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Multi-Player Resource-Sharing Games with

Fair Reward Allocation

Mevan Wijewardena, Michael J. Neely

Abstract

This paper considers a multi-player resource-sharing game with a fair reward allocation model.
Multiple players choose from a collection of resources. Each resource brings a random reward equally
divided among the players who choose it. We consider two settings. The first setting is a one-slot game
where the mean rewards of the resources are known to all the players, and the objective of player 1 is to
maximize their worst-case expected utility. Certain special cases of this setting have explicit solutions.
These cases provide interesting yet non-intuitive insights into the problem. The second setting is an online
setting, where the game is played over a finite time horizon, where the mean rewards are unknown to
the first player. Instead, the first player receives, as feedback, the rewards of the resources they chose
after the action. We develop a novel Upper Confidence Bound (UCB) algorithm that minimizes the

worst-case regret of the first player using the feedback received.

Index Terms

Resource-sharing games, congestion games, potential games, fair reward allocation, worst-case

expected utility maximization, online games

I. INTRODUCTION

In this paper, we consider the following game with m > 2 players Ay, Ay, ..., A,,, and
n > 2 resources 1,2, --- n. The state of the game is described by the random reward vector
W = (W, Ws, ..., Wn)T, where W, is the reward random variable of resource k. Each player
selects r resources without knowing the other player’s selection (assume that 0 < r» < n). The

per-player reward of the resource k is W}, /Sy, where Sy is the number of players who selected
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resource k. The sum of all the per-player rewards of resources a player selects is their utility.
We consider two settings.

The first setting is a one-slot game where the players have knowledge of the means of the
reward random variables but do not observe the realizations before taking action. In this setting,
we solve the problem of maximizing the worst-case expected utility of player A;. The general
case can be solved using a simple gradient descent algorithm. The more intriguing scenario in this
setting is that some of the special cases have non-trivial explicit solutions that provide insight into
the problem. The problem of maximizing the worst-case expected utility is motivated by the fact
that player A; does not place any assumptions on the incentives of the opponent, which makes
worst-case expected utility an important objective that is different from the equilibrium-based
objectives such as Nash-equilibrium [1], [2] and correlated equilibrium [3], [4], [5].

The second setting is an online scenario, where the game is played over a finite time horizon
in the presence of feedback. In this setting, we assume that the reward vector of the resources
in each time slot is independent and identically distributed. Player A; takes action without
knowledge about the mean rewards of the resources. Instead, player A; receives the reward of
the resources they chose as feedback after each action. The goal of player A; is to minimize
their worst-case regret over time. This setting is inspired by the UCB algorithm of [6] for
the problem of zero-sum matrix games with bandit feedback. We provide an algorithm for the
above setting that minimizes worst-case regret by learning the mean rewards of the resources.
When implemented in a time horizon of 7" time-slots, the algorithm achieves a worst-case regret

of nDVT + 4n+/2rTlog(2nrCT3(T + 1)) + 1, where C' and D are known constants. The

problem of finding an approximate Nash equilibrium of a congestion game with bandit feedback
has been considered in [7]. However, implementing the algorithms in [7] requires cooperation
among players. The proposed algorithm requires no cooperation among the players since player
A; focuses on maximizing the worst-case regret.

The game model discussed for the above two settings has been studied for the non-stochastic
case under the more general framework of resource-sharing games [8], also known as congestion
games. In these games, the per-player reward of a resource is a general function of the number
of players selecting the resource. Also, an action for a player is a subset of the resources,
where the allowed subsets make up the action space of the player. Resource-sharing games have

also been extended to various stochastic settings [9], [10]. Problems similar to our work have
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been studied in the context of adversarial resource-sharing games. The work of [11] considers an
adversarial resource-sharing game where each player chooses a single resource from a collection
of resources, after which an adversary chooses the resource chosen by the maximum number
of players. Also, non-atomic congestion games with malicious players have been considered
through the work of [12].

In our model, we have done two simplifications to the resource-sharing game models described
above. First, we assume a fair-reward allocation model, where we have assumed the existence
of a reward for each resource, which is divided equally between the players selecting it. Second,
we have assumed simple action spaces for players by allowing each player to select an arbitrary
subset of r resources. Additionally, we assume a non-cooperative model where player A; does
not place any assumptions on the incentives of the opponents. The above simplifications of the
general model have several consequences.

First, the simplified model has various real-world applications. The work of [13] discusses
different real-world applications of the game in the special case m = 2,7 = 1 (and without
considering the online setting). These examples are also relevant to the general case of the
problem. One example is multiple access control (MAC) in communication systems, where
communication channels are accessed by multiple users, and the data rate of a channel is shared
amongst the users who select it [14]. Here, a channel can be shared using Time Division Multiple
Access (TDMA) or Frequency Division Multiple Access (FDMA), where in TDMA, the channel
is time-shared among the users [15], [16], whereas in FDMA, the channel is frequency-shared
among the users [17]. In both cases, the total data rate supported by the channel can be considered
the utility of the channel. Both game settings of this paper are relevant here: The one-slot setting
can be used when the mean data rate is known to the users; The online setting is applicable
when the mean data rate is unknown to the users, but they receive feedback on the actual data
rate after transmission.

An application in the area of economics, discussed in [13], is a scenario where a firm chooses
a market to enter from a pool of market options. Another firm may also choose the same
market. This example assumes a simplified model with a total revenue for each market, and
the total revenue is divided equally among the firms entering the market. Our treatment of the
case m > 2, r > 1 is relevant to this application example because, in a real-world scenario, a

firm may compete with multiple firms. The online setting treated in this paper is also useful for
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learning based on repeated market competitions.

Another consequence of our model is that in the one-slot setting, certain special cases have
explicit solutions, which provide valuable insights into the problem. The work of [13] discusses
the special case m = 2, r = 1. The current paper extends the analysis to special cases m = 2
with general r, and m = 3, r = 1. The explicit solutions obtained in these cases are non-intuitive;
hence, the problem is complex, even for simple cases.

It should be noted that resource-sharing games with special per-player reward definitions
have been considered in the literature. One such notable case is when the per-player reward of
a resource is non-decreasing in the number of players selecting the resource. These games are
called cost-sharing games [18]. The particular case when the total cost of a resource is divided
equally among the players choosing it is called fair cost-sharing games. In such a model, a
player would prefer to select resources selected by many players. In the fair reward allocation
model considered in our work, players have the opposite incentive to select resources selected
by a small number of players.

Below, we list the major contributions of this paper

o We consider the problem of worst-case expected utility maximization of resource-sharing
games with a fair-reward allocation model. We provide explicit solutions to certain special
cases of the problem. These cases, in addition to providing an efficient approach to solving
the problem, provide valuable insights into the solution structure of the problem. For
instance, for the two-player case, it can be observed that the set of resources can be divided
into four groups where each group contains resources with higher mean rewards compared
to the next group. Each resource in the first and third group is chosen with probability 1.
Each resource in group 2 is chosen with a non-zero probability, whereas the resources in
the last group are never chosen. For the general case, we provide an algorithmic solution
by solving a concave-non-convex max-min optimization problem, where the non-concave
problem is an integer optimization problem that can be solved explicitly.

o We consider an online scenario of the above problem where the game is played over a
finite time horizon of 7" time slots, and player A; does not know the mean rewards of the
resources. Instead, the player A; takes action using the feedback received after each action on
the rewards of the resources they chose. We propose an upper confidence bound algorithm

that achieves O(y/T log(T)) worst-case regret. This problem shares certain similarities
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with the problems of stochastic convex optimization [19], online-convex optimization [20],
online-convex optimization with multi-point bandit feedback [21], and adversarial bandit
problems [6], [22]. It differs from the first three cases due to the differences in the feedback
received. In particular, in the first three cases, the agent first queries the environment with
points in the domain of the function to be optimized, after which the environment provides
information about the function at the particular points as feedback. In our setting, the agent
receives noisy partial information about the function in each iteration. Also, we cannot utilize
the algorithms developed for strongly convex/concave objectives (see, for example [19])
since the function we optimize is piece-wise linear and hence is not strongly concave. The
problem also differs from classical adversarial bandit problems since our problem requires
a different definition of regret. Our problem is more similar to the work of [22] on zero-
sum matrix games with bandit feedback. However, the above work considers a two-player
scenario where both players receive as feedback the actions and the rewards of themselves

and the opponent. Nevertheless, a similar UCB algorithm can be adopted for our case.

A. Background on Resource-Sharing Games

The resource-sharing game was first studied in [8]. These games, also known as congestion
games, fall under the general category of potential games [23]. In potential games, the effect
of any player changing strategies is captured by the change of a global potential function.
Various extensions to the classical resource sharing game introduced in [8] have been studied
in the literature [24]. Some such extensions are stochastic resource-sharing games [9], [10],
weighted resource-sharing games [25], games with player-dependent reward allocation [26],
games with resources having preferences over players [27], and singleton games, where each
player is only allowed to choose a single resource [28], [29]. Also similar to resource-sharing
games are resource allocation games [30], [31]. In these games, a resource has to be fairly
divided among a set of claimants claiming a certain portion of the resource.

Resource-sharing games have applications in multiple-accesses [14], [32], [33], network selec-
tion [34], network design [35], spectrum sharing [36], resource sharing in wireless networks [37],
load balancing networks [38], [39], radio access selection [40], service chains [41], congestion

control [42], and migration of species [43].

June 2023 DRAFT



B. Notation

We use calligraphic letters to denote sets. Vectors and matrices are denoted in boldface char-
acters. For integers n and m, we denote by [n : m] the set of integers between n and m inclusive.
Also, we use N = {1,2,3,...} to denote the set of positive integers and Ny = {0,1,2,...} to

denote the set of non-negative integers.

II. FORMULATION

In this section, we formulate the model for the one-slot setting. We extend this model to the
online setting in Section IV. Let £}, = E{W,} for all 1 < k < n. Let us denote by a € {0,1}"
the action of player A;, where o; = 1 if player 1 chooses resource j and «; = 0 otherwise.
Notice that the actions of the other players will also have the same structure. Notice that, o € 71,

where,

%Z{CBE{O,].,---,Q}N

D a= qr} , (1)
j=1

for g € {1,2,...}.

Now fix 1 < ¢ as a positive integer and imagine ¢ players each choosing vectors (actions) in
Ji. For each i € {1,2,...,q}, let o' € J; denote the vector (action) chosen by the i-th player.
Consider the following set,

q
Aq:{Zai:aiejlforalli€{1,2,...,q}}. 2)
i=1
Then we have the following lemma.

Lemma 1: We have that,

1) A, =J, for g €{1,2,...,}, where A, and J, are defined in (2) and (1), respectively.

2) Conv(J,) =Z, where Z is the (n,r)-hypersimplex,

I:{pE[O,l]” Zpkzr}. (3)
=1

Proof: 1) We complete the proof using the following two claims.
Claim 1 A, C J,: This follows directly from the fact that o' € J; for alli € {1,2,...,¢} and
the definition of sets A, and 7.
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Claim 2 7, C A,: We use induction. The case ¢ = 1 trivially follows from the fact that o' € J;.
Assume that the statement is true for ¢ > 1. We establish the statement is true for g + 1.

Pick any = € J,+1. Hence, x; € {0,1,...,¢+ 1} foreach 1 <i < ¢+ 1, and Zf;l T; =
r(q + 1). Hence, it should be clear that & has at least r non-zero entries. Define /™! € J;
with exactly r ones in locations i with the highest x;. Hence,  — ?*! is a non-negative vector.
Now, we claim that z — o™ € 7. Since € J,;1 and o4t € 7y, it can be easily seen that
Yoy (@ — oz;-”l) = rq. Hence, we are only required to prove that the largest element of the
vector © —ad*! is at most ¢. Assume the contrary and let k be the index of the largest element,

SO Tj — aZH > g+ 1. Since, * € J,41, we know z; < ¢ + 1. This means aZH = 0, and

x, = q+ 1. Since a?*! was constructed by selecting the largest elements of x, and an element
g+1

with size ¢ + 1 was not selected, we must have for all indices ¢ that o] =1 — z; = ¢+ 1.

This means that

inz Z rit+ap=(r+1)(q+1) >r(g+1), 4)
i=1 ie[lm]
adtl=1

k3

which is a contradiction. Hence, we have that £ — o' € J, as desired. Hence, from the
induction hypothesis & — a?™! € A,. Hence, there exists a set of actions o', a?,...,a% € J
such that, 37, o = & — o', which implies that 3" o/ = . Hence, x € A, as desired.
2) See Appendix B. [ ]
Now, let o' € J; denote the action of player A; for i € {2,3,...,m}. Let us define the vector
X € R" as

X=3 ot 5)
1=2

We assume that the triplet (v, X, W) are mutually independent. Nevertheless, our formulation
allows the random variables Wy, Wy, ... W, to be correlated, and the players [2 : m]| to cooperate

in order to make their decision. Notice that from Lemma 1-1, we have that X € 7,,_;.

A. Expected Utility

Given the player A; uses possibly randomized action o € J; and X is defined according to

(5), the expected utility of player A; can be written as

" Wi La=1) = 1
E el b o EipiE
{Z 1+x, [ @ ]; PEEA T+ X, ©

k=1
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where

P = E{l(q,=1)} (7

for 1 < k < n, and the expectation is taken with respect to the possibly randomized action
ay. The equality (a) follows since (a, X, W) are mutually independent. Hence, notice that the
expected utility depends on the action of player A; only through p defined in (7). Let us define

the function, f : R” x Z" — R as,

n

fpw) = ®)

P 1+.Tk.

Hence, we have that the expected utility of player A; is equal to E{ f(p, X )}, where p is defined
in (7) and X is defined in (5).

Notice that the set of all possible vectors p in (7) is Conv(.7;), which is equal to Z defined
in (3) by Lemma 1-2. Given p € Z, in Appendix A, we provide an algorithm to sample a set «
of r resources from {1,2,---,n}, such that E{1,,—1)} = pi is satisfied for all £ € [1 : n]. In
particular, the algorithm finds a distribution over the elements of 7; defined in (1) for a given p.
The answer in [44] establishes that the found mixture of elements of 7; contains at most n + 1

elements.

B. Worst-Case Expected Utility

This section focuses on finding the worst-case expected utility of player A; for fixed p € Z,
used by player A;. Notice that to obtain the worst-case expected utility of player A;, we have
to minimize E{f(p, X )} over all possibly randomized actions of players As,..., A,,. Define

the function,

[ (p) = min f(p, ), ©)

TETm 1
where function f is defined in (8).
Lemma 2: For p € Z, the worst-case expected utility of player A; is f™™!(p).

Proof: Fix p € 7. Define * = argmingcs, , f(p,x). Hence, f¥™(p) = f(p,x*).
Consider a possibly randomized set of actions for players As, ..., A,,, and define X according to
(5). Recall that the expected utility of player A; is E{ f(p, X)}. Notice that for any « € J,,_1, we
have that f(p, x*) < f(p, ). Hence, we have that f(p,x*) < f(p, X). Taking the expectations,
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Algorithm 1: Algorithm to find f"°™(p) and &* = argminges,,_, f(p,x) forpe

1 Initialize = [0,0,...,0] € N”
2 Initialize f =0

3 for each iteration k € [1: (m — 1)r] do

4 Increase z; by 1 where,
. . il prby
_ _ 10
=g i { P 10
rr<m—1
5 end

=)

Output V' (p) = f(p,x) and x.

we have that, f(p, xz*) < E{f(p, X)}. Hence, the expected utility of player A; is bounded below
by f(p,x*). Now consider the deterministic policy for players As, ..., A,, that yields X = x*.
Notice that such a policy exists from Lemma 1-1. This policy will yield an expected utility of
f(p,x*) for player A;. Hence, f(p,x*) is in fact the worst-case expected utility. [ |
It should be noted that for a given p € Z, finding f¥°™'(p) in (9) and * = argmingc 7, , f(p, x)
is an optimization over a non-convex discrete set © € J,,,_1. However, it has a classical separable
structure that is well-studied in the literature and can be solved exactly using either a O(n +
mrlog(n)) greedy incremental algorithm or an improved O(nlog(mr)) algorithm [45]. For
completeness, we summarize an O(nmr) algorithm in Algorithm 1. For improved algorithms,
refer to [45]. It should be noted that f"°'(p) for p € Z has an explicit formula in certain special
cases. Such cases will be discussed in Section V.

In the following two sections (Section III and Section IV), we introduce the two settings, after

which we move onto special cases of the one-slot setting in Section V.

III. ONE-SLOT GAME

For this setting, we assume that none of the players observe W, but all the players know
E. Notice that the worst-case expected utility maximization problem can be represented as the

max-min problem,

(P1): max min f(p, x)
p x
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10

Algorithm 2: Algorithm to solve (P1)

1 Initialize p' = [Z,Z, .., Z]
2 for each iteration t € [1 : T] do
3 | Find ' = mingc 7, , f(p', ), using Algorithm 1.

4 | Obtain p'™ by using,

p =1z (p' + BV,f(p',x")), (13)

where the function Il is the projection onto Z, function f is defined in (8) (For a

given vector y € R, we provide an algorithm to calculate I17(y) in Appendix F).

5 end

=)}

Output p, z = argmax{ f(p', x');1 <t < T}

peEl,x € T, (1)

where the function f is defined in (8), the sets Z and 7,,,_; are defined in (3) and (1) respectively.
Notice that the inner minimization of the above problem amounts to evaluating the function f"°™
defined in (9), which admits an exact solution for each p € Z. Hence, the problem can also be

rephrased using the following maximization.

(P2): max fY"(p)
p (12)

st. pel,
where the function f“°*' is defined in (9). First notice, that for fixed * € 7,1, f(p, @) is
linear in p. Since J,,_; is a finite set and since the minimum operation is continuous, from the
definition of the function f%°*' in (9), we have that f"°*' is continuous. This, combined with the
fact that Z is a compact domain, we have that (P2) admits an optimal solution p*. Hence, (P1)
admits an optimal solution (p*, x*), where z* = argmingc 7, , f(p*, ). However, it should be

noted that (p*, «*) is not in general a saddle point of f.
Since the inner minimization of (P1) can be solved using Algorithm 1, the min-oracle algorithm
can be used to solve the (P1) [46]. Although this algorithm has been studied in the literature,
we provide the algorithm (Algorithm 2) along with a focused convergence analysis tailored for

this problem (Theorem 1) for clarity and completeness.
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Theorem 1: The output p,  of Algorithm 2 satisfies,

1) & =argminges, , f(P, @),

2) s — f(p, &) < Wt 4 § (i, B,
where fm&imin g the optimal value of (P1), T is the number of iterations of Algorithm 2 and
B is the step-size used in (13). Hence, for fixed ¢ > 0, choosing § = ¢, and T" > 1/52, the
maximum error is O(e).

Proof: Part 1 follows since, (p, ) = (p', ") for some t € [1 : T], and the definition of x’.

For part 2, define

Gis1 =P+ BVpf (P, @), (14)
for all ¢ € [1: T]. Recall that (p*, x*) is the optimal solution to (P1). Notice that,

i+1 i+1

—p*I* <@ lld™ = p*|? = |lp' + BV, f (P, ) — p*|?
< |Ip" = p*||> + BV f(p', ) ||>—2B(p* — p') "V, f (P’ )

=u [P" =PI + Ve f (@' &) P =28(f (p", ") — f(p", ")),  (I5)

[F2

where (a) follows since projection onto a set reduces the distance to any point in the set, (b)
follows from the subgradient equality for the linear function f(-,x'). Notice that fmaximin —

f(p*,*). Now we sum the above inequality for ¢ € [1 : T'], which results,

T T T
0<|lp"™ —p*|* < |Ip' —p*|° + D _ BIVpf (0 @) =28 f(p*, @) +28 ) f(p' o))
i=1 =1 =1
n T ‘ T ' '
<@ lIp" =PI + TS (Z Ei) —28)  f(p" @) +28)  f(p,2)
k= i=1 i=1
n 1 T T
<|lp' - p*|I* + T8 (Z E;?) —28) f(ph ) +28) (B, 7), (16)
k=1 =1 i=1

where (a) follows since (V,f(p', ")) = Ei/(1 + 2i) < Ej, and the last inequality follows
due f(p*,z*) < f(p*,x) for any © € J,,_1, and the definition of (p, &) in the last line of
Algorithm 2. Hence, we have that,

2
fmaximin . f(iju i) < M (Z Ek) (17)

as desired. [ ]
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IV. ONLINE SETTING

This section assumes that the player A; does not know the mean vector E. Instead, the game
is played on a horizon of 7' discrete time slots, where after the decision of player A; during
time-slot ¢, they receive the realizations of the reward random variables of the resources chosen
by A; in time-slot ¢, as feedback. We add a time index to the notation described in Section II.
In particular, let W[t], a[t], Xj[t] denote the reward random vector, the action of player A;, the
number of players (other than player A;) selecting resource k, during time-slot . Hence, we

have that,

=Y o) (18)
k=2

where o[t] € J; is the action of player k € {2,3,...,m} during time-slot ¢. The history H[t|
up to time ¢ can be defined by

Ht] = {({Wi[r]; 1 <k <n,air] = 1}, al1]); 1 < 7 < t} (19)

We assume that conditioned on the history #[t] of A;, the action of player A; and the actions

of the other players are independent. Let p[t] € Z be defined such that,

Prlt] = B{L (o= [H[1]}- (20)

The expected utility of player A; can be written as
T n
Wilt] Loy 1 { (axl=1) }
E TR Aok [=1) EE £
{tzl k=1 14 Xy [t] ZZ * 1+ X [t]

I & Ilozkt=1
:ZZE,QE{E{J?% H]t] }}_(b ZZE,JE{ {H)[(i” H[t]}}
=y ] ERE{HX } ZE{f X[t)}, @1)

t=1 k=1
where the function f is defined in (8), (a) follows since Wt] is independent of the actions

of players during time-slot ¢, and (b) follows from the fact that the action of player A; is
conditionally independent of the actions of other players given the history (recall the definitions
of X [t], and plt] in (18) and (20), respectively). Now, combining the above with Lemma 2, it is

clear that the worst-case expected utility of player A; in this case is Zle E{fv(pl[t])}, where
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the function fY°*' is defined in (9), and the expectation is taken with respect to all the feedback
and actions of player A;. Hence, we formulate this setting as minimizing the worst-case regret,
T
Rt =) (f™™" —E{f*™(p[1])}) , (22)
t=1
where fmaimin jq the optimal value of (P1).

We assume that Wy [t] = Ep+n[t] forall 1 < k < n, where n[t] for (t,k) € [1 : T|x[1 : n] are
zero-mean, 1-sub-Gaussian random variables. We assume that the collection {W[t];1 <t < T}
is independent and identically distributed. Our formulation does not require the components of
W [t] to be mutually independent for a particular ¢ € [1 : 7. Let us also assume that Fj, € [0, C]
for each 1 < k < n, for some positive constant C', where C' is known to A;. Fix 6 € (0,1). We
begin with a few definitions. For all t € [1 : 7] and k € [1 : n| define n[t] as the number of

times player A; chooses resource k before time slot ¢. Formally,

t—1
nelt] = aglr]. (23)
=1
Also, define,
1 t—1
Eift| = —— W[t 24
k(] 1\/7’Lk[t];ak[] k[t (24)
where z V y = min(z,y), and,
. ) 2log LT+
ELlt] = S 25
klt] = Eilf nplt] V 1 (25)

We assume that T is large enough such that that \/log((T(T + 1))/d) > C. The choice of T

will ensure that if n;[t] = 0, we have that,

Ey < Exft), (26)
and
) 2 log L0+D

By, > Eyft] — 2| —=——2—. 27
o> Bl V1 &7

Also, define the functions f; : R” x Ny — R for ¢ € [1: T as,

o - Ek[t]Pk

fulp, @) = ; T (28)

Before moving on to the main result, we introduce the following well-known lemma.
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Lemma 3: Given a sequence {X;}°, of independent 1-sub Gaussian random variables, a

positive integer-valued random variable G and ¢ € (0, 1), we have the following,

1< 2log 1
_ZX,Z 21085 < 6. (29)
9= V g

2) If G is independent of {X,;};°,, we have,

1 & 2log &
G Xz =gt <o (30)
i=1

3) For general random variables G (Possibly dependent on the sequence {X;}:°,), we have,

a G+1 G(G+1)

2log 2log
E ;> <o,P E X<—\/7 <4. (31
— -V ¢ (" G - Gh

1) For all g € N, we have that,

Proof: Refer to [6]. [ |
Let us denote by W,[t] the reward obtained when the resource k is chosen for the t-th time by
player A; in [1 : T), where Wy [t] is set to E}, if the resource k is chosen less than ¢ times in
[1: T. Hence, notice that

il = W S Wl (32)

Now, applying Lemma 3-3 to the sequence {W;[t] — E}L, with G = 1V n[t] we have,

ngt]v1 2log T+1)
Wnk Z Wilr] = B 2 (| =i 0 <0 (33)
and
ng[t]v1 T+1)
1 5 ~ 2log
S Wilrl — B, < —y| =290 X <§ 34
TV nff ; drl = B < [ = <0 (34

where, we have also used the inequality n;[t] < 7. Now, we use the law of total probability on
(34) to obtain,
T+1)

1 PElIvL 2log
§>P{ —— W.rl— B, < —/ —=_3
=Y TVl ; Wl = i < [t]\/l
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ng[t]v1 T(T+1)
1 5 ~ 2log =
=P —E. < | —=9 I [t] >0% P(n.[t] >0
TV mlf] 2= bl = B < ATV e (nit] > 0)
ngt]v1 T(T+1)
1 5 ~ 2log ——
P W, E — = 0 Ap, [t =03 P(nglt] =0
TR TVl & bl = B < v 1| (nilt] = 0)
ng[t]V1 T(T+1)
1 5 ~ 2log =
P —E. < ——=39 In[t]=0% P(n,lt] =0
YTV ; bl = B < v 1| (nilt] = 0)
> P {Ek > E[f]|ni[t] > 0 p P(nyt] > 0)

where (a) follows since we have from (26) that

P {Ek > E[t]|n[t] = 0} = 0. (36)
Similar, treatment to (33) yields,
P{E, < Byl 2log A | _ 37)
b=k vl (=

Now consider the good event A, which is defined as the event where the inequalities,

Ej, < Eilt], (38)
and
B 21og T(T+1)
E. > E.[t] — 24/ ———90 39
k> Eilt] nplt] V1 (39)

hold for all ¢ € [1 : 7] and k € [1 : n]. Combining, (35) and (37) with the union bound, we
have that

P(A%) < 2Tné. (40)
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Now we summarize our approach in Algorithm 3, after which Theorem 2 establishes the sub-
linear worst-case regret bound of the algorithm. For the UCB algorithm, we require two param-

eters: the learning rate 5 > 0 and § € (0, 1).

Algorithm 3: UCB(f, 9) Algorithm

1 Initialize E[1] = 0, and ny[1] = 0 for each 1 < k < n.

2 Initialize p[1] = [Z, L, ... ]

3 for each time-slot t € [1 : T] do

4 Set x[t] = argmingc 7, , fi(p[t], ) using Algorithm 1.

5 Choose action «t] for the ¢-th time-slot by sampling from pl[t] using the approach in
Appendix A (Algorithm 4) and receive feedback {Wy[t]; 1 < k < n,auft] = 1}.

6 | Obtain p[t + 1] by using,

plt + 1] = IIz (plt] + BV, fi(p[t], 2[t])) , (41)

where I17(y) denotes the projection of y onto Z, function f; is defined in (28), and

[ is the step size.
7 end

Theorem 2: Fix T as a positive integer large enough so that 1/(2nrCT?) < 1, and /2log(2nrCT3(T + 1)) >
C. Running the UCB(}3, §) algorithm in Algorithm 3 with § = 1/(2nrCT?), and 8 = \/1/(T D?),

where D = C + 24/2log T(TTH yields the worst-case regret bound,

T(T+1
§=1/(2nrCT?) < 1, and \/2 log% = \/2log(2nrCT3(T + 1)) > C,  (42)
yields the worst-case regret bound,
R[t] < nDVT + 4n+\/2rT log(2nrCT3(T + 1)) + 1. (43)

Proof: Notice that since T is fixed large enough such that 1/(2nrCT?) < 1, and § =
1/(2nrCT?), we have that § € (0,1). Moreover, due to the choice of 7" and J, we have,
C > +/21og(2nrCT3(T + 1)) = 4/21log T+1) , which will ensure (26) and (27). We first focus

on the good event A. Notice that in this case,

5 2 log ZI+L) T(T +1
Elt] < By +2 % ) C 42 QIOg% D, (44)
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for all k,t € [1 : n] x [1 : T|, where (a) follows since E; < C. Let (p*,x*) be the optimal
solution to (P1). Define

qlt +1] = plt] + SV, fi(plt], 2[t]), (45)
for t € [1: T, where f; is defined in (28).
Notice that,
Iplt + 1] = p*II* <( llqlt + 1] — p[I* = lIp[t] + BV, fe(plt], z[t]) — p*[|”
< llplt] — p*I* + BV fi(plt], =[t) | =26(p" — plt]) " Vi fu(plt], 2[t])

= [Plt] = P7I* + BV fe(lt], 2[t) I*=28(f(p", x[t]) — fe(plt], z[t])),
(46)
where (a) follows since projection onto a set reduces the distance to any point in the set, (b)
follows from the subgradient equality for the linear function f;(-, z[t]). Notice that fmaximin —

f(p*, x*). Define

Zt] = arg_min f(p[t], ). (47)
First, notice that,
fi(p*, =[t]) = f(p*, x[t]) = f(p", x"), (48)

where the first inequality follows due (38), and the second inequality follows from the definition

of x*. Also, we have that,

ft(p[t]vw[t]) Sft(p[t]vi[tbv (49)

which follows from the definition of «[t] in line 4 of Algorithm 3. Now we sum the (46) for
t € [1: T, which results (consider event A),

0 < [p[T+1] = pI” < p[1) = P> + D _ BIVplilplt], z[t])*—28 > _ fi(p", =[t])

T T T
+28)  filplt], x[t]) <@ n+nfTD> =28 filp*.z[t]) + 28 fulplt], z[t])
t=1 , , t=1 t=1
S(b) n+ nB2TD2 - 2ﬁ Z f(p*, -’13*) + 25 Z ft(p[t]v i[t])
t=1 t=1
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< n+n52TD2—25if( *w*)+25i F(plt), +i il [2los =5
(C) — p? — p 1+xk []\/1

T n 2log T(T+1) o T
—n+ nﬂZTD2 + 452 Z W . 26Tfmax1mm + 252 fworst(p[t])
t=1 k=1 t=1

p[1]

where (a) follows since p|l1|, p* € Z, and

| Et]
v t], z[t])||* =
IVos (el 2l = 2|
due to (44), (b) follows from (48) and (49), and (c) follows from (39) and the definition of f;

in (28). Hence, we have that,

o T T n 2log T(T+1)
BT ™™ — 257 " [ (plt]) < n+nBTD*+ 45 Y Ipll\| —r ¢ 6D
t=1

nD?, (50)

=D nelt] V1

Now we take the expectation (Conditioned on the event A) of both sides of (51), we have,

E{QﬁTfmammm 26 Z fworst |A}

, , n 9 log T(1:5+1)
<n+np*TD*>+48) E prlt| ———
Z 2 pli = A

T n T(T+1)

4 2log

<n+nfTD + Wéx) Y E {§ il |
t=1

4 T n 21 T(T+1
— n+n@TD? + P(i)ZE{E{Zpk[] Og }}
43 T 210g
=n+nBTD?+ (—ZE ZE{]l (ent=n | H[IH | — ’H
t=1 k
48 T 210g T(T+1
= TD*+ ———) EXE
ettty Safal 5 ([
_ 27D2 4 4p - QIOgT(TTH
=n+nf*TD* + 5 ) ;E {j:%[t}l VT (- (52)

Hence,

T
26R(T) = E {Mfmmmm ~283" f(pl))|A

t=

—_
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T
+E {Mfmmi“ ~28%" f(plt)
t=1

Ac} P(A°)

T T(T+1)
21o
<@n+nBTD*+483 E{ Y gi +28rCTP(A°)
t=1 Jrog[t]=1
n T 2 log L0+D
b=l t:[tl] . T
o [t]=

n nilt] 2log T(T+1)
=n+nB*TD?*+ 46E Z 0 A 4+ 4BrndCT?
, J
k=1 j=1

< n+ nB*TD?* + 8BE \/2nk[t] log y} + 4B8rnéCT?
k=1

<

3

n

T(T+1
<@ n+nB*TD? + 86K n\/ 2log % > milt] ¢+ 48rnsCT”
k=1
T(T+1
=n+nB*TD? + 85n\/ 2rT log rr+1) + 48rnéC'T? (53)
where (a) follows combining (52), the fact that
maximin P ) - *
f 221” <Y piC=rC, (54)
+ —

and P(A) < 1, (b) follows due to (40) (c) follows from 22_1 \/E_1 < 2v/1, and (d) follows

since Y, v/mult] < /Doy nk[t] = /n. Hence, we have that,

R(T) < ﬁ + —5TD2 + 4n\/ 2rT log @ + 2rnéCT? (55)

Using 8 = \/1/(TD?), and 6§ = 1/(2rnCT?), we have,
R[t] < nDVT + 4n+\/2rTlog(2nrCT3(T + 1)) + 1 (56)
as desired. [ |

Notice that since f"°*! is concave from the definition in (9), we also have that,

T
fmaximin —F {fWOTSt (M) } < RT[t] (57)
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V. SPECIAL CASES OF THE ONE-SLOT SETTING

This section focuses on solving some special cases of the one-slot setting. These approaches
lead to faster solutions and more insight into the problem. In this section, we assume, without
loss of generality, that £}, > 0 for all 1 < k < n since otherwise, we can transform the problem
into a lower dimensional version. Without loss of generality, we also assume that £, > Ej.,
for 1 < k < n—1. First, we derive an explicit solution to the case m = 3,7 = 1. Then, we solve
the two-player general case. Before constructing the solution, we state the well-known Lagrange
multiplier lemma, which will be useful in constructing the solution for both cases.

Lemma 4: Consider the following constrained optimization problem,
max 2o()
st.  z(x)>0 forie {1,2,... k}, (58)

x e,
where z; : R" — R for i € {0,1,2,...,k}, and Y C R™. Consider the following unconstrained

problem for some g > 0.

k
max zo(x)+ Y pizi(x)
e ol (59)

st. xe).
Let * be a solution to the unconstrained problem. Assume x* satisfies for all i € {1,2,...,k},
1) z;(x*) > 0 (That is «* is feasible for the constrained problem)
2) u; > 0 implies z;(x*) = 0.

Then x* is optimal for the constrained problem.

A r=1,m=3

We first focus on finding fV°™'(p) explicitly for p € Z. Then, we use the solution to solve
(P2). Recall from the definition (8), f(p,x) = > ,_, pxEx/(1 + xy), for p € Z, and = € Js,
where J, and 7 in (1), and (3), respectively.

Lemma 5: Consider fixed p € Z. Let a = arg max;<;<,, £;p;, and b = arg maxi<j<y i£q LiD;.

Then x* = arg min, x) can be given in two cases.
g €J2 D, g
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Case 1: E,p, > 3E,p,: We have for k € {1,2,...,n},

2 if k=a,
T = (60)
0  otherwise.

Case 2: F,p, < 3FE,p,: We have for k € {1,2,...,n},

. 1 if k € {a,b}, 6D
0  otherwise.

Proof: Since from the definition of x*, we have that * € 75, we should have ZZ:1 x = 2.
Hence, the only way to assign players A, and Aj to the resources is to assign both players to a
single or two different resources. Notice that when assigning both players to a single resource,
they should be assigned to resource a since E,p, > Eypy for all k € [1 : n]. For the same
reason, when assigning players to two different resources, they should be assigned to resources

a and b. Hence, it only remains to check which assignment yields the smallest f(p, x).

Under case 1: (assignment (60))

_ Pl N 2paEa
f(p,x) = 3 + po by + Z prEy = ZpkEk 3 (62)
ke{a,b} k=1
Under case 2: (assignment (61))
paEa prb & paEa prb
= — EL = B, — - — 63
f(p, ) 5 + 5 + Z DPr bk Zpk k 5 5 (63)
k&{a,b} k=1
Comparing the two cases yields the result. [ ]

Now we can formulate the worst-case expected utility f"**'(p) of player A;. Lemma 5 allows

us to formulate this as,

Sonoipib — 20y if Ty > 3Ty
fWOrSt(p) — = (64)
S By — AT — ATy if Iy < 3T

where I'y, 'y are the largest and the second largest elements of the set {p.Ey;1 < k < n},

respectively.

June 2023 DRAFT



22

Hence, notice that the solution of (P2) is the problem with the maximal optimal objective out

of the n? linear programs,

(P2-i) : max ; - 3E
s.t. p €, (65)
pill; > 3pp by, V1 < k <n,
and "
®2(0) s max D piki - Lo
(66)

s.t. D < I, piE; < Bijju pi B > ijj7
Pl > ppl V1 <k <n,k #1,

where i,j € [1 : n| and i # j. To solve (P2-i), and (P2-(7, j)), it shall be useful to re-index to

associate ¢ with 1, and (7, j) with 1 and 2. Hence, we define the two problems.

. 2p1 Fy
P2-1): = F —
( ): max fi(p) ;pk k 5
67
s.t. pel, ®7
pF1 > 3pk+1Fk+1 Vk € {1, o, n = 1},
and .
piln poFy
P2-2): = F — _
( ): max fo(p) ;pk k 5 5
(63)

st. p€Z, piFy < 3paky, prFy > pako,
paFs > ppFy V3 < k < n,
where for (P2-1), F' € R”" is assumed to a positive vector such that F}, > Fj.; fork € [2:n—1],
and for (P2-2), F' € R" is assumed to a positive vector such that Fy, > Fjq fork € [3: n—1]. It
should be noted that the [}, values are just the £, values under more convenient indexing. Solving

the above two problems will immediately solve each of the previously defined n? problems.

Define the two sequences (U;;1 <i <n), and (V;;2 < i <n) by,

(69)

7
i: i 7 L’
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and,

1 —1

Vi= ——— (70)
>t T
These two sequences will be useful when constructing the solutions to (P2-1) and (P2-2).
1) Solving (P2-1): Consider the problem (P2-1).
- 2p1Fy
P2-1) : = F, —

(P2-1) : max fi(p) kz:;pk k 3
71
s.t. pel, (1)

pFy > 3pri1Fryq VE € {1, 2,...,n— 1},
Also, consider the Lagrangian dual of the above problem (P2-1-p) for p € R™! such that

w; >0 forall ¢ € {1,...,n — 1} constructed according to Lemma 4,

n—1

(P2-1-p) - max  fi(p) + Y pue(p1Fy = 3pisa Fisn)
k=1 (72)

st. pel.

Let us define u = arg max;<;<,, U;, where the sequence (U;; 1 < ¢ < n) is defined in (69) and

arg max returns the least index in the case of ties. We establish that the solution to (P2-1) is p*,

where,
( 7
R -
RS S - ifk=1
1
Pr=9{ v——t—r if2<k<u (73)

Fil Zj:Q fj

0 otherwise,
\

with optimal objective value U,. It can be directly seen that p* defined by (73) satisfies the
constraints of the problem (P2-1), specifically, p* € Z and p}Fy > 3pgi1Fpr1 fork € {2,... n}.
To prove that p* solves (P2-1), we construct a Lagrange multiplier vector i € R"~! with p; > 0
for all i € {1,...,n — 1} such that p* solves the problem (P2-1-) and establish that (p*, u)
satisfy the conditions of the Lagrange multiplier lemma (Lemma 4), namely:

1) piFy > 3pj 1 Frqa forall ke {1,...,n -1}

2) Forke{l,....n—1}, px > 0 = pi{F1 = 3pi 1 Fiq.
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Define the vector pu € R as,

Iy —— u if 1<k<u-—1
e = 3< Andning ) DTl (74)

0 otherwise.
Now, we prove the following lemma regarding p.
Lemma 6: Consider the p defined in (74). We have that,
1) puxp >0 for all k£ such that 1 <k <n—1.
2) We have, F; (3 + Z;:ll (i) = Fi(1 = 3pp-1) =
3) Fkgmmrujtlgkgn

Proof: Notice that since u = argmax;<;<, U;, we have that,

for 2 < k <.

_u
R e
Fy T iz

U, > Uj for all j € [1:n]. (75)

1) Notice that p; = 0 by definition, when £ > u — 1. Now suppose k < u — 1 (so u > 2).

We are required to prove,

u
Fk-i—lz i_‘_zu 10
I k=2 F},

forall k € {2,3,...,u—1}. It is enough to prove the above for £ = u—1, since Fy > Fj1;
for £k > 2. Notice that from (75), we have that U, > U,_;. Substituting from (69) and

(76)

simplifying, we have the result.

2) Substituting from the definition of p; and simplifying yields the result.

3) If u = n, there is nothing to prove. Otherwise, it is enough to prove the result for k = u+1,
since Fj, > Fj1 for k > 2. From (75), we have that U, > U, . Substituting from (69)
and simplifying, we have the result.

|
Notice that due to Lemma 6-1, we have that p; > 0 for all < € {1,...,n — 1}. Hence, consider
the dual problem (P2-1-p) with g defined in (74). For this choice of py, after eliminating the
1k, which are zero, we have that the objective of the problem (P2-1-pu) is,

u—1 u n
1
2y <§ + ; m) - ; prF (1= 3mer) + Y pikFk, (77)

k=u+1
Now, due to Lemma 6-2, the above objective simplified to,

ipiCjL i pi Y, where C' = (78)

U
3 w1
i=1 k=u+1 P + Zi=2 F;
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Also, notice that from Lemma 6-3, we have that C' > Fj, for all k € {u+1,...,n}. Hence, the
optimal solution for (P2-1-) is any p € Z such that p, = 0 for all k € {u+1,...,n}. Hence,
p* given in (73) is a solution to (P2-1-u). We establish that (p*, pt) also satisfy the conditions of
Lemma 4. First, recall that p* satisfies the constraints of the problem (P2-1). Second, from (74)
notice that p;, > 0 implies that k£ € {1,...,u — 1}. Also, from (73) notice that pjF; = 3C/u,
and pj_Fyp1 = Cfu for all k € {1,...,u — 1}, where C is defined in (78). Hence, we have
that , > 0 implies pyFy = 3pj ., Fj+1. Hence from Lemma 4, p* is the solution to (P2-1).
2) Solving (P2-2): Consider the problem (P2-2).

- pi P2l
P2-2) : = F—— —
( ): max fo(p) ;:1 i 5 5

(79)
st. peL pF <3pFy, pir Y > poFo,

p2F2 > prFy V3 < k <n,

Similar to the solution of (P2-1), consider the Lagrangian dual (P2-2-u) of the above problem
for g € R™ such that p; > 0 for all i € {1,...,n} constructed according to Lemma 4,

(P2-2-p1) : max  fo(p) + 1 (3p2Fa — prFY) + pa(pi Fy — paFa) + Y i(p2Fa — piFe)

k=3 (80)
st. pel.

We solve the problem by considering two cases. Similar to the solution of (P2-1), for each case
we will provide a vector p* € Z and the Lagrange multiplier vector g € R™ such that pu; > 0
for all s € {1,...,n}, p* is a solution to the problem (P2-2-u), p* is feasible for the problem
(P2-2) specifically,

1) prel

2) piby < 3psks

3) pify > piby

4) psFy > piFy for all k € {3,...,n}
and (p*, u) satisfy the conditions of the Lagrange multiplier lemma (Lemma 4), namely,

1) p* is feasible for (P2-2)

2) >0 = piF1 =3p3F>

3) pe >0 = piF1 =p5F

4) For k > 3, p, > 0 = p5Fy = pi F.
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Let us define u = arg maxs<;<, U;, and v = arg maxe<;<, V;, where the sequences (U;;1 <
i <mn),and (V;;2 < i < n) are defined in (69), and (70), respectively, and argmax returns
the least index in the case of ties. In this case, to define u, we only consider the indices of the
(U;;1 < i < n) sequence starting from 2 in contrast to the definition of u in the solution to
(P2-1). Now, we introduce the two cases.

Case 1 V,, > U,: The solution to (P2-2) in this case is p* where,

1
bt if1<k<vw
Pi = 7= (81)

0 otherwise,
with optimal objective value V,,. It can be easily checked by substitution from (81) that, px € Z,
piFy = piFy for all k € {1,...,v}, and p;F = O for all k € {v+ 1,...,n}. Hence, p* is
feasible for (P2-2). Now, we focus on constructing the Lagrange multiplier vector pt. Define the

vector p € R" as,

(

1wl 1 e
YL 2 if k=2,
= _ 1 w1 :
1k o T if 3<k<w, (82)
0 otherwise.

\

Now, we prove the following lemma regarding .

Lemma 7: Consider the p defined in (82). We have that,
1) px >0 for all k£ such that 1 < k < n.
2) Fi(3+m)=FG—p+> m)=F(l—m) = 25_1% for 3 <k <w.
=1 &
3) <=L forv+1<k<n
2k=1 7
Proof: Notice that since u = arg maxs<;<, U;, and v = arg maxs<;<, V;, we have that

U, > U, forall j € [2:n], and V, >V for all j € [2: n|. Since from the case description, we
have that V,, > U,, we should have that,

V,>V;forall j€[2:n]and V, > U, for all j € [2: n] (83)

1) Notice that the result trivially follows for k ¢ {2,... v} since ux = 0 for such k. Hence,
we will focus on k € {2,...,v}. We first prove that zs > 0. Notice that from (83), we
have that V,, > U,. After substituting from (69) and (70) and simplifying, we have the
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desired result. To obtain the result for 3 < k& < v, we can assume that v > 3. Notice that

we are required to prove,

v—1
Zk:lF_k

It is enough to prove the above for k = v, since F} > Fj,, for £k > 3. From (83) we have

(84)

that, V,, > V,_;. Substituting from (70) and simplifying gives the result.

2) Substituting from the definition of p; simplifying will yield the result.

3) If v = n, there is nothing to prove. Otherwise, it is enough to prove the result for £ = v+1,
since F > Fj., for k > 3. From (83) we have that, V, > V. Substituting from (70)
and simplifying gives the result.

|
Notice that due to Lemma 7-1, we have that p; > 0 for all ¢ € {1,...,n}. Hence, similar to the
solution to (P2-1), consider the dual problem (P2-2-p) with p defined in (82). After eliminating
the p;, which are zero, we have that the objective of the problem (P2-2-p) is,

1 1 v v n
pF (5 + M2) +poFy (5 —pa+ ;u> +> o F(l—m)+ > pFi, (85)

k=3 k=v+1
Due to Lemma 7-2, the above objective simplified to,

v—1

ipiCjL i pily, where C' = (86)

i=1 k=v+1 23:1 Fi
From Lemma 7-3, we have that C' > Fj, for all k£ € {v + 1,...,n}. Hence, similar to the
solution to (P2-1), the optimal solution for (P2-2-u) is any p € Z such that p, = 0 for all
k€ {v+1,...,n}. Hence, p* given in (81) is a solution to (P2-2-u). Recall that p* is feasible
for (P2-2). Hence, we are only required to establish that (p*, ) satisfies the conditions of
Lemma 4. From (82) notice that u; > 0 implies that £ € {2,...,v}. From (81) notice that
piFy, = piF, for all k € {1,...,v}. Hence, ux > 0 implies the corresponding constraint is met
with equality. Hence from Lemma 4, p* is the solution to (P2-2).

Case 2 U, > V,: The solution to (P2-2) in this case is p* where,

( 3

12 e
e S if k=1
Pr=19 vkt — if2<k<u (87)

3 u 1
F_1+Zj:2 7

0 otherwise,
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with optimal objective value U,. First notice that p* is feasible for (P2-2), since from (87) we
have px € Z, piFy = 3p;Fy for all k € {2,...,u}, and p;F, =0 for all k € {u+1,...,n}.
Similar to case 1, we construct the Lagrange multiplier vector p. Consider the vector p € R"

given by,

1w
: T
Fy Fj‘*‘ZZ:g r

pe=91—-t+5—2 — if3<k<u, (83)

— F, 3 u 1
Fk F71+Zk:2F7k

if k=1,

N[

0 otherwise.
\

We have the following lemma.

Lemma 8: For the p defined in (88), we have that,

1) pp >0 for all k£ such that 1 < k < n.

2) We have,
ﬂ(l—uozz&<l+&n+ijm>zﬁﬂl—m):§——ﬁr—Tﬁn3§k§w
2 2 i=3 ol 2 k=2 Fy
(89)
3) [ <5 —Fforu+1<k<n

%+ZZ:2 Ty,
Proof: Notice that since u = arg maxs<;<, U;, and v = arg maxs<;<, V;, we have that
U, > U, forall j € [2:n], and V,, >V, for all j € [2: n|. Since from the case description, we
have that U, > V,, we should have that,

U,>U;forall j€[2:n]and U, >V, forall j € [2:n] (90)

1) Notice that this condition is trivially satisfied for k € {2}U{u+1,...,n} since u; = 0 for
such k. Hence, we focus on k & {2} U{u+1,...,n}. First, we prove that x; > 0. Notice
that from (90), we have that U, > V,,. Substituting from (69) and (70) and simplifying,
we have the desired result. To obtain the result for 3 < k < u, notice that we can assume
u > 3. Notice that from (90), we have that U, > U,_;. Substituting from (69) and
simplifying, we have the desired result.

2) Substituting from the definition of p; simplifying will yield the result.

3) If u = n, there is nothing to prove. Otherwise, it is enough to prove the result for k = u+1,
since Fj, > Fj1 for k > 3. From (90) we have that, U, > U, ;. Substituting from (69)

and simplifying gives the result.
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|
The analysis is very similar to case 1. Notice that due to Lemma 8-1, we have that p; > 0 for
all - € {1,...,n}. Similar to case 1, consider the dual problem (P2-2-u) with p defined in (88).
After eliminating the p;, which are zero, we have that the objective of the problem (P2-2-pu) is,

1 1 u u n
pily <§ - Ml) + paFh (5 + 3y + Zm) + ;kak(l — jg) + Z i Fr, (C2Y)

=3 k=u+1
Due to Lemma 8-2, the above objective simplified to,
U

zu:piCjL Zn: prF), where C' = El

i=1 k=u+1 P 2 i Fi 2
From Lemma 8-3, we have that C' > Fj, for all k¥ € {u+ 1,...,n}. Hence, similar to case 1,
the optimal solution for (P2-2-p) is any p € Z such that p, =0 for all k € {u+1,...,n}. In
particular, p* given in (87) is a solution to (P2-2-p). Recall that p* is feasible for (P2-2). Now,
we establish that (p*, u) also satisfy the conditions of Lemma 4. From (88) notice that ;, > 0
implies that £ € {1} U{3,...,v}. From (87) notice that p; F; = 3p}Fs, and p} Fy, = p3F; for all
k € {3,...,v}. Hence, u; > 0 implies the corresponding constraint is met with equality. Hence
from Lemma 4, p* is the solution to (P2-2).

3) Solving (P2): Finally, we are ready to combine the solutions of (P2-1) and (P2-2) to solve
(P2). Notice that since we solved (P2-1) and (P2-2), we have solved all of the n? problems
(P2-7), and (P2-(7, j)) for i, j € [1 : n] such that ¢ # j. Hence, we can solve (P2) by solving all
the above problems and finding the one that gives the highest optimal objective. But, it turns out
that it is, in fact, enough to solve (P2-1), and (P2-(1,2)). To prove this, Consider arbitrary (7, ;)
such that 1 <, j < n such that i # j. Define, D € R" to be the vector obtained by permuting
the entries of E such that Dy = E;, Dy = Ej;, and Dy, > Dy, for k € [3: n — 1]. Notice that
due to the solution of (P2-2), the optimal value of (P2-(z, 7)) is given by,

a—1 b
7" = max a1 5 2§a,b§n}, ©3)
{ > k=1 Dy B+ 2 ies D%C
Notice that,
a—1 b
max T ; a,be [2:n]} >, 94)
{ D kel Tp E% + 2o Eik

where the inequality follows since >, _, E% <>, Dik, and E% +30 E% < D% 30, DL;C

for all a,b € |2 : n]. This follows since, Fy > Ej., for all k£ € [1 : n — 1]. But notice that the
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left-hand side of (94) is the optimal value of (P2-(1,2)). Hence, the optimal value of (P2-(1, 2))
is at least as that of (P2-(7, j)). Hence, it is enough to solve (P2-(1,2)). With similar reasoning,
we can establish that solving (P2-1) suffices. Considering the solutions (P2-(1,2)) and (P2-1),
we have the result. The theorem below summarizes the solution we constructed for (P2).

Theorem 3: Define the two sequences (U;; 1 < i < n), and (V;;2 < i < n) according to (69),
and (70), respectively with F' = E. Let u = argmax;<;<, U;, and v = arg maxo<;<,, V;, where
arg max returns the least index in the case of ties. Then, the solution to (P2) can be described
in two cases.

Case 1: If V, > U,, the solution to (P2) is p*, where,

he i 1<k<w
e 95)

0 otherwise.

Case 2: If U, > V,, the solution to (P2) is p*, where,

4 3
Er : _
7%1453}‘:2%]. if k=1
1
Dp =18 —=t — if2<k<u (96)

3 u 1
Eq +Zj:2 Ej

0 otherwise.

\

Proof: Recall that the solution of (P2) is either the solution of (P2-1) or (P2-(1,2)),
depending on which problem produces the higher optimal objective value. We will consider
the following two cases.

Case 1: V, > U,: In this case, from the analysis in Section V-A2, we have that the solution to
(P2-(1, 2)) is (95), with an objective value equal to V,. Also, from the analysis in Section V-Al,
we have that the solution to (P2-1) is (96), with an objective value equal to U,. Since V, > U,
we have the result.

Case 2: V, < U,: In this case, from the analysis in Section V-A2, we have that the optimal
objective value of (P2-(1,2)) is max{V,, U, }, where u" = arg maxy<,;<, U;. But notice that since
u = arg maxi<;<n U;, we have that U, < U,,. Combining this with the case description, we have
that max{V,, U, } < U,. Also, from the analysis in Section V-Al, we have that the solution to

(P2-1) is (96), with an objective value equal to U,. Since V, < U,, we have the result.
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Fig. 1. Left: The mean rewards of different resources. Right: Probabilities of choosing different resources for the considered

Fig. 1 denotes the optimal probabilities found for n = 10, along with,
E =[7,6.7,5.5,4.5,1.26,1.21,1.16,1.11, 1.05, 1.0]. 97)

It is interesting to notice the variation of choice probabilities in Fig. 1. In particular, it can be
seen that while it is optimal to choose a collection of resources with the highest mean rewards
with non-zero probability, within the collection, one chooses resources with lower mean rewards
with higher probability. This can be explained as follows. First, player A; will never choose the
resources with the lowest mean rewards. Second, in the collection of resources with relatively
high mean rewards, player A; may be tempted to choose resources with lower mean rewards
with high probability since, in the worst case, opponents will choose the rewards with the highest

mean rewards.

B. m =2, arbitrary r

The case » = 1 is solved in [13]. The solution is given by, p* where,
—1 _ ifk<u,
w 1 -
pr=1 (T %) (98)
0 otherwise,
and,
k—1
U = arg max ——2—, (99)

k 1
1<k< 1
<hsn 3F | &
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See [13] for the proof.
The general two-player case can be reduced to a linear program. Again fV°*' can be found

explicitly in this case. It can be easily seen that
n 1 s

Frost(p) = ;]%E —3 (2; max(j){pkEk;l <k< n}) , (100)
= j:

where max ;) returns the j-th largest element in a set. Consider the following (:f) linear programs,
each indexed by a size r ordered subset of [1 : n| containing distinct elements, where the problem
(P-ay, ag, .., a,) with a; € [1: n| for each k € [1: 7] and a < agy; for k € [1: 7 — 1], is given

by,

n 1 T
(P-aq,ay, .., a,): Izgl%( ;ijj 3 (;Paanj>

s.t. pel, (101)
PajFo; 27 VI <5<,
v > peEy VE € [1:n]\{a,as,..,a.}

Notice that the solution of (P2) is the solution of the problem out of the above (:f) problems
with the maximum objective value. Hence, solving (P2) amounts to solving (Z) linear programs.
In the below lemma, we prove that it is, in fact, enough to solve (P-1,2,..,7)
Lemma 9: The optimal objective value of (P-1,2,..,r) is at least the optimal objective value
of (P-ay, as, .., a,), where a;, € [1: n] foreach k € [1: r| and a), < a4y foreach k € [1:r—1].
Proof: See Appendix C [ ]

For 1 < a,b < n, define,

b 1 .
i—a T if b >a
S = 2w : (102)

0 otherwise
Now, we focus on constructing the solution for the problem subjected to two assumptions.
Al FEy, E,, ..., E, are distinct real numbers
A2 forall a € [1:7],and b € [r+ 1,n], E},S,p is not an integer.
The solution for this case is defined in terms of three functions h: [0: 7 —1] X [r+1:n| — R,
e:[0:r—1]x[r+1:n]—-R,and g:[r+1:n]x[r+1:n] — R. Before introducing the

three functions, we begin with a few definitions.
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Good triplets and bad triplets: We call a triplet (a,b,c) € [0:r—1] x [r+1:n|x[r+1:n]
a good-triplet if r —a + b — ¢ < EpS,.1,. If the reverse inequality is true, we call (a,b,c) a
bad-triplet index.
The following lemma introduces certain properties regarding triplets.
Lemma 10: Consider the following scenarios.
1) If (a,b,c) is a good-triplet then,
a) If b>r+1, then (a,b—1,c¢) is a good-triplet
b) If ¢ < n, then (a,b,c+ 1) is a good-triplet
¢c) If a<r—1,then (a+1,b,¢) is a good-triplet
d) If a > 0, and ¢ < n, then (a — 1,b,c+ 1) is a good-triplet
2) If (a,b,c) is a bad-triplet then,
a) If b <n, then (a,b+1,c) is a bad-triplet
b) If ¢ > r+ 1, then (a,b,c — 1) is a bad-triplet
¢) If a > 0, then (a — 1,b,¢) is a bad-triplet
d) fa<r—1,and ¢ >0, then (a + 1,b,c — 1) is a bad-triplet
Proof: See Appendix D [ |
Function h: From Lemma 10-1-a, 2-a, we have that, for fixed (a,c) € [0 : 7 — 1] X [r + 1,n],
either (a, b, ¢) are good-triplets for all b € [r+1,n], (a,b, ¢) are bad-triplets for all b € [r+1,n|,
or there exists a unique b € [r+1,n — 1] such that (a, b, ¢) is a good-triplet and (a,b+1,¢) is a
bad-triplet. Define h(a,c) = n in the first case, h(a,c) = r in the second case, and h(a,c) = b
where b is the unique index in the third case.
Function e: Similarly, from Lemma 10-1-b, 2-b, we have that, for fixed (a,b) € [0 : r — 1] x
[r + 1,n], either (a,b,c) are good-triplets for all ¢ € [r + 1,n], (a,b,c) are bad-triplets for all
¢ € [r+ 1,n|, or there exists a unique ¢ € [r + 2,n| such that (a,b,c) is a good-triplet and
(a,b,c—1) is a bad-triplet. Define e(a,b) = r+1 in the first case, e(a, b) = n+ 1 in the second
case, and e(a,b) = ¢ where c is the unique index in the third case.
Function ¢: Similarly, from Lemma 10-1-c, 2-c, we have that, for fixed (b,c¢) € [r + 1,n] x
[+ 1,n], either (a,b, c) are good-triplets for all a € [0, — 1], (a, b, c¢) are bad-triplets for all
a € [0,7 — 1], or there exists a unique a € [1,7 — 1] such that (a,b,c) is a good-triplet and

(a — 1,b,¢) is a bad-triplet. Define g(b,c) = 0 in the first case, g(b,c) = r in the second case,
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and ¢(b,c) = a where a is the unique index in the third case.
Now, we construct the explicit solution using the functions defined above.

Theorem 4: Assume that we are given the two assumptions Al, and A2 are true. Define the
three sets X, X5, A3, as
Xy ={(a,c) €[0:r—=1] x [r+1:n]lr <h(a,c)}
Xo={(a,b) €[0:r—1] x [r+1:n]b<e(a,b) <n}
Xs={(be)elr+1:n|xr+1:n]|b<c0<g(bc) <r—1}, (103)
and define the vectors pY®¢ for (a,c) € X;, p>*® for (b,c) € X, and p>>¢ for (b, c) € As,

where,

1) for (a,c) € &)

;

1 ifl<k<a
r—a+b—c .
e jfa+1<k<b
pllg,a,c _ ErSat1p (104)
1 ifob+1<k<c
0 otherwise,

where b = min{h(a, ¢), c},

2) for (a,b) € As,

1 ifl<k<a
Lo ifa+1<k<b
k
=11 ifbrl1<k<c—1 (105)

(r—a)+b—c—EpSay1p-1 ifk=c

0 otherwise,

where ¢ = e(a, b)
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3) for (b,c) € As,

/

1 ifl1<k<a-1

T—a—i-b—C—EbSa_i_Lb_l if k=a

=19 ifat1<k<b (106)
1 ifo+1<k<c
0 otherwise,

\

where a = g(b, ¢).
1) We have that,
a) pl®c for all (a,c) € X, are all valid vectors belonging to Z.
b) p?*? for all (a,b) € X; are all valid vectors belonging to Z.
c) p>>¢ for all (b, c) € Xy are all valid vectors belonging to Z.
where pl®¢, p>® and p>*° are defined in (104), (105), and (106), respectively.
2) We have that,

a) for (a,c) € Xy, (ph*°,7) is feasible for (P-1,2,..r), where v = Sai,b’ and b =
min{h(a, c), c}.

b) for (a,b) € X,, (p**?,~) is feasible for (P-1,2,..,r), where v = E,

c) for (b,c) € A3, (p>¥€,7) is feasible for (P-1,2,..,r), where v = E},

d) the pair (p°, ), where

0 1 if1<k<r
Dy = (107)
0  otherwise
and v = E,,, is feasible for (P-1,2,..,r).
3) The solution to (P-1,2,..,7) is the one that produces the maximum objective value out of

the elements in the following set
A={p" L U{p"*: (a.c) € X} U{p**": (a,b) € X} U{p*“: (b,c) € A3}, (108)

along with the v values defined in part-2.

Proof: See Appendix E [ |
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Fig. 2. Left: The mean rewards of different resources. Right: Probabilities of choosing different resources for the considered

Fig. 2 denotes the optimal probabilities found for n,r = 10, 3, along with E given by,
7 iftj=1
E;=46.7 if j=2 (109)

1+ 601_93] otherwise

In Fig. 2, it can be seen that player A; will always choose a subset of resources with the highest
mean rewards, and the probabilities of choosing the remaining resources follow a similar pattern
to the m = 3,r = 1 case described in Section V-A. The intuition behind this is also very similar

to the three-player singleton case.

VI. SIMULATION RESULTS

For the simulations, consider the scenarios given below,

) m=2r=1n=4. 4) m=5,r=1,n=4.
2y m=2,r=3,n=4. 5) m=5,r=1,n==6.
3y m=3,r=1n=4. 6) m=>5r=3n=060.

For all the simulations, we fix E; = 1 for ¢ > 1 and plot different quantities as functions of
FE;. In both Figures 3 and 4, the top row depicts the maximum expected worst-case utility as a

function of E; and the bottom row, depicts a solution for the probabilities of choosing different
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resources as a function of £; (Notice that there can be multiple solutions for optimal selection
probabilities). Figure 3 shows the first three scenarios, whereas Figure 4 shows the last three
scenarios.

Notice that similar to the observations in [13], in Figures 3 and 4, we have that the probabilities
of choosing resource 1 exhibit similar patterns over several ranges. In particular, it can be seen
that the probability of choosing resource 1 vs. E; curve has m discontinuities, and between two
adjacent discontinuities, the curve is decreasing. The reason for the decreasing trend of choice
probability between discontinuities can be explained using the same idea used to explain the
variation of choice probabilities over the resources for a fixed E described in Section V-A. In
particular, increasing F; might mean that other players are more likely to choose resource 1. On
the other hand, the probability of choosing resource 1 should also increase at certain points since
for large values of E; it makes sense to choose resource 1 with high probability irrespective
of the decision of other players. For instance, in the case of F; > m with r = 1, player A;
chooses resource 1 with probability 1 since even if all the other players select resource 1, it is
beneficial for player A; to select it. This is also evident by the simulation results in Figures 3
and 4. Hence, the discontinuities of the probability of choosing resource 1 vs. E; curve can be

seen as points at which the confidence of player A; on choosing resource 1 grows.

VII. CONCLUSIONS

In this paper, we considered the problem of worst-case expected utility maximization for
the first player of multi-player resource-sharing games with fair reward allocation under two
settings. In the first setting, we provided an algorithmic solution to a one-slot game, where we
also provided explicit solutions for two special cases. For the second setting, we considered an
online scenario, for which we provided an upper confidence bound algorithm that achieves a
worst-case regret of O(1/T log (T')). The simulations and the explicit solutions depict interesting
variations of the probability of choosing a resource when the mean of the considered resource

is changed while holding the mean reward of other resources fixed.
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ALGORITHM FOR SAMPLING FROM 7

Algorithm 4: Algorithm to express p € Z as a convex combination of elements in 7.

1

[

w

10

11

12

13

14

15

Initialize an empty set )
Initialize p! = p, t =1
while p' # 0 do

that pj, >pj,  forke[l:n—1]
Set d, = min (1 — St dy — p27.+17pzr)
for each i € [1: 7] do
‘ Set pit! = pl,, — d;
end
for each i € [r+1:n] do
‘ Set pur = p,
end

Add (d;, aft]) to Y where,

a;lt] =
0 otherwise

Sett+—t+1

end

Output Y (We have p = P! diaft] ).

1 iij{Cll,CLQ,...

Let aj for 1 < k < n be such that {ay,as,...,a,} is a permutation of [1 : n] such

(110)

APPENDIX B

PROOF OF LEMMA 1-2

It can be easily seen that Conv(7;) C Z. To prove that Z C Conv(J;), we start by noticing

that Z is a compact convex set. We prove that the extreme points of the set Z are contained

in J;, which establishes the claim (See, for example, [47]). Hence, we prove that none of the
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elements of Z \ 7; is an extreme point of Z. For this, take any p € Z \ ;. Notice that since
p & Ji and p € T, there exists k,j € [1 : n] such that 0 < p; < p, < 1. Now take € > 0 such
that p; — e > 0 and p, + ¢ < 1. Define the vector p such that,

i if i & {k,j}
pi={p—¢c ifi=j (111)
pr+e ifi=k

Notice that Z contains the entire line segment joining p and p. Hence, p is not an extreme point

of 7 as desired.

APPENDIX C

PROOF OF LEMMA 9

Let A = (aq,as, ..,a,) be a subset of [1 : n| containing distinct elements such that a; < a1
for each k € [1 : r — 1]. Consider the problem (P-A). Let us B = [1 : n] \ \A. Denote Ap,g =
A\ [1:7] as the set of bad-1 indices and the set, By,g = BN [1 : 7] as the set of bad-2 indices.
Notice that for any given problem, there are an equal number of bad-1 and bad-2 indices. We
intend to prove that there is an optimal solution with no bad-1 (or bad-2) indices. For this,
we establish that for any problem with & > 0 bad-1 elements, there exists another problem
with £ — 1 bad-1 indices with an objective value at least as the objective value of the problem
with k bad-1 indices. Assume (P-.A) has k bad-1 indices. Let (p, ) be the optimal solution of
(P-ay,as, .., a,). We consider two cases.

Case 1: There is no pair (a’,b) such that ' is a bad-1 index and b’ is a bad-2 such that
E, < Ey.

Notice that any bad-1 index is greater than any bad-2 index. Hence, for pair (7, j) such that
¢ is a bad-1 index, and j is a bad-2 index, we have that F; > F; (Since E is assumed to be
decreasing). Hence, the above condition would mean that F; = E; for all ¢, 5 such that 7 is
bad-1, and j is bad-2. Hence (p,~) will be feasible for (P-(A\ {i} U {;j})) as well. Moreover,
(p, ) will give the same objective value for (P-(A\ {i}U{j})) as (P-A), and (P-(A\{i} U{j}))
will have & — 1 bad-1 indices.

Case 2: There exists a pair (a',b') such that ' is a bad-1 index and b is a bad-2 such that
E, < Ey.
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We begin with the following two lemmas.
Lemma 11: There exists t € A, and s € B such that F;p; = Esp, = 7.

Proof: We only prove the existence of ¢t € A such that £;p; = . The other part can be solved
by repeating the same argument. Assume the contrary. Let v* = (min{p;E;;j € A} +v)/2.
We have that v* > v, and p;E; > v* for all j € A. Notice that p,, > 0 and py < 1 (The first
inequality follows since p, E/ > p, E,/, and the second inequality follows since p £, > py E/,

and £y > E /). Hence, there exists 6 > 0, small enough such that,

Ey(py —0) 27" (112)
Ey(py +6) <" (113)
(py —96) =0 (114)
(py +0) < 1. (115)
Hence (p,~*), where p is given by,
Di if ke[l:n]\{d,b}
Pr=1opy —6 ifk=ad (116)

py+0 ifk=0

is feasible for (P-ay, as, .., a,), and also achieves a higher optimal objective value since £y > F ;.
This is a contradiction. u

Lemma 12: For (P-ay,as,..,a,), there exists an optimal solution with at least one bad-1
element a such that, £/,p, = 7, and at least one bad bad-2 element b such that Fy,p, = ~.

Proof: Notice that for all k € A\ Ay, and j € Apyg, we have that £, > E.

Notice that the entries of p can be rearranged without affecting the objective and feasibility for
(P-ay, as, .., a,) such that the following two conditions are satisfied.

C1 For k € A\ Apu, and j € Ay, if we have Ej, = E;, then py, > p;.

C2 For k € B\ By, and j € By if we have £y, = E;, then p; > py.

Now we establish that any optimal p reordered such that both C1 and C2 are met satisfy the
conditions of the lemma. We show only the bad-1 case. The bad-2 case can be solved using the

same argument.
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Assume the contrary. Hence, all bad-1 elements j satisfy E;p; > . Consider ¢ € A such
that F;p, = v (Such a t always exists from Lemma 11). Notice that ¢ cannot be bad-1. Hence
E, > Ej for all bad-1 indices j. In this case, we have the following claim.

Claim: There exists a bad-1 index ¢ such that F; < E,.

Proof: 1f no such bad-1 index ¢ exists, then we should have E; = E; for all bad-1 indices
J. From C1, this would imply that p, > p; for all bad-1 indices j. Hence, we should have
Eip, > E;p; > v, which contradicts E;p; = 7. [ |

Consider the 7 described in the Claim. Since E;p; = v < E;p;, and E; > FE;, we have that,
pr < p; < 1. Also we have that p; > 0 since E;p; > ~. Hence, it is possible to find 6 > 0, small

enough such that,

Ei(pi —96) > v (117)
(pi—0)>0 (118)
(py +6) < 1. (119)

Since E; > E; it is easy to see that, (p,) given by,

Dk if kell:n]\{it}
Pe=94p—6 ifk=i (120)
p+o ifk=t
is a better solution to (P-aq, as, .., a,). This is a contradiction. [ |
Now, let a, b be the indices such that a is bad-1 and E.,p, = v, and b is bad-2 and E,p, = 7,
which are guaranteed to exists due to Lemma 12. Consider the problem, (P-(A\{a})U{b}), which
has k — 1 bad-1 elements. Notice that since E,p, = Eyp, = 7, we have that (p, ) is feasible
for (P-(A\ {a}) U {b}). Also, the objective values of (P-(A\ {a}) U {b}) and (P-a4, as, .., a,)

evaluated at (p,~) are equal. Hence, we are done.

APPENDIX D

PROOF OF LEMMA 10
Letd=r—a+b—ec

1) Recall that (a, b, c) being a good-triplet is equivalent to,

0 < EpSat1p (121)
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a) Notice that,
r—a+b—1—-c=0—1<q EpSar1p — 1= EpSat1p—1 < Ey_1S4415-1, (122)

where (a) follows from (121), and the last inequality follows since Ej_; > FEj.

b) Notice that,
r—a+b—(c+1)=06-1<(@) EpSar1p — 1 < EpSat1p (123)

where (a) follows from (121)

¢) Notice that,
r— (a + 1) +b—c=6—-1 <(a) EbSa+1,b —1= EbSa+1,b—1 < EbSa+2,b- (124)

where (a) follows from (121) and the last inequality follows since Sq125 > Set1p-1,
which follows since E is non-increasing in it’s components.

d) Notice that,
r— (CL — 1) +b— (C -+ 1) =0 <(a) EbSa—l—l,b < EbSa,ba (125)

where (a) follows from (121).
2) All the claims in this part follow from the contra-positives of the corresponding claims in

part 1.

APPENDIX E

PROOF OF THEOREM 4

1)
a) Recall that, X; = {(a,c) € [0: 7 — 1] x [r + 1 : n]|r < h(a,c)}, and p"*> for (a,c) € X is
defined as,

p

1 if1<k<a
r—a+b—c :
pllf,ap _ ExSa+1,b ifatl<k<b (126)
1 ifb+1<k<ec
0 otherwise,

\

where b = min{h(a, c), c}. We first prove that p*¢, is a valid vector in Z.
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Since (a,c) € X}, we have that h(a,c) > r and ¢ > r, which implies that,
0<a<r<b<ce<n. (127)

Notice that since h(a, ¢) > r, from the definition of i, we have that (a, h(a, ¢), ) is a good-triplet.

Since b < h(a, c), combining with Lemma 10-1-a, we have that,

(a,b,c) is a good-triplet. (128)
This means that,

r—a+b—c<EySet1p. (129)

Also, notice that if b < ¢, then we should have b = h(a,c) and b < n, which implies from the
definition of A that (a,b+ 1,c¢) is a bad-triplet. Hence,

if b<c,(a,b+1,c) is a bad-triplet. (130)
Hence, if b < ¢ we have that,
Eyi1Sa41p <7 —a+b—c, (131)

where the inequality is strict due to assumption A2. Since (a,c) € X}, we have that a+1 < r <
b < ¢, which implies that (126) is a valid definition. Now we check the conditions for p'®¢ € Z.
The sum constraint can be checked by direct substitution. The constraint, 0 < 10,16’6”’c < 1 follows
trivially for k ¢ [a + 1,b]. For k € [a + 1,b], the constraint 0 < p™° holds if and only if
r—a-+b—c > 0. Notice that this holds whenever b < ¢ due to (131). If b = ¢, the above reduces

to r — a > 0, which holds since a < r by the definition of X). Hence, we have,
0>0 (132)

Now, to establish that p};“’c < 1, we have
) )
l,a,c
Dy = < <1, (133)
F ErSav1p ~ EpSat1p

where the last inequality follows due to (129).
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b) Recall that, X, = {(a,b) € [0:7—1] x [r+1:n]|b < e(a,b) < n}, and p>*° for (a,b) € X,

is defined as,

1 ifl1<k<a
oo ifa+1<k<b
k
=11 ifb+1<k<c—1 (134)

(7’ — a) + b—c— EbSa—i-l,b—l ifk=c

0 otherwise,

\
where ¢ = e(a, b). Now, we prove that p>®?, is a valid vector in Z. Since (a,b) € X,, we have

that,
n>ela,b)=c>b>r>a>0 (135)

Notice that since the definition of function e, and the fact that e(a,b) > b > r+ 1, we have that,

(a, b, c) is a good-triplet, (136)
and
(a,b,c — 1) is a bad-triplet. (137)
This means that,
EySuiry—1<r—a+b—c< ESe (138)

where the first inequality is strict due to assumption A2. Notice that, a +1 <r < b < ¢ < n.
Hence, p>®® defined in (134) is a valid definition. Now we check the conditions for p>®® € T

The sum constraint can be checked using direct substitution. Since for k € [a + 1,b] we have,

E E
2,ab _ b < b

= =1 139
the constraint, 0 < pi’“’b < 1 follows trivially for k # c.
For k = ¢, notice that,
pg’a’b =40 — EbSa+1,b—1 =90 + 1-— EbSa+1,b € [07 1]7 (140)

where last inequality follows from (138).
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¢) Recall that, X3 = {(b,c) € [r+1:n] x [r+1:n]|b<¢0< g(b,c) <r— 1}, and p>>¢ for
(b,c) € X5 is defined as,

4

1 ifl1<k<a-1

’l"—af‘|—b—C—EbSa+1’b_1 ifk=a

Vo= q b ifat+1<k<b (141)
1 ifb+1<k<c
\ 0 otherwise,
where a = g(b, ). Since (b, c) € X3, we have that,
O<a<r<b<c<n. (142)

Notice that since the definition of ¢, and the fact that g(b, c¢) > 0, we have that,

(a,b,c) is a good-triplet, (143)
and
(a —1,b,¢) is a bad-triplet. (144)
This means that,
EySep—1<r—a+b—c<EpSat1p, (145)

where the first inequality is strict due to assumption A2.

Notice that the definition of p>*¢ in (141) is a valid since 0 < a < r < b < ¢ < n. Now we
check the conditions for p>*¢ € Z. The sum constraint can be checked using direct substitution.
Due to the same argument as case 2, in this case, the constraint, 0 < pz’b’c < 1 follows trivially

for k # a. For k = a, notice that,
P =6 — EySaiip1 =0+ 1— EpSai1p < 1, (146)

where the last inequality follows from (145).
2)
a) For k € [1 : a] we have that, p,lc’a’cEk = Ey > par1E41 =7. For k € [a+ 1 :b] we have

1,a

that, p, “E} = ~. Finally, for k € [b+1: c|, we can assume that b < ¢, in which case we

have that pi’a’cEk = Ey < Eyy1 < 7, where the last inequality follows from (129).
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b) For k € [1 : a] we have that, p;’E}, = E > E, = ~. For k € [a+ 1 : b — 1] we have
that, pi’“’bEk = E, =~. For k € [b+1: n|, we have that pi’“’bEk < E, < E, = ~. For
k = b, we have that, pg’“’bEb < E, =n7.

¢) For k € [1 : a — 1] we have that, p}"“E}, = E;, > E, = . For k € [a+ 1 : b] we have
that, pz’b’cEk = E, = . For k € [b+ 1 : n], we have that pz’b’cEk < E, < E, = ~. For

k = a, we have that,
PV Ey — By = BEo(r —a+b—c¢— EySai14-1) — By
=B (r—a+b—c—ES,_1) >0, (147)

where the last inequality follows due to (145).

d) This follows trivially, by substitution, due to the non-increasing property of E.

3) Define the three sets,

Al = {pLa’c : (a7 C) c Xl}a A2 = {pla,b : (a7 b) € XQ}u A3 = {p37b7c : (b7 C) c X3}7

A={p"}UA UAUA; (148)

Let us denote by z(q) the objective value of (P-1,2,..,r) for ¢ € Z. We solve the problem under

four cases. The four cases can be summarized as,

C1 Best vector in A comes from A;
C2 Best vector in A comes from A,
C3 Best vector in A comes from Aj

C4 Best vector in A is p°, where p° is defined in (107).

In each of the above cases, we focus on constructing a Lagrange multiplier vector p € R" that
will establish the best vector is optimal from Lagrange Multiplier Lemma (Lemma 4).
Case 1: Best vector in A comes from A,

Let p®¢ denote the best vector where (a,c) € X; (See the definition in (126)). Define,
b = min{h(a,c), c}.

9:T;“+b—r (149)
and 6 = r — a + b — c. Hence, we have,
‘L E ) -
2(ph*) =Y L4 + E;. (150)
(P =D G g ot 2

i=1 1=b+1
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We introduce the following lemma, which will be useful in handling this case.

Lemma 13: We have that,

6
D o7 = ke
Eot1 0
2) 2 S S(L+1,b
3) If a > 0, we have, £o > _9¢
2 Sa+1,p

0
S(L+1,b ’

4) If ¢ < n, we have, E. .1 <

where 6 is defined in (149).

Proof:
1) We prove this part in several cases. The cases make sense since ¢ > b > r + 1 from (127),
Case 1 ¢ = r+1: Combining b < c and (127), we should have b = r+1. We are required to prove
that F,11S,11,4+1 = 5% + 1. Notice that in this case, (129) simplifies to 7 —a < E, 115041741
Hence, we are done if » — a > 2. Hence, the only case to check is a = r — 1. In this case, the
required statement simplifies to £, < 2FE,,;, which follows from z(p°) < z(p“*¢), where p°
is defined in (107).
Case2 c>r+1,b=c and (a,c—1,c—1) is a good-triplet: From (127) and c—1 > r+1, we
have that (a,c— 1) belongs to the domain of function h. Since (a,c—1,c—1) is a good-triplet,
from the definition of function h, we have that h(a,c — 1) > ¢— 1. Since, c— 1 > r + 1, we

have that (a,c — 1) € A}, and min{h(a,c — 1),c — 1} = ¢ — 1. Hence,

a

Apheh) =) B =10 (151)

i—1 2 Sa+1,c—1

1’“70) we have the result.

Simplifying z(p"®<1) < z(p
Case3 c>r+1,b=c,and (a,c—1,c—1) is a bad-triplet: From (127) and c—1 > r+1, we
have that (a,c — 1) belongs to the domain of function e. Combining (128) with Lemma 10-1-a,
we have that, (a,c — 1, ¢) is a good-triplet. Combining this with the case description, we have
that e(a,c— 1) = c. Since ¢ — 1 < ¢ < n, where the last inequality follows from (127), we have

that (a,c — 1) € X,. Notice that,

a

E;
Z(p2,a,c—1) — Z ? —+ Ec—l (9 — 1) + Ec(5 — Ec—lsa-‘rl,c—l) (152)
=1
Substituting for z(p?®¢~1) < z(ph*°), we get,
(EcSa—l—l,c - 9) (Ec—lsa—i-l,c - 5) > 0. (153)
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Since E._1S4+41,c > EeSq+1,. > 0, where the last inequality follows from (129), we are done.

Cased c>r+1,b<c, and (a,b,c— 1) is a good-triplet: From (127) and ¢ — 1 > r + 1, we
have that (a,c — 1) belongs to the domain of function h. Since b < ¢ < n, from (130), we have
that (a,b+ 1, c) is a bad-triplet. Combining with ¢ > r + 1, from Lemma 10-2-b, we have that
(a,b+1,c—1) is a bad-triplet. Since (a,b,c— 1) is a good-triplet, we have that h(a,c—1) = b.
Since ¢ — 1 > r + 1, we have that (a,c — 1) € &}. Also, min{h(a,c—1),c—1} = c— 1, since

b < c¢— 1. Hence,

L E 06+
La,c=1y _ — -
z(p ) ; 2 " Sat1, +i=;+1 o

Substituting to z(ph+7!) < 2(ph*¢) and simplifying, we get the desired result.
Case5c>r+1,and b < ¢, (a,b,c—1) is a bad-triplet: From (127), we have that (a, b) belongs
to the domain of e. Combining (a, b, c — 1) is a bad-triplet with (128), we have that e(a,b) = c.

Since b < ¢ < n, where the last inequality follows from (127), we have that (a,b) € X5. Hence,

a c—1
E;
2p™h) =) - + B0+ Y " Ei+ Ee(0 — EySas1-1)- (155)
=1 1=b+1

l,a,c)

Substituting for z(p**?) < z(p and simplifying yields,

(EcSa—i-l,b — ‘9)(EbSa+1,b — 5) >0 (156)

Combining with (129), we have the desired result.

2) We consider four cases. The cases make sense since a < r — 1, b < ¢ from (127).

Case 1 a = r — 1: Notice that from (132), in this case we should have ¢ — b € {0,1}. Also,
since z(p°) < z(ph*°), we have,

E 05 & B14b—c) <& 0 6

2 =
Srb i=bt+1 ’ i=bt+1 Srp

Now, notice that if ¢ — b = 0, we have the desired result. If ¢ — b = 1, we have,

E,
— < By (158)
Hence,
b
E 1 FE 1 1 FE, [(b—r 1
_"T:__"E_<a__7" <) z=+b—r=40. 159

where (a) follows since, F; > Ej.; for ¢ € [r 4+ 1 : b], and (b) follows from (158).
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Case2a<r—landb=c:
Case3 a <r—1,c>0b, (a+1,b+1,c¢) is a bad-triplet: We handle the above two cases together.
In both the above cases, due to a < r—1, and (127), we have that (a+1, ¢) belongs to the domain
of h. We prove that in both of the above cases, (a+1,c) € X} and min{h(a+1,¢), c} = b. First,
notice that from (128), a < r— 1, and Lemma 10-1-c, we have that (a+1,b, ¢) is a good-triplet.
o If b= ¢, since (a+ 1,b,c) is a good-triplet, we have h(a + 1,¢) > b = ¢ > r, where last
inequality follows from (127). Hence, (a + 1,¢) € &), and min{h(a + 1,¢),c} = ¢ =b.
e If c>0band (a+ 1,0+ 1,c¢) is a bad-triplet, we have that h(a + 1,¢) = b > r, where the
last inequality follows from (127). Hence (a + 1,¢) € &), and min{h(a+1,c),c} = b.

Hence,

a+1 1 _ ¢
Z(pl,a+1,c) _ Z@ + (9 2) (5 1) + Z E;. (160)

2 S,
i1 a+2,b i=bt1

Substituting and simplifying z(p 1<) < z(ph*€) we get,

Eq
( 2+1 Sat1,p — 9) (Eat1Sat+15 —0) <0 (161)

Notice that E,+1S5441 > EpSat1 > 0, where last inequality follows from (129).

Cased: a<r—1,b<c and (a+1,b+1,c¢) is a good-triplet: Since ¢ > b, we have that from
(130) that (a, b+1, ¢) is a bad-triplet. Due to b+1 < ¢, and (127), we have that (b+ 1, ¢) belongs
to the domain of g. Combining the above with the case description, we have g(b+1,¢) = a+ 1.

Since b+ 1 < cand a + 1 < r, we have that (b+ 1,¢) € A5. Hence,

a

. E B, AR
2(p>The) = Z 5t 2+1 (6 — Epr1Sat2) + Epta <9 + 5) + z’:zb—i:-2 L. (162)

i=1

Substituting and simplifying z(p3**1¢) < z(ph+©) we get,

E,
( 2+1 Sat1h — 9) (Ep1Sa416 —0) >0 (163)

Combining with (131), we are done.

3) We consider two cases. The cases make sense since a —1 > 0 from the statement description.
Case 1 (a — 1,b,¢) is a good-triplet: Notice that since a > 0 from the statement and (127), we
have that (a — 1, ¢) belongs to the domain of h. Since, (a — 1,b,¢) is a good-triplet, we have

that A(a — 1,¢) > b > r, where the last inequality follows from (127). Hence, (a — 1,¢) € A}.
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If b = ¢, we have that min{h(a — 1,¢),c} = ¢ = b. If ¢ > b, we have from (130) that
(a,b + 1,¢) is a bad-triplet, which when combined with ¢ > 0 and Lemma 10-2-c, gives
(a—1,b41,c¢) is a bad-triplet. Combining with the case description, we have that h(a—1,¢) =
b. Hence, min{h(a — 1,¢),c} = b. Hence in either case we have that, (e — 1,¢) € A} and
min{h(a — 1, ¢),c} = b. Hence,

e B (6+ 5+1
2(p" 1’)2274'

i E;. (164)

i—1 i=b+1

Substituting and simplifying z(p'*~1¢) < z(ph*°) we get,

E
<7asa+1,b - 9) (EySa+1—9) >0 (165)

Combining (129), and E, > E}, we have E,S,11 > EpSat1,, > 0 which gives the result.
Case 2 (a — 1,b,c) is a bad-triplet: Notice that from (127), we have that (b, ¢) belongs to the
domain of g. Combining the case description with (128), we have ¢(b, ¢) = a. Combining (127),

and 0 < a, we have that (b, c) € X3. Hence,

a— 1 c
p*") Z—+— § = EySap1p1) + B+ > E; (166)
i=1 i=b+1
Using z(p>P¢) < z(pl@©), yields the inequality,
E,
(75a+1,b - 9) (EpSat1p —0) >0 (167)

Using (129), we have the desired result.

4) We consider the following two cases. The cases make sense since b+ 1 < ¢+ 1 < n, where
the first inequality follows from (127), and the second follows from the statement description.
Case 1 (a,b+ 1,c+ 1) is a bad-triplet: Combining ¢ < n from the statement description with
(127), we have that (a, c+1) belongs to the domain of h. Notice that from (128), and Lemma 10-
1-b, we have that (a,b,c+ 1) is a good-triplet. Hence, we have h(a,c+ 1) = b > r, where the
last inequality follows from (127). Hence, (a,c + 1) € AXj, and min{h(a,c + 1),c+ 1} = b.

Hence,
a c+1
Aphrety =32 = )4 > E. (168)
i=1 2 S at+1,b i=b+1

Substituting and simplifying z(p'@c™!) < z(ph*<) we get the desired result.

June 2023 DRAFT



52

Case 2 b=c, (a,b+1,c+1) is a good-triplet: Combining ¢ < n from the statement description
with (127), we have that (a,c + 1) belongs to the domain of h. Since, (a,b+ 1,¢+ 1) is a
good-triplet, we should have h(a,c+1) >b+1=c+ 1> r, where the last inequality follows
from (127). Hence, (a,c+ 1) € Xy, and min{h(a,c+ 1),c+ 1} = ¢+ 1. Hence,

a

E (0+1)
Lactly — N~ 20 . 169
Z<p ) ; 2 * Sa-l—l,c-i—l ( )

Substituting and simplifying z(p'@<™!) < z(ph*<) we get the desired result.

Case 3b < ¢, (a,b+1,c+1) is a good-triplet: Since b < ¢, from (130), we have that (a,b+1, ¢)
is a bad-triplet. From (127), we have b+ 1 < ¢ < n and a > 0, which implies that (a,b + 1)
belongs to the domain of e. Combining with (a,b+ 1,c+ 1) is a good-triplet, we should have
e(a,b+1)=c+ 1. Since n > ¢+ 1> b+ 1 where the first inequality follows from (127), we
have that (a,b+ 1) € A5. Hence,

a

a EZ y
R EDY 5 T Een (6 = Epp1Sarip) + 0Bpa + Y B, (170)
i=1 i=b+1

Using z(p?b*1) < z(ph2©), yields the inequality,

(Eet1Sa+16 — 0) (Epp1S041 — ) > 0 (171)

Combining with (131), we have the desired result. [ ]
Now, we construct a Lagrange multiplier that satisfies the conditions of Lemma 4. Consider

p € R, given by,

E%—% fa+l1<k<r
P = 1—E% ifr+1<k<b, (172)
0 otherwise
where,
0
C = ) (173)
Sa+1,b
The above p satisfies pu > 0. If k£ € [a + 1, 7], we have that,
C 1 c 1
=_ —__>_ __> 174
Hk B 2° L, 2_0, (174)
where the last inequality follows due to Lemma 13-2. If k& € [r + 1, b], we have that,
C C
=1—-—>1—-——=—>0 175
M Ek = Ec = Y, ( )
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where the last inequality follows due to Lemma 13-1.
Using the above p as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,
max Zp]?jL Z Cp; + Z E;
j=a+1 j=b+1 (176)
st. peZ A eR
Notice that due to Lemma 13, we have that, £;/2 > C for j € [1: a|, E; > C, for j € [b+1: ¢],
and E; < C for j € [c+ 1, n]. Hence, an optimal solution p for the above problem is p = ph**

1,a,c

(P"*¢,7)
is feasible for (P-1,2,..,r). Also, notice that from the definition of p, we have p; > 0 implies

with arbitrary ~. Let, v = 2

1”Ek = 7. Hence, from Lemma 4, we have that (p>%¢,~) solves (P-1,2,..,r), as desired.
Case 2: Best vector in A comes from A,
Let p?%® denote the best vector where (a,b) € X, and let ¢ = e(a, b). Define

r—a

2

6= +b—r A77)

and 0 =7 —a + b — c. We have the following claim.
Claim: We should have a <7 — 1.

Proof: Assume the contrary. Hence, from (135) we have a = r—1. Hence, we have pi’“’b =1
for all 1 < k < r — 1. Additionally from (127), notice that b > r + 1. Also from the definition
of p*>»*, we have p;™” = 1, and p>** = E,,,/E, > 0, which implies that, Do 1p2“b > 7.
This is a contradiction. [ ]

Combining the claim, and (135), we should have in this case, that
(a+1,b,c—=1)€0:r—1]x[r+1:n]x[r+1:n] (178)

Now we prove the following lemma.

Lemma 14: We have that,

D 5523

2) If a > 0, then £= < §

3) EuSuripr+1>0

4) Ey (0 — E.Sor10-1) > Ee,
where 6 is defined in (177).

Proof:

June 2023 DRAFT



54

1) We complete the proof using two cases. Notice that the following two cases make sense due
to (178).

Case 1 (a + 1,b,c — 1) is a bad-triplet: From (178), we have (a + 1,b) belongs to the domain
of e. Combining (136) and a + 1 < r — 1 with Lemma 10-1-c, we have that (a + 1,b,¢) is a
good-triplet. Hence, e(a+ 1,b) = c. Since, b < ¢ < n from (135), we have that, (a+1,b) € Xs.

Hence,
a+1 c
e =3 B, (e _ 5) Y B4 B —1-BSuny). (179
=1 i=b+1

2,a+1,b)’ yields the inequality,

Using z(p**") > z(p
(2E. — Egi1)(Eap1 — Ep) >0, (180)

which yields the result since F,; > F} (the inequality is strict due to assumption Al).

Case 2 (a+1,b,c—1) is a good-triplet: Notice that due to (178), we have that (b, c—1) belongs
to the domain of g. Combining (137) with the case description, we have that g(b,c—1) = a+ 1.
Combining the claim, (135), and a + 1 > 0, we have that (b,c — 1) € X3. Hence,

a c—1
o E; 1 E,.q
2p*) =D -5 T B (9—5) + ) Ei+ 2* (6 — EpSarop1)- (181)
=1 1=b+1

Using z(p?>®%) > z(p>"<*1), yields the inequality,

(Ec — E;“) (0 +1— EySap1p) >0, (182)
which establishes the result combined with (138).

2) We consider two cases. The two cases make sense since a > 0 by the statement description.
Case 1 (a—1,b,¢) is a good-triplet: Combining a > 0 from the statement description and (135),
we have that, (a— 1, b) belongs to the domain of e. Combining a > 0, (137), and Lemma 10-2-c,
(a —1,b,c — 1) is a bad-triplet. Combining the above with the case description, we have that

e(a —1,b) = c. Since b < ¢ < n from (135), we have that (a — 1,b) € &5. Hence,

a—1 c
_ E 1
S SN (9+§) Y B4 B0+ 1-ESuny).  (183)
i=1 i=b+1

2,a—1,b)

Using z(p*>®%) > z(p , yields the inequality,

(Bo — 2E.)(E, — ;) > 0. (184)
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which establishes the result since £, > F (the inequality is strict by assumption Al).
Case 2 (a — 1,b,c¢) is a bad-triplet: From (178), we have that (b, c) belongs to the domain of
g. Combining the case description with (136), we have that g(b,c¢) = a.Combining (135) and

a > 0, we have that (b, c) € X3. Hence,

a—1
E;
2(p*h°) = E ?+Eb9+ g E; —i— 5 (0 — EySat1,-1) - (185)
=1 1=b+1

3,b,c)

Using z(p?%?) > z(p>b©), yields the inequality,

(E - %) (0 — EpSat1p) > 0, (186)

which establishes the result from (138).
3) We consider three cases. The cases make sense since, b > r+ 1 from (135), and if b > r+ 1,
(a,b—1,c—=1)€[0:r—=1] x[r+1:n] x[r+1:n] from (135).

Case 1 b = r + 1: This case reduces to, > . Le > roa 5+, which is true due to 1.

i=a+1 E; —

Case 2b>r+1, (a,b—1,c—1) is a bad-triplet: Comblmng b—1>r-+1 and (135), we
have that (a,b — 1) belongs to the domain of e. From b — 1 > r + 1, (136), and Lemma 10-1-a,
we have that (a,b — 1,¢) is a good-triplet. Hence, we have e(a,b — 1) = ¢. Combining with

(135), we have (a,b— 1) € A,. Hence,

a

Aprer ) = 3 - B (0-1) + > Ei+E.(0—1-E1Sa15-1)- (187)

i=1 i=b

Using z(p?>®%) > z(p*>»*~1), yields the inequality,
(Epy — Ep1)(0 =1 — E.Sqr15-1) > 0, (183)

yields the result since £} 1 > Fj (the inequality is strict due to assumption Al).

Case3b>r+1, (a,b—1,c—1) is a good-triplet: Combining ¢ —1 > b— 1geqr + 1, with (135),
we have that (a,c — 1) belongs to the domain of h. Combining (137), and the case description,
we have that h(a,c — 1) = b — 1. Notice that b — 1 > r + 1. Hence, (a,c — 1) € X}, and

min{h(a,c—1),¢c— 1} = b — 1. Hence,
c—1

B, (0-1))
1 ,a,C— 1 ?
— + E; (189)
; 2 Sat1p1 Zz:;
Using z(p?>®%) > z(pY®¢1), yields the inequality,
(0 —1—FE.Set16-1) (0 — EpSar15-1) <0, (190)
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which establishes the result due to (138).

4) Notice that the above reduces to,
0> EoSuiip. (191)

We consider three cases. The cases make sense since (135) tells us b + 1 < ¢ and hence
(a,b+1,¢)€[0:r—1]x[r+1:n]x[r+1:n], and b < ¢ from (135).
Case 1 (a,b+ 1,¢) is a bad-triplet: Due to (135), we have that (a, ) belongs to the domain of
h. Combining the case description with (136), we have that h(a,c) = b. Since, b > r + 1 from
(135), we have that (a,c) € X3, and min{h(a, c),c} = b. Hence,

2(ph®°) = Z% P > E (192)

S
i=1 atlb 1

1,a,c)

Using z(p?>®%) > z(ph®), yields the inequality,

(EcSat1, — 0) (EpSas1p —0) <0, (193)

which establishes the result due to (138).

Case 2 b+ 1 =c, and (a,b+ 1,c¢) is a good-triplet: Due to (135), we have that (a,b) belongs
to the domain pf h. Since, (a,b + 1,c¢) is a good-triplet, we have h(a,c) > b+ 1 = c. Since,
b+1>r+1 from (135), we have (a,c) € X}, and min{h(a,c),c} = ¢ = b+ 1. Hence,

a

H(phattl) = Z L + w (194)

— 2 Sat1,p41

Using z(p?%?) > z(ph+®*1), yields the inequality,
(EpSat1p01 — 6 — 1)(Epg18a115 — 0) <0, (195)

which yields the result since EySq11p+1 > EpSar1p +1 >0+ 1 (Ep > Epyq and (138)).

Case 3b+1 < ¢, and (a,b+ 1,¢) is a good-triplet: Due to (135), we have that, (a,b + 1)
belongs to the domain of e. Combining (137), c—1 > r+1 from (178), and Lemma 10-2-a, we
have that, (a,b+ 1,c — 1) is a bad-triplet. Combining with the case description, we have that
e(a,b+1) =c. Since, b+ 1 < ¢ < n, we have that, (a,b+ 1) € X,. Hence,

a

(P =D S A B 0+ )+ Y Bt B (04 1= By Sarip). (196)
=1 i=b+2
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2,a,b+1)

Using z(p*>®%) > z(p , yields the inequality,

(By — Ept1) (0 — EcSay1p) > 0, (197)

yields the result since £}, > Ej.; (the inequality is strict due to assumption Al). [ |

Now, we construct a Lagrange multiplier, similar to case 1. Consider u € R", given by,

4

g—z—% fa+1<k<r
1—3—; ifr+1<k<b-—1
i = ; (198)

EuSapip1+1—0 ifk=b

0 otherwise
\

The above p satisfies p > 0. If k£ € [a + 1, 7], we have that,

E., 1 E, 1
— > —Z>0 199
Hi E, 2 E, 27 (199)

where the last inequality follows due to Lemma 14-1. If k& € [r + 1,b — 1], we have that,

E. E.
pp=1-p-21-7=0 (200)

If k=0, up > 0, is Lemma 14-3.

Using the above p as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,

a b—1 n
E.
max E =L+ E piEe 4+ poEy(0 — EcSaq1p-1) + E piE;
P,y 2 £ ~“
j=1 j=a+1 Jj=b+1 (201)

st. peZ, AeR

Notice that due to Lemma 14, we have that E;/2 > E, forj € [1:a], E; > E.for j € [b+1: ¢,
E; <E.forje€[c+1:n|,and (6 — E.Se+1-1) > E.. Hence, an optimal solution p for the
above problem is p = p>®® with arbitrary v. Let, ¥ = Fj,. Notice that from Lemma 4, part-2-b,
we have that (pY®® ~) is feasible for (P-1,2,..,r). Also, notice that from the definition of p,
we have p; > 0 implies pi’a’bEk = E),. Hence, from Lemma 4, we have that (p>®’ ~) solves
(P-1,2,..,r), as desired.

Case 3: Best vector in A comes from A;

Let p>>¢ denote the best vector where (b, c) € X3, and let a = g(b,¢) > 0. Define

r—a

V==

- (202)
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and 0 =7 —a+ b — c. Now we prove the following lemma.

Lemma 15: We have that,

1) If ¢ < n, then % > FEoq

2) Sy +12>0

3) By (0 —22Su1p1) > 22

4) 2E. > E,

Proof:

1) From (142) we have that (a — 1,b) belongs to the domain of e. Combining a > 0 from
(142), ¢ + 1 < n from the statement description, Lemma 10-1-d, and (143), we have that,
(a —1,b,c+ 1) is a good-triplet. Combining this with (144), we have that e(a — 1,b) = ¢+ 1.
Notice that, b < ¢+ 1 < n from (142). Hence, (a — 1,b) € X,. Hence,

a—1 c
E; 1
2p Tty =) 5 + B <9 + 5) + Y Ei+ EBe (6+1— EpSaty).  (203)

i=1 i=b+1
Using z(p*"¢) > z(p>2~ 1), yields,
E,
(7 - c+1) (64+1— EpSep) >0, (204)

which establishes the desired inequality from (145).

2) We consider three cases. The cases make sense since b > r + 1, and if b > r + 1, we have
that (a —1,b—1,¢) €[0:r+ 1] x [r+1:n] X [r +1:n| from (142).

Case 1 b = r + 1: This case reduces to E,S,+1, > r — a, which follows since F, > E; Vi €
la+1:7].

Case 2 b >r+1and (a —1,b—1,c) is a bad-triplet: Due to b — 1 > r + 1, and (142), we
have that (b — 1, ¢) belongs to the domain of g. From (143), b — 1 > r + 1, and Lemma 10-1-a,
we have that, (a,b — 1,¢) is a good-triplet. Combining with the case description, we have that

g(b—1,¢) = a. Notice that b—1 < ¢ < mn, and 0 < a < r—1 from (142). Hence, (b—1,c) € X;.

Hence,
2(p*the) = z“: £ + By (0—-1)+ zc: E; + 2 (0 —1— Ep1Sat16-1) - (205)
i i=b 2 ’
Using z(p*"¢) > z(p>*~1¢), yields the inequality,
E,
(Ey — Ep_1) <9 —1- 7Sa+1,b—1) > 0, (206)
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yields the result since £} 1 > Fj (the inequality is strict due to assumption Al).
Case3b > r+1, (a—1,b—1,c¢) is a good-triplet: Due to (142), we have that (a—1, ¢) belongs to
the domain of h. Combining the case description with (144), we have that h(a—1, ¢) = b—1. Since

b—1 > r+1, from the case description we have, (a—1,¢) € A}, and min{h(a—1,¢),c} =b—1.

Hence,
a—1 1 c
2(phhe) = 2 % + 7( 5:;3 i + ,Z:; E; (207)
Using z(p>"¢) > z(ph2~1¢), yields the inequality,
<%Sa+l,b—1 -0+ 1) (EpSap-1—0) <0, (208)
which establishes the result from (145).
3) Notice that the above reduces to,
0> S0 (20)

We consider three cases. The cases make sense since, b < ¢ by (142), and if ¢ > b, we have to
have that (a,b+1,¢) € [0: 7+ 1] x [r+ 1:n] x [r+1:n| from (142).
Case 1 b = ¢: From (143), we have that, h(a,c) > b = c. Since ¢ > r + 1, we have that,

(a,c) € X;. Moreover, min{h(a, c),c} = ¢ = b. Hence,

a

E; )
2(pth) =) =+ (210)
(P ; 2 St
Using z(p3b¢) > z(p'e?), yields the inequality,
E,
<7Sa+1,b - 9) (EpSat1p —6) <0, (211

which establishes the result from (145).

Case 2 b < ¢, and (a,b+ 1,c¢) is a good-triplet: Since b+ 1 < ¢ < n, where the last inequality
follows from (142), we have that (b + 1,c¢) belongs to the domain of g. Combining (144),
b+ 1 < ¢ <n, with Lemma 10-2-a, we have that (¢« — 1,b+ 1,¢) is a bad-triplet. Combining
with the case description, we have that g(b+ 1,¢) = a. Notice that b+ 1 < c,and 0 <a <r—1
from (142). Hence, (b+ 1,c) € X5. Hence,

a

C E’l < Ea
dPT) =D S A B 0+ )+ D Bt 0+ 1= BpaSuapn). (212)
=1 i=b+2
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Using z(p*"¢) > z(p>**1¢), yields the inequality,

(Ep — Epi1) (9 — %Sa+1,b) > 0, (213)
yields the result since £}, > Ejq (the inequality is strict due to assumption Al).
Case 3 b < ¢, and (a,b+ 1,c¢) is a good-triplet: From (142), we have that (a, c) belongs to the
domain of h. Combining the case description with (143), we have that h(a,c) = b. Notice that
b>r+ 1 from (142). Hence, (a,c) € A}, and min{h(a, c),c} = b. Hence,

a Cc

E; )
dp) =) S+ ) b (214)
= 2 Sers S
Using z(p>%¢) > z(ple°), yields the inequality,
E,
(75a+1,b - 9) (EpSay1,o —0) <0, (215)

which establishes the result from (145).
4) We consider two cases. The cases make sense since b < ¢ from (142).

Case 1 b = c: Notice that from part 2 of the lemma,

E,
0 — 7Sa+l,b—l <L (216)

Substituting this in part 3, we have the result.

Case 2 b < ¢: From (142), we have that, (a,b) belongs to the domain of e. Combining (144),
¢c—12>b>r+1, from the case description, with Lemma 10-2-d, we have that, (a,b,c — 1) is
a bad-triplet. Combining with (143), we have that e(a, b) = c. Notice that b < ¢ < n, where the

last inequality follows from (142). Hence, (a,b) € X,. Hence,

. a EZ C
Aﬁw%:§:§~+ma+§:£2+E45—E@Hmy 217)
=1 i=b+1
Using z(p*"¢) > z(p>??), yields,
E,
Q;—E)@—&&sz& 218)
which establishes the desired inequality due to (145) [ ]

Now, we construct a Lagrange multiplier, similar to case 1. Consider . € R"”, given by,

4
E, 1

2E} 2

—5% ifr+1<k<b-—1

fr = , (219)

BaS, iy +1—-0 ifk=b

ifa+1<k<r

0 otherwise

\
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The above p satisfies p > 0. If k£ € [a + 1, 7], we have that,

E, 1 E, 1
R N | 220
M= op, "2%2E, 2 7 (220)

If £ € [r+1,b— 1], we have that,

a 21_ Ea 207
2FE) 2F.

e =1 — (221)

where the last inequality follows due to Lemma 15-4
It k=0, up > 0, is Lemma 15-2.

Using the above p as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,

e ij—+ Z p] 5 =+ poBy (0 — E Sat1,b-1) Z P

j=a+1 j=b+1 (222)
st. peZ AeR

Notice that due to Lemma 15, we have that, £;/2 > E,/2 for j € [1:a|, E; < E.;q < E,/2
forjele+1:n], B;>E > forjeb+1:d, and E, (6 — £2S,41,-1) > Z=. Hence,
an optimal solution p for the above problem is p = p>>¢ with arbitrary ~. Let, ¥ = Ej. Notice
that from Lemma 4, part-2-c, we have that (p?”bvc, 7) is feasible for (P-1,2,..,r). Also, notice that
from the definition of u, we have p; > 0 implies pi’b’cEk = FE). Hence, from Lemma 4, we
have that (p>><,~) solves (P-1,2,..,r), as desired.

Case 4: Best vector in A is p°

Lemma 16: We have that,
> B (223)

Proof: Notice that,

Er—i—l‘
E,
Hence, (r—1,r+1,7+41) is a good-triplet. Hence, h(r—1,7+1) > r+1. Clearly, (r—1,r+1) €

Xy, Also, min{h(r — 1,7+ 1),r + 1} = r + 1. Hence,

r—1

1 E; 3
I =

r—= (’l“ - 1) =1< Er-i-lSr,r—i-l =1+ (224)

1=1

Using z(p°) > z(p" 1" *1), yields the desired inequality. |
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In this case we can use u = 0 as a Lagrange multiplier vector for (P-1,2,..,r), which gives

the problem, . .
gy Lyt Y nk
j=1 j=r+1 (226)
st. peZ AeR
Due to Lemma 16, we have that p = p° is an optimal solution for the above problem
with arbitrary v. Let, v = E,,;. From Lemma 4, part-2-d we have that (p°, ) is feasible for
(P-1,2,..,r). Also, notice that i, = 0 for all £ € [1 : n|. Hence from Lemma 4, we have that
(p°,7) solves (P-1,2,..,r), as desired.

APPENDIX F

ALGORITHM TO PROJECT ONTO 7

Algorithm 5 takes as input p € R", and projects p onto Z.
Analysis of Algorithm 5: Notice that the problem of projection of y € R™ onto Z is,

1 )
min 2z - y|

(231)
st. yeZl
Now consider the partial Lagrangian L(z, ) for u € R given by,

1 n

L(z,p) = 5llz —yl* + 4 <;zj—r>, (232)
and the problem,

(P6-p1) min  L(z, u)

o (233)

st. ze€[0,1)"
for a fixed p € R. Let us assume the existence of a ©* € R such that the solution z* of (P6-1*)

satisfies, Z?:l z; = r. Notice that z* is optimal for the original problem since for any z € Z,
1 * * * 1 *
sz —ull* = Lz, p7) 2 L(z",17) = 512" = w” (234)

Hence, we focus on finding such a p* and the corresponding z*. First, we focus on solving

(P6-11*). Notice that (P6-1*) is a separable quadratic program in the entries of z. Hence, the
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Algorithm 5: Algorithm to project to Z

1 Sort the input vector & to a vector y
2 Initialize a =b=17r
3 Define

Sy — (r—a+1)
b—a+1

Hab =
and
Aoy = Wyp > pap > yo — 1}
Bop = 1{(b=mn) or [(b <n) and (ys1 < pas)]}
Cap=1{(a=1)or [(a>1) and (yo—1 — 1 > pap)|}

forall 1 <a<b<n

4 repeat

s | while B,; do

6 ‘ Set b+ b+1
7 end

s | whileC,; do

9 ‘ Seta+—a—1

10 end

u until A, and B, and C,;

12 for each i € [1: n] do

13 ‘ x; < o 1)(2; — pap) (Here Ilj 3 denotes the projection onto [0, 1])
14 end

15 Output x

(227)

(228)
(229)

(230)
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optimal z; can be obtained by projecting the unconstrained optimal value for each entry of 2

onto [0, 1]. Hence, the solution is,

zj = (y; — 1), (235)

for all j € [1 : n], where IIjg 1) denotes the projection operator onto [0, 1] . Now we need to find

w* such that the optimal solution z* of (P6-1*) satisfies z* € Z. Hence we require,
> Mpoyly; — ') = (236)
j=1

We assume, without loss of generality, that y is sorted in non-increasing order (Notice that if y
is not sorted, we could sort y, perform the projection, and rearrange the elements according to
the original order. This works since the set Z is closed under the permutation of entries of its
element vectors).

For 1 € R, define the set,
Kup={i1<i<n,pu+12>y; > p}. (237)

Notice that for each ¢ € R, K, is either the empty set or a set of the form [a : b] where
1 <a < b < n. Assume that K, is not empty. Let K, = [a : b] where 1 < a < b < n. This is

equivalent to y satisfying the three conditions,
Yp = > Yo — 1
(b=n) or [(b < n) and (g1 < 1)
(a=1)or[(a>1)and (y,—1 —1 > u)] (238)

Now, notice that (236) translates to,

Sy —(r—a+1)
H b—a—l—l Ha,b ( 39)

Combining (239) and (238), we have that if we can find a,b (1 < a < b < n) such that the three

conditions A, ;, B, and C,;, (See (228)) are satisfied, we are guaranteed that the solution z* of
(P6-11,,5) satisfies z* € Z. From the stopping condition of Algorithm 5, we have that the above
three conditions are satisfied for the output a,b of Algorithm 5. Hence, we are only required
to prove that Algorithm 5 always meets the stopping conditions of the loops. The inner loops
trivially meet the stopping condition. Hence, we establish that the outer loop eventually meets

the stopping condition.
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We first prove that after each inner iteration of Algorithm 5, A, is satisfied. To prove this,
notice that A, , is true, and hence, for the initial values of a, b, A, is true. Now we prove that if
before executing an iteration of the first inner loop of Algorithm 5, A, is true, then so is after

the iteration. To see this, notice that the iteration is executed if only if b < n, and p,p < Yps1-

Hence,
tap(O—a+1) + s Ypy1(b—a+1) + Yo
a = . < = , 240
Habtl b—a+2 = b—a+2 Yot (240)
and
Pap(b—a+1) +ypp Yp41 — Mab
a == ’ — a _'_7’2@ a Z a_17 241
Ha,b+1 —— Hap + g 2@ Hab Z0) Y (241)

where (a) follows since yp11 > i and (b) follows since A, is true by assumption. Hence,
we have that A, ;4 is true. Using the same argument, we can prove that if before executing
an iteration of the second inner loop of Algorithm 5, A, is true, then so is after the iteration.
Hence, we have the result.

Hence, notice that after an outer iteration of Algorithm 5, if the stopping condition is not met,
we should have B, ;, which would increase b in the next iteration. This process has to stop since

b has to stay between 1 and n. Hence, we have the desired result.
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