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Abstract

We propose a novel formulation for dictionary learning that minimizes the determi-
nant of the dictionary matrix, also known as its volume, subject to the constraint
that each row of the sparse coefficient matrix has unit ℓ1 norm. The main motiva-
tion for the proposed formulation is that it provides global identifiability guarantee
of the groundtruth dictionary and sparse coefficient matrices, up to the inherent
and inconsequential permutation and scaling ambiguity, if a set of vectors obtained
from the coefficient matrix lies inside the ℓ∞ norm ball but contains the ℓ2 norm
ball in their convex hull. Unlike existing work on identifiability of dictionary
learning, our result is global, meaning that a globally optimal solution to our pro-
posed formulation has to be a permuted and rescaled version of the groundtruth
factors. Another major improvement in our result is that there is no additional
assumption on the dictionary matrix other than it is nonsingular, unlike most other
works that require the atoms of the dictionary to be mutually incoherent. We also
provide a probabilistic analysis and show that if the sparse coefficient matrix is
generated from the widely adopted Bernoulli-Gaussian model, then it is globally
identifiable if the sample size is bigger than a constant times 𝑘 log𝑘 , where 𝑘 is
the number of atoms in the dictionary, with overwhelming probability. The bound
is essentially the same as those local identifiability results, but we show that it is
also global. Finally, we propose algorithms to solve the new proposed formula-
tion, specifically one based on the linearized-ADMM with efficient per-iteration
updates. The proposed algorithms exhibit surprisingly effective performance in
correctly and efficiently recovering the dictionary, as demonstrated in the numerical
experiments.

1 Introduction

Dictionary learning is a famous unsupervised learning problem [TošiÂc and Frossard, 2011] that also
goes by the name sparse coding [Olshausen and Field, 1997] or sparse component analysis [Georgiev
et al., 2005]. It stems from the intuition that samples from a data set can all be approximately
represented as a sparse combination of atoms from a complete or overcomplete dictionary, or
𝒙 𝑖 = 𝑨𝒔 𝑖 for 𝑖 = 1, . . . , 𝑛, where 𝒙 𝑖 ∈ R

𝑚 are the given data points, columns of 𝑨 ∈ R
𝑚×𝑘 represents

atoms of a dictionary, and 𝒔 𝑖 ∈ R
𝑘 are the sparse representations of 𝒙 𝑖 , indicating that 𝒙 𝑖 is linearly

dependent on only a few atoms from the dictionary 𝑨 with coefficients given in the nonzeros of
𝒔 𝑖 . Staking 𝒙 𝑖 as columns of 𝑿 ∈ R

𝑚×𝑛 and 𝒔 𝑖 as columns of 𝑺 ∈ R
𝑘×𝑛 , it can be written as a

matrix factorization model 𝑿 = 𝑨𝑺 . Although in some cases there exist known dictionaries that
admit good-quality sparse representations, such as the DCT or wavelet basis for image compression,
sometimes it is better to learn a sparse-inducing dictionary from data in an unsupervised fashion,
hence the task of dictionary learning that tries to estimate 𝑨 and 𝑺 jointly. In most cases, people
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assume 𝑚 ≤ 𝑘 : the dictionary is complete if 𝑚 = 𝑘 , and overcomplete if 𝑚 < 𝑘 . In this paper we
focus on the complete dictionary case when 𝑨 is square and nonsingular, which is common in a lot of
prior works that this work is built upon [Gribonval and Schnass, 2010, Sun et al., 2016a,b, Wu and
Yu, 2017, Wang et al., 2020]

Dictionary learning has found numerous applications in signal denoising [Elad and Aharon, 2006],
audio coding [Plumbley et al., 2009], and medical imaging [TošiÂc et al., 2010], to name just a
few. On the theory side, most of the existing works have focused on algorithm design. Famous
algorithms include 𝑘 -SVD [Aharon et al., 2006a] and online dictionary learning [Mairal et al., 2009],
among numerous other algorithms based on generic nonconvex algorithm design with guarantee
of convergence to a stationary point. More recently, there have appeared a line of research that
attempts to show global optimality for dictionary learning under more restrictive assumptions, such as
[Spielman et al., 2012, Agarwal et al., 2016, Arora et al., 2014, 2015, Sun et al., 2016a,b, Rambhatla
et al., 2019, Bai et al., 2019, Zhai et al., 2020a,b, Shen et al., 2020, Tolooshams and Ba, 2022].

1.1 Model identifiability

The dictionary learning problem can be considered an instance of the broader matrix factorization
model 𝑿 = 𝑨𝑺 subject to the opaque requirement that 𝑺 is sparse. It is well-known that matrix
factorization without any additional assumptions on the latent factors is not unique, since we can

always ªinsertº an invertible matrix 𝑸 and 𝑸 −1 as 𝑿 = 𝑨̃𝑺̃ where 𝑨̃ = 𝑨𝑸 and 𝑺̃ = 𝑸 −1𝑺 , and one

cannot distinguish whether 𝑺 or 𝑺̃ are the groundtruth sources. Such rotation ambiguity cannot be
resolved by the well-known principal component analysis (PCA) [Jolliffe, 2002].

On the other hand, most matrix factorization models allow scaling and permutation ambiguity, i.e.,
a permutation matrix 𝜫 and a diagonal matrix 𝑫 such that the recovered mixing matrix is 𝑨𝑫𝜫
and the recovered sources are 𝜫⊤𝑫−1𝑺 . In addition to inherent constraints that fit the application,
it is sometimes helpful to have an optimization criterion in search for the ªcorrectº factorization
(up to scaling and permutation). In light of this, we formally define the identifiability of any matrix
factorization model as follows:

Definition 1.1 (Identifiability). Consider the generative model 𝑿 = 𝑨♮𝑺 ♮, where 𝑨♮ and 𝑺 ♮ are the
groundtruth latent factors. Let (𝑨★,𝑺★) be optimal for an identification criterion 𝑞

(𝑨★,𝑺★) = arg min
𝑿 =𝑨𝑺

𝑨∈A,𝑺 ∈S

𝑞 (𝑨,𝑺 ),

where A and S are some constraint set that 𝑨 and 𝑺 should belong to, respectively. If 𝑨♮ and/or 𝑺 ♮

satisfy some condition such that for any (𝑨★,𝑺★), there exist a permutation matrix 𝜫 and a diagonal

matrix 𝑫 such that 𝑨♮
= 𝑨★𝑫𝜫 and 𝑺 ♮

= 𝜫⊤𝑫−1𝑺★, then we say that the matrix factorization model
is essentially identifiable, up to permutation and scaling, under that condition.

For dictionary learning in specific, where the essential constraint on the latent factors is sparsity on
𝑺 , there have been some existing works on its identifiability issue. It has been shown that simply
by putting a hard sparsity constraint on 𝑺 is enough to guarantee a unique factorization, provided
that the sample size 𝑛 is large enough [Aharon et al., 2006b, Hillar and Sommer, 2015, Cohen
and Gillis, 2019]. The main drawback is that the required sample size 𝑛 is usually too large to be
practicalÐresults from [Aharon et al., 2006b] and [Hillar and Sommer, 2015] both require 𝑛 to

be 𝑂 ((𝑘 + 1)
(𝑘
𝑠

)
), where 𝑠 is the number of nonzeros that each column of 𝑺 is allowed to have; it

has been relaxed to𝑂 (𝑘 3/(𝑘 − 𝑠 )2) by Cohen and Gillis [2019], but still very large. The existence
of 𝑠 in the bound also shows that an outlier sample that does not admit a sparse representation
from the dictionary is absolutely not allowed in the data set, which is also restrictive. Inspired by
the success of compressive sensing and sparse recovery, it is perhaps more common to use the ℓ1

norm to approximately sparsify 𝑺 . Identifiability results based on the ℓ1 norm formulation has been
predominantly local, meaning the model is identifiable within a neighborhood of the groundtruth

factors (𝑨♮,𝑺 ♮), but on the bright side the sample size requirement is typically down to𝑂 (𝑘 log𝑘 )
and allows the existence of dense outliers [Gribonval and Schnass, 2010, Wu and Yu, 2017, Wang
et al., 2020].
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1.2 This paper

In this paper, we intend to bridge the gap by providing global identifiability guarantee of complete
dictionary recovery using a ℓ1 norm based formulation, given as follows:

minimize
𝑨,𝑺

| det𝑨 | subject to 𝑿 = 𝑨𝑺 , ∥𝑺 𝑗 ,:∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 , (1)

To the best of our knowledge, this is a novel formulation that has never appeared in the literature;
however, as we will show in the next section, the intuition stems from the more commonly used
ℓ1-based formulations. We stress that the formulation is ℓ1-based, as the ℓ1 norm is the most widely
used term to promote sparsity of the solution. Although in the context of dictionary learning, using
the ℓ1 norm as the convex surrogate for sparsity is not enough to make the overall problem tractable,
there are still benefits of using it instead of other ones such as hard sparsity constraints, for example
in terms of sample complexity as introduced in the previous subsection.

After some gentle derivation to motivate the proposed new formulation (1) for dictionary learning,
we provide the following contributions:

1. We give a deterministic characterization of the identifiability condition on the sparse coeffi-
cient matrix 𝑺 under which the dictionary (as well as the sparse coefficients) can be uniquely
determined, up to the inherent and inconsequential permutation and scaling ambiguity, via
solving (1). Unlike existing work that shows local identifiability, our result is global, mean-
ing that the groundtruth factors have to be a global minimizer to (1). Furthermore, perhaps
surprisingly, our result only require the complete dictionary to be nonsingularÐthere are no
additional assumptions that require the atoms to be mutually incoherent whatsoever.

2. The result shows that ℓ1-based dictionary learning is globally identifiable if a certain set
of points, which are by definition inside the hypercube [−1, 1]𝑘 , contains the unit ball in
their convex hull. This geometric assumption is called ªsufficiently scatteredº, with similar
ideas appearing in pertinent unsupervised learning models. We provide intuition why this
assumption generally leads to a sparse 𝑺 . We further show that if the sparse coefficient
follows the widely used Bernoulli-Gaussian generative model, then it is identifiable with
very high probability, provided the sample size 𝑛 is bigger than a constant times 𝑘 log(𝑘 ).
This is the same sample complexity bound obtained in some of the local identifiability
analysis, but we show that it is also global, using the proposed new formulation (1).

3. We propose algorithms to solve (1), specifically one based on linearized-ADMM in the main
paper; in the supplementary we also present one based on the Frank-Wolfe framework and
the other based on block coordinate descent. Even though the proposed formulation (1) is
nonconvex (just like any other dictionary learning formulation), numerical experiments on
synthetic data show that they achieve global optimality in almost all cases, provided that the
groundtruth latent factors satisfy the identifiability assumptions given before.

2 Problem Formulation

We start by proposing a novel formulation for dictionary learning. The purpose is to show that the
seemingly different formulation does not come out of thin air, but is highly related, if not equivalent,
to existing ones that have been studied extensively. Consider the following formulation adopted in
[Gribonval and Schnass, 2010, Geng and Wright, 2014, Wu and Yu, 2017, Wang et al., 2020]:

minimize
𝑨,𝑺

∥𝑺 ∥1 subject to 𝑿 = 𝑨𝑺 , ∥𝑨 :,𝑗 ∥ ≤ 1, 𝑗 = 1, . . . , 𝑘 . (2)

We use the noiseless model 𝑿 = 𝑨𝑺 since the main focus of this work is identifiability, and a lot of
algorithms are designed by replacing this term with a loss function that measures the residual 𝑿 −𝑨𝑺 ,
e.g. [Gribonval et al., 2015]. The purpose of the ℓ1 norm of 𝑺 is to encourage it to be sparse, but
since it is also dependent on the scaling of 𝑺 , the constraint ∥𝑨 :,𝑗 ∥ ≤ 1 is imposed onto the columns

of 𝑨. Such constraints are without loss of generality due to the scaling ambiguity 𝑨𝑺 = 𝑨𝑫𝑫−1𝑺 , so
for any admissible factorization, we can rescale the columns of 𝑨 to unit norm, while absorbing the
scaling into the rows of 𝑺 , without affecting the matrix product.

Due to the Lagrangian multiplier theorem, there exist positive scalars 𝛽1, . . . , 𝛽𝑘 and 𝛾1, . . . ,𝛾𝑘 such
that any solution of the following problem is also optimal for (2)
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minimize
𝑨,𝑺

𝑘∑︁

𝑗=1

𝛾𝑗 ∥𝑨 :,𝑗 ∥ subject to 𝑿 = 𝑨𝑺 , ∥𝑺 𝑗 ,:∥1 ≤ 𝛽𝑗 , 𝑗 = 1, . . . , 𝑘 , (3)

since they would lead to exactly the same Lagrangian function with appropriate choices of 𝛾𝑗 and
𝛽𝑗 . Again, due to the inherent scaling ambiguity, we can assume without loss of generality that
𝛽1 = · · · = 𝛽𝑘 = 1, leaving the unknown parameters to just 𝛾𝑗 ’s.

If we replace the summation in the objective of (3) with product, or equivalently replacing the
arithmetic mean with the geometric mean, the term

∏
𝑗 𝛾𝑗 ∥𝑨 :,𝑗 ∥ would be intimately related to

| det𝑨 | if 𝑨 is square. Indeed, there must exist some unknown matrix 𝑮 such that | det𝑮𝑨 | =∏
𝑗 𝛾𝑗 ∥𝑨 :,𝑗 ∥. Furthermore, for the purpose of optimization it is completely unnecessary to know 𝑮

since | det𝑮𝑨 | = | det𝑮 | | det𝑨 |, which is just a positive scaling of | det𝑨 | that does not affect the
optimization solution. As a result, our proposed novel formulation of dictionary learning takes the
form of (1).

Although our paper focuses on the case of complete dictionaries, i.e., when 𝑨 is square and non-
singular, they can be effortlessly extended to the overdetermined case when 𝑨 is tall, and the only
modification is to change the objective to det𝑨⊤𝑨. This is sometimes called the volume of the
matrix [Ben-Israel, 1992] with applications in change-of-variable integration [Ben-Israel, 1999] and
probability [Ben-Israel, 2000]. It has been used as the identification criterion for several variants of
nonnegative matrix factorization with an interesting geometric interpretation of finding the minimum
volume enclosing simplex of a set of points [Lin et al., 2015, Huang et al., 2016, 2018, Fu et al.,
2018, Huang and Fu, 2019]. The most related work is the polytopic matrix factorization framework
proposed by Tatli and Erdogan [2021], which includes a case that constraints the columns of 𝑺 to
have bounded ℓ1 norm. Our proposed formulation constrains the rows of 𝑺 , which seems to be a
minor difference but is in fact a great leap forward since row scaling of 𝑺 is inherent for any matrix
factorization, while column scaling is not. It also turns out that the identifiability analysis would be
drastically different, albeit the formulations look similar.

3 Global identifiability

In this section we study the conditions under which the proposed dictionary learning formulation (1)

is identifiable, i.e., any solution to (1) equals to the groundtruth dictionary 𝑨♮ and sparse coefficients

𝑺 ♮ up to permutation and scaling, as per Definition 1.1. The groundtruth 𝑺 ♮ can have arbitrary scaling,
and it is without loss of generality to assume that its rows have unit ℓ1 norms; we denote such rescaled

𝑺 ♮ to be 𝑺̃
♮
, i.e., ∥𝑺̃ ♮

𝑗 ,:∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 ; we absorb the counterscaling into the columns of 𝑨♮ to

generate 𝑨̃
♮
, so that 𝑿 = 𝑨♮𝑺 ♮

= 𝑨̃
♮
𝑺̃
♮
.

Since we consider only complete dictionaries, for any feasible (𝑨,𝑺 ) for (1), there must exist a

nonsingular matrix𝑾 such that 𝑺 =𝑾 𝑺̃
♮

and 𝑨 = 𝑨̃
♮
𝑾 −1, therefore Problem (1) is, conceptually,

equivalent to
maximize

𝑾
| det𝑾 | subject to ∥𝒘⊤𝑗 𝑺̃

♮∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 , (4)

where 𝒘⊤
𝑗

denotes the 𝑗 th row of𝑾 . Since𝑾 = 𝑨−1𝑨̃
♮

and 𝑨̃
♮

is feasible, the optimal value of (4)

is at least 1. On the other hand, if the model is identifiable, then the optimal value of (4) should be
exactly equal to 1, and the optimal solution to (4) must be a permutation matrix times a diagonal ±1
matrix. The rest of this section is dedicated to characterizing when such condition holds for the sparse
coefficients 𝑺 . Notice that all we need for the dictionary 𝑨 is that its columns are independent, so that
the transform from (1) to (4) is possibleÐthere is no additional assumptions such as ªincoherenceº
for the rest of the arguments to hold, which is a great improvement to the existing works such as
[Gribonval and Schnass, 2010, Sun et al., 2016a,b, Wu and Yu, 2017, Wang et al., 2020].

3.1 Deterministic characterization

The intuition is simple: the Hadamard inequality states that | det𝑾 | ≤ ∏
𝑗 ∥𝒘 𝑗 ∥, so a sufficient condi-

tion for identifiability is that the set of solutions to the following (nonconvex) quadratic programming

maximize
𝒘

∥𝒘 ∥2 subject to ∥𝒘⊤̃𝑺 ♮∥1 ≤ 1 (5)
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is {±𝒆1, . . . ,±𝒆𝑘 }; in other words, a maximizer must be an indicator vector or its negative.

To proceed, we introduce the following notion:

Assumption 3.1 (Sufficiently scattered in the hypercube). Let B denote the Euclidean ball B =

{𝒙 ∈ R
𝑘 | ∥𝒙 ∥ ≤ 1} and C denote the hypercube C = {𝒙 ∈ R

𝑘 | ∥𝒙 ∥∞ ≤ 1}. A set S is sufficiently
scattered in the hypercube if:

1. B ⊆ S ⊆ C;
2. 𝜕B ∩ 𝜕S = {±𝒆1, . . . ,±𝒆𝑘 }, where 𝜕 denotes the boundary of the set.

x

x

x

x

x

x

x

x

x

x

x

x

Figure 1: An example of suffi-
ciently scattered in 3D.

A geometric illustration of a set that is sufficiently scattered in the
hypercube is shown in Figure 1, which in this case is a polytope
with vertices depicted as dots. As we can see, B is a subset of
the hypercube [−1, 1]𝑘 , but touches the boundary of [−1, 1]𝑘 at
points ±𝒆1, . . . ,±𝒆𝑘 . If a set S is sufficiently scattered in [−1, 1]𝑘 ,
S contains B as a subset and, as a second requirement, B touches
the boundary of S only at those points too.

The term ªsufficiently scatteredº was first coined by Huang et al.
[2016] to characterize the identifiability condition for nonnegative
matrix factorization that has already appeared in [Huang et al., 2013].
The difference is that in [Huang et al., 2013, 2016, Fu et al., 2018],
the condition is defined over the conic hull of a set of points in the
nonnegative orthant containing a specific hyperbolic cone. It has also
been defined over the convex hull of a set of points in the probability
simplex [Fu et al., 2015, Lin et al., 2015]. The most related case is the sufficiently scattered condition
defined for the hypercube (ℓ∞-norm ball) [Tatli and Erdogan, 2021], as well as the standard orthoplex
(ℓ1-norm ball).

To see how the sufficiently scattered condition could be useful for dictionary learning, we first rewrite

the single constraint in (5) as, equivalently, a set of 2𝑛 linear inequalities 𝒘⊤̃𝑺
♮
𝒗 ≤ 1,∀𝒗 ∈ {±1}𝑛 .

Since the rows of 𝑺̃
♮

have been rescaled to have unit ℓ1 norm, we must have that ∥𝑺̃ ♮
𝒗 ∥∞ ≤ 1,

meaning that all vectors 𝑺̃
♮
𝒗 should lie in the hypercube [−1, 1]𝑘 , and we further assume the convex

hull of all such 𝑺̃
♮
𝒗 is sufficiently scattered. Define the 𝑛 × 2𝑛 matrix𝑽 that contains all elements

of {±1}𝑛 as its columns, we have the following deterministic characterization of the identifiability
of (1):

Theorem 3.2. Consider the generative model 𝑿 = 𝑨♮𝑺 ♮, where 𝑨♮ ∈ R
𝑘×𝑘 is the groundtruth

dictionary and 𝑺 is the groundtruth sparse coefficients. If rank(𝑨♮) = 𝑘 and conv(𝑺 ♮𝑽 ) is sufficiently
scattered in the hypercube as in Assumption 3.1, then for any solution of (1), denoted as (𝑨★,𝑺★),
there exist a permutation matrix 𝜫 and a diagonal matrix 𝑫 such that 𝑨♮

= 𝑨★𝑫𝜫 and 𝑺 ♮
=

𝜫⊤𝑫−1𝑺★. In other words, dictionary learning is identifiable if the groundtruth 𝑨♮ has full column

rank and 𝑺 ♮𝑽 is sufficiently scattered.

The full proof is relegated to Appendix A. Here we provide a concise sketch of the proof: if 𝑺̃
♮
𝑽 is

sufficiently scattered, a solution to (5) must be ±𝒆 𝑗 ; as a result, | det𝑾 | ≤ ∏
𝑗 ∥𝒘 𝑗 ∥ ≤ 1, and equality

holds only if𝑾 is a permutation matrix with some sign flips of its rows.

How is this assumption relevant to the sparsity of 𝑺? Notice that if 𝑺𝑽 is sufficiently scattered,
then for any vector 𝒖 such that ∥𝒖 ∥ ≤ 1, there must exist a convex coefficient 𝜽 , i.e., 𝜽 ≥ 0 and
1
⊤𝜽 = 1, such that 𝒖 = 𝑺𝑽 𝜽 . Due to the definition of 𝑽 , we know that the vector 𝒚 = 𝑽 𝜽 must

satisfy ∥𝒚 ∥∞ ≤ 1. Let us instantiate it at 𝒖 = 𝒆 𝑗 . This means the 𝑗 th row of 𝑺 inner product with 𝒚
equals to 1. But the 𝑗 th row of 𝑺 has unit ℓ1 norm and ∥𝒚 ∥∞ ≤ 1, so their inner product is 1 only if
𝒚⊤ = sign(𝑺 𝑗 ,:), which is uniquely defined if 𝑺 𝑗 ,: is completely dense. Now 𝒆 𝑗 = 𝑺𝒚 also implies the
inner products between 𝒚 and the rest of the rows of 𝑺 all equal to zero, which is almost impossible
if 𝒚⊤ = sign(𝑺 𝑗 ,:) is the only candidate. On the other hand, if some of the entries in 𝑺 𝑗 ,: are zeros,
then the corresponding entries in 𝒚 are free to choose any value in [−1, 1]; to make the rest of the
𝑘 − 1 inner products equal to zero, we generically need at least 𝑘 − 1 free variables in 𝒚 , meaning
𝑺 𝑗 ,: contains at least 𝑘 − 1 zerosÐit is still not guaranteed that ∥𝒚 ∥∞ ≤ 1, but it intuitively makes
sense that the more zeros each row of 𝑺 contains, the more likely that 𝒆 𝑗 = 𝑺𝒚 is feasible, which is
necessary for 𝑺𝑽 to be sufficiently scattered.
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3.2 Probabilistic characterization

The analysis given in §3.1 gives an exact characterization of when dictionary learning is identifiable
using the proposed formulation (1) with a matrix volume identification criterion. However, given some
sparse coefficient matrix 𝑺 , checking whether it satisfies the identifiability condition in Theorem 3.2
amounts to solving a nonconvex quadratic programming (5), which is NP-hard in general. In this
section, we assume that the sparse coefficient matrix 𝑺 is generated from a probabilistic generative
model, specifically the Bernoulli-Gaussian model that has been widely considered in the literature,
such as [Gribonval and Schnass, 2010, Sun et al., 2016a], and show that it would satisfy guarantee
identifiability with high probability, provided that the number of data points 𝑛 is𝑂 (𝑘 log𝑘 ).
Assumption 3.3 (Bernoulli-Gaussian model). The matrix 𝑺 ∈ R

𝑘×𝑛 is generated from a Bernoulli-
Gaussian model with parameter 𝑝 ∈ (0, 1), denoted as 𝑺 ∼ BG(𝑝), if its elements are i.i.d. with
𝑆𝑖 𝑗 = 𝑏𝑖 𝑗 𝑔𝑖 𝑗 , where 𝑏𝑖 𝑗 ∈ {0, 1} are i.i.d. Bernoulli random variables with Pr[𝑏𝑖 𝑗 = 1] = 𝑝 (thus
Pr[𝑏𝑖 𝑗 = 0] = 1 − 𝑝) and 𝑔𝑖 𝑗 ∼ N(0, 1) are i.i.d. standard normal random variables.

Note that due to the scaling ambiguity of matrix factorization the assumption that the normal random
variable has unit variance is without loss of generalityÐits rows will be rescaled to have unit ℓ1

norms nonetheless. What we are essentially assuming is that 1) a significant portion of 𝑺 are zero; 2)
nonzeros of 𝑺 have zero mean and approximately the same variance.

Theorem 3.4. Suppose 𝑺 ∈ R
𝑘×𝑛 is generated from the Bernoulli-Gaussian model BG(𝑝), and 𝑺̃ is

obtained by scaling its rows to have unit ℓ1 norm. Then

Pr

[
sup

∥𝒘⊤𝑺̃ ∥1≤1

∥𝒘 ∥ > 1

]
≤ 4 exp (𝑘 log(𝑘 ) − 𝑛𝑝 (1 − 𝑝)) . (6)

Corollary 3.5. Consider the generative model 𝑿 = 𝑨♮𝑺 ♮, where 𝑨♮ ∈ R
𝑘×𝑘 is the groundtruth

dictionary and 𝑺 is the groundtruth sparse coefficients. If rank(𝑨♮) = 𝑘 and the matrix 𝑺 ♮ ∈ R
𝑘×𝑛

is generated from the Bernoulli-Gaussian model BG(𝑝), then (𝑨♮,𝑺 ♮) are globally identifiable via
optimizing (1) with probability at least 1 − 4 exp (𝑘 log(𝑘 ) − 𝑛𝑝 (1 − 𝑝)) .

The proof of Theorem 3.4 is relegated to Appendix B. It is appealing to see that the presented result
looks much cleaner than prior work such as [Gribonval and Schnass, 2010, Wu and Yu, 2017, Wang
et al., 2020], on top of the fact that such identifiability result is global, and does not require any
incoherence assumption on the dictionary, as long as it is nonsingular. An interesting observation
is that most of the foundational results have appeared in the seminal work [Gribonval and Schnass,
2010]; the difference is that they are used in the improved formulation (1), and in return leads to more
significant result in Corollary 3.5. From the above result, we observe the following:

1. The right-hand-side of (6) would be a valid probability (< 1) if 𝑛 is bigger than a constant times
𝑘 log(𝑘 )/𝑝 (1 − 𝑝), and very quickly approaches zero as it grows bigger. This agrees with the
prior work on local identifiability that the sample complexity is of the same order [Gribonval and
Schnass, 2010, Geng and Wright, 2014, Wu and Yu, 2017, Wang et al., 2020].

2. The Bernoulli parameter 𝑝 cannot be exactly equal to 1 or 0, which affirms the obvious fact that 𝑺
can neither be completely dense nor entirely zero. The more interesting implication is that DL is
identifiable (with high probability) as long as there is some nonzero probability of having zeros in
𝑺 , no matter how small that probability is, provided the sample size is large enough.

4 Proposed algorithm

In this section, we propose two algorithms for the volume-optimization based formulation (1). We
will reformulate (1) as a determinant maximization problem subject to linear constraints, and then
apply the Frank-Wolfe algorithm or block coordinate descent, which are both guaranteed to converge
to a stationary point.

Since we assume 𝑨 is nonsingular, we can define 𝑷 = 𝑨−1 and apply a change of variable to problem
(1): the objective would become minimizing 1/| det𝑷 |, which we apply the log function and make
it − log det |𝑷 |, and in the constraints we can now eliminate the 𝑺 variables by simply requiring
∥𝑷𝑿 𝑗 ,:∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 . This leads to the following reformulation

minimize
𝑷

− log | det𝑷 | subject to ∥ [𝑷𝑿 ] 𝑗 ,:∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 . (7)
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Problem (7) now has a convex, or more specifically linear, constraint set, although the objective
is still not convex. In Appendix 4, we propose two algorithms to directly tackle this formulation,
one based on the Frank-Wolfe framework, and the other is an instance of block coordinate descent.
Both algorithms guarantee convergence to a stationary point, which is the best one can get for a
generic nonconvex problem. However, both algorithms require solving a linear programming problem
in each iteration, making the overall algorithm double-looped, and the time efficiency is greatly
affected by the specific subroutine to solve linear programming. In the rest of this section, we propose
an algorithm based on the linearized alternating direction method of multipliers (L-ADMM) with
well-defined and low-complexity iterations.

4.1 Linearized alternating direction method of multipliers (L-ADMM)

We first modify the formulation (7) by introducing an auxiliary variable 𝑺 :

minimize
𝑷 ,𝑺

− log | det𝑷 | subject to 𝑷𝑿 = 𝑺 , ∥𝑺 𝑗 ,:∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 . (8)

Formulation (8) consists of two sets of variables (𝑷 and 𝑺 ) over two separable functions (one of them
being an indicator function of 𝑺 that the ℓ1 norms of its rows are no bigger than 1) and linear equality
constraints. It is easy to derive the alternating direction method of multipliers (ADMM) [Boyd et al.,
2011] for (8):




𝑷 (𝑡+1) ← arg min
𝑷
− log | det𝑷 | + (𝜌/2)∥𝑷𝑿 − 𝑺 (𝑡 ) +𝑼 (𝑡 ) ∥2,

𝑺 (𝑡+1) ← arg min
𝑺

1∥ · ∥1≤1 (𝑺 ) + (𝜌/2)∥𝑷 (𝑡+1)𝑿 − 𝑺 +𝑼 (𝑡 ) ∥2,

𝑼 (𝑡+1) ←𝑼 (𝑡 ) + 𝑷 (𝑡+1)𝑿 − 𝑺 (𝑡+1) .

(9a)

(9b)

(9c)

The second step (9b) is well-defined, as it projects each row of the matrix 𝑷 (𝑡+1)𝑿 +𝑼 (𝑡 ) to the
ℓ1 norm ball, which can be efficiently computed with linear complexity [Duchi et al., 2008]. In
our implementation we use the bisection method described in [Parikh and Boyd, 2014]. The first
step (9a), however, is not clear how to compute. One popular method to mitigate this issue, which
is prevalent in ADMM, is to take a linear approximation of the loss function of 𝑷 at the previous
iterate 𝑷 (𝑡 ) [Lu et al., 2021]. The gradient of log | det𝑷 | is 𝑷 −⊤, therefore the linear approximation of

− log | det𝑷 | at 𝑷 (𝑡 ) is − log | det𝑷 (𝑡 ) | − Tr𝑷 −1
(𝑡 ) (𝑷 − 𝑷 (𝑡 ) ). The overall update of 𝑷 (𝑡+1) becomes

minimizing a convex quadratic function, which can be done in closed-form. The derived linearized
ADMM (L-ADMM) iterates are




𝑷 (𝑡+1) ← ((𝑺 (𝑡 ) −𝑼 (𝑡 ) )𝑿⊤+ (1/𝜌)𝑷 −⊤(𝑡 ) ) (𝑿 𝑿⊤)−1,

𝑺 (𝑡+1) ← Proj∥ · ∥1≤1 (𝑷 (𝑡+1)𝑿 +𝑼 (𝑡 ) ),
𝑼 (𝑡+1) ←𝑼 (𝑡 ) + 𝑷 (𝑡+1)𝑿 − 𝑺 (𝑡+1) .

(10a)

(10b)

(10c)

Algorithm 1 Solving (7) with L-ADMM

1: take the QR factorization of 𝑿⊤ = 𝑸𝑹
2: set 𝜌 = 𝑛𝑘 and initialize 𝑷 (0)
3: for 𝑡 = 0, 1, 2, . . . until convergence do
4: 𝑷 (𝑡+1) ← (𝑺 (𝑡 ) −𝑼 (𝑡 ) )𝑸 + (1/𝜌)𝑷 −⊤(𝑡 )

5: 𝑺 (𝑡+1) ← Proj∥ · ∥1≤1 (𝑷 (𝑡+1)𝑸⊤+𝑼 (𝑡 ) )

6: 𝑼 (𝑡+1) ←𝑼 (𝑡 ) + 𝑷 (𝑡+1)𝑸⊤− 𝑺 (𝑡+1)
7: end for
8: return 𝑷 (𝑡 )𝑹

−⊤

Finally, we notice that formulation (8) and the derived
L-ADMM algorithm are invariant under linear trans-
formation of columns of 𝑿 , meaning if we replace 𝑿

with 𝑿 = 𝑮𝑿 in (8), where 𝑮 is a 𝑘 × 𝑘 invertible
matrix, then every iterate 𝑷 (𝑡 ) is uniquely mapped to

𝑷 (𝑡 )𝑮
−1 (while 𝑺 (𝑡 ) and 𝑼 (𝑡 ) are exactly the same),

and the objective value has a constant difference
− log | det𝑷 (𝑡 )𝑮

−1 | = − log | det𝑷 (𝑡 ) | + log | det𝑮 |.
This observation allows us to preprocess the data ma-
trix 𝑿 by orthogonalizing its rows, so that the update
for 𝑷 in (10a) can be further simplified. The overall
algorithm is summarized in Algorithm 1. We empir-
ically found that setting 𝜌 = 𝑛𝑘 works very well in
practice.

7



5 Experiments

We now provide some numerical experiments to showcase the effectiveness of the proposed volume
optimization formulation using the two algorithms described in §4. All the experiments are conducted
in MATLAB.

5.1 Optimization performance

We synthetically generate random problems, and show the surprisingly effective performance of the
two algorithms proposed in §4. For 𝑘 = 20 and 𝑛 = 1000, we randomly generate the groundtruth

sparse coefficient matrix 𝑺 ♮ according to the Bernoulli-Gaussian model with 𝑝 = 0.5, and the

groundtruth dictionary matrix 𝑨♮ completely random, and generate the data matrix 𝑿 = 𝑨♮𝑺 ♮. Due
to Theorem 3.4, we know it is identifiable with very high probability, despite 𝑛 being not that big
compared to the number of atoms 𝑘 . Matrix 𝑿 is used as input to the L-ADMM algorithm as
described in Alg. 1. Although Problem (7) is nonconvex, as long as it is identifiable, we know

the global optimum is attained at 𝑷★
= 𝑫 (𝑨♮)−1, where 𝑫 is a diagonal matrix with the 𝑖 th

diagonal equal to the inverse of the ℓ1 norm of the 𝑖 th row of 𝑺 ♮. As a result, − log | det𝑫 (𝑨♮)−1 |
is the optimal value for Problem (7) as long as the model is identifiable, and we shall see whether
the proposed algorithm is able to attain that optimal value. On the other hand, since L-ADMM
directly tackles formulation 8, it is not guaranteed that 𝑷 (𝑡 ) is feasible in every iteration, which
makes little sense to check the difference − log | det𝑷 (𝑡 ) | + log | det𝑷★ |. We instead check the
optimality gap of the Lagrangian function values, using the optimal dual variable 𝜦, since we have
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Figure 2: 100 random trials of the proposed
L-ADMM for dictionary learning as in Algo-
rithm 1. Since we know the groundtruth dictio-
nary is the (essentially) unique minimizer, we
can use it to calculate the optimality gap. We
see that the optimality gap goes to zero in all
random instances.

− log | det𝑷 | + Tr(𝑷𝑿 − 𝑺 )𝜦★ ≥ − log | det𝑷★ |,
for any 𝑷 and a feasible 𝑺 . Obviously, the gap
equals to zero when 𝑷 = 𝑷★ and 𝑺 = 𝑺★, in which
case 𝑷★𝑿 − 𝑺★

= 0. Furthermore, it is easy to

show that an optimal 𝜦 is (𝑺̃ ♮)†. In this simulation
with known groundtruth factors, we will use this to
measure the optimality gap.

The convergence behavior of 100 random trials
of the L-ADMM Algorithm 1 are shown in Fig-
ure 2. The somewhat surprising observation is that
it achieves essentially zero optimality gap in all
instances, which is somewhat surprising as we are,
after all, trying to solve NP-hard problems. Among
the 100 random trials, L-ADMM usually requires
approximately 500±1000 iterations to converge; to-
gether with the low-complexity iterations described
in Algorithm 1, it usually takes just a few seconds
to execute a trial. For a dictionary learning prob-
lem of this size, our proposed algorithm takes a
lot less time than most existing state-of-the-arts.
Some more detailed comparisons can be found in
the supplementary material.

5.2 Dictionary recovery

Next we fix the sample size 𝑛 = 1000 and vary the dictionary size as well as the sparsity parameter 𝑝
in the Bernoulli-Gaussian model and check how often do we get exact recovery of the groundtruth

dictionary 𝑨♮ up to column permutation and scaling. In the previous experiment we simply check the

optimality gap between the algorithm output and − log | det𝑫 (𝑨♮)−1 |, which is also a pretty good
indicator of exact recovery since the only ambiguity is an orthogonal rotation, which is very unlikely
to exist. Nevertheless, to ensure definitively that the dictionary is recovered as 𝑷 −1, we will normalize
the column and use the Hungarian algorithm [Kuhn, 1955] to find the best column matching, and
then calculate the estimation error. We declare success if the estimation error is smaller than 1e-5.
The results are shown in Figure 3, which agrees with the bound in Theorem 3.4.
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Figure 3: The probability of exactly recovering
the dictionary for various dictionary size 𝑘 and

sparsity 𝑝 (probability of nonzeros in 𝑺 ♮). The
sample size is fixed with 𝑛 = 1000.

Figure 4: Learned dictionary from a natural
image.

We would like to emphasize that compared to similar figures that have appeared in the literature,
the groundtruth dictionaries that we try to identify are far from being orthogonal, nor do we care
to check whether they satisfy the incoherence assumption; moreover, the recovery is of the entire
dictionary, not one of the atoms. More comparisons with some existing algorithms can be found in
the supplementary.

5.3 Real data experiment

We conclude this section with a classical application of dictionary learning on image compression.
For a given image, it is first divided into 8 × 8 non-overlapping patches, reshaped into a vector in
R
𝑘 with 𝑘 = 64, and stacked as columns of the data matrix 𝑿 . After feeding it into the L-ADMM

Algorithm 1, the output is inverted to obtain an estimate of the dictionary 𝑨. Each column of 𝑨 is
then reshaped back into a 8 × 8 patch to be shown as an atom for the dictionary. For a monochrome
image with 512 × 512 pixels, it would be reshaped into a data matrix 𝑿 of size 64 × 4096. Thanks to
the high-efficiency of the proposed L-ADMM algorithm, learning a dictionary on a data set of this
size takes only a few minutes from a random initialization. The resulting dictionary learned from a
natural image is shown in Figure 4. The result agrees with most other dictionary learning algorithms,
with some atoms representing edges and bright spots, while some others resemble a few DCT bases.

6 Conclusion

In this paper we aimed at answering the question of when dictionary learning is identifiable, with
a specific requirement that the formulation uses the ℓ1 norm to promote sparsity. With a novel
formulation that minimizes the volume of the dictionary subject to ℓ1 constraints, we close the
case with an affirmative yes, complete dictionary learning is indeed globally identifiable under
mild conditions. Compared to similar works, our result is global, requires no conditions such as
incoherence on the complete dictionary, and at the same time achieves the same sample complexity
bound when the sparse coefficients satisfy the Bernoulli-Gaussian model. Finally, we propose
algorithms to solve the volume optimization problem, specifically one based on linearized ADMM in
the main paper, and demonstrate their exceptional performances on both synthetic and real data.
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A Proof of Theorem 3.2

The proof uses the notion of polar sets from convex analysis [Rockafellar, 1970]:

Definition A.1 (Polar set). Given a set C that contains the origin, its polar set, denoted as C◦, is
defined as

C◦ = {𝒙 | 𝒙⊤𝒚 ≤ 1,∀𝒚 ∈ C}.

As an example, the polar of the unit ball B = {𝒙 |∥𝒙 ∥ ≤ 1} is itself, i.e., 𝑩◦ = 𝑩 , using the Cauchy-
Schwartz inequality. Due to the definition of dual norm, we also have immediately that the polar set
of any norm ball is the norm ball defined by its dual norm, e.g., the ℓ∞ norm ball [−1, 1]𝑛 is the polar
of the ℓ1 norm ball {𝒙 |∥𝒙 ∥1 ≤ 1}. Given a polyhedron in the form of conv(𝑯 ), i.e., the convex hull
of a set of vectors given as the columns of 𝑯 , then its polar is a polyhedron in the form of linear
inequalities:

conv(𝑯 )◦ = {𝒙 | 𝑯⊤𝒙 ≤ 1}.
The important property of the polar sets is that if two sets satisfy A ⊆ B, then B◦ ⊆ A◦, which
will be crucial in the sequel. The proof is not hard and can be found in standard textbooks such as
[Rockafellar, 1970].

Before proving Theorem 3.2, we show the following lemma as intermediate step:

Lemma A.2. If conv(𝑺̃ ♮
𝑽 ) is sufficiently scattered in the hypercube as described in Assumption 3.1,

then the solution set of problem (5) is {±𝒆1, . . . ,±𝒆𝑘 }.

Proof. As explained in the main paper, the single constraint ∥𝒘⊤̃𝑺 ♮∥1 ≤ 1 is equivalent to a set of 2𝑛

linear inequalities

𝒘⊤̃𝑺
♮
𝑽 ≤ 1

⊤,

where 𝑽 ∈ {±1}𝑛×2𝑛 contains all 2𝑛 vectors {±1}𝑛 as its columns. This means 𝒘 ∈ conv(𝑺̃ ♮
𝑽 )◦,

i.e., 𝒘 belongs to the polar set of conv(𝑺̃ ♮
𝑽 ). The sufficiently scattered condition first assumes that

B ⊆ conv(𝑺̃ ♮
𝑽 ), so conv(𝑺̃ ♮

𝑽 )◦ ⊆ B since B◦ = B. We immediately have that any feasible 𝒘 for
(5) must satisfy ∥𝒘 ∥ ≤ 1. Obviously, letting 𝒘 = ±𝒆 𝑗 is feasible and attains the maximum.

The second assumption is that the intersection of 𝜕B and 𝜕 conv(𝑺̃ ♮
𝑽 ), the boundary of the two sets,

is the finite set {±𝒆1, . . . ,±𝒆𝑘 }. This, together with the first assumption, implies that for any direction
𝒚 not along the coordinates, there exists a point along that direction with norm strictly bigger than

1 that still lie in conv(𝑺̃ ♮
𝑽 ), i.e., for any 𝒚 ≠ ±𝒆 𝑗 and ∥𝒚 ∥ = 1 + 𝜖 with sufficiently small 𝜖 > 0,

there exists 𝜽 ∈ Δ
𝑛 such that 𝒚 ∈ conv(𝑺̃ ♮

𝑽 ). Then 𝒘 must also satisfy 𝒘⊤𝒚 ≤ 1. Now consider
𝒘 = 𝒚/∥𝒚 ∥, we would have that ∥𝒘 ∥ = 1 but it’s infeasible since 𝒘⊤𝒚 = ∥𝒚 ∥ > 1. This excludes any
vector with norm 1 that is not in {±𝒆1, . . . ,±𝒆𝑘 } to be optimal for (5). □

Proof of Theorem 3.2. Consider the rescaled groundtruth factors (𝑨̃♮
, 𝑺̃

♮) and an optimal solution to
(1) (𝑨★,𝑺★). Obviously, both of them are feasible:

𝑿 = 𝑨̃
♮
𝑺̃
♮
= 𝑨★𝑺★, ∥𝑺̃ ♮

𝑗 ,:∥1 ≤ 1, ∥𝑺★
𝑗 ,:∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 .

Since 𝑨★ is invertible, we have that 𝑺★
= (𝑨★)−1𝑿 = (𝑨★)−1𝑨̃

♮
𝑺̃
♮
. Now define 𝑾 = (𝑨★)−1𝑨̃

♮
.

Since 𝑨̃
★

is optimal for (1), we have that

| det𝑨★ | ≤ | det 𝑨̃
♮ | ⇒ | det(𝑨★)−1𝑨̃

♮ | ≥ 1 ⇒ | det𝑾 | ≥ 1. (11)

On the other hand, 𝑺★
=𝑾 𝑺̃

♮
being feasible means

∥𝒘⊤𝑗 𝑺̃
♮∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 ,

i.e., each row of𝑾 satisfies the constraint set of (5). Since 𝑺̃
♮
𝑽 satisfies the sufficiently scattered

condition, Lemma A.2 implies that

∥𝒘 𝑗 ∥ ≤ 1, 𝑗 = 1, . . . , 𝑘 .
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As a result, using the Hadamard inequality we have

| det𝑾 | ≤
𝑘∏

𝑗=1

∥𝒘 𝑗 ∥ ≤ 1, (12)

and the supremum is attained when each row of 𝑾 is ±𝒆 𝑗 . Combining (11) and (12) shows that
| det𝑾 | = 1 and each row of𝑾 is ±𝒆 𝑗 . Furthermore, | det𝑾 | is nonzero only if none of the rows is
collinear to each other, therefore𝑾 must be a permutation matrix times a diagonal matrix with ±1 on

its diagonals. This guarantees identifiability of 𝑺̃
♮

(and 𝑨̃
♮
) up to permutation and sign ambiguity,

which is equivalent to identifiability of 𝑨♮ and 𝑺 ♮ up to permutation and scaling. □

B Proof of Theorem 3.4

We assume that 𝑺 ∼ BG(𝑝), and the first thing we do is rescaling its rows to have unit ℓ1 norms and
use it for the problem 5. To simplify the analysis, we can instead directly maximize ∥𝒘 ∥2 subject
to ∥𝒘⊤𝑺 ∥1 ≤ 1, and compare it with the largest ℓ1 norm of the rows of 𝑺 . The complement of the
intended probability can be bounded as

Pr

[
sup

∥𝒘⊤𝑺̃ ∥1≤1

∥𝒘 ∥ ≤ 1

]
≥ Pr

[
sup

∥𝒘⊤𝑺 ∥1≤1

∥𝒘 ∥ ≤ 𝛼 ∩max
𝑗
∥𝑺 𝑗 ,:∥1 ≥ 𝛼

]
,

with arbitrary choice of 𝛼. Conversely,

Pr

[
sup

∥𝒘⊤𝑺̃ ∥1≤1

∥𝒘 ∥ > 1

]
≤ Pr

[
sup

∥𝒘⊤𝑺 ∥1≤1

∥𝒘 ∥ > 𝛼 ∪max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝛼

]

≤ Pr

[
sup

∥𝒘⊤𝑺 ∥1≤1

∥𝒘 ∥ > 𝛼

]
+ Pr

[
max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝛼

]
(13)

where the second inequality is obtained from the union bound. The rest of this section is dedicated to
bounding the above two terms. Both of these results rely on the following version of the Bernstein
inequality [Bennett, 1962]:

Theorem B.1 (Bernstein’s inequality). Let 𝑍1, . . . , 𝑍𝑛 be independent random variables with
E[𝑍 2

𝑖
] ≤ 𝑣2 and there exists some constant 𝑐 such that for all integer 𝑑 > 2

E[|𝑍𝑖 |𝑑 ] ≤
1

2
𝑑!𝑣2𝑐𝑑−2. (14)

Then

Pr

[�����

𝑛∑︁

𝑖=1

(𝑍𝑖 − E[𝑍𝑖 ])
����� > 𝜖

]
≤ 2 exp

(
− 𝜖2

2(𝑛𝑣2 + 𝑐 𝜖)

)

Lemma B.2 (Bounding the second term in (13)). Suppose 𝑺 ∈ R
𝑘×𝑛 is generated from the Bernoulli-

Gaussian model BG(𝑝). Then

Pr

[
max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝑛𝑝 (

√︁
2/𝜋 − 𝜖)

]
≤ 2𝑘 exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)

Proof. Let 𝒔 = (𝑠1, . . . , 𝑠𝑛) be generated from BG(𝑝), i.e., each 𝑠𝑖 = 𝑏𝑖 𝑔𝑖 with 𝑏𝑖 Bernoulli with
probability 𝑝 and 𝑔𝑖 ∼ N(0, 1), we will use Bernstein’s inequality with 𝑍𝑖 = 𝑏𝑖 |𝑔𝑖 |. The moments of
𝑏𝑖 all equal to 𝑝 . The random variable |𝑔𝑖 | follows a Chi-distribution of degree 1 so its moments are

E[|𝑔𝑖 |𝑑 ] = 2𝑑/2
Γ

(
𝑑+1

2

)

Γ

(
1
2

) . (15)

For 𝑑 = 1 and 2 we have E[𝑍𝑖 ] = 𝑝
√︁

2/𝜋 and E[𝑍 2
𝑖
] = 𝑝 . Using the recurrence relation for the

Gamma function Γ(𝑡 +1) = 𝑡 Γ(𝑡 ) and
√

2/Γ(1/2) =
√︁

2/𝜋 < 1 we can bound the rest of the moments
with 𝑑 > 2 as

E[|𝑍𝑖 |𝑑 ] ≤ 𝑝
𝑑!

2𝑑/2
. (16)
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Therefore the moments satisfy (14) with 𝑐 = 1/
√

2, results in

Pr
[
∥𝒔 ∥1 < 𝑛𝑝 (

√︁
2/𝜋 − 𝜖)

]
≤ Pr

[�����

𝑛∑︁

𝑖=1

(𝑍𝑖 − E[𝑍𝑖 ])
����� > 𝑛𝑝𝜖

]

≤ 2 exp

(
− 𝑛2𝑝2𝜖2

2(𝑛𝑝 + 𝑛𝑝𝜖/
√

2)

)

= 2 exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)
.

Finally, using the union bound

Pr

[
max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝑛𝑝 (

√︁
2/𝜋 − 𝜖)

]
≤ 𝑘 Pr

[
∥𝑺 𝑗 ,:∥1 < 𝑛𝑝 (

√︁
2/𝜋 − 𝜖)

]

≤ 2𝑘 exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)
.

□

We now proceed to bound the first term in (13). First we note the following equivalence:

Pr

[
sup

∥𝒘⊤𝑺 ∥1≤1

∥𝒘 ∥ > 𝛼

]
= Pr

[
inf
∥𝒘 ∥=1

∥𝑺⊤𝒘 ∥1 < 1/𝛼
]

(17)

We are also going to use the following notion of 𝛿 -cover from convex geometry [Pisier, 1999] that
holds for all ℓ𝑝 norm balls, but we are only to instantiate the Eucleadian ball:

Lemma B.3 (𝛿 -cover). A finite 𝛿 -cover of the unit sphere in R
𝑘 is a finite set C𝛿 of points with unit

ℓ2 norm such that any point on the unit sphere is within 𝜖 away from an element in C𝛿 , i.e.

min
𝒘 𝑖 ∈C𝛿

∥𝒘 −𝒘 𝑖 ∥ < 𝛿 , ∀∥𝒘 ∥ = 1.

For 𝛿 ∈ (0, 1) there always exists an 𝛿 -cover C𝜖 with cardinality |C𝛿 | < (3/𝛿 )𝑘 .

Lemma B.4. Let C𝛿 = {𝒘 𝑖 } be an 𝛿 -cover for the sphere in R
𝑘 . Assume that we have both the

lowerbound
∥𝑺⊤𝒘 𝑖 ∥1 ≥ 𝛽,∀𝒘 𝑖 ∈ C𝛿

and the upperbound
∥𝑺⊤∥1 = sup

∥𝒘 ∥1≤1

∥𝑺⊤𝒘 ∥1 ≤ 𝛾 .

Then
inf
∥𝒘 ∥≤1

∥𝑺⊤𝒘 ∥1 ≥ 𝛽 −𝛾𝛿
√
𝑘

Proof. By definition of the 𝛿 -cover, for all𝒘 with unit norm we can find𝒘 𝑖 ∈ C𝛿 with ∥𝒘 −𝒘 𝑖 ∥ < 𝛿 .
Therefore

∥𝑺⊤𝒘 ∥1 ≥ ∥𝑺⊤𝒘 𝑖 ∥1 − ∥𝑺⊤(𝒘 −𝒘 𝑖 )∥1 ≥ 𝛽 − ∥𝑺⊤∥1∥𝒘 −𝒘 𝑖 ∥1
≥ 𝛽 − ∥𝑺⊤∥1∥𝒘 −𝒘 𝑖 ∥

√
𝑘 ≥ 𝛽 −𝛾𝛿

√
𝑘 .

□

Lemma B.5 (Bounding the first term in (13)). Suppose 𝑺 ∈ R
𝑘×𝑛 is generated from the Bernoulli-

Gaussian model BG(𝑝). Then

Pr

[
inf
∥𝒘 ∥=1

∥𝑺⊤𝒘 ∥1 < 𝑛𝑝 (
√︁

2/𝜋 − 𝜖) − 𝛿
√
𝑘𝑛𝑝 (

√︁
2/𝜋 + 𝜖)

]
≤

((
3

𝛿

)𝑘
+ 1

)
2 exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)
,

where 𝛿 ∈ (0, 1) represents any choice of 𝛿 -cover for the unit sphere.
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Proof. Following Lemma B.4, we have

Pr

[
inf
∥𝒘 ∥≤1

∥𝑺⊤𝒘 ∥1 < 𝛽 −𝛾𝛿
√
𝑘

]
≤

∑︁

𝒘 𝑖 ∈C𝛿
Pr

[
∥𝑺⊤𝒘 𝑖 ∥1 < 𝛽

]
+ Pr

[
∥𝑺⊤∥1 > 𝛾

]
, (18)

where C𝛿 is a 𝛿 -cover of the unit sphere with cardinality |C𝛿 | < (3/𝛿 )𝑘 according to Lemma B.3.

The bound to the first term in (18) is almost identical to Lemma B.2. Dropping the subscript of 𝒘 𝑖 ,
we write

∥𝑺⊤𝒘 ∥1 =

𝑛∑︁

𝑖=1

������

𝑘∑︁

𝑗=1

𝑏𝑖 𝑗 𝑔𝑖 𝑗𝑚 𝑗

������
:=

𝑛∑︁

𝑖=1

|𝑍𝑖 |.

Without the absolute value, 𝑍𝑖 is normally distributed with zero mean and variance 𝜎2
=

∑
𝑗 𝑚

2
𝑗
𝑏𝑖 𝑗 ,

so

E[|𝑍𝑖 |𝑑 ] = E[|𝜎𝐺 |𝑑 ] = E[|𝜎 |𝑑 ] E[|𝐺 |𝑑 ],
where 𝐺 is a standard normal random variable. Since 𝜎2

=
∑

𝑗 𝑚
2
𝑗
𝑏𝑖 𝑗 ≤

∑
𝑗 𝑚

2
𝑗
= 1, we have for

𝑑 ≥ 2

E[|𝜎 |𝑑 ] ≤ E[|𝜎 |2] = E



∑︁

𝑗

𝑚2
𝑗 𝑏𝑖 𝑗


= 𝑝,

where for 𝑑 = 1 we have

E[|𝜎 |] ≥ E[|𝜎 |2] = E



∑︁

𝑗

𝑚2
𝑗 𝑏𝑖 𝑗


= 𝑝.

Furthermore, |𝐺 | is chi-distributed with degree 1, whose moments are given in (15), so the moments

of |𝑍𝑖 | again follows (16). Again, the moments satisfy (14) with 𝑐 = 1/
√

2, results in

Pr
[
∥𝑺⊤𝒘 ∥1 < 𝑛𝑝 (

√︁
2/𝜋 − 𝜖)

]
≤ Pr

[�����

𝑛∑︁

𝑖=1

(𝑍𝑖 − E[𝑍𝑖 ])
����� > 𝑛𝑝𝜖

]

≤ 2 exp

(
− 𝑛2𝑝2𝜖2

2(𝑛𝑝 + 𝑛𝑝𝜖/
√

2)

)

= 2 exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)
. (19)

To bound ∥𝑺⊤∥1, we recall that this is the ℓ1 induced norm for matrix 𝑺⊤, which is shown to be the
maximum of the ℓ1 norms of the columns of 𝑺⊤. This means we can use similar arguments used in
Lemma B.2 (but applied to the other direction) to have

Pr
[
∥𝑺⊤∥1 > 𝑛𝑝 (

√︁
2/𝜋 + 𝜖)

]
= Pr

[
max
𝑗
∥𝑺 𝑗 ,:∥1 > 𝑛𝑝 (

√︁
2/𝜋 + 𝜖)

]

≤ Pr
[
∥𝑺 𝑗 ,:∥1 > 𝑛𝑝 (

√︁
2/𝜋 + 𝜖)

]

≤ Pr

[�����

𝑛∑︁

𝑖=1

(𝑍𝑖 − E[𝑍𝑖 ])
����� > 𝑛𝑝𝜖

]
≤ 2 exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)
, (20)

where we pick an arbitrary 𝑗 ∈ [𝑘 ] in the second line since this event implies that the maximum ℓ1

norm of the rows are lowerbounded, and in the third line each 𝑍𝑖 = 𝑏𝑖 |𝑔𝑖 | satisfies (16). The proof is

complete by combining (18), (19), and (20) with 𝛽 = 𝑛𝑝 (
√︁

2/𝜋 − 𝜖) and 𝛾 = 𝑛𝑝 (
√︁

2/𝜋 + 𝜖). □

Proof of Theorem 3.4. We first instantiate Lemma B.5 with

𝛿 =
𝑛2𝑝2 (

√︁
2/𝜋 − 𝜖)2 − 1

𝑛2𝑝2 (
√︁

2/𝜋 − 𝜖) (
√︁

2/𝜋 + 𝜖)
√
𝑘
,
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which obviously satisfies 𝛿 < 1 and would also satisfies 𝛿 > 0 if

𝜖 <

√︂
2

𝜋
− 1

𝑛𝑝
.

Then we have

Pr

[
inf
∥𝒘 ∥=1

∥𝑺⊤𝒘 ∥1 < 1/𝑛𝑝 (
√︁

2/𝜋 − 𝜖)
]
≤

((
3

𝛿

)𝑘
+ 1

)
2 exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)
,

Combining (13), (17), and Lemma B.2 with 𝛼 = 𝑛𝑝 (
√︁

2/𝜋 − 𝜖), we obtain

Pr

[
sup

∥𝒘⊤𝑺̃ ∥1≤1

∥𝒘 ∥ > 1

]
≤ Pr

[
inf
∥𝒘 ∥=1

∥𝑺⊤𝒘 ∥1 < 1/𝛼
]
+ Pr

[
max
𝑗
∥𝑺 𝑗 ,:∥1 < 𝛼

]

≤ 2

(
𝑘 +

(
3

𝛿

)𝑘
+ 1

)
exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)
. (21)

Further, with

𝜖 <
(
√

3𝑘 1/4 − 1)
√︁

2/𝜋
√

3𝑘 1/4 + 1
,

where the right hand side is obviously positive, we have

𝛿 =
𝑛2𝑝2 (

√︁
2/𝜋 − 𝜖)2 − 1

𝑛2𝑝2 (
√︁

2/𝜋 − 𝜖) (
√︁

2/𝜋 + 𝜖)
√
𝑘

>
𝑛2𝑝2 (

√︁
2/𝜋 − 𝜖)2

𝑛2𝑝2 (
√︁

2/𝜋 + 𝜖)2
√
𝑘

>
3

𝑘
.

We can further relax (21) to

Pr

[
sup

∥𝒘⊤𝑺̃ ∥1≤1

∥𝒘 ∥ > 1

]
≤ 2

(
𝑘 + (𝑘 )𝑘 + 1

)
exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)
≤ 4 (𝑘 )𝑘 exp

(
− 𝑛𝑝𝜖2

2 +
√

2𝜖

)

≤ 4 exp (𝑘 log(𝑘 ) − 𝑛𝑝 (1 − 𝑝)) ,
where in the last inequality we simply picked a small-enough 𝜖 so that

𝜖2

2 +
√

2𝜖
< 1 − 𝑝.

This completes the proof. □

C Additional Algorithms

In this section we introduce two algorithms that directly tackles the formulation (7), repeated here:

minimize
𝑷

− log | det𝑷 | subject to ∥ [𝑷𝑿 ] 𝑗 ,:∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘 .

C.1 Frank-Wolfe algorithm

Our first attempt is to apply the Frank-Wolfe algorithm to approximately solve (7). The Frank-Wolfe
algorithm, also known as the conditional gradient method for constrained optimization [Bertsekas,
1999], iteratively minimizes a linear objective, defined by the gradient at the current iterate, under
the same constraint set to determine the search direction and obtain the next iterate via some line
search approach along the search direction. For the log-determinant objective in (7), we have that the
gradient is −(𝑷 −1)⊤. As a result, the Frank-Wolfe algorithm for (7) is given in Algorithm 2.

Regarding the line search step, we propose to use the backtracking line search (Armijo rule) [Bertsekas,
1999] to guarantee sufficient decrease of the objective function. Since the constraint set of (7) is
convex, as long as 𝑷 (𝑡 ) is feasible, then 𝑷 (𝑡+1) is also feasible since it is a convex combination of
𝑷 (𝑡 ) and 𝑷𝑑 , which are by definition feasible. Therefore, the only nontrivial part is to find a feasible
initialization 𝑷 (0) . This can be done by optimizing an arbitrary linear objective subject to the same
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Algorithm 2 Solving (7) with Frank-Wolfe

initialize 𝑷 (0)
for 𝑡 = 0, 1, 2, . . . until convergence do

𝑷𝑑 = arg min
𝑷
−Tr(𝑷 −1

(𝑡 )𝑷 )
subject to ∥ [𝑷𝑿 ] 𝑗 ,:∥1 ≤ 1, 𝑗 = 1, . . . , 𝑘

𝛼 ← 1
while − log | det(𝑷 (𝑡 ) + 𝛼𝑡 (𝑷𝑑 − 𝑷 (𝑡 ) )) | >

− log | det𝑷 (𝑡 ) | + (𝛼/2) Tr(𝑷 −1
(𝑡 ) (𝑷𝑑 − 𝑷 (𝑡 ) )) do

𝛼 ← 𝛼/2
end while
𝑷 (𝑡+1) = 𝑷 (𝑡 ) + 𝛼 (𝑷𝑑 − 𝑷 (𝑡 ) )

end for

constraint as (7) (which means one should not apply line search at this step). If 𝑨 is square, there is a
simple initialization that works really well in our experience, by setting 𝑷 (0) as a diagonal matrix
with

𝑷 (0) (𝑐 , 𝑐 ) = 1/∥𝑿 𝑗 ,:∥1,
i.e., rescaling each row of 𝑿 to have unit ℓ1 norm.

In terms of complexity, each iteration is dominated by the linear programming with 𝑘 2 variables.
Without exploiting any structure, the per-iteration complexity could be as high as𝑂 (𝑘 6). However,
the linear programming to be solved in Algorithm 2 is blessed with structures to be exploited to
greatly reduce the complexity. Denote 𝒑 𝑖 as the 𝑖 th row of 𝑷 , then the linear programming in each
iteration of Algorithm 2 is in fact 𝑘 independent problems, each involving only one row of 𝑷 ; let 𝒇 𝑖

denote the 𝑖 th column of 𝑷 −1
(𝑡 ) , then we should solve the following problem with 𝑖 = 1, . . . , 𝑘

minimize
𝒑 𝑖

− 𝒇⊤𝑖𝒑 𝑖 subject to ∥𝒑⊤𝑖𝑿 ∥1 ≤ 1. (22)

Each of these problems involves 𝑘 variables, which can be solved with𝑂 (𝑘 3) flops. This important
observation brings the per-iteration complexity of Algorithm 2 down to𝑂 (𝑘 4).
Note that the Frank-Wolfe algorithm is also able to handle the overdetermined case when the
dictionary matrix 𝑨 is tall, although this case is rarely considered in the context of dictionary learning:
as long as 𝑨 has full column rank, we can make the change-of-variable 𝑷 = 𝑨†, and the objective of
(7) can be replaced by (1/2) log(𝑷𝑷⊤), with its gradient equals to −(𝑷 †)⊤. Everything else follows
easily.

We implement the algorithm in MATLAB and use the built-in linprog function in MATLAB to
solve each of the linear programming sub-problems (22). Dropping the subscripts in (22), the ℓ1

norm constraint can be transformed as linear ones using the standard trick:

minimize
𝒑 ,𝒕

− 𝒇⊤𝒑 subject to − 𝒕 ≤ 𝒑⊤𝑖𝑿 ≤ 𝒕 , 1⊤𝒕 ≤ 1.

Using the same setting as in §5.1 but with smaller problem dimension 𝑛 = 200 and 𝑘 = 10, the
convergence of 50 random trials are shown in Figure 5.

C.2 Cyclic row update

Inspired by the row-separable structure of the constraint set in (7), we also attempt to solve (7) via a
block coordinate descent-type algorithm that cyclically updates each row. However, we note that this
algorithm only works when 𝑷 is square, unlike the Frank-Wolfe algorithm, which can be extended to
the rare overdetermined case when 𝑨 is tall. We will drop the log term in the objective function of (7)
when designing the cyclic row update algorithm in this subsection.

Using the Laplace’s formula, we know that det𝑷 is a linear function with respect to the 𝑖 th row of 𝑷
using the co-factor expansion

det𝑷 =

𝑘∑︁

𝑗=1

(−1)𝑖+𝑗𝑃𝑖 𝑗 det𝑷 𝑖 𝑗 ,
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Figure 5: 50 random trials of the Frank-Wolfe Algorithm 2.

where the matrix 𝑷 𝑖 𝑗 is obtained by deleting the 𝑖 th row and 𝑗 th column of 𝑷 . Then to apply the block

coordinate descent algorithm [Bertsekas, 1999], one would minimize −|𝒇⊤𝑖𝒑 𝑖 | subject to ∥𝒑⊤
𝑖
𝑿 ∥1 ≤ 1,

where 𝒇 𝑖 ∈ R
𝑘 is a vector defined according to the co-factor expansion formula.

It looks as if we need to solve two linear programs for each row update, one to maximize 𝒇⊤𝑖𝒑 𝑖

and one to minimize 𝒇⊤𝑖𝒑 𝑖 , but notice that the constraint ∥𝒑⊤
𝑖
𝑿 ∥1 ≤ 1 is invariant under a sign flip,

therefore the only difference between the solutions of the two linear programs would be a sign flip,
which is both acceptable due to the inherent sign ambiguity in matrix factorization and dictionary
learning in specific. Furthermore, recall that the Cramer’s rule shows that

[
𝑷 −1

]
𝑗 𝑖
= (−1)𝑖+𝑗 det𝑷 𝑖 𝑗

/
det𝑷 ,

meaning we can simply define 𝒇 𝑖 as the 𝑖 th column of 𝑷 −1, and it would not affect the row updates.
This makes the definition of 𝒇 𝑖 exactly the same way as in (22).

Algorithm 3 Solving (7) with cyclic row update

initialize 𝑷 (0)
repeat

for 𝑖 = 1, . . . , 𝑘 do
𝒇 = 𝑷 −1𝒆 𝑖
𝒑 = arg min

𝒑
−𝒇⊤𝒑 subject to ∥𝒑⊤𝑿 ∥1 ≤ 1

replace 𝑖 th row of 𝑷 with 𝒑
end for

until convergence

The two proposed algorithms 2 and 3 shows striking similarities, especially considering they both
fundamentally solve linear programs in the form of (22) in each iteration. For nonconvex optimiza-
tion, both algorithms guarantees that every limit point is a stationary point with some additional
assumptions, which is reassuring to know. The differences are as follows:

1. Block coordinate descent is guaranteed to monotonically improve the objective function
by design, so there is no need for line search as in Frank-Wolfe. This could save some
computation as calculating det𝑷 may not be cheap when 𝑘 is large.

2. On the other hand, each iteration of Frank-Wolfe only need to calculate 𝑷 −1 once for the
update of all its 𝑘 rows, whereas cyclic row update requires to recalculate 𝑷 −1 for each of
its row updates. Overall, the per-iteration complexity is almost identical.

An interesting observation is that solving one subproblem (22) resembles the problem formulations
in works such as [Spielman et al., 2012, Geng and Wright, 2014, Sun et al., 2016a, Zhai et al., 2020b,
Shen et al., 2020] that attempt to find one atom of the dictionary at a time in a deflation manner. The
difference is that they are still trying to solve nonconvex problems, and they typically require multiple
random initializations due to the risk of finding the same atoms multiple times. From a different
perspective, we see that the benefit of using the proposed volume optimization framework provides a

19



smartly chosen search direction given by rows of 𝑷 −1, which is by definition the current iterate of the
dictionary.

This algorithm is again implemented in MATLAB using the built-in linprog function. Using the
same setting as before with the Frank-Wolfe algorithm, the convergence of 50 random trials are
shown in Figure 6. Comparing the two algorithms specifically, we see that Frank-Wolfe succeeds
in all 50 trials, while CRU has one failure, although CRU takes much fewer number of iterations to
converge.
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Figure 6: 50 random trials of the cyclic row update Algorithm 3.

D Additional Experiments

Here we provide some additional experiments to showcase the performance of the proposed volume-
optimization formulation as well as the three proposed algorithms. We start by demonstrating the
time-efficiency of the three proposed algorithms to motivate the use of L-ADMM as the go-to method.
Then we compare with some state-of-the-art dictionary learning algorithms with identifiability
guarantees to showcase the improved performance of dictionary recovery by incorporating the
volume criterion.

D.1 Comparing the three proposed algorithms

In Figures 2, 5, and 6, we showed the per-iteration convergence of L-ADMM, Frank-Wolfe, and
cyclic row update (i.e., block coordinate descent [BCD]) as described in Algorithm 1, 2, and 3. While
all three algorithms manage to obtain essentially zero optimality gap, L-ADMM takes significantly
more number of iterations; on the other hand, it is obvious that the cost of L-ADMM to perform one
iteration is much cheaper than those of Frank-Wolfe or BCD. In this subsection we show that, thanks
to the simple and efficient per-iteration update of L-ADMM, it is significantly faster than the other
two proposed algorithms. We generate synthetic data sets like before, with 𝑛 = 1000 and the sparsity
level 𝑝 = 0.5, and set 𝑘 = 20 in Figure 7a and 𝑘 = 50 in Figure 7b. Notice that both the vertical and
horizontal axes are in log scale, indicating that L-ADMM is several magnitude faster than the other
alternatives. The difference would only become bigger as we increase 𝑛 and 𝑘 .

D.2 Dictionary recovery

We compare the dictionary recovery performance of the proposed volume-optimization formulation
(using the L-ADMM algorithm in Algorithm 1) with some state-of-the-arts. The most related work
are [Gribonval and Schnass, 2010, Wu and Yu, 2017, Wang et al., 2020], which focus on the local
identifiability of formulation (2) without proposing new algorithms. For algorithms with claimed
identifiability guarantees, the closest we find are the alternating direction method (ADM) by Sun
et al. [2016a,b], ℓ4-norm maximization (ℓ4-max) by Zhai et al. [2020b], and ℓ3-norm maximization
(ℓ3-max) by Shen et al. [2020]. We note that ADM is not the main algorithm that is analyzed
in Sun et al. [2016a,b], but it works better and has the benefit of recovering the entire dictionary
simultaneously; the analyzed manifold optimization algorithm in [Sun et al., 2016a,b] recovers the
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Figure 7: Convergence (with respect to time in seconds) of the three proposed algorithms. In both
cases 𝑛 = 1000 and 𝑝 = 0.5, and we vary the value of 𝑘 . It is clear from both figures that L-ADMM
is significantly more efficient than Frank-Wolfe or BCD.

dictionary one atom at a time, which requires multiple initializations to guarantee complete recovery,
and such procedures are not provided by the authors on their Github page.

Note that all three baseline algorithms, ADM, ℓ4-max, and ℓ3-max, require that the groundtruth
dictionary to be orthogonal. They claim that this is, to some extend, without loss of generality by

pre-whitening the data (𝑿 𝑿⊤)−1/2𝑿 . We discover that this claim is only true if the sparse coefficients
matrix 𝑺 follows strictly from the Bernoulli-Gaussian generative model, and that the sample size tends
to infinity, in which case (1/𝑛)𝑺𝑺⊤→ 𝑝𝑰 ; if this assumption does not hold, such a pre-whitening
step is not able to make an arbitrary dictionary orthogonal. As a result, when we use the same
experimental setting as in §5.2, none of these algorithms are able to exactly recover the true dictionary
in any circumstance.

If we restrict ourselves to orthogonal dictionary recovery, then we obtain some sensible results from
the three baseline algorithms, although they still perform significantly worse than our proposed
work. What is more, even for exactly orthogonal dictionaries they are not able to recover them
with very high accuracy. Here we test them in two cases: In the first case shown in Tables 1 and
2, we fix 𝑛 = 1000 and 𝑘 = 20, and vary the sparsity level 𝑝 from 0.1 to 0.9; in the other case
shown in Tables 3 and 4, we fix 𝑛 = 1000 and 𝑝 = 0.5, and vary the dictionary size 𝑘 from 5 to 50.
The recovered dictionary is again permuted using the Hungarian algorithm, and then we declare a
successful recovery if the error is less than a threshold. In each case we present two tables, one with
the threshold to be 10−5 (same as the threshold used in §5.2), and the other with threshold 10−2. We
see that the three baseline algorithms can provide reasonable result with the more loose threshold,
especially ℓ3-max. Regardless, the proposed volume-optimization formulation with the L-ADMM,
performs significantly better than all of them.
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Table 1: Probability of success when fixing 𝑛 = 1000 and 𝑘 = 20, threshold 10−5

𝑝 = 0.1 𝑝 = 0.2 𝑝 = 0.3 𝑝 = 0.4 𝑝 = 0.5 𝑝 = 0.6 𝑝 = 0.7 𝑝 = 0.8 𝑝 = 0.9
This work 1 1 1 1 0.9 1 0.9 0 0

ADM [Sun et al., 2016a,b] 1 1 0.9 0.1 0 0 0 0 0

ℓ4-max [Zhai et al., 2020b] 0 0 0 0 0 0 0 0 0

ℓ3-max [Shen et al., 2020] 0 0 0 0 0 0 0 0 0

Table 2: Probability of success when fixing 𝑛 = 1000 and 𝑘 = 20, threshold 10−2

𝑝 = 0.1 𝑝 = 0.2 𝑝 = 0.3 𝑝 = 0.4 𝑝 = 0.5 𝑝 = 0.6 𝑝 = 0.7 𝑝 = 0.8 𝑝 = 0.9
This work 1 1 1 1 1 1 1 0.2 0

ADM [Sun et al., 2016a,b] 1 1 0.9 0.2 0 0 0 0 0

ℓ4-max [Zhai et al., 2020b] 0 0 0 0 0 0 0 0 0

ℓ3-max [Shen et al., 2020] 1 1 0.9 0.3 0 0 0 0 0

Table 3: Probability of success when fixing 𝑛 = 1000 and 𝑝 = 0.5, threshold 10−5

𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20 𝑘 = 25 𝑘 = 30 𝑘 = 35 𝑘 = 40 𝑘 = 45 𝑘 = 50

This work 1 1 1 1 0.9 1 1 1 1 0.8
ADM [Sun et al., 2016a,b] 0.9 0.6 0.2 0 0 0 0 0 0 0

ℓ4-max [Zhai et al., 2020b] 0 0 0 0 0 0 0 0 0 0

ℓ3-max [Shen et al., 2020] 0 0 0 0 0 0 0 0 0 0

Table 4: Probability of success when fixing 𝑛 = 1000 and 𝑝 = 0.5, threshold 10−2

𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20 𝑘 = 25 𝑘 = 30 𝑘 = 35 𝑘 = 40 𝑘 = 45 𝑘 = 50

This work 1 1 1 1 1 1 1 1 1 0.8
ADM [Sun et al., 2016a,b] 1 0.6 0.2 0 0 0 0 0 0 0

ℓ4-max [Zhai et al., 2020b] 0.7 0 0 0 0 0 0 0 0 0

ℓ3-max [Shen et al., 2020] 1 0.9 0 0 0 0 0 0 0 0
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