 follows since, (p̃, x̃) = (pt,xt) for some t ∈ [1 : T ], and the definition of xt.

For part 2, define

qi+1 = pi + β∇pf(p
i,xi), (14)

for all i ∈ [1 : T ]. Recall that (p∗,x∗) is the optimal solution to (P1). Notice that,

‖pi+1 − p∗‖2 ≤(a) ‖qi+1 − p∗‖2 = ‖pi + β∇pf(p
i,xi)− p∗‖2

≤ ‖pi − p∗‖2 + β2‖∇pf(p
i,xi)‖2−2β(p∗ − pi)⊤∇pf(p

i,xi)

=(b) ‖pi − p∗‖2 + β2‖∇pf(p
i,xi)‖2−2β(f(p∗,xi)− f(pi,xi)), (15)

where (a) follows since projection onto a set reduces the distance to any point in the set, (b)

follows from the subgradient equality for the linear function f(·,xi). Notice that fmaximin =

f(p∗,x∗). Now we sum the above inequality for i ∈ [1 : T ], which results,

0 ≤ ‖pT+1 − p∗‖2 ≤ ‖p1 − p∗‖2 +
T
∑

i=1

β2‖∇pf(p
i,xi)‖2−2β

T
∑

i=1

f(p∗,xi) + 2β

T
∑

i=1

f(pi,xi)

≤(a) ‖p1 − p∗‖2 + Tβ2

(

n
∑

k=1

E2
k

)

− 2β
T
∑

i=1

f(p∗,xi) + 2β
T
∑

i=1

f(pi,xi)

≤ ‖p1 − p∗‖2 + Tβ2

(

n
∑

k=1

E2
k

)

− 2β

T
∑

i=1

f(p∗,x∗) + 2β

T
∑

i=1

f(p̃, x̃), (16)

where (a) follows since (∇pf(p
i,xi))k = Ek/(1 + xi

k) ≤ Ek, and the last inequality follows

due f(p∗,x∗) ≤ f(p∗,x) for any x ∈ Jm−1, and the definition of (p̃, x̃) in the last line of

Algorithm 2. Hence, we have that,

fmaximin − f(p̃, x̃) ≤ ‖p
1 − p∗‖2
2βT

+
β

2

(

n
∑

k=1

E2
k

)

, (17)

as desired.
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IV. ONLINE SETTING

This section assumes that the player A1 does not know the mean vector E. Instead, the game

is played on a horizon of T discrete time slots, where after the decision of player A1 during

time-slot t, they receive the realizations of the reward random variables of the resources chosen

by A1 in time-slot t, as feedback. We add a time index to the notation described in Section II.

In particular, let W [t], α[t], Xk[t] denote the reward random vector, the action of player A1, the

number of players (other than player A1) selecting resource k, during time-slot t. Hence, we

have that,

X [t] =

m
∑

k=2

αk[t], (18)

where αk[t] ∈ J1 is the action of player k ∈ {2, 3, . . . , m} during time-slot t. The history H[t]
up to time t can be defined by

H[t] = {({Wk[τ ]; 1 ≤ k ≤ n, αk[τ ] = 1}, α[τ ]); 1 ≤ τ < t} (19)

We assume that conditioned on the history H[t] of A1, the action of player A1 and the actions

of the other players are independent. Let p[t] ∈ I be defined such that,

pk[t] = E{1(αk [t]=1)|H[t]}. (20)

The expected utility of player A1 can be written as

E

{

T
∑

t=1

n
∑

k=1

Wk[t]1(αk [t]=1)

1 +Xk[t]

}

=(a)

T
∑

t=1

n
∑

k=1

EkE

{

1(αk [t]=1)

1 +Xk[t]

}

=
T
∑

t=1

n
∑

k=1

EkE

{

E

{

1(αk [t]=1)

1 +Xk[t]

∣

∣

∣

∣

∣

H[t]
}}

=(b)

T
∑

t=1

n
∑

k=1

EkE

{

E

{

pk[t]

1 +Xk[t]

∣

∣

∣

∣

∣

H[t]
}}

=

T
∑

t=1

n
∑

k=1

EkE

{

pk[t]

1 +Xk[t]

}

=

T
∑

t=1

E{f(p[t],X[t])}, (21)

where the function f is defined in (8), (a) follows since W [t] is independent of the actions

of players during time-slot t, and (b) follows from the fact that the action of player A1 is

conditionally independent of the actions of other players given the history (recall the definitions

of X[t], and p[t] in (18) and (20), respectively). Now, combining the above with Lemma 2, it is

clear that the worst-case expected utility of player A1 in this case is
∑T

t=1 E{fworst(p[t])}, where
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the function fworst is defined in (9), and the expectation is taken with respect to all the feedback

and actions of player A1. Hence, we formulate this setting as minimizing the worst-case regret,

R[t] =

T
∑

t=1

(

fmaximin − E{fworst(p[t])}
)

, (22)

where fmaximin is the optimal value of (P1).

We assume that Wk[t] = Ek+ηk[t] for all 1 ≤ k ≤ n, where ηk[t] for (t, k) ∈ [1 : T ]×[1 : n] are

zero-mean, 1-sub-Gaussian random variables. We assume that the collection {W [t]; 1 ≤ t ≤ T}
is independent and identically distributed. Our formulation does not require the components of

W [t] to be mutually independent for a particular t ∈ [1 : T ]. Let us also assume that Ek ∈ [0, C]

for each 1 ≤ k ≤ n, for some positive constant C, where C is known to A1. Fix δ ∈ (0, 1). We

begin with a few definitions. For all t ∈ [1 : T ] and k ∈ [1 : n] define nk[t] as the number of

times player A1 chooses resource k before time slot t. Formally,

nk[t] =
t−1
∑

τ=1

αk[τ ]. (23)

Also, define,

Ēk[t] =
1

1 ∨ nk[t]

t−1
∑

τ=1

αk[t]Wk[t], (24)

where x ∨ y = min(x, y), and,

Ẽk[t] = Ēk[t] +

√

2 log T (T+1)
δ

nk[t] ∨ 1
. (25)

We assume that T is large enough such that that
√

log((T (T + 1))/δ) ≥ C. The choice of T

will ensure that if nk[t] = 0, we have that,

Ek < Ẽk[t], (26)

and

Ek > Ẽk[t]− 2

√

2 log T (T+1)
δ

nk[t] ∨ 1
. (27)

Also, define the functions ft : R
n × N

n
0 → R for t ∈ [1 : T ] as,

ft(p,x) =
n
∑

k=1

Ẽk[t]pk
1 + xk

, (28)

Before moving on to the main result, we introduce the following well-known lemma.
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Lemma 3: Given a sequence {Xt}∞t=1 of independent 1-sub Gaussian random variables, a

positive integer-valued random variable G and δ ∈ (0, 1), we have the following,

1) For all g ∈ N, we have that,

P







1

g

g
∑

i=1

Xi ≥

√

2 log 1
δ

g







≤ δ. (29)

2) If G is independent of {Xt}∞t=1, we have,

P







1

G

G
∑

i=1

Xi ≥

√

2 log 1
δ

G







≤ δ. (30)

3) For general random variables G (Possibly dependent on the sequence {Xt}∞t=1), we have,

P







1

G

G
∑

i=1

Xi ≥

√

2 log G(G+1)
δ

G







≤ δ, P







1

G

G
∑

i=1

Xi ≤ −

√

2 log G(G+1)
δ

G







≤ δ. (31)

Proof: Refer to [6].

Let us denote by W̃k[t] the reward obtained when the resource k is chosen for the t-th time by

player A1 in [1 : T ], where W̃k[t] is set to Ek if the resource k is chosen less than t times in

[1 : T ]. Hence, notice that

Ēk[t] =
1

1 ∨ nk[t]

nk[t]
∑

τ=1

W̃k[τ ]. (32)

Now, applying Lemma 3-3 to the sequence {W̃k[t]− Ek}Tt=1 with G = 1 ∨ nk[t] we have,

P







1

1 ∨ nk[t]

nk[t]∨1
∑

τ=1

W̃k[τ ]−Ek ≥

√

2 log T (T+1)
δ

nk[t] ∨ 1







≤ δ, (33)

and

P







1

1 ∨ nk[t]

nk[t]∨1
∑

τ=1

W̃k[τ ]− Ek ≤ −

√

2 log T (T+1)
δ

nk[t] ∨ 1







≤ δ, (34)

where, we have also used the inequality nk[t] ≤ T . Now, we use the law of total probability on

(34) to obtain,

δ ≥ P







1

1 ∨ nk[t]

nk[t]∨1
∑

τ=1

W̃k[τ ]− Ek ≤ −

√

2 log T (T+1)
δ

nk[t] ∨ 1






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= P







1

1 ∨ nk[t]

nk[t]∨1
∑

τ=1

W̃k[τ ]− Ek ≤ −

√

2 log T (T+1)
δ

nk[t] ∨ 1

∣

∣

∣

∣

∣

nk[t] > 0







P (nk[t] > 0)

+ P







1

1 ∨ nk[t]

nk[t]∨1
∑

τ=1

W̃k[τ ]− Ek ≤ −

√

2 log T (T+1)
δ

nk[t] ∨ 1

∣

∣

∣

∣

∣

nk[t] = 0







P (nk[t] = 0)

= P

{

Ek ≥ Ẽ[t]

∣

∣

∣

∣

∣

nk[t] > 0

}

P (nk[t] > 0)

+ P







1

1 ∨ nk[t]

nk[t]∨1
∑

τ=1

W̃k[τ ]− Ek ≤ −

√

2 log T (T+1)
δ

nk[t] ∨ 1

∣

∣

∣

∣

∣

nk[t] = 0







P (nk[t] = 0)

≥ P

{

Ek ≥ Ẽ[t]

∣

∣

∣

∣

∣

nk[t] > 0

}

P (nk[t] > 0)

=(a) P

{

Ek ≥ Ẽ[t]

∣

∣

∣

∣

∣

nk[t] > 0

}

P (nk[t] > 0) + P

{

Ek ≥ Ẽ[t]

∣

∣

∣

∣

∣

nk[t] = 0

}

P (nk[t] = 0)

= P (Ek ≥ Ẽ[t]) (35)

where (a) follows since we have from (26) that

P

{

Ek ≥ Ẽ[t]

∣

∣

∣

∣

∣

nk[t] = 0

}

= 0. (36)

Similar, treatment to (33) yields,

P







Ek ≤ Ẽk[t]− 2

√

2 log T (T+1)
δ

nk[t] ∨ 1







≤ δ. (37)

Now consider the good event A, which is defined as the event where the inequalities,

Ek < Ẽk[t], (38)

and

Ek > Ẽk[t]− 2

√

2 log T (T+1)
δ

nk[t] ∨ 1
. (39)

hold for all t ∈ [1 : T ] and k ∈ [1 : n]. Combining, (35) and (37) with the union bound, we

have that

P (Ac) ≤ 2Tnδ. (40)
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Now we summarize our approach in Algorithm 3, after which Theorem 2 establishes the sub-

linear worst-case regret bound of the algorithm. For the UCB algorithm, we require two param-

eters: the learning rate β > 0 and δ ∈ (0, 1).

Algorithm 3: UCB(β, δ) Algorithm

1 Initialize Ek[1] = 0, and nk[1] = 0 for each 1 ≤ k ≤ n.

2 Initialize p[1] = [ r
n
, r
n
, ..., r

n
].

3 for each time-slot t ∈ [1 : T ] do

4 Set x[t] = argminx∈Jm−1
ft(p[t],x) using Algorithm 1.

5 Choose action α[t] for the t-th time-slot by sampling from p[t] using the approach in

Appendix A (Algorithm 4) and receive feedback {Wk[t]; 1 ≤ k ≤ n, αk[t] = 1}.
6 Obtain p[t + 1] by using,

p[t + 1] = ΠI (p[t] + β∇pft(p[t],x[t])) , (41)

where ΠI(y) denotes the projection of y onto I, function ft is defined in (28), and

β is the step size.

7 end

Theorem 2: Fix T as a positive integer large enough so that 1/(2nrCT 2) < 1, and
√

2 log(2nrCT 3(T + 1)) ≥
C. Running the UCB(β, δ) algorithm in Algorithm 3 with δ = 1/(2nrCT 2), and β =

√

1/(TD2),

where D = C + 2
√

2 log T (T+1)
δ

yields the worst-case regret bound,

δ = 1/(2nrCT 2) < 1, and

√

2 log
T (T + 1)

δ
=
√

2 log(2nrCT 3(T + 1)) ≥ C, (42)

yields the worst-case regret bound,

R[t] ≤ nD
√
T + 4n

√

2rT log(2nrCT 3(T + 1)) + 1. (43)

Proof: Notice that since T is fixed large enough such that 1/(2nrCT 2) < 1, and δ =

1/(2nrCT 2), we have that δ ∈ (0, 1). Moreover, due to the choice of T and δ, we have,

C ≥
√

2 log(2nrCT 3(T + 1)) =
√

2 log T (T+1)
δ

, which will ensure (26) and (27). We first focus

on the good event A. Notice that in this case,

Ẽk[t] ≤ Ek + 2

√

2 log T (T+1)
δ

nk[t] ∨ 1
≤(a) C + 2

√

2 log
T (T + 1)

δ
= D, (44)
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for all k, t ∈ [1 : n] × [1 : T ], where (a) follows since Ek < C. Let (p∗,x∗) be the optimal

solution to (P1). Define

q[t+ 1] = p[t] + β∇pft(p[t],x[t]), (45)

for t ∈ [1 : T ], where ft is defined in (28).

Notice that,

‖p[t+ 1]− p∗‖2 ≤(a) ‖q[t + 1]− p∗‖2 = ‖p[t] + β∇pft(p[t],x[t])− p∗‖2

≤ ‖p[t]− p∗‖2 + β2‖∇pft(p[t],x[t])‖2−2β(p∗ − p[t])⊤∇pft(p[t],x[t])

=(b) ‖p[t]− p∗‖2 + β2‖∇pft(p[t],x[t])‖2−2β(ft(p∗,x[t])− ft(p[t],x[t])),

(46)

where (a) follows since projection onto a set reduces the distance to any point in the set, (b)

follows from the subgradient equality for the linear function ft(·,x[t]). Notice that fmaximin =

f(p∗,x∗). Define

x̃[t] = arg min
x∈Jm−1

f(p[t],x). (47)

First, notice that,

ft(p
∗,x[t]) ≥ f(p∗,x[t]) ≥ f(p∗,x∗), (48)

where the first inequality follows due (38), and the second inequality follows from the definition

of x∗. Also, we have that,

ft(p[t],x[t]) ≤ ft(p[t], x̃[t]), (49)

which follows from the definition of x[t] in line 4 of Algorithm 3. Now we sum the (46) for

t ∈ [1 : T ], which results (consider event A),

0 ≤ ‖p[T + 1]− p∗‖2 ≤ ‖p[1]− p∗‖2 +
T
∑

t=1

β2‖∇pft(p[t],x[t])‖2−2β
T
∑

t=1

ft(p
∗,x[t])

+ 2β

T
∑

t=1

ft(p[t],x[t]) ≤(a) n+ nβ2TD2 − 2β

T
∑

t=1

ft(p
∗,x[t]) + 2β

T
∑

t=1

ft(p[t],x[t])

≤(b) n+ nβ2TD2 − 2β

T
∑

t=1

f(p∗,x∗) + 2β

T
∑

t=1

ft(p[t], x̃[t])
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≤(c) n + nβ2TD2 − 2β
T
∑

t=1

f(p∗,x∗) + 2β
T
∑

t=1







f(p[t], x̃[t]) +
n
∑

k=1





2pk[t]

1 + x̃k[t]

√

2 log T (T+1)
δ

nk[t] ∨ 1











= n+ nβ2TD2 + 4β
T
∑

t=1

n
∑

k=1







pk[t]

√

2 log T (T+1)
δ

nk[t] ∨ 1







− 2βTfmaximin + 2β
T
∑

t=1

fworst(p[t])

where (a) follows since p[1],p∗ ∈ I, and

‖∇pf(p[t],x[t])‖2 =
n
∑

k=1

∣

∣

∣

∣

∣

Ẽk[t]

1 + xk[t]

∣

∣

∣

∣

∣

2

≤ nD2, (50)

due to (44), (b) follows from (48) and (49), and (c) follows from (39) and the definition of ft

in (28). Hence, we have that,

2βTfmaximin − 2β
T
∑

t=1

fworst(p[t]) ≤ n+ nβ2TD2 + 4β
T
∑

t=1

n
∑

k=1







pk[t]

√

2 log T (T+1)
δ

nk[t] ∨ 1







(51)

Now we take the expectation (Conditioned on the event A) of both sides of (51), we have,

E{2βTfmaximin − 2β

T
∑

t=1

fworst(p[t])|A}

≤ n + nβ2TD2 + 4β

T
∑

t=1

E







n
∑

k=1

pk[t]

√

2 log T (T+1)
δ

nk[t] ∨ 1

∣

∣

∣

∣

∣

A







≤ n + nβ2TD2 +
4β

P (A)

T
∑

t=1

E







n
∑

k=1

pk[t]

√

2 log T (T+1)
δ

nk[t] ∨ 1







= n+ nβ2TD2 +
4β

P (A)

T
∑

t=1

E







E







n
∑

k=1

pk[t]

√

2 log T (T+1)
δ

nk[t] ∨ 1

∣

∣

∣

∣

∣

H[t]













= n+ nβ2TD2 +
4β

P (A)

T
∑

t=1

E







E







n
∑

k=1

E{1(αk [t]=1)|H[t]}

√

2 log T (T+1)
δ

nk[t] ∨ 1

∣

∣

∣

∣

∣

H[t]













= n+ nβ2TD2 +
4β

P (A)

T
∑

t=1

E







E







∑

j:αj [t]=1

√

2 log T (T+1)
δ

nj [t] ∨ 1

∣

∣

∣

∣

∣

H[t]













= n+ nβ2TD2 +
4β

P (A)

T
∑

t=1

E







∑

j:αj [t]=1

√

2 log T (T+1)
δ

nj [t] ∨ 1







. (52)

Hence,

2βR(T ) = E

{

2βTfmaximin − 2β

T
∑

t=1

f(p[t])

∣

∣

∣

∣

∣

A

}

P (A)
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+ E

{

2βTfmaximin − 2β

T
∑

t=1

f(p[t])

∣

∣

∣

∣

∣

Ac

}

P (Ac)

≤(a) n + nβ2TD2 + 4β

T
∑

t=1

E







∑

j:αj [t]=1

√

2 log T (T+1)
δ

nj [t] ∨ 1







+ 2βrCTP(Ac)

≤(b) n+ nβ2TD2 + 4βE











n
∑

k=1

T
∑

t=1
k:αk[t]=1

√

2 log T (T+1)
δ

nk[t] ∨ 1











+ 4βrnδCT 2

= n+ nβ2TD2 + 4βE







n
∑

k=1

nk[t]
∑

j=1

√

2 log T (T+1)
δ

j







+ 4βrnδCT 2

≤(c) n + nβ2TD2 + 8βE

{

n
∑

k=1

√

2nk[t] log
T (T + 1)

δ

}

+ 4βrnδCT 2

≤(d) n+ nβ2TD2 + 8βE







n

√

2 log
T (T + 1)

δ

√

√

√

√

n
∑

k=1

nk[t]







+ 4βrnδCT 2

= n+ nβ2TD2 + 8βn

√

2rT log
T (T + 1)

δ
+ 4βrnδCT 2 (53)

where (a) follows combining (52), the fact that

fmaximin =
n
∑

k=1

p∗kEk

1 + x∗
k

≤
n
∑

k=1

p∗kC = rC, (54)

and P (A) ≤ 1, (b) follows due to (40), (c) follows from
∑l

k=1

√
k
−1 ≤ 2

√
l, and (d) follows

since
∑n

k=1

√

nk[t] ≤
√
∑n

k=1 nk[t] =
√
n. Hence, we have that,

R(T ) ≤ n

2β
+

nβ

2
TD2 + 4n

√

2rT log
T (T + 1)

δ
+ 2rnδCT 2 (55)

Using β =
√

1/(TD2), and δ = 1/(2rnCT 2), we have,

R[t] ≤ nD
√
T + 4n

√

2rT log(2nrCT 3(T + 1)) + 1 (56)

as desired.

Notice that since fworst is concave from the definition in (9), we also have that,

fmaximin − E

{

fworst

(

∑T
t=1 p[t]

T

)}

≤ R[t]

T
. (57)
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V. SPECIAL CASES OF THE ONE-SLOT SETTING

This section focuses on solving some special cases of the one-slot setting. These approaches

lead to faster solutions and more insight into the problem. In this section, we assume, without

loss of generality, that Ek > 0 for all 1 ≤ k ≤ n since otherwise, we can transform the problem

into a lower dimensional version. Without loss of generality, we also assume that Ek ≥ Ek+1

for 1 ≤ k ≤ n−1. First, we derive an explicit solution to the case m = 3, r = 1. Then, we solve

the two-player general case. Before constructing the solution, we state the well-known Lagrange

multiplier lemma, which will be useful in constructing the solution for both cases.

Lemma 4: Consider the following constrained optimization problem,

max
x

z0(x)

s.t. zi(x) ≥ 0 for i ∈ {1, 2, . . . , k},

x ∈ Y ,

(58)

where zi : R
n → R for i ∈ {0, 1, 2, . . . , k}, and Y ⊂ R

n. Consider the following unconstrained

problem for some µ ≥ 0.

max
x

z0(x) +

k
∑

i=1

µizi(x)

s.t. x ∈ Y .
(59)

Let x∗ be a solution to the unconstrained problem. Assume x∗ satisfies for all i ∈ {1, 2, . . . , k},

1) zi(x
∗) ≥ 0 (That is x∗ is feasible for the constrained problem)

2) µi > 0 implies zi(x
∗) = 0.

Then x∗ is optimal for the constrained problem.

A. r = 1, m = 3

We first focus on finding fworst(p) explicitly for p ∈ I. Then, we use the solution to solve

(P2). Recall from the definition (8), f(p,x) =
∑n

k=1 pkEk/(1 + xk), for p ∈ I, and x ∈ J2,

where Jq and I in (1), and (3), respectively.

Lemma 5: Consider fixed p ∈ I. Let a = argmax1≤i≤nEipi, and b = argmax1≤i≤n,i 6=aEipi.

Then x∗ = argminx∈J2
f(p,x) can be given in two cases.
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Case 1: Eapa > 3Ebpb: We have for k ∈ {1, 2, . . . , n},

x∗
k =











2 if k = a,

0 otherwise.

(60)

Case 2: Eapa ≤ 3Ebpb: We have for k ∈ {1, 2, . . . , n},

x∗
k =











1 if k ∈ {a, b},

0 otherwise.

(61)

Proof: Since from the definition of x∗, we have that x∗ ∈ J2, we should have
∑n

k=1 x
∗
k = 2.

Hence, the only way to assign players A2 and A3 to the resources is to assign both players to a

single or two different resources. Notice that when assigning both players to a single resource,

they should be assigned to resource a since Eapa ≥ Ekpk for all k ∈ [1 : n]. For the same

reason, when assigning players to two different resources, they should be assigned to resources

a and b. Hence, it only remains to check which assignment yields the smallest f(p,x).

Under case 1: (assignment (60))

f(p,x) =
paEa

3
+ pbEb +

∑

k 6∈{a,b}

pkEk =

n
∑

k=1

pkEk −
2paEa

3
. (62)

Under case 2: (assignment (61))

f(p,x) =
paEa

2
+

pbEb

2
+
∑

k 6∈{a,b}

pkEk =

n
∑

k=1

pkEk −
paEa

2
− pbEb

2
(63)

Comparing the two cases yields the result.

Now we can formulate the worst-case expected utility fworst(p) of player A1. Lemma 5 allows

us to formulate this as,

fworst(p) =











∑n

k=1 pkEk − 2
3
Γ1 if Γ1 > 3Γ2

∑n

k=1 pkEk − 1
2
Γ1 − 1

2
Γ2 if Γ1 ≤ 3Γ2

(64)

where Γ1, Γ2 are the largest and the second largest elements of the set {pkEk; 1 ≤ k ≤ n},
respectively.
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Hence, notice that the solution of (P2) is the problem with the maximal optimal objective out

of the n2 linear programs,

(P2-i) : max

n
∑

k=1

pkEk −
2piEi

3

s.t. p ∈I,

piEi ≥ 3pkEk ∀1 ≤ k ≤ n,

(65)

and

(P2-(i, j)) : max
n
∑

k=1

pkEk −
piEi

2
− pjEj

2

s.t. p ∈ I, piEi ≤ 3pjEj , piEi ≥ pjEj,

pjEj ≥ pkEk ∀1 ≤ k ≤ n, k 6= i,

(66)

where i, j ∈ [1 : n] and i 6= j. To solve (P2-i), and (P2-(i, j)), it shall be useful to re-index to

associate i with 1, and (i, j) with 1 and 2. Hence, we define the two problems.

(P2-1) : max f1(p) =

n
∑

k=1

pkFk −
2p1F1

3

s.t. p ∈ I,

p1F1 ≥ 3pk+1Fk+1 ∀k ∈ {1, . . . , n− 1},

(67)

and

(P2-2) : max f2(p) =

n
∑

k=1

pkFk −
p1F1

2
− p2F2

2
+

s.t. p ∈ I, p1F1 ≤ 3p2F2, p1F1 ≥ p2F2,

p2F2 ≥ pkFk ∀3 ≤ k ≤ n,

(68)

where for (P2-1), F ∈ R
n is assumed to a positive vector such that Fk ≥ Fk+1 for k ∈ [2 : n−1],

and for (P2-2), F ∈ R
n is assumed to a positive vector such that Fk ≥ Fk+1 for k ∈ [3 : n−1]. It

should be noted that the Fk values are just the Ek values under more convenient indexing. Solving

the above two problems will immediately solve each of the previously defined n2 problems.

Define the two sequences (Ui; 1 ≤ i ≤ n), and (Vi; 2 ≤ i ≤ n) by,

Ui =
i

3
F1

+
∑i

k=2
1
Fk

, (69)
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and,

Vi =
i− 1
∑i

k=1
1
Fk

. (70)

These two sequences will be useful when constructing the solutions to (P2-1) and (P2-2).

1) Solving (P2-1): Consider the problem (P2-1).

(P2-1) : max f1(p) =
n
∑

k=1

pkFk −
2p1F1

3

s.t. p ∈ I,

p1F1 ≥ 3pk+1Fk+1 ∀k ∈ {1, 2, . . . , n− 1},

(71)

Also, consider the Lagrangian dual of the above problem (P2-1-µ) for µ ∈ R
n−1 such that

µi ≥ 0 for all i ∈ {1, . . . , n− 1} constructed according to Lemma 4,

(P2-1-µ) : max f1(p) +

n−1
∑

k=1

µk(p1F1 − 3pk+1Fk+1)

s.t. p ∈ I.
(72)

Let us define u = argmax1≤i≤n Ui, where the sequence (Ui; 1 ≤ i ≤ n) is defined in (69) and

argmax returns the least index in the case of ties. We establish that the solution to (P2-1) is p∗,

where,

p∗k =



























3

F1
3

F1
+
∑u

j=2
1

Fj

if k = 1

1

Fk
3

F1
+
∑u

j=2
1

Fj

if 2 ≤ k ≤ u

0 otherwise,

(73)

with optimal objective value Uu. It can be directly seen that p∗ defined by (73) satisfies the

constraints of the problem (P2-1), specifically, p∗ ∈ I and p∗1F1 ≥ 3pk+1Fk+1 for k ∈ {2, . . . , n}.
To prove that p∗ solves (P2-1), we construct a Lagrange multiplier vector µ ∈ R

n−1 with µi ≥ 0

for all i ∈ {1, . . . , n − 1} such that p∗ solves the problem (P2-1-µ) and establish that (p∗,µ)

satisfy the conditions of the Lagrange multiplier lemma (Lemma 4), namely:

1) p∗1F1 ≥ 3p∗k+1Fk+1 for all k ∈ {1, . . . , n− 1}
2) For k ∈ {1, . . . , n− 1}, µk > 0 =⇒ p∗1F1 = 3p∗k+1Fk+1.
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Define the vector µ ∈ R
n−1 as,

µk =











1
3

(

1− 1
Fk+1

u
3

F1
+
∑u

k=2
1

Fk

)

if 1 ≤ k ≤ u− 1

0 otherwise.

(74)

Now, we prove the following lemma regarding µ.

Lemma 6: Consider the µ defined in (74). We have that,

1) µk ≥ 0 for all k such that 1 ≤ k ≤ n− 1.

2) We have, F1

(

1
3
+
∑u−1

i=1 µi

)

= Fk(1− 3µk−1) =
u

3

F1
+
∑u

i=2
1

Fi

for 2 ≤ k ≤ u.

3) Fk ≤ u
3

F1
+
∑u

k=2
1

Fk

for u+ 1 ≤ k ≤ n

Proof: Notice that since u = argmax1≤i≤n Ui, we have that,

Uu ≥ Uj for all j ∈ [1 : n]. (75)

1) Notice that µk = 0 by definition, when k > u − 1. Now suppose k ≤ u − 1 (so u ≥ 2).

We are required to prove,

Fk+1 ≥
u

3
F1

+
∑u

k=2
1
Fk

, (76)

for all k ∈ {2, 3, . . . , u−1}. It is enough to prove the above for k = u−1, since Fk ≥ Fk+1

for k ≥ 2. Notice that from (75), we have that Uu ≥ Uu−1. Substituting from (69) and

simplifying, we have the result.

2) Substituting from the definition of µk and simplifying yields the result.

3) If u = n, there is nothing to prove. Otherwise, it is enough to prove the result for k = u+1,

since Fk ≥ Fk+1 for k ≥ 2. From (75), we have that Uu ≥ Uu+1. Substituting from (69)

and simplifying, we have the result.

Notice that due to Lemma 6-1, we have that µi ≥ 0 for all i ∈ {1, . . . , n− 1}. Hence, consider

the dual problem (P2-1-µ) with µ defined in (74). For this choice of µk, after eliminating the

µk, which are zero, we have that the objective of the problem (P2-1-µ) is,

p1F1

(

1

3
+

u−1
∑

i=1

µi

)

+

u
∑

k=2

pkFk(1− 3µk−1) +

n
∑

k=u+1

pkFk, (77)

Now, due to Lemma 6-2, the above objective simplified to,
u
∑

i=1

piC +

n
∑

k=u+1

pkFk, where C =
u

3
F1

+
∑u

i=2
1
Fi

. (78)
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Also, notice that from Lemma 6-3, we have that C ≥ Fk for all k ∈ {u+ 1, . . . , n}. Hence, the

optimal solution for (P2-1-µ) is any p ∈ I such that pk = 0 for all k ∈ {u+ 1, . . . , n}. Hence,

p∗ given in (73) is a solution to (P2-1-µ). We establish that (p∗,µ) also satisfy the conditions of

Lemma 4. First, recall that p∗ satisfies the constraints of the problem (P2-1). Second, from (74)

notice that µk > 0 implies that k ∈ {1, . . . , u − 1}. Also, from (73) notice that p∗1F1 = 3C/u,

and p∗k+1Fk+1 = C/u for all k ∈ {1, . . . , u − 1}, where C is defined in (78). Hence, we have

that µk > 0 implies p∗1F1 = 3p∗k+1Fk+1. Hence from Lemma 4, p∗ is the solution to (P2-1).

2) Solving (P2-2): Consider the problem (P2-2).

(P2-2) : max f2(p) =

n
∑

k=1

pkFk −
p1F1

2
− p2F2

2

s.t. p ∈ I, p1F1 ≤ 3p2F2, p1F1 ≥ p2F2,

p2F2 ≥ pkFk ∀3 ≤ k ≤ n,

(79)

Similar to the solution of (P2-1), consider the Lagrangian dual (P2-2-µ) of the above problem

for µ ∈ R
n such that µi ≥ 0 for all i ∈ {1, . . . , n} constructed according to Lemma 4,

(P2-2-µ) : max f2(p) + µ1(3p2F2 − p1F1) + µ2(p1F1 − p2F2) +

n
∑

k=3

µk(p2F2 − pkFk)

s.t. p ∈ I.
(80)

We solve the problem by considering two cases. Similar to the solution of (P2-1), for each case

we will provide a vector p∗ ∈ I and the Lagrange multiplier vector µ ∈ R
n such that µi ≥ 0

for all i ∈ {1, . . . , n}, p∗ is a solution to the problem (P2-2-µ), p∗ is feasible for the problem

(P2-2) specifically,

1) p∗ ∈ I
2) p∗1F1 ≤ 3p∗2F2

3) p∗1F1 ≥ p∗2F2

4) p∗2F2 ≥ p∗kFk for all k ∈ {3, . . . , n}

and (p∗,µ) satisfy the conditions of the Lagrange multiplier lemma (Lemma 4), namely,

1) p∗ is feasible for (P2-2)

2) µ1 > 0 =⇒ p∗1F1 = 3p∗2F2

3) µ2 > 0 =⇒ p∗1F1 = p∗2F2

4) For k ≥ 3, µk > 0 =⇒ p∗2F2 = p∗kFk.

June 2023 DRAFT



26

Let us define u = argmax2≤i≤n Ui, and v = argmax2≤i≤n Vi, where the sequences (Ui; 1 ≤
i ≤ n), and (Vi; 2 ≤ i ≤ n) are defined in (69), and (70), respectively, and argmax returns

the least index in the case of ties. In this case, to define u, we only consider the indices of the

(Ui; 1 ≤ i ≤ n) sequence starting from 2 in contrast to the definition of u in the solution to

(P2-1). Now, we introduce the two cases.

Case 1 Vv > Uu: The solution to (P2-2) in this case is p∗ where,

p∗k =











1

Fk
∑v

j=1
1

Fj

if 1 ≤ k ≤ v

0 otherwise,

(81)

with optimal objective value Vv. It can be easily checked by substitution from (81) that, p∗ ∈ I,

p∗1F1 = p∗kFk for all k ∈ {1, . . . , v}, and p∗kFk = 0 for all k ∈ {v + 1, . . . , n}. Hence, p∗ is

feasible for (P2-2). Now, we focus on constructing the Lagrange multiplier vector µ. Define the

vector µ ∈ R
n as,

µk =



























1
F1

v−1
∑v

k=1
1

Fk

− 1
2

if k = 2,

1− 1
Fk

v−1
∑v

k=1
1

Fk

if 3 ≤ k ≤ v,

0 otherwise.

(82)

Now, we prove the following lemma regarding µ.

Lemma 7: Consider the µ defined in (82). We have that,

1) µk ≥ 0 for all k such that 1 ≤ k ≤ n.

2) F1

(

1
2
+ µ2

)

= F2

(

1
2
− µ2 +

∑v
i=3 µi

)

= Fk(1− µk) =
v−1

∑v
k=1

1

Fk

for 3 ≤ k ≤ v.

3) Fk ≤ v−1
∑v

k=1
1

Fk

for v + 1 ≤ k ≤ n

Proof: Notice that since u = argmax2≤i≤n Ui, and v = argmax2≤i≤n Vi, we have that

Uu ≥ Uj for all j ∈ [2 : n], and Vv ≥ Vj for all j ∈ [2 : n]. Since from the case description, we

have that Vv > Uu, we should have that,

Vv ≥ Vj for all j ∈ [2 : n] and Vv > Uj for all j ∈ [2 : n] (83)

1) Notice that the result trivially follows for k 6∈ {2, . . . , v} since µk = 0 for such k. Hence,

we will focus on k ∈ {2, . . . , v}. We first prove that µ2 ≥ 0. Notice that from (83), we

have that Vv > Uv. After substituting from (69) and (70) and simplifying, we have the
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desired result. To obtain the result for 3 ≤ k ≤ v, we can assume that v ≥ 3. Notice that

we are required to prove,

Fk ≥
v − 1
∑v

k=1
1
Fk

. (84)

It is enough to prove the above for k = v, since Fk ≥ Fk+1 for k ≥ 3. From (83) we have

that, Vv ≥ Vv−1. Substituting from (70) and simplifying gives the result.

2) Substituting from the definition of µk simplifying will yield the result.

3) If v = n, there is nothing to prove. Otherwise, it is enough to prove the result for k = v+1,

since Fk ≥ Fk+1 for k ≥ 3. From (83) we have that, Vv ≥ Vv+1. Substituting from (70)

and simplifying gives the result.

Notice that due to Lemma 7-1, we have that µi ≥ 0 for all i ∈ {1, . . . , n}. Hence, similar to the

solution to (P2-1), consider the dual problem (P2-2-µ) with µ defined in (82). After eliminating

the µk, which are zero, we have that the objective of the problem (P2-2-µ) is,

p1F1

(

1

2
+ µ2

)

+ p2F2

(

1

2
− µ2 +

v
∑

i=3

µi

)

+

v
∑

k=3

pkFk(1− µk) +

n
∑

k=v+1

pkFk, (85)

Due to Lemma 7-2, the above objective simplified to,

v
∑

i=1

piC +
n
∑

k=v+1

pkFk, where C =
v − 1
∑v

i=1
1
Fi

. (86)

From Lemma 7-3, we have that C ≥ Fk for all k ∈ {v + 1, . . . , n}. Hence, similar to the

solution to (P2-1), the optimal solution for (P2-2-µ) is any p ∈ I such that pk = 0 for all

k ∈ {v+ 1, . . . , n}. Hence, p∗ given in (81) is a solution to (P2-2-µ). Recall that p∗ is feasible

for (P2-2). Hence, we are only required to establish that (p∗,µ) satisfies the conditions of

Lemma 4. From (82) notice that µk > 0 implies that k ∈ {2, . . . , v}. From (81) notice that

p∗kFk = p∗1F1, for all k ∈ {1, . . . , v}. Hence, µk > 0 implies the corresponding constraint is met

with equality. Hence from Lemma 4, p∗ is the solution to (P2-2).

Case 2 Uu ≥ Vv: The solution to (P2-2) in this case is p∗ where,

p∗k =



























3

F1
3

F1
+
∑u

j=2
1

Fj

if k = 1

1

Fk
3

F1
+
∑u

j=2
1

Fj

if 2 ≤ k ≤ u

0 otherwise,

(87)
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with optimal objective value Uu. First notice that p∗ is feasible for (P2-2), since from (87) we

have p∗ ∈ I, p∗1F1 = 3p∗kFk for all k ∈ {2, . . . , u}, and p∗kFk = 0 for all k ∈ {u + 1, . . . , n}.
Similar to case 1, we construct the Lagrange multiplier vector µ. Consider the vector µ ∈ R

n

given by,

µk =



























1
2
− 1

F1

u
3

F1
+
∑u

k=2
1

Fk

if k = 1,

1− 1
Fk

u
3

F1
+
∑u

k=2
1

Fk

if 3 ≤ k ≤ u,

0 otherwise.

(88)

We have the following lemma.

Lemma 8: For the µ defined in (88), we have that,

1) µk ≥ 0 for all k such that 1 ≤ k ≤ n.

2) We have,

F1

(

1

2
− µ1

)

= F2

(

1

2
+ 3µ1 +

u
∑

i=3

µi

)

= Fk(1− µk) =
u

3
F1

+
∑v

k=2
1
Fk

for 3 ≤ k ≤ u.

(89)

3) Fk ≤ u
3

F1
+
∑u

k=2
1

Fk

for u+ 1 ≤ k ≤ n

Proof: Notice that since u = argmax2≤i≤n Ui, and v = argmax2≤i≤n Vi, we have that

Uu ≥ Uj for all j ∈ [2 : n], and Vv ≥ Vj for all j ∈ [2 : n]. Since from the case description, we

have that Uu ≥ Vv, we should have that,

Uu ≥ Uj for all j ∈ [2 : n] and Uu ≥ Vj for all j ∈ [2 : n] (90)

1) Notice that this condition is trivially satisfied for k ∈ {2}∪{u+1, . . . , n} since µk = 0 for

such k. Hence, we focus on k 6∈ {2}∪{u+1, . . . , n}. First, we prove that µ1 ≥ 0. Notice

that from (90), we have that Uu ≥ Vu. Substituting from (69) and (70) and simplifying,

we have the desired result. To obtain the result for 3 ≤ k ≤ u, notice that we can assume

u ≥ 3. Notice that from (90), we have that Uu ≥ Uu−1. Substituting from (69) and

simplifying, we have the desired result.

2) Substituting from the definition of µk simplifying will yield the result.

3) If u = n, there is nothing to prove. Otherwise, it is enough to prove the result for k = u+1,

since Fk ≥ Fk+1 for k ≥ 3. From (90) we have that, Uu ≥ Uu+1. Substituting from (69)

and simplifying gives the result.
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The analysis is very similar to case 1. Notice that due to Lemma 8-1, we have that µi ≥ 0 for

all i ∈ {1, . . . , n}. Similar to case 1, consider the dual problem (P2-2-µ) with µ defined in (88).

After eliminating the µk, which are zero, we have that the objective of the problem (P2-2-µ) is,

p1F1

(

1

2
− µ1

)

+ p2F2

(

1

2
+ 3µ1 +

u
∑

i=3

µi

)

+
u
∑

k=3

pkFk(1− µk) +
n
∑

k=u+1

pkFk, (91)

Due to Lemma 8-2, the above objective simplified to,

u
∑

i=1

piC +
n
∑

k=u+1

pkFk, where C =
u

3
F1

+
∑u

i=2
1
Fi

. (92)

From Lemma 8-3, we have that C ≥ Fk for all k ∈ {u + 1, . . . , n}. Hence, similar to case 1,

the optimal solution for (P2-2-µ) is any p ∈ I such that pk = 0 for all k ∈ {u + 1, . . . , n}. In

particular, p∗ given in (87) is a solution to (P2-2-µ). Recall that p∗ is feasible for (P2-2). Now,

we establish that (p∗,µ) also satisfy the conditions of Lemma 4. From (88) notice that µk > 0

implies that k ∈ {1}∪{3, . . . , v}. From (87) notice that p∗1F1 = 3p∗2F2, and p∗kFk = p∗2F2 for all

k ∈ {3, . . . , v}. Hence, µk > 0 implies the corresponding constraint is met with equality. Hence

from Lemma 4, p∗ is the solution to (P2-2).

3) Solving (P2): Finally, we are ready to combine the solutions of (P2-1) and (P2-2) to solve

(P2). Notice that since we solved (P2-1) and (P2-2), we have solved all of the n2 problems

(P2-i), and (P2-(i, j)) for i, j ∈ [1 : n] such that i 6= j. Hence, we can solve (P2) by solving all

the above problems and finding the one that gives the highest optimal objective. But, it turns out

that it is, in fact, enough to solve (P2-1), and (P2-(1, 2)). To prove this, Consider arbitrary (i, j)

such that 1 ≤ i, j ≤ n such that i 6= j. Define, D ∈ R
n to be the vector obtained by permuting

the entries of E such that D1 = Ei, D2 = Ej , and Dk ≥ Dk+1 for k ∈ [3 : n− 1]. Notice that

due to the solution of (P2-2), the optimal value of (P2-(i, j)) is given by,

γ∗ = max

{

a− 1
∑a

k=1
1
Dk

,
b

3
D1

+
∑b

k=2
1
Dk

∣

∣

∣

∣

∣

2 ≤ a, b ≤ n

}

, (93)

Notice that,

max

{

a− 1
∑a

k=1
1
Ek

,
b

3
E1

+
∑b

k=2
1
Ek

∣

∣

∣

∣

∣

a, b ∈ [2 : n]

}

≥ γ∗, (94)

where the inequality follows since
∑a

k=1
1
Ek
≤
∑a

k=1
1
Dk

, and 3
E1

+
∑b

k=2
1
Ek
≤ 3

D1
+
∑b

k=2
1
Dk

for all a, b ∈ [2 : n]. This follows since, Ek ≥ Ek+1 for all k ∈ [1 : n − 1]. But notice that the
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left-hand side of (94) is the optimal value of (P2-(1, 2)). Hence, the optimal value of (P2-(1, 2))

is at least as that of (P2-(i, j)). Hence, it is enough to solve (P2-(1, 2)). With similar reasoning,

we can establish that solving (P2-1) suffices. Considering the solutions (P2-(1, 2)) and (P2-1),

we have the result. The theorem below summarizes the solution we constructed for (P2).

Theorem 3: Define the two sequences (Ui; 1 ≤ i ≤ n), and (Vi; 2 ≤ i ≤ n) according to (69),

and (70), respectively with F = E. Let u = argmax1≤i≤n Ui, and v = argmax2≤i≤n Vi, where

argmax returns the least index in the case of ties. Then, the solution to (P2) can be described

in two cases.

Case 1: If Vv > Uu, the solution to (P2) is p∗, where,

p∗k =











1

Ek
∑v

j=1
1

Ej

if 1 ≤ k ≤ v

0 otherwise.

(95)

Case 2: If Uu ≥ Vv, the solution to (P2) is p∗, where,

p∗k =



























3

E1
3

E1
+
∑u

j=2
1

Ej

if k = 1

1

Ek
3

E1
+
∑u

j=2
1

Ej

if 2 ≤ k ≤ u

0 otherwise.

(96)

Proof: Recall that the solution of (P2) is either the solution of (P2-1) or (P2-(1, 2)),

depending on which problem produces the higher optimal objective value. We will consider

the following two cases.

Case 1: Vv > Uu: In this case, from the analysis in Section V-A2, we have that the solution to

(P2-(1, 2)) is (95), with an objective value equal to Vv. Also, from the analysis in Section V-A1,

we have that the solution to (P2-1) is (96), with an objective value equal to Uu. Since Vv > Uu,

we have the result.

Case 2: Vv ≤ Uu: In this case, from the analysis in Section V-A2, we have that the optimal

objective value of (P2-(1, 2)) is max{Vv, Uu
′}, where u

′

= argmax2≤i≤n Ui. But notice that since

u = argmax1≤i≤n Ui, we have that Uu
′ ≤ Uu. Combining this with the case description, we have

that max{Vv, Uu
′} ≤ Uu. Also, from the analysis in Section V-A1, we have that the solution to

(P2-1) is (96), with an objective value equal to Uu. Since Vv ≤ Uu, we have the result.
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Fig. 1. Left: The mean rewards of different resources. Right: Probabilities of choosing different resources for the considered

E.

Fig. 1 denotes the optimal probabilities found for n = 10, along with,

E = [7, 6.7, 5.5, 4.5, 1.26, 1.21, 1.16, 1.11, 1.05, 1.0]. (97)

It is interesting to notice the variation of choice probabilities in Fig. 1. In particular, it can be

seen that while it is optimal to choose a collection of resources with the highest mean rewards

with non-zero probability, within the collection, one chooses resources with lower mean rewards

with higher probability. This can be explained as follows. First, player A1 will never choose the

resources with the lowest mean rewards. Second, in the collection of resources with relatively

high mean rewards, player A1 may be tempted to choose resources with lower mean rewards

with high probability since, in the worst case, opponents will choose the rewards with the highest

mean rewards.

B. m = 2, arbitrary r

The case r = 1 is solved in [13]. The solution is given by, p∗ where,

p∗k =















1

Ek

(

∑u
j=1

1

Ej

) if k ≤ u,

0 otherwise,

(98)

and,

u = arg max
1≤k≤n

k − 1
2

∑k
j=1

1
Ej

, (99)
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See [13] for the proof.

The general two-player case can be reduced to a linear program. Again fworst can be found

explicitly in this case. It can be easily seen that

fworst(p) =
n
∑

k=1

pkEk −
1

2

(

r
∑

j=1

max(j){pkEk; 1 ≤ k ≤ n}
)

, (100)

where max(j) returns the j-th largest element in a set. Consider the following
(

n

r

)

linear programs,

each indexed by a size r ordered subset of [1 : n] containing distinct elements, where the problem

(P-a1, a2, .., ar) with ak ∈ [1 : n] for each k ∈ [1 : r] and ak < ak+1 for k ∈ [1 : r − 1], is given

by,

(P-a1, a2, .., ar): max
p, γ

n
∑

j=1

pjEj −
1

2

(

r
∑

j=1

pajEaj

)

s.t. p ∈ I,

pajEaj ≥ γ ∀1 ≤ j ≤ r,

γ ≥ ptEt ∀t ∈ [1 : n] \ {a1, a2, .., ar}

(101)

Notice that the solution of (P2) is the solution of the problem out of the above
(

n

r

)

problems

with the maximum objective value. Hence, solving (P2) amounts to solving
(

n

r

)

linear programs.

In the below lemma, we prove that it is, in fact, enough to solve (P-1, 2, .., r)

Lemma 9: The optimal objective value of (P-1, 2, .., r) is at least the optimal objective value

of (P-a1, a2, .., ar), where ak ∈ [1 : n] for each k ∈ [1 : r] and ak < ak+1 for each k ∈ [1 : r−1].

Proof: See Appendix C

For 1 ≤ a, b ≤ n, define,

Sa,b =











∑b
i=a

1
Ei

if b ≥ a

0 otherwise

, (102)

Now, we focus on constructing the solution for the problem subjected to two assumptions.

A1 E1, E2, . . . , En are distinct real numbers

A2 for all a ∈ [1 : r], and b ∈ [r + 1, n], EbSa,b is not an integer.

The solution for this case is defined in terms of three functions h : [0 : r− 1]× [r+1 : n]→ R,

e : [0 : r − 1] × [r + 1 : n] → R, and g : [r + 1 : n] × [r + 1 : n] → R. Before introducing the

three functions, we begin with a few definitions.
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Good triplets and bad triplets: We call a triplet (a, b, c) ∈ [0 : r− 1]× [r+1 : n]× [r+1 : n]

a good-triplet if r − a + b − c < EbSa+1,b. If the reverse inequality is true, we call (a, b, c) a

bad-triplet index.

The following lemma introduces certain properties regarding triplets.

Lemma 10: Consider the following scenarios.

1) If (a, b, c) is a good-triplet then,

a) If b > r + 1, then (a, b− 1, c) is a good-triplet

b) If c < n, then (a, b, c+ 1) is a good-triplet

c) If a < r − 1, then (a+ 1, b, c) is a good-triplet

d) If a > 0, and c < n, then (a− 1, b, c+ 1) is a good-triplet

2) If (a, b, c) is a bad-triplet then,

a) If b < n, then (a, b+ 1, c) is a bad-triplet

b) If c > r + 1, then (a, b, c− 1) is a bad-triplet

c) If a > 0, then (a− 1, b, c) is a bad-triplet

d) If a < r − 1, and c > 0, then (a + 1, b, c− 1) is a bad-triplet

Proof: See Appendix D

Function h: From Lemma 10-1-a, 2-a, we have that, for fixed (a, c) ∈ [0 : r − 1]× [r + 1, n],

either (a, b, c) are good-triplets for all b ∈ [r+1, n], (a, b, c) are bad-triplets for all b ∈ [r+1, n],

or there exists a unique b ∈ [r+1, n− 1] such that (a, b, c) is a good-triplet and (a, b+1, c) is a

bad-triplet. Define h(a, c) = n in the first case, h(a, c) = r in the second case, and h(a, c) = b

where b is the unique index in the third case.

Function e: Similarly, from Lemma 10-1-b, 2-b, we have that, for fixed (a, b) ∈ [0 : r − 1] ×
[r + 1, n], either (a, b, c) are good-triplets for all c ∈ [r + 1, n], (a, b, c) are bad-triplets for all

c ∈ [r + 1, n], or there exists a unique c ∈ [r + 2, n] such that (a, b, c) is a good-triplet and

(a, b, c−1) is a bad-triplet. Define e(a, b) = r+1 in the first case, e(a, b) = n+1 in the second

case, and e(a, b) = c where c is the unique index in the third case.

Function g: Similarly, from Lemma 10-1-c, 2-c, we have that, for fixed (b, c) ∈ [r + 1, n] ×
[r + 1, n], either (a, b, c) are good-triplets for all a ∈ [0, r − 1], (a, b, c) are bad-triplets for all

a ∈ [0, r − 1], or there exists a unique a ∈ [1, r − 1] such that (a, b, c) is a good-triplet and

(a− 1, b, c) is a bad-triplet. Define g(b, c) = 0 in the first case, g(b, c) = r in the second case,
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and g(b, c) = a where a is the unique index in the third case.

Now, we construct the explicit solution using the functions defined above.

Theorem 4: Assume that we are given the two assumptions A1, and A2 are true. Define the

three sets X1,X2,X3, as

X1 = {(a, c) ∈ [0 : r − 1]× [r + 1 : n]|r < h(a, c)}

X2 = {(a, b) ∈ [0 : r − 1]× [r + 1 : n]|b < e(a, b) ≤ n}

X3 = {(b, c) ∈ [r + 1 : n]× [r + 1 : n]|b ≤ c, 0 < g(b, c) ≤ r − 1}, (103)

and define the vectors p1,a,c for (a, c) ∈ X1, p
2,a,b for (b, c) ∈ X2 and p3,b,c for (b, c) ∈ X3,

where,

1) for (a, c) ∈ X1

p1,a,ck =







































1 if 1 ≤ k ≤ a

r−a+b−c
EkSa+1,b

if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c

0 otherwise,

(104)

where b = min{h(a, c), c},
2) for (a, b) ∈ X2,

p2,a,bk =



















































1 if 1 ≤ k ≤ a

Eb

Ek
if a + 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c− 1

(r − a) + b− c− EbSa+1,b−1 if k = c

0 otherwise,

(105)

where c = e(a, b)
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3) for (b, c) ∈ X3,

p3,b,ck =



















































1 if 1 ≤ k ≤ a− 1

r − a + b− c− EbSa+1,b−1 if k = a

Eb

Ek
if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c

0 otherwise,

(106)

where a = g(b, c).

1) We have that,

a) p1,a,c for all (a, c) ∈ X1 are all valid vectors belonging to I.

b) p2,a,b for all (a, b) ∈ X2 are all valid vectors belonging to I.

c) p3,b,c for all (b, c) ∈ X3 are all valid vectors belonging to I.

where p1,a,c,p2,a,b and p3,b,c are defined in (104), (105), and (106), respectively.

2) We have that,

a) for (a, c) ∈ X1, (p1,a,c, γ) is feasible for (P-1,2,..,r), where γ = δ
Sa+1,b

, and b =

min{h(a, c), c}.
b) for (a, b) ∈ X2, (p

2,a,b, γ) is feasible for (P-1,2,..,r), where γ = Eb

c) for (b, c) ∈ X3, (p
3,b,c, γ) is feasible for (P-1,2,..,r), where γ = Eb

d) the pair (p0, γ), where

p0k =











1 if 1 ≤ k ≤ r

0 otherwise

(107)

and γ = Er+1 is feasible for (P-1,2,..,r).

3) The solution to (P-1, 2, .., r) is the one that produces the maximum objective value out of

the elements in the following set

A ={p0} ∪ {p1,a,c : (a, c) ∈ X1} ∪ {p2,a,b : (a, b) ∈ X2} ∪ {p3,b,c : (b, c) ∈ X3}, (108)

along with the γ values defined in part-2.

Proof: See Appendix E
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Fig. 2. Left: The mean rewards of different resources. Right: Probabilities of choosing different resources for the considered

E.

Fig. 2 denotes the optimal probabilities found for n, r = 10, 3, along with E given by,

Ej =























7 if j = 1

6.7 if j = 2

1 + 60−3j
19

otherwise

(109)

In Fig. 2, it can be seen that player A1 will always choose a subset of resources with the highest

mean rewards, and the probabilities of choosing the remaining resources follow a similar pattern

to the m = 3, r = 1 case described in Section V-A. The intuition behind this is also very similar

to the three-player singleton case.

VI. SIMULATION RESULTS

For the simulations, consider the scenarios given below,

1) m = 2, r = 1, n = 4.

2) m = 2, r = 3, n = 4.

3) m = 3, r = 1, n = 4.

4) m = 5, r = 1, n = 4.

5) m = 5, r = 1, n = 6.

6) m = 5, r = 3, n = 6.

For all the simulations, we fix Ei = 1 for i > 1 and plot different quantities as functions of

E1. In both Figures 3 and 4, the top row depicts the maximum expected worst-case utility as a

function of E1 and the bottom row, depicts a solution for the probabilities of choosing different
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resources as a function of E1 (Notice that there can be multiple solutions for optimal selection

probabilities). Figure 3 shows the first three scenarios, whereas Figure 4 shows the last three

scenarios.

Notice that similar to the observations in [13], in Figures 3 and 4, we have that the probabilities

of choosing resource 1 exhibit similar patterns over several ranges. In particular, it can be seen

that the probability of choosing resource 1 vs. E1 curve has m discontinuities, and between two

adjacent discontinuities, the curve is decreasing. The reason for the decreasing trend of choice

probability between discontinuities can be explained using the same idea used to explain the

variation of choice probabilities over the resources for a fixed E described in Section V-A. In

particular, increasing E1 might mean that other players are more likely to choose resource 1. On

the other hand, the probability of choosing resource 1 should also increase at certain points since

for large values of E1 it makes sense to choose resource 1 with high probability irrespective

of the decision of other players. For instance, in the case of E1 > m with r = 1, player A1

chooses resource 1 with probability 1 since even if all the other players select resource 1, it is

beneficial for player A1 to select it. This is also evident by the simulation results in Figures 3

and 4. Hence, the discontinuities of the probability of choosing resource 1 vs. E1 curve can be

seen as points at which the confidence of player A1 on choosing resource 1 grows.

VII. CONCLUSIONS

In this paper, we considered the problem of worst-case expected utility maximization for

the first player of multi-player resource-sharing games with fair reward allocation under two

settings. In the first setting, we provided an algorithmic solution to a one-slot game, where we

also provided explicit solutions for two special cases. For the second setting, we considered an

online scenario, for which we provided an upper confidence bound algorithm that achieves a

worst-case regret of O(
√

T log (T )). The simulations and the explicit solutions depict interesting

variations of the probability of choosing a resource when the mean of the considered resource

is changed while holding the mean reward of other resources fixed.
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Fig. 3. 1st column: Case m = 2, r = 1, n = 4. 2nd column: Case m = 2, r = 3, n = 4. 3rd column: Case m = 3, r =

1, n = 4. Top: The worst case expected utility of player 1 vs. E1 (The maximum possible error of the solution is indicated

for scenarios 4 and 5). Bottom: One possible solution for the probabilities of choosing different resources when the worst-case

approach is used vs. E1 (Notice that the probabilities sum to r).
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Fig. 4. 1st column: Case m = 5, r = 1, n = 4. 2nd column: Case m = 5, r = 1, n = 6. 3rd column: Case m = 5, r =

3, n = 6. Top: The worst case expected utility of player 1 vs. E1, along with the maximum possible error of the solution.

Bottom: One possible solution for the probabilities of choosing different resources when the worst-case approach is used vs.

E1.
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APPENDIX A

ALGORITHM FOR SAMPLING FROM I

Algorithm 4: Algorithm to express p ∈ I as a convex combination of elements in J1.

1 Initialize an empty set Y
2 Initialize p1 = p, t = 1

3 while pt 6= 0 do

4 Let ak for 1 ≤ k ≤ n be such that {a1, a2, . . . , an} is a permutation of [1 : n] such

that ptak ≥ ptak+1
for k ∈ [1 : n− 1]

5 Set dt = min
(

1−
∑t−1

k=1 dk − ptar+1
, ptar

)

6 for each i ∈ [1 : r] do

7 Set pt+1
ai

= ptai − dt

8 end

9 for each i ∈ [r + 1 : n] do

10 Set pt+1
ai

= ptai

11 end

12 Add (dt, α[t]) to Y where,

αj[t] =











1 if j ∈ {a1, a2, . . . , ar}

0 otherwise

(110)

13 Set t← t+ 1

14 end

15 Output Y
(

We have p =
∑|Y|

t=1 dtα[t]
)

.

APPENDIX B

PROOF OF LEMMA 1-2

It can be easily seen that Conv(J1) ⊆ I. To prove that I ⊆ Conv(J1), we start by noticing

that I is a compact convex set. We prove that the extreme points of the set I are contained

in J1, which establishes the claim (See, for example, [47]). Hence, we prove that none of the
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elements of I \ J1 is an extreme point of I. For this, take any p ∈ I \ J1. Notice that since

p 6∈ J1 and p ∈ I, there exists k, j ∈ [1 : n] such that 0 < pj < pk < 1. Now take ε > 0 such

that pj − ε > 0 and pk + ε < 1. Define the vector p̃ such that,

p̃i =























pi if i 6∈ {k, j}

pj − ε if i = j

pk + ε if i = k

(111)

Notice that I contains the entire line segment joining p and p̃. Hence, p is not an extreme point

of I as desired.

APPENDIX C

PROOF OF LEMMA 9

Let A = (a1, a2, .., ar) be a subset of [1 : n] containing distinct elements such that ak < ak+1

for each k ∈ [1 : r − 1]. Consider the problem (P-A). Let us B = [1 : n] \ A. Denote Abad =

A \ [1 : r] as the set of bad-1 indices and the set, Bbad = B ∩ [1 : r] as the set of bad-2 indices.

Notice that for any given problem, there are an equal number of bad-1 and bad-2 indices. We

intend to prove that there is an optimal solution with no bad-1 (or bad-2) indices. For this,

we establish that for any problem with k > 0 bad-1 elements, there exists another problem

with k − 1 bad-1 indices with an objective value at least as the objective value of the problem

with k bad-1 indices. Assume (P-A) has k bad-1 indices. Let (p, γ) be the optimal solution of

(P-a1, a2, .., ar). We consider two cases.

Case 1: There is no pair (a
′

, b
′

) such that a
′

is a bad-1 index and b
′

is a bad-2 such that

Ea
′ < Eb

′ .

Notice that any bad-1 index is greater than any bad-2 index. Hence, for pair (i, j) such that

i is a bad-1 index, and j is a bad-2 index, we have that Ej ≥ Ei (Since E is assumed to be

decreasing). Hence, the above condition would mean that Ej = Ei for all i, j such that i is

bad-1, and j is bad-2. Hence (p, γ) will be feasible for (P-(A \ {i} ∪ {j})) as well. Moreover,

(p, γ) will give the same objective value for (P-(A\{i}∪{j})) as (P-A), and (P-(A\{i}∪{j}))
will have k − 1 bad-1 indices.

Case 2: There exists a pair (a
′

, b
′

) such that a
′

is a bad-1 index and b
′

is a bad-2 such that

Ea
′ < Eb

′ .
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We begin with the following two lemmas.

Lemma 11: There exists t ∈ A, and s ∈ B such that Etpt = Esps = γ.

Proof: We only prove the existence of t ∈ A such that Etpt = γ. The other part can be solved

by repeating the same argument. Assume the contrary. Let γ∗ = (min{pjEj ; j ∈ A} + γ)/2.

We have that γ∗ > γ, and pjEj > γ∗ for all j ∈ A. Notice that pa′ > 0 and pb′ < 1 (The first

inequality follows since pa′Ea
′ > pb′Eb

′ , and the second inequality follows since pa′Ea
′ > pb′Eb

′ ,

and Eb
′ > Ea

′ ). Hence, there exists δ > 0, small enough such that,

Ea
′ (pa′ − δ) ≥ γ∗ (112)

Eb
′ (pb′ + δ) ≤ γ∗ (113)

(pa′ − δ) ≥ 0 (114)

(pb′ + δ) ≤ 1. (115)

Hence (p̃, γ∗), where p̃ is given by,

p̃k =























pk if k ∈ [1 : n] \ {a′

, b
′}

pa′ − δ if k = a
′

pb′ + δ if k = b
′

(116)

is feasible for (P-a1, a2, .., ar), and also achieves a higher optimal objective value since Eb
′ > Ea

′ .

This is a contradiction.

Lemma 12: For (P-a1, a2, .., ar), there exists an optimal solution with at least one bad-1

element a such that, Eapa = γ, and at least one bad bad-2 element b such that Ebpb = γ.

Proof: Notice that for all k ∈ A \ Abad, and j ∈ Abad, we have that Ek ≥ Ej .

Notice that the entries of p can be rearranged without affecting the objective and feasibility for

(P-a1, a2, .., ar) such that the following two conditions are satisfied.

C1 For k ∈ A \ Abad, and j ∈ Abad, if we have Ek = Ej , then pk ≥ pj .

C2 For k ∈ B \ Bbad, and j ∈ Bbad if we have Ek = Ej , then pj ≥ pk.

Now we establish that any optimal p reordered such that both C1 and C2 are met satisfy the

conditions of the lemma. We show only the bad-1 case. The bad-2 case can be solved using the

same argument.
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Assume the contrary. Hence, all bad-1 elements j satisfy Ejpj > γ. Consider t ∈ A such

that Etpt = γ (Such a t always exists from Lemma 11). Notice that t cannot be bad-1. Hence

Et ≥ Ej for all bad-1 indices j. In this case, we have the following claim.

Claim: There exists a bad-1 index i such that Ei < Et.

Proof: If no such bad-1 index i exists, then we should have Et = Ej for all bad-1 indices

j. From C1, this would imply that pt ≥ pj for all bad-1 indices j. Hence, we should have

Etpt ≥ Ejpj > γ, which contradicts Etpt = γ.

Consider the i described in the Claim. Since Etpt = γ < Eipi, and Et > Ei, we have that,

pt < pi ≤ 1. Also we have that pi > 0 since Eipi > γ. Hence, it is possible to find δ > 0, small

enough such that,

Ei(pi − δ) ≥ γ (117)

(pi − δ) ≥ 0 (118)

(pt + δ) ≤ 1. (119)

Since Et > Ei it is easy to see that, (p̃, γ) given by,

p̃k =























pk if k ∈ [1 : n] \ {i, t}

pi − δ if k = i

pt + δ if k = t

(120)

is a better solution to (P-a1, a2, .., ar). This is a contradiction.

Now, let a, b be the indices such that a is bad-1 and Eapa = γ, and b is bad-2 and Ebpb = γ,

which are guaranteed to exists due to Lemma 12. Consider the problem, (P-(A\{a})∪{b}), which

has k − 1 bad-1 elements. Notice that since Eapa = Ebpb = γ, we have that (p, γ) is feasible

for (P-(A \ {a}) ∪ {b}). Also, the objective values of (P-(A \ {a}) ∪ {b}) and (P-a1, a2, .., ar)

evaluated at (p, γ) are equal. Hence, we are done.

APPENDIX D

PROOF OF LEMMA 10

Let δ = r − a+ b− c.

1) Recall that (a, b, c) being a good-triplet is equivalent to,

δ < EbSa+1,b (121)
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a) Notice that,

r − a + b− 1− c = δ − 1 <(a) EbSa+1,b − 1 = EbSa+1,b−1 ≤ Eb−1Sa+1,b−1, (122)

where (a) follows from (121), and the last inequality follows since Eb−1 ≥ Eb.

b) Notice that,

r − a + b− (c+ 1) = δ − 1 <(a) EbSa+1,b − 1 < EbSa+1,b (123)

where (a) follows from (121)

c) Notice that,

r − (a+ 1) + b− c = δ − 1 <(a) EbSa+1,b − 1 = EbSa+1,b−1 < EbSa+2,b. (124)

where (a) follows from (121) and the last inequality follows since Sa+2,b ≥ Sa+1,b−1,

which follows since E is non-increasing in it’s components.

d) Notice that,

r − (a− 1) + b− (c+ 1) = δ <(a) EbSa+1,b < EbSa,b, (125)

where (a) follows from (121).

2) All the claims in this part follow from the contra-positives of the corresponding claims in

part 1.

APPENDIX E

PROOF OF THEOREM 4

1)

a) Recall that, X1 = {(a, c) ∈ [0 : r − 1]× [r + 1 : n]|r < h(a, c)}, and p1,a,c for (a, c) ∈ X1 is

defined as,

p1,a,ck =







































1 if 1 ≤ k ≤ a

r−a+b−c
EkSa+1,b

if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c

0 otherwise,

(126)

where b = min{h(a, c), c}. We first prove that p1,a,c, is a valid vector in I.
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Since (a, c) ∈ X1, we have that h(a, c) > r and c > r, which implies that,

0 ≤ a < r < b ≤ c ≤ n. (127)

Notice that since h(a, c) > r, from the definition of h, we have that (a, h(a, c), c) is a good-triplet.

Since b ≤ h(a, c), combining with Lemma 10-1-a, we have that,

(a, b, c) is a good-triplet. (128)

This means that,

r − a+ b− c < EbSa+1,b. (129)

Also, notice that if b < c, then we should have b = h(a, c) and b < n, which implies from the

definition of h that (a, b+ 1, c) is a bad-triplet. Hence,

if b < c, (a, b+ 1, c) is a bad-triplet. (130)

Hence, if b < c we have that,

Eb+1Sa+1,b < r − a+ b− c, (131)

where the inequality is strict due to assumption A2. Since (a, c) ∈ X1, we have that a+1 ≤ r <

b ≤ c, which implies that (126) is a valid definition. Now we check the conditions for p1,a,c ∈ I.

The sum constraint can be checked by direct substitution. The constraint, 0 ≤ p1,a,ck ≤ 1 follows

trivially for k 6∈ [a + 1, b]. For k ∈ [a + 1, b], the constraint 0 ≤ p1,a,ck holds if and only if

r−a+b−c > 0. Notice that this holds whenever b < c due to (131). If b = c, the above reduces

to r − a > 0, which holds since a < r by the definition of X1. Hence, we have,

δ ≥ 0 (132)

Now, to establish that p1,a,ck ≤ 1, we have

p1,a,ck =
δ

EkSa+1,b
≤ δ

EbSa+1,b
≤ 1, (133)

where the last inequality follows due to (129).
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b) Recall that, X2 = {(a, b) ∈ [0 : r− 1]× [r+1 : n]|b < e(a, b) ≤ n}, and p2,a,b for (a, b) ∈ X2

is defined as,

p2,a,bk =



















































1 if 1 ≤ k ≤ a

Eb

Ek
if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c− 1

(r − a) + b− c− EbSa+1,b−1 if k = c

0 otherwise,

(134)

where c = e(a, b). Now, we prove that p1,a,b, is a valid vector in I. Since (a, b) ∈ X2, we have

that,

n ≥ e(a, b) = c > b > r > a ≥ 0 (135)

Notice that since the definition of function e, and the fact that e(a, b) > b ≥ r+1, we have that,

(a, b, c) is a good-triplet, (136)

and

(a, b, c− 1) is a bad-triplet. (137)

This means that,

EbSa+1,b − 1 < r − a+ b− c < EbSa+1,b, (138)

where the first inequality is strict due to assumption A2. Notice that, a + 1 ≤ r < b < c ≤ n.

Hence, p2,a,b defined in (134) is a valid definition. Now we check the conditions for p2,a,b ∈ I
The sum constraint can be checked using direct substitution. Since for k ∈ [a + 1, b] we have,

p2,a,bk =
Eb

Ek

≤ Eb

Eb

= 1, (139)

the constraint, 0 ≤ p2,a,bk ≤ 1 follows trivially for k 6= c.

For k = c, notice that,

p2,a,bc = δ − EbSa+1,b−1 = δ + 1− EbSa+1,b ∈ [0, 1], (140)

where last inequality follows from (138).

June 2023 DRAFT



46

c) Recall that, X3 = {(b, c) ∈ [r + 1 : n]× [r + 1 : n]|b ≤ c, 0 < g(b, c) ≤ r − 1}, and p3,b,c for

(b, c) ∈ X3 is defined as,

p3,b,ck =



















































1 if 1 ≤ k ≤ a− 1

r − a+ b− c−EbSa+1,b−1 if k = a

Eb

Ek
if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c

0 otherwise,

(141)

where a = g(b, c). Since (b, c) ∈ X3, we have that,

0 < a < r < b ≤ c ≤ n. (142)

Notice that since the definition of g, and the fact that g(b, c) > 0, we have that,

(a, b, c) is a good-triplet, (143)

and

(a− 1, b, c) is a bad-triplet. (144)

This means that,

EbSa,b − 1 < r − a+ b− c < EbSa+1,b, (145)

where the first inequality is strict due to assumption A2.

Notice that the definition of p3,b,c in (141) is a valid since 0 < a < r < b ≤ c ≤ n. Now we

check the conditions for p3,b,c ∈ I. The sum constraint can be checked using direct substitution.

Due to the same argument as case 2, in this case, the constraint, 0 ≤ p3,b,ck ≤ 1 follows trivially

for k 6= a. For k = a, notice that,

p3,b,ca = δ −EbSa+1,b−1 = δ + 1−EbSa+1,b ≤ 1, (146)

where the last inequality follows from (145).

2)

a) For k ∈ [1 : a] we have that, p1,a,ck Ek = Ek ≥ pa+1Ea+1 = γ. For k ∈ [a + 1 : b] we have

that, p1,a,ck Ek = γ. Finally, for k ∈ [b+1 : c], we can assume that b < c, in which case we

have that p1,a,ck Ek = Ek ≤ Eb+1 ≤ γ, where the last inequality follows from (129).
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b) For k ∈ [1 : a] we have that, p2,a,bk Ek = Ek ≥ Eb = γ. For k ∈ [a + 1 : b − 1] we have

that, p2,a,bk Ek = Eb = γ. For k ∈ [b + 1 : n], we have that p2,a,bk Ek ≤ Ek ≤ Eb = γ. For

k = b, we have that, p2,a,bb Eb ≤ Eb = γ.

c) For k ∈ [1 : a − 1] we have that, p3,b,ck Ek = Ek ≥ Eb = γ. For k ∈ [a + 1 : b] we have

that, p3,b,ck Ek = Eb = γ. For k ∈ [b + 1 : n], we have that p3,b,ck Ek ≤ Ek ≤ Eb = γ. For

k = a, we have that,

p3,b,cb Ea − Eb = Ea(r − a+ b− c− EbSa+1,b−1)− Eb

= Ea(r − a+ b− c− EbSa,b−1) ≥ 0, (147)

where the last inequality follows due to (145).

d) This follows trivially, by substitution, due to the non-increasing property of E.

3) Define the three sets,

A1 = {p1,a,c : (a, c) ∈ X1}, A2 = {p2,a,b : (a, b) ∈ X2}, A3 = {p3,b,c : (b, c) ∈ X3},

A = {p0} ∪ A1 ∪A2 ∪ A3 (148)

Let us denote by z(q) the objective value of (P-1, 2, .., r) for q ∈ I. We solve the problem under

four cases. The four cases can be summarized as,

C1 Best vector in A comes from A1

C2 Best vector in A comes from A2

C3 Best vector in A comes from A3

C4 Best vector in A is p0, where p0 is defined in (107).

In each of the above cases, we focus on constructing a Lagrange multiplier vector µ ∈ R
n that

will establish the best vector is optimal from Lagrange Multiplier Lemma (Lemma 4).

Case 1: Best vector in A comes from A1

Let p1,a,c denote the best vector where (a, c) ∈ X1 (See the definition in (126)). Define,

b = min{h(a, c), c}.

θ =
r − a

2
+ b− r (149)

and δ = r − a + b− c. Hence, we have,

z(p1,a,c) =

a
∑

i=1

Ei

2
+

θδ

Sa+1,b
+

c
∑

i=b+1

Ei. (150)
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We introduce the following lemma, which will be useful in handling this case.

Lemma 13: We have that,

1) θ
Sa+1,b

≤ Ec

2)
Ea+1

2
≤ θ

Sa+1,b

3) If a > 0, we have, Ea

2
≥ θ

Sa+1,b

4) If c < n, we have, Ec+1 ≤ θ
Sa+1,b

,

where θ is defined in (149).

Proof:

1) We prove this part in several cases. The cases make sense since c ≥ b ≥ r + 1 from (127),

Case 1 c = r+1: Combining b ≤ c and (127), we should have b = r+1. We are required to prove

that Er+1Sa+1,r+1 ≥ r−a
2

+ 1. Notice that in this case, (129) simplifies to r− a < Er+1Sa+1,r+1.

Hence, we are done if r − a ≥ 2. Hence, the only case to check is a = r − 1. In this case, the

required statement simplifies to Er ≤ 2Er+1, which follows from z(p0) ≤ z(p1,a,c), where p0

is defined in (107).

Case 2 c > r+1, b = c, and (a, c−1, c−1) is a good-triplet: From (127) and c−1 ≥ r+1, we

have that (a, c− 1) belongs to the domain of function h. Since (a, c− 1, c− 1) is a good-triplet,

from the definition of function h, we have that h(a, c − 1) ≥ c − 1. Since, c − 1 ≥ r + 1, we

have that (a, c− 1) ∈ X1, and min{h(a, c− 1), c− 1} = c− 1. Hence,

z(p1,a,c−1) =

a
∑

i=1

Ei

2
+

(θ − 1)δ

Sa+1,c−1
(151)

Simplifying z(p1,a,c−1) ≤ z(p1,a,c) we have the result.

Case 3 c > r+1, b = c, and (a, c−1, c−1) is a bad-triplet: From (127) and c−1 ≥ r+1, we

have that (a, c− 1) belongs to the domain of function e. Combining (128) with Lemma 10-1-a,

we have that, (a, c− 1, c) is a good-triplet. Combining this with the case description, we have

that e(a, c− 1) = c. Since c− 1 < c ≤ n, where the last inequality follows from (127), we have

that (a, c− 1) ∈ X2. Notice that,

z(p2,a,c−1) =
a
∑

i=1

Ei

2
+ Ec−1 (θ − 1) + Ec(δ − Ec−1Sa+1,c−1) (152)

Substituting for z(p2,a,c−1) ≤ z(p1,a,c), we get,

(EcSa+1,c − θ)(Ec−1Sa+1,c − δ) > 0. (153)
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Since Ec−1Sa+1,c ≥ EcSa+1,c > δ, where the last inequality follows from (129), we are done.

Case 4 c > r + 1, b < c, and (a, b, c− 1) is a good-triplet: From (127) and c− 1 ≥ r + 1, we

have that (a, c− 1) belongs to the domain of function h. Since b < c ≤ n, from (130), we have

that (a, b+ 1, c) is a bad-triplet. Combining with c > r + 1, from Lemma 10-2-b, we have that

(a, b+1, c−1) is a bad-triplet. Since (a, b, c−1) is a good-triplet, we have that h(a, c−1) = b.

Since c− 1 ≥ r + 1, we have that (a, c− 1) ∈ X1. Also, min{h(a, c− 1), c− 1} = c− 1, since

b ≤ c− 1. Hence,

z(p1,a,c−1) =
a
∑

i=1

Ei

2
+

θ(δ + 1)

Sa+1,b

+
c−1
∑

i=b+1

(154)

Substituting to z(p1,a,c−1) ≤ z(p1,a,c) and simplifying, we get the desired result.

Case 5 c > r+1, and b < c, (a, b, c−1) is a bad-triplet: From (127), we have that (a, b) belongs

to the domain of e. Combining (a, b, c− 1) is a bad-triplet with (128), we have that e(a, b) = c.

Since b < c ≤ n, where the last inequality follows from (127), we have that (a, b) ∈ X2. Hence,

z(p2,a,b) =
a
∑

i=1

Ei

2
+ Ebθ +

c−1
∑

i=b+1

Ei + Ec(δ − EbSa+1,b−1). (155)

Substituting for z(p2,a,b) ≤ z(p1,a,c) and simplifying yields,

(EcSa+1,b − θ)(EbSa+1,b − δ) > 0 (156)

Combining with (129), we have the desired result.

2) We consider four cases. The cases make sense since a ≤ r − 1, b ≤ c from (127).

Case 1 a = r − 1: Notice that from (132), in this case we should have c − b ∈ {0, 1}. Also,

since z(p0) ≤ z(p1,a,c), we have,

Er

2
≤ θδ

Sr,b

+

c
∑

i=b+1

Ei =
θ(1 + b− c)

Sr,b

+

c
∑

i=b+1

Ei ≤
θ

Sr,b

+ (c− b)

(

Eb+1 −
θ

Sr,b

)

(157)

Now, notice that if c− b = 0, we have the desired result. If c− b = 1, we have,

Er

2
≤ Eb+1. (158)

Hence,

Er

2
Sr,b =

1

2
+

Er

2

b
∑

i=r+1

1

Ei

≤(a)
1

2
+

Er

2

(

b− r

Eb+1

)

≤(b)
1

2
+ b− r = θ. (159)

where (a) follows since, Ei ≥ Eb+1 for i ∈ [r + 1 : b], and (b) follows from (158).
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Case 2 a < r − 1 and b = c:

Case 3 a < r−1, c > b, (a+1, b+1, c) is a bad-triplet: We handle the above two cases together.

In both the above cases, due to a < r−1, and (127), we have that (a+1, c) belongs to the domain

of h. We prove that in both of the above cases, (a+1, c) ∈ X1 and min{h(a+1, c), c} = b. First,

notice that from (128), a < r−1, and Lemma 10-1-c, we have that (a+1, b, c) is a good-triplet.

• If b = c, since (a + 1, b, c) is a good-triplet, we have h(a + 1, c) ≥ b = c > r, where last

inequality follows from (127). Hence, (a+ 1, c) ∈ X1, and min{h(a+ 1, c), c} = c = b.

• If c > b and (a + 1, b+ 1, c) is a bad-triplet, we have that h(a + 1, c) = b > r, where the

last inequality follows from (127). Hence (a+ 1, c) ∈ X1, and min{h(a+ 1, c), c} = b.

Hence,

z(p1,a+1,c) =

a+1
∑

i=1

Ei

2
+

(

θ − 1
2

)

(δ − 1)

Sa+2,b
+

c
∑

i=b+1

Ei. (160)

Substituting and simplifying z(p1,a+1,c) ≤ z(p1,a,c) we get,
(

Ea+1

2
Sa+1,b − θ

)

(Ea+1Sa+1,b − δ) < 0 (161)

Notice that Ea+1Sa+1,b ≥ EbSa+1,b > δ, where last inequality follows from (129).

Case 4: a < r− 1, b < c, and (a+1, b+1, c) is a good-triplet: Since c > b, we have that from

(130) that (a, b+1, c) is a bad-triplet. Due to b+1 ≤ c, and (127), we have that (b+1, c) belongs

to the domain of g. Combining the above with the case description, we have g(b+1, c) = a+1.

Since b+ 1 ≤ c and a+ 1 < r, we have that (b+ 1, c) ∈ X3. Hence,

z(p3,b+1,c) =

a
∑

i=1

Ei

2
+

Ea+1

2
(δ − Eb+1Sa+2,b) + Eb+1

(

θ +
1

2

)

+

c
∑

i=b+2

Ei. (162)

Substituting and simplifying z(p3,b+1,c) ≤ z(p1,a,c) we get,
(

Ea+1

2
Sa+1,b − θ

)

(Eb+1Sa+1,b − δ) > 0 (163)

Combining with (131), we are done.

3) We consider two cases. The cases make sense since a−1 ≥ 0 from the statement description.

Case 1 (a− 1, b, c) is a good-triplet: Notice that since a > 0 from the statement and (127), we

have that (a − 1, c) belongs to the domain of h. Since, (a − 1, b, c) is a good-triplet, we have

that h(a− 1, c) ≥ b > r, where the last inequality follows from (127). Hence, (a− 1, c) ∈ X1.
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If b = c, we have that min{h(a − 1, c), c} = c = b. If c > b, we have from (130) that

(a, b + 1, c) is a bad-triplet, which when combined with a > 0 and Lemma 10-2-c, gives

(a−1, b+1, c) is a bad-triplet. Combining with the case description, we have that h(a−1, c) =

b. Hence, min{h(a − 1, c), c} = b. Hence in either case we have that, (a − 1, c) ∈ X1 and

min{h(a− 1, c), c} = b. Hence,

z(p1,a−1,c) =
a−1
∑

i=1

Ei

2
+

(

θ + 1
2

)

(δ + 1)

Sa,b

+
c
∑

i=b+1

Ei. (164)

Substituting and simplifying z(p1,a−1,c) ≤ z(p1,a,c) we get,
(

Ea

2
Sa+1,b − θ

)

(EaSa+1,b − δ) ≥ 0 (165)

Combining (129), and Ea ≥ Eb, we have EaSa+1,b ≥ EbSa+1,b > δ which gives the result.

Case 2 (a − 1, b, c) is a bad-triplet: Notice that from (127), we have that (b, c) belongs to the

domain of g. Combining the case description with (128), we have g(b, c) = a. Combining (127),

and 0 < a, we have that (b, c) ∈ X3. Hence,

z(p3,b,c) =

a−1
∑

i=1

Ei

2
+

Ea

2
(δ −EbSa+1,b−1) + Ebθ +

c
∑

i=b+1

Ei (166)

Using z(p3,b,c) ≤ z(p1,a,c), yields the inequality,
(

Ea

2
Sa+1,b − θ

)

(EbSa+1,b − δ) > 0 (167)

Using (129), we have the desired result.

4) We consider the following two cases. The cases make sense since b+ 1 ≤ c+ 1 ≤ n, where

the first inequality follows from (127), and the second follows from the statement description.

Case 1 (a, b+ 1, c + 1) is a bad-triplet: Combining c < n from the statement description with

(127), we have that (a, c+1) belongs to the domain of h. Notice that from (128), and Lemma 10-

1-b, we have that (a, b, c+ 1) is a good-triplet. Hence, we have h(a, c+ 1) = b > r, where the

last inequality follows from (127). Hence, (a, c + 1) ∈ X1, and min{h(a, c + 1), c + 1} = b.

Hence,

z(p1,a,c+1) =

a
∑

i=1

Ei

2
+

θ(δ − 1)

Sa+1,b
+

c+1
∑

i=b+1

Ei. (168)

Substituting and simplifying z(p1,a,c+1) ≤ z(p1,a,c) we get the desired result.

June 2023 DRAFT



52

Case 2 b = c, (a, b+1, c+1) is a good-triplet: Combining c < n from the statement description

with (127), we have that (a, c + 1) belongs to the domain of h. Since, (a, b + 1, c + 1) is a

good-triplet, we should have h(a, c+ 1) ≥ b+ 1 = c+ 1 > r, where the last inequality follows

from (127). Hence, (a, c+ 1) ∈ X1, and min{h(a, c+ 1), c+ 1} = c+ 1. Hence,

z(p1,a,c+1) =
a
∑

i=1

Ei

2
+

(θ + 1)δ

Sa+1,c+1

. (169)

Substituting and simplifying z(p1,a,c+1) ≤ z(p1,a,c) we get the desired result.

Case 3 b < c, (a, b+1, c+1) is a good-triplet: Since b < c, from (130), we have that (a, b+1, c)

is a bad-triplet. From (127), we have b + 1 ≤ c ≤ n and a ≥ 0, which implies that (a, b + 1)

belongs to the domain of e. Combining with (a, b+ 1, c + 1) is a good-triplet, we should have

e(a, b+ 1) = c + 1. Since n ≥ c + 1 > b + 1 where the first inequality follows from (127), we

have that (a, b+ 1) ∈ X2. Hence,

z(p2,a,b+1) =

a
∑

i=1

Ei

2
+ Ec+1 (δ −Eb+1Sa+1,b) + θEb+1 +

c
∑

i=b+1

Ei (170)

Using z(p2,a,b+1) ≤ z(p1,a,c), yields the inequality,

(Ec+1Sa+1,b − θ) (Eb+1Sa+1,b − δ) > 0 (171)

Combining with (131), we have the desired result.

Now, we construct a Lagrange multiplier that satisfies the conditions of Lemma 4. Consider

µ ∈ R
n, given by,

µk =























C
Ek
− 1

2
if a + 1 ≤ k ≤ r

1− C
Ek

if r + 1 ≤ k ≤ b

0 otherwise

, (172)

where,

C =
θ

Sa+1,b

. (173)

The above µ satisfies µ ≥ 0. If k ∈ [a + 1, r], we have that,

µk =
C

Ek

− 1

2
≥ C

Ea

− 1

2
≥ 0, (174)

where the last inequality follows due to Lemma 13-2. If k ∈ [r + 1, b], we have that,

µk = 1− C

Ek

≥ 1− C

Ec

≥ 0, (175)
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where the last inequality follows due to Lemma 13-1.

Using the above µ as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,

max
p, γ

a
∑

j=1

pj
Ej

2
+

b
∑

j=a+1

Cpj +

n
∑

j=b+1

Ej

s.t. p ∈ I, λ ∈ R

(176)

Notice that due to Lemma 13, we have that, Ej/2 ≥ C for j ∈ [1 : a], Ej ≥ C, for j ∈ [b+1 : c],

and Ej ≤ C for j ∈ [c+1, n]. Hence, an optimal solution p for the above problem is p = p1,a,c

with arbitrary γ. Let, γ = δ
Sa+1,b

. Notice that from Lemma 4, part-2-a, we have that (p1,a,c, γ)

is feasible for (P-1,2,..,r). Also, notice that from the definition of µ, we have µk > 0 implies

p1,a,ck Ek = γ. Hence, from Lemma 4, we have that (p1,a,c, γ) solves (P-1,2,..,r), as desired.

Case 2: Best vector in A comes from A2

Let p2,a,b denote the best vector where (a, b) ∈ X2 and let c = e(a, b). Define

θ =
r − a

2
+ b− r (177)

and δ = r − a + b− c. We have the following claim.

Claim: We should have a < r − 1.

Proof: Assume the contrary. Hence, from (135) we have a = r−1. Hence, we have p2,a,bk = 1

for all 1 ≤ k ≤ r − 1. Additionally from (127), notice that b ≥ r + 1. Also from the definition

of p2,a,b, we have p2,a,bb = 1, and p2,a,br = Er+1/Er > 0, which implies that,
∑n

k=1 p
2,a,b
k > r.

This is a contradiction.

Combining the claim, and (135), we should have in this case, that

(a+ 1, b, c− 1) ∈ [0 : r − 1]× [r + 1 : n]× [r + 1 : n] (178)

Now we prove the following lemma.

Lemma 14: We have that,

1) Ec

Ea+1
≥ 1

2

2) If a > 0, then Ec

Ea
≤ 1

2

3) EcSa+1,b−1 + 1 ≥ θ

4) Eb (θ −EcSa+1,b−1) ≥ Ec,

where θ is defined in (177).

Proof:
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1) We complete the proof using two cases. Notice that the following two cases make sense due

to (178).

Case 1 (a + 1, b, c− 1) is a bad-triplet: From (178), we have (a+ 1, b) belongs to the domain

of e. Combining (136) and a + 1 ≤ r − 1 with Lemma 10-1-c, we have that (a + 1, b, c) is a

good-triplet. Hence, e(a+1, b) = c. Since, b < c ≤ n from (135), we have that, (a+1, b) ∈ X2.

Hence,

z(p2,a+1,b) =

a+1
∑

i=1

Ei

2
+ Eb

(

θ − 1

2

)

+

c
∑

i=b+1

Ei + Ec (δ − 1− EbSa+2,b) . (179)

Using z(p2,a,b) ≥ z(p2,a+1,b), yields the inequality,

(2Ec −Ea+1)(Ea+1 − Eb) ≥ 0, (180)

which yields the result since Ea+1 > Eb (the inequality is strict due to assumption A1).

Case 2 (a+1, b, c−1) is a good-triplet: Notice that due to (178), we have that (b, c−1) belongs

to the domain of g. Combining (137) with the case description, we have that g(b, c−1) = a+1.

Combining the claim, (135), and a + 1 > 0, we have that (b, c− 1) ∈ X3. Hence,

z(p3,b,c−1) =

a
∑

i=1

Ei

2
+ Eb

(

θ − 1

2

)

+

c−1
∑

i=b+1

Ei +
Ea+1

2
(δ − EbSa+2,b−1) . (181)

Using z(p2,a,b) ≥ z(p3,b,c+1), yields the inequality,
(

Ec −
Ea+1

2

)

(δ + 1−EbSa+1,b) > 0, (182)

which establishes the result combined with (138).

2) We consider two cases. The two cases make sense since a > 0 by the statement description.

Case 1 (a−1, b, c) is a good-triplet: Combining a > 0 from the statement description and (135),

we have that, (a−1, b) belongs to the domain of e. Combining a > 0, (137), and Lemma 10-2-c,

(a − 1, b, c − 1) is a bad-triplet. Combining the above with the case description, we have that

e(a− 1, b) = c. Since b < c ≤ n from (135), we have that (a− 1, b) ∈ X2. Hence,

z(p2,a−1,b) =

a−1
∑

i=1

Ei

2
+ Eb

(

θ +
1

2

)

+

c
∑

i=b+1

Ei + Ec (δ + 1−EbSa+1,b) . (183)

Using z(p2,a,b) ≥ z(p2,a−1,b), yields the inequality,

(Ea − 2Ec)(Ea − Eb) ≥ 0. (184)

June 2023 DRAFT



55

which establishes the result since Ea > Eb (the inequality is strict by assumption A1).

Case 2 (a − 1, b, c) is a bad-triplet: From (178), we have that (b, c) belongs to the domain of

g. Combining the case description with (136), we have that g(b, c) = a.Combining (135) and

a > 0, we have that (b, c) ∈ X3. Hence,

z(p3,b,c) =
a−1
∑

i=1

Ei

2
+ Ebθ +

c
∑

i=b+1

Ei +
Ea

2
(δ − EbSa+1,b−1) . (185)

Using z(p2,a,b) ≥ z(p3,b,c), yields the inequality,
(

Ec −
Ea

2

)

(δ − EbSa+1,b) > 0, (186)

which establishes the result from (138).

3) We consider three cases. The cases make sense since, b ≥ r+1 from (135), and if b > r+1,

(a, b− 1, c− 1) ∈ [0 : r − 1]× [r + 1 : n]× [r + 1 : n] from (135).

Case 1 b = r + 1: This case reduces to,
∑r

i=a+1
Ec

Ei
≥ r−a

2
, which is true due to 1.

Case 2 b > r + 1, (a, b− 1, c− 1) is a bad-triplet: Combining b − 1 ≥ r + 1 and (135), we

have that (a, b− 1) belongs to the domain of e. From b− 1 ≥ r+ 1, (136), and Lemma 10-1-a,

we have that (a, b − 1, c) is a good-triplet. Hence, we have e(a, b − 1) = c. Combining with

(135), we have (a, b− 1) ∈ X2. Hence,

z(p2,a,b−1) =

a
∑

i=1

Ei

2
+ Eb−1 (θ − 1) +

c
∑

i=b

Ei + Ec (δ − 1− Eb−1Sa+1,b−1) . (187)

Using z(p2,a,b) ≥ z(p2,a,b−1), yields the inequality,

(Eb − Eb−1)(θ − 1− EcSa+1,b−1) > 0, (188)

yields the result since Eb−1 > Eb (the inequality is strict due to assumption A1).

Case 3 b > r+1, (a, b−1, c−1) is a good-triplet: Combining c−1 ≥ b−1geqr+1, with (135),

we have that (a, c− 1) belongs to the domain of h. Combining (137), and the case description,

we have that h(a, c − 1) = b − 1. Notice that b − 1 ≥ r + 1. Hence, (a, c − 1) ∈ X1, and

min{h(a, c− 1), c− 1} = b− 1. Hence,

z(p1,a,c−1) =
a
∑

i=1

Ei

2
+

(θ − 1) δ

Sa+1,b−1

+
c−1
∑

i=b

Ei (189)

Using z(p2,a,b) ≥ z(p1,a,c−1), yields the inequality,

(θ − 1− EcSa+1,b−1) (δ − EbSa+1,b−1) ≤ 0, (190)
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which establishes the result due to (138).

4) Notice that the above reduces to,

θ ≥ EcSa+1,b. (191)

We consider three cases. The cases make sense since (135) tells us b + 1 ≤ c and hence

(a, b+ 1, c) ∈ [0 : r − 1]× [r + 1 : n]× [r + 1 : n], and b ≤ c from (135).

Case 1 (a, b+ 1, c) is a bad-triplet: Due to (135), we have that (a, b) belongs to the domain of

h. Combining the case description with (136), we have that h(a, c) = b. Since, b ≥ r + 1 from

(135), we have that (a, c) ∈ X1, and min{h(a, c), c} = b. Hence,

z(p1,a,c) =

a
∑

i=1

Ei

2
+

θδ

Sa+1,b
+

c
∑

i=b+1

Ei (192)

Using z(p2,a,b) ≥ z(p1,a,c), yields the inequality,

(EcSa+1,b − θ) (EbSa+1,b − δ) < 0, (193)

which establishes the result due to (138).

Case 2 b+ 1 = c, and (a, b+ 1, c) is a good-triplet: Due to (135), we have that (a, b) belongs

to the domain pf h. Since, (a, b + 1, c) is a good-triplet, we have h(a, c) ≥ b + 1 = c. Since,

b+ 1 > r + 1 from (135), we have (a, c) ∈ X1, and min{h(a, c), c} = c = b+ 1. Hence,

z(p1,a,b+1) =
a
∑

i=1

Ei

2
+

(θ + 1)(δ + 1)

Sa+1,b+1

(194)

Using z(p2,a,b) ≥ z(p1,a,b+1), yields the inequality,

(EbSa+1,b+1 − δ − 1)(Eb+1Sa+1,b − θ) ≤ 0, (195)

which yields the result since EbSa+1,b+1 ≥ EbSa+1,b + 1 > δ + 1 (Eb > Eb+1 and (138)).

Case 3 b + 1 < c, and (a, b + 1, c) is a good-triplet: Due to (135), we have that, (a, b + 1)

belongs to the domain of e. Combining (137), c−1 ≥ r+1 from (178), and Lemma 10-2-a, we

have that, (a, b + 1, c − 1) is a bad-triplet. Combining with the case description, we have that

e(a, b+ 1) = c. Since, b+ 1 < c ≤ n, we have that, (a, b+ 1) ∈ X2. Hence,

z(p2,a,b+1) =

a
∑

i=1

Ei

2
+ Eb+1 (θ + 1) +

c
∑

i=b+2

Ei + Ec (δ + 1− Eb+1Sa+1,b+1) . (196)
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Using z(p2,a,b) ≥ z(p2,a,b+1), yields the inequality,

(Eb − Eb+1) (θ − EcSa+1,b) > 0, (197)

yields the result since Eb > Eb+1 (the inequality is strict due to assumption A1).

Now, we construct a Lagrange multiplier, similar to case 1. Consider µ ∈ R
n, given by,

µk =







































Ec

Ek
− 1

2
if a + 1 ≤ k ≤ r

1− Ec

Ek
if r + 1 ≤ k ≤ b− 1

EcSa+1,b−1 + 1− θ if k = b

0 otherwise

, (198)

The above µ satisfies µ ≥ 0. If k ∈ [a+ 1, r], we have that,

µk =
Ec

Ek

− 1

2
≥ Ec

Ea+1

− 1

2
≥ 0, (199)

where the last inequality follows due to Lemma 14-1. If k ∈ [r + 1, b− 1], we have that,

µk = 1− Ec

Ek

≥ 1− Ec

Ec

≥ 0, (200)

If k = b, µk ≥ 0, is Lemma 14-3.

Using the above µ as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,

max
p, γ

a
∑

j=1

pj
Ej

2
+

b−1
∑

j=a+1

pjEc + pbEb(θ − EcSa+1,b−1) +

n
∑

j=b+1

pjEj

s.t. p ∈ I, λ ∈ R

(201)

Notice that due to Lemma 14, we have that Ej/2 ≥ Ec for j ∈ [1 : a], Ej ≥ Ec for j ∈ [b+1 : c],

Ej ≤ Ec for j ∈ [c + 1 : n], and (θ − EcSa+1,b−1) ≥ Ec. Hence, an optimal solution p for the

above problem is p = p2,a,b with arbitrary γ. Let, γ = Eb. Notice that from Lemma 4, part-2-b,

we have that (p1,a,b, γ) is feasible for (P-1,2,..,r). Also, notice that from the definition of µ,

we have µk > 0 implies p2,a,bk Ek = Eb. Hence, from Lemma 4, we have that (p2,a,b, γ) solves

(P-1,2,..,r), as desired.

Case 3: Best vector in A comes from A3

Let p3,b,c denote the best vector where (b, c) ∈ X3, and let a = g(b, c) > 0. Define

θ =
r − a

2
+ b− r (202)

June 2023 DRAFT



58

and δ = r − a + b− c. Now we prove the following lemma.

Lemma 15: We have that,

1) If c < n, then Ea

2
≥ Ec+1

2) Ea

2
Sa+1,b−1 + 1 ≥ θ

3) Eb

(

θ − Ea

2
Sa+1,b−1

)

≥ Ea

2

4) 2Ec ≥ Ea

Proof:

1) From (142) we have that (a − 1, b) belongs to the domain of e. Combining a > 0 from

(142), c + 1 ≤ n from the statement description, Lemma 10-1-d, and (143), we have that,

(a− 1, b, c+ 1) is a good-triplet. Combining this with (144), we have that e(a− 1, b) = c + 1.

Notice that, b < c + 1 ≤ n from (142). Hence, (a− 1, b) ∈ X2. Hence,

z(p2,a−1,b) =
a−1
∑

i=1

Ei

2
+ Eb

(

θ +
1

2

)

+
c
∑

i=b+1

Ei + Ec+1 (δ + 1− EbSa+1,b) . (203)

Using z(p3,b,c) ≥ z(p2,a−1,b), yields,
(

Ea

2
− Ec+1

)

(δ + 1−EbSa,b) ≥ 0, (204)

which establishes the desired inequality from (145).

2) We consider three cases. The cases make sense since b ≥ r + 1, and if b > r + 1, we have

that (a− 1, b− 1, c) ∈ [0 : r + 1]× [r + 1 : n]× [r + 1 : n] from (142).

Case 1 b = r + 1: This case reduces to EaSa+1,r ≥ r − a, which follows since Ea ≥ Ei ∀i ∈
[a+ 1 : r].

Case 2 b > r + 1 and (a − 1, b − 1, c) is a bad-triplet: Due to b − 1 ≥ r + 1, and (142), we

have that (b− 1, c) belongs to the domain of g. From (143), b− 1 ≥ r+ 1, and Lemma 10-1-a,

we have that, (a, b− 1, c) is a good-triplet. Combining with the case description, we have that

g(b−1, c) = a. Notice that b−1 < c ≤ n, and 0 < a ≤ r−1 from (142). Hence, (b−1, c) ∈ X3.

Hence,

z(p3,b−1,c) =

a
∑

i=1

Ei

2
+ Eb−1 (θ − 1) +

c
∑

i=b

Ei +
Ea

2
(δ − 1− Eb−1Sa+1,b−1) . (205)

Using z(p3,b,c) ≥ z(p3,b−1,c), yields the inequality,

(Eb − Eb−1)

(

θ − 1− Ea

2
Sa+1,b−1

)

> 0, (206)
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yields the result since Eb−1 > Eb (the inequality is strict due to assumption A1).

Case 3 b > r+1, (a−1, b−1, c) is a good-triplet: Due to (142), we have that (a−1, c) belongs to

the domain of h. Combining the case description with (144), we have that h(a−1, c) = b−1. Since

b−1 ≥ r+1, from the case description we have, (a−1, c) ∈ X1, and min{h(a−1, c), c} = b−1.

Hence,

z(p1,a−1,c) =

a−1
∑

i=1

Ei

2
+

(

θ − 1
2

)

δ

Sa,b−1
+

c
∑

i=b

Ei (207)

Using z(p3,b,c) ≥ z(p1,a−1,c), yields the inequality,
(

Ea

2
Sa+1,b−1 − θ + 1

)

(EbSa,b−1 − δ) ≤ 0, (208)

which establishes the result from (145).

3) Notice that the above reduces to,

θ ≥ Ea

2
Sa+1,b. (209)

We consider three cases. The cases make sense since, b ≤ c by (142), and if c > b, we have to

have that (a, b+ 1, c) ∈ [0 : r + 1]× [r + 1 : n]× [r + 1 : n] from (142).

Case 1 b = c: From (143), we have that, h(a, c) ≥ b = c. Since c ≥ r + 1, we have that,

(a, c) ∈ X1. Moreover, min{h(a, c), c} = c = b. Hence,

z(p1,a,b) =

a
∑

i=1

Ei

2
+

θδ

Sa+1,b
(210)

Using z(p3,b,c) ≥ z(p1,a,b), yields the inequality,
(

Ea

2
Sa+1,b − θ

)

(EbSa+1,b − δ) < 0, (211)

which establishes the result from (145).

Case 2 b < c, and (a, b+ 1, c) is a good-triplet: Since b+ 1 ≤ c ≤ n, where the last inequality

follows from (142), we have that (b + 1, c) belongs to the domain of g. Combining (144),

b + 1 ≤ c ≤ n, with Lemma 10-2-a, we have that (a − 1, b+ 1, c) is a bad-triplet. Combining

with the case description, we have that g(b+1, c) = a. Notice that b+1 ≤ c, and 0 < a ≤ r−1

from (142). Hence, (b+ 1, c) ∈ X3. Hence,

z(p3,b+1,c) =

a
∑

i=1

Ei

2
+ Eb+1 (θ + 1) +

c
∑

i=b+2

Ei +
Ea

2
(δ + 1− Eb+1Sa+1,b+1) . (212)
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Using z(p3,b,c) ≥ z(p3,b+1,c), yields the inequality,

(Eb − Eb+1)

(

θ − Ea

2
Sa+1,b

)

> 0, (213)

yields the result since Eb > Eb+1 (the inequality is strict due to assumption A1).

Case 3 b < c, and (a, b+ 1, c) is a good-triplet: From (142), we have that (a, c) belongs to the

domain of h. Combining the case description with (143), we have that h(a, c) = b. Notice that

b ≥ r + 1 from (142). Hence, (a, c) ∈ X1, and min{h(a, c), c} = b. Hence,

z(p1,a,c) =

a
∑

i=1

Ei

2
+

θδ

Sa+1,b
+

c
∑

i=b+1

Ei (214)

Using z(p3,b,c) ≥ z(p1,a,c), yields the inequality,
(

Ea

2
Sa+1,b − θ

)

(EbSa+1,b − δ) < 0, (215)

which establishes the result from (145).

4) We consider two cases. The cases make sense since b ≤ c from (142).

Case 1 b = c: Notice that from part 2 of the lemma,

θ − Ea

2
Sa+1,b−1 ≤ 1. (216)

Substituting this in part 3, we have the result.

Case 2 b < c: From (142), we have that, (a, b) belongs to the domain of e. Combining (144),

c− 1 ≥ b ≥ r + 1, from the case description, with Lemma 10-2-d, we have that, (a, b, c− 1) is

a bad-triplet. Combining with (143), we have that e(a, b) = c. Notice that b < c ≤ n, where the

last inequality follows from (142). Hence, (a, b) ∈ X2. Hence,

z(p2,a,b) =

a
∑

i=1

Ei

2
+ Ebθ +

c
∑

i=b+1

Ei + Ec (δ − EbSa+1,b) . (217)

Using z(p3,b,c) ≥ z(p2,a,b), yields,
(

Ea

2
−Ec

)

(δ − EbSa+1,b) ≥ 0, (218)

which establishes the desired inequality due to (145)

Now, we construct a Lagrange multiplier, similar to case 1. Consider µ ∈ R
n, given by,

µk =







































Ea

2Ek
− 1

2
if a + 1 ≤ k ≤ r

1− E2

2Ek
if r + 1 ≤ k ≤ b− 1

Ea

2
Sa+1,b−1 + 1− θ if k = b

0 otherwise

, (219)
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The above µ satisfies µ ≥ 0. If k ∈ [a+ 1, r], we have that,

µk =
Ea

2Ek

− 1

2
≥ Ea

2Ea

− 1

2
= 0, (220)

If k ∈ [r + 1, b− 1], we have that,

µk = 1− Ea

2Ek

≥ 1− Ea

2Ec

≥ 0, (221)

where the last inequality follows due to Lemma 15-4

If k = b, µk ≥ 0, is Lemma 15-2.

Using the above µ as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,

max
p, γ

a
∑

j=1

pj
Ej

2
+

b−1
∑

j=a+1

pj
Ea

2
+ pbEb(θ −

Ea

2
Sa+1,b−1) +

n
∑

j=b+1

pjEj

s.t. p ∈ I, λ ∈ R

(222)

Notice that due to Lemma 15, we have that, Ej/2 ≥ Ea/2 for j ∈ [1 : a], Ej ≤ Ec+1 ≤ Ea/2

for j ∈ [c + 1 : n], Ej ≥ Ec ≥ Ea

2
for j ∈ [b + 1 : c], and Eb

(

θ − Ea

2
Sa+1,b−1

)

≥ Ea

2
. Hence,

an optimal solution p for the above problem is p = p3,b,c with arbitrary γ. Let, γ = Eb. Notice

that from Lemma 4, part-2-c, we have that (p3,b,c, γ) is feasible for (P-1,2,..,r). Also, notice that

from the definition of µ, we have µk > 0 implies p3,b,ck Ek = Eb. Hence, from Lemma 4, we

have that (p3,b,c, γ) solves (P-1,2,..,r), as desired.

Case 4: Best vector in A is p0.

Lemma 16: We have that,

Er

2
≥ Er+1. (223)

Proof: Notice that,

r − (r − 1) = 1 < Er+1Sr,r+1 = 1 +
Er+1

Er

. (224)

Hence, (r−1, r+1, r+1) is a good-triplet. Hence, h(r−1, r+1) ≥ r+1. Clearly, (r−1, r+1) ∈
X1. Also, min{h(r − 1, r + 1), r + 1} = r + 1. Hence,

z(p1,r−1,r+1) =

r−1
∑

i=1

Ei

2
+

3

2Sr,r+1
(225)

Using z(p0) > z(p1,r−1,r+1), yields the desired inequality.

June 2023 DRAFT



62

In this case we can use µ = 0 as a Lagrange multiplier vector for (P-1,2,..,r), which gives

the problem,

max
p, γ

r
∑

j=1

pj
Ej

2
+

n
∑

j=r+1

pjEj

s.t. p ∈ I, λ ∈ R

(226)

Due to Lemma 16, we have that p = p0 is an optimal solution for the above problem

with arbitrary γ. Let, γ = Er+1. From Lemma 4, part-2-d we have that (p0, γ) is feasible for

(P-1,2,..,r). Also, notice that µk = 0 for all k ∈ [1 : n]. Hence from Lemma 4, we have that

(p0, γ) solves (P-1,2,..,r), as desired.

APPENDIX F

ALGORITHM TO PROJECT ONTO I

Algorithm 5 takes as input p ∈ R
n, and projects p onto I.

Analysis of Algorithm 5: Notice that the problem of projection of y ∈ R
n onto I is,

min
z

1

2
‖z − y‖2

s.t. y ∈ I
(231)

Now consider the partial Lagrangian L(z, µ) for µ ∈ R given by,

L(z, µ) =
1

2
‖z − y‖2 + µ

(

n
∑

j=1

zj − r

)

, (232)

and the problem,

(P6-µ) min
z

L(z, µ)

s.t. z ∈ [0, 1]n
(233)

for a fixed µ ∈ R. Let us assume the existence of a µ∗ ∈ R such that the solution z∗ of (P6-µ∗)

satisfies,
∑n

j=1 z
∗
j = r. Notice that z∗ is optimal for the original problem since for any z ∈ I,

1

2
‖z − y‖2 = L(z, µ∗) ≥ L(z∗, µ∗) =

1

2
‖z∗ − y‖2. (234)

Hence, we focus on finding such a µ∗ and the corresponding z∗. First, we focus on solving

(P6-µ∗). Notice that (P6-µ∗) is a separable quadratic program in the entries of z. Hence, the
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Algorithm 5: Algorithm to project to I
1 Sort the input vector x to a vector y

2 Initialize a = b = r

3 Define

µa,b =

∑b

j=a yj − (r − a+ 1)

b− a+ 1
, (227)

and

Aa,b = 1{yb ≥ µa,b ≥ ya − 1} (228)

Ba,b = 1{(b = n) or [(b < n) and (yb+1 < µa,b)]} (229)

Ca,b = 1{(a = 1) or [(a > 1) and (ya−1 − 1 > µa,b)]} (230)

for all 1 ≤ a ≤ b ≤ n

4 repeat

5 while Ba,b do

6 Set b← b+ 1

7 end

8 while Ca,b do

9 Set a← a− 1

10 end

11 until Aa,b and Ba,b and Ca,b;
12 for each i ∈ [1 : n] do

13 xi ← Π[0,1](xi − µa,b) (Here Π[0,1] denotes the projection onto [0, 1])

14 end

15 Output x
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optimal zj can be obtained by projecting the unconstrained optimal value for each entry of z

onto [0, 1]. Hence, the solution is,

zj = Π[0,1](yj − µ), (235)

for all j ∈ [1 : n], where Π[0,1] denotes the projection operator onto [0, 1] . Now we need to find

µ∗ such that the optimal solution z∗ of (P6-µ∗) satisfies z∗ ∈ I. Hence we require,

n
∑

j=1

Π[0,1](yj − µ∗) = r. (236)

We assume, without loss of generality, that y is sorted in non-increasing order (Notice that if y

is not sorted, we could sort y, perform the projection, and rearrange the elements according to

the original order. This works since the set I is closed under the permutation of entries of its

element vectors).

For µ ∈ R, define the set,

Kµ = {i; 1 ≤ i ≤ n, µ+ 1 ≥ yj ≥ µ}. (237)

Notice that for each µ ∈ R, Kµ is either the empty set or a set of the form [a : b] where

1 ≤ a ≤ b ≤ n. Assume that Kµ is not empty. Let Kµ = [a : b] where 1 ≤ a ≤ b ≤ n. This is

equivalent to µ satisfying the three conditions,

yb ≥ µ ≥ ya − 1

(b = n) or [(b < n) and (yb+1 < µ)]

(a = 1) or [(a > 1) and (ya−1 − 1 > µ)] (238)

Now, notice that (236) translates to,

µ =

∑b
j=a yj − (r − a+ 1)

b− a + 1
= µa,b. (239)

Combining (239) and (238), we have that if we can find a, b (1 ≤ a ≤ b ≤ n) such that the three

conditions Aa,b,Ba,b and Ca,b (See (228)) are satisfied, we are guaranteed that the solution z∗ of

(P6-µa,b) satisfies z∗ ∈ I. From the stopping condition of Algorithm 5, we have that the above

three conditions are satisfied for the output a, b of Algorithm 5. Hence, we are only required

to prove that Algorithm 5 always meets the stopping conditions of the loops. The inner loops

trivially meet the stopping condition. Hence, we establish that the outer loop eventually meets

the stopping condition.
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We first prove that after each inner iteration of Algorithm 5, Aa,b is satisfied. To prove this,

notice that Ar,r is true, and hence, for the initial values of a, b, Aa,b is true. Now we prove that if

before executing an iteration of the first inner loop of Algorithm 5, Aa,b is true, then so is after

the iteration. To see this, notice that the iteration is executed if only if b < n, and µa,b ≤ yb+1.

Hence,

µa,b+1 =
µa,b(b− a+ 1) + yb+1

b− a+ 2
≤ yb+1(b− a + 1) + yb+1

b− a + 2
= yb+1, (240)

and

µa,b+1 =
µa,b(b− a + 1) + yb+1

b− a+ 2
= µa,b +

yb+1 − µa,b

b− a+ 2
≥(a) µa,b ≥(b) ya − 1, (241)

where (a) follows since yb+1 ≥ µa,b and (b) follows since Aa,b is true by assumption. Hence,

we have that Aa,b+1 is true. Using the same argument, we can prove that if before executing

an iteration of the second inner loop of Algorithm 5, Aa,b is true, then so is after the iteration.

Hence, we have the result.

Hence, notice that after an outer iteration of Algorithm 5, if the stopping condition is not met,

we should have Ba,b, which would increase b in the next iteration. This process has to stop since

b has to stay between 1 and n. Hence, we have the desired result.
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