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Abstract

This paper considers online optimization for a system that performs a sequence of back-to-back tasks. Each task can be
processed in one of multiple processing modes that affect the duration of the task, the reward earned, and an additional vector
of penalties (such as energy or cost). Let A[k] be a random matrix of parameters that specifies the duration, reward, and penalty
vector under each processing option for task k. The goal is to observe A[k] at the start of each new task k and then choose a
processing mode for the task so that, over time, time average reward is maximized subject to time average penalty constraints.
This is a renewal optimization problem and is challenging because the probability distribution for the A[k] sequence is unknown.
Prior work shows that any algorithm that comes within ϵ of optimality must have Ω(1/ϵ2) convergence time. The only known
algorithm that can meet this bound operates without time average penalty constraints and uses a diminishing stepsize that cannot
adapt when probabilities change. This paper develops a new algorithm that is adaptive and comes within O(ϵ) of optimality for
any interval of Θ(1/ϵ2) tasks over which probabilities are held fixed, regardless of probabilities before the start of the interval.

I. INTRODUCTION

This paper considers online optimization for a system that performs a sequence of tasks (Fig. 1). Each new task starts when

the previous one ends. At the start of each new task k ∈ {1, 2, 3, ...}, a matrix A[k] of parameters about the task is revealed.

Initially, we assume the matrices {A[k]}∞k=1 are independent and identically distributed (i.i.d.) over tasks (this is eventually

relaxed to assume the i.i.d. property holds only over a finite block of m consecutive tasks). The controller observes A[k] and

then makes a decision about how the task should be processed. The decision, together with A[k], determines the duration of

the task, the reward earned by processing that task, and a vector of additional penalties. Specifically, define

T [k] = duration of task k

R[k] = reward of task k

Y [k] = (Y1[k], . . . , Yn[k])

= penalty vector for task k

where n is a fixed positive integer. The duration of each task is assumed to be lower bounded by some value tmin > 0.

Each matrix A[k] is assumed to have finite size M [k]× (n+ 2), where M [k] is the number of rows and can change over

different tasks k. The value M [k] is a positive integer that is determined by the number of task processing options for task k.

Each row r ∈ {1, . . . ,M [k]} of matrix A[k] is a row vector of size n+ 2 of the form:

[Tr[k], Rr[k], Yr,1[k], ..., Yr,n[k]] (1)

which represents the duration, reward, and penalties for task k if processing option r is chosen. The goal is to make a sequence

of decisions that maximizes time average reward per unit time subject to time average constraints on the penalties. This problem

is called a renewal optimization problem [1][2]. The problem is challenging because the probability distribution associated with

the random matrices A[k] is unknown. Without a-priori probability information, it is shown in [3] that any online algorithm

that provides an ϵ-approximate solution over tasks {1, . . . ,m} must have m ≥ Ω(1/ϵ2). An algorithm is developed in [3] that

achieves this optimal asymptotic convergence time for the special case when there are no penalties Y [k]. The algorithm in

[3] uses a Robbins-Monro iteration with a vanishing stepsize η[k] = Θ(1/k). The algorithm assumes {A[k]} is i.i.d. forever,

starting with task 1, and cannot adapt if probabilities change at some unknown time in the timeline. In contrast, the current

paper develops a novel algorithm that is adaptive. While our algorithm does not use Robbins-Monro iterations, it can be

viewed as having a constant stepsize that leads to optimal convergence guarantees over any block of Θ(1/ϵ2) tasks on which

the system probabilities are fixed. The algorithm also allows for general penalty processes Y [k].
Specifically, imagine an extended situation where independent {A[k]} matrices are generated according to one distribution

for tasks {1, . . . ,m1}, another distribution for tasks {m1+1, . . . ,m2}, and another distribution for tasks {m2+1, . . . ,m3}. If

the points of change m1,m2,m3 were known (and if there were no Y [k] penalties), the Robbins-Monro algorithm of [3] could

be used and its stepsize could be reset at the times m1,m2,m3 to achieve desirable performance over each block. However, if

the times m1,m2,m3 are unknown and the stepsize is either never reset, or is reset at incorrect times, then performance over

the blocks {m1+1, . . . ,m2} and {m2+1, . . . ,m3} can be far from optimal. The algorithm of the current paper can run over

a
rX

iv
:2

4
0
1
.0

7
1
7
0
v
1
  
[m

a
th

.O
C

] 
 1

3
 J

a
n
 2

0
2
4



2

Task 1 Task 2 Task 3 Task 4

time t0
T[1] T[2] T[3] T[4]

Fig. 1. Four sequential tasks in the timeline. Vertical arrows for each task k represent values for reward R[k] and penalty Y [k]. In this example, green is
reward (profit), red is energy, blue is quality. The duration of task k and the height of its arrows depend on choices made at the start of task k.

the infinite time horizon, yet provides analytical guarantees over any finite block of consecutive tasks for which {A[k]} is i.i.d.

with some (unknown) distribution, regardless of system history before the start of the block. Thus, analytical properties over

each one of the separate blocks {1, . . . ,m1}, {m1 + 1, . . . ,m2}, and {m2 + 1, . . . ,m3} are obtained even when m1,m2,m3

are unknown to the algorithm.

A. Example application

This renewal optimization problem has numerous applications, including video processing, image classification, transportation

scheduling, and wireless multiple access. For example, consider a device that performs back-to-back image classification tasks

with the goal of maximizing time average profit subject to a time average power constraint of pav and an average per-task quality

constraint of qav . For each task, the device chooses between one of three classification algorithms, each having a different

duration of time and yielding certain profit, energy, and quality characteristics. Let C[k] be a 3× 4 matrix of parameters for

task k, such as

C[k] =

duration profit energy quality

5.1 3.6 0.3 2.0 alg 1

10.2 2.8 0.7 3.0 alg 2

2.7 3.0 0.2 1.0 alg 3

(2)

Choosing a classification algorithm for task k reduces to choosing a row of C[k]. If the controller choses row 1 then

T [k] = 5.1, R[k] = 3.6, Energy[k] = 0.3, Quality[k] = 2.0

The average quality constraint has units of quality/task, while the average power constraint has units of energy/time. To

consistently enforce both constraints, we can define penalties Y1[k] and Y2[k] for each task k by

Y1[k] = qav −Quality[k] (3)

Y2[k] = Energy[k]− pavT [k] (4)

Then
(

lim sup
m→∞

1

m

m∑

k=1

Y1[k] ≤ 0

)

=⇒ lim inf
m→∞

1

m

m∑

k=1

Quality[k] ≥ qav

(

lim sup
m→∞

1

m

m∑

k=1

Y2[k] ≤ 0

)

=⇒ lim sup
m→∞

∑m
k=1 Energy[k]
∑m

k=1 T [k]
≤ pav

where we recall that T [k] ≥ tmin for all k so there are no divide-by-zero issues.

We have expressed this example using a matrix C[k] with columns that represent duration, profit, energy, and quality. This

can be equivalently represented by a matrix A[k] where the last two columns of C[k] are transformed to the corresponding

Y1[k] and Y2[k] values, so that for row r of matrix A[k] we have

Yr,1[k] = qav −Qualityr[k]

Yr,2[k] = Energyr[k]− pavTr[k]

where Qualityr[k] and Tr[k] are taken from row r of the matrix C[k].
Under a given policy and for each positive integer m, define T [m] as the empirical average duration per task, averaged over

the first m tasks:

T [m] =
1

m

m∑

k=1

T [k]
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Define R[m] and Y [m] = (Y 1[m], Y 2[m]) similarly. The time average profit over the first m tasks is

R[1] +R[2] + . . .+R[m]

T [1] + T [2] + . . .+ T [m]
=

R[m]

T [m]

Suppose we can make decisions to ensure R[m], T [m], Y i[m] converge to some constants R, T , Y i with probability 1 as

m → ∞. The problem of maximizing time average profit subject to the desired constraints can be informally described as:

Maximize: R/T (5)

Subject to: Y i ≤ 0 ∀i ∈ {1, 2} (6)

(T [k], R[k], Y [k]) ∈ Row(A[k]) ∀k ∈ {1, 2, 3, . . .} (7)

where Row(A[k]) denotes the set of rows of A[k]. This description illustrates our goals, but is informal because because it

implicitly requires the sample path limits to exist with probability 1. A more precise optimization is posed in the next subsection

and a closely related deterministic problem is in Section II-D.

For wireless multiple access applications, the variable durations of time relate to transmission times to the uplink, which

depend on code selection and power allocation, while penalties relate to transmission reliability and power expenditure. For

ridesharing applications, the variable task lengths represent transportation times and the reward is the profit earned by the

driver.

B. Convergence time

It is assumed that (T [k], R[k], Y [k]) is a bounded random vector with a well defined expectation (see boundedness assump-

tions in Section II-A). It is convenient to work with expectations rather than sample paths. This is similar to the treatment in

[1][3]. For a general scenario with n penalties Y [k] = (Y1[k], . . . , Yn[k]), consider the problem

Maximize: lim sup
m→∞

E
[
R[m]

]

E
[
T [m]

] (8)

Subject to: lim sup
m→∞

E
[
Y i[m]

]
≤ 0 ∀i ∈ {1, . . . , n} (9)

(T [k], R[k], Y [k]) ∈ Row(A[k]) ∀k ∈ {1, 2, 3, . . .} (10)

The problem is assumed to be feasible, meaning that it is possible to satisfy the constraints (9)-(10). Let θ∗ denote the optimal

objective in (8). Fix ϵ > 0. A decision policy is said to be an ϵ-approximation with convergence time d if

E
[
R[m]

]

E
[
T [m]

] ≤ θ∗ + ϵ ∀m ≥ d (11)

E
[
Y i[m]

]
≤ ϵ ∀i ∈ {1, . . . , n} ∀m ≥ d (12)

A decision policy is said to be an O(ϵ)-approximation (with convergence time d) if all appearances of ϵ in the above definition

are replaced by some constant multiple of ϵ. Given any ϵ > 0, the algorithm of this paper produces an O(ϵ)-approximation

with convergence time 1/ϵ2 over any interval of 1/ϵ2 tasks. When operated over an infinite horizon, we show that sample path

time averages are similar to the time average expectations.

C. Prior work

The fractional structure of the objective (8) is qualitatively similar to a linear fractional program [4][5]. A nonlinear change

of variables in [4] shows how to convert a linear fractional program into a convex program. A different nonlinear change of

variables is used in [5]. The work [5] uses the method for offline design of an optimal solution to a Markov decision problem.

There, the linear fractional structure relates to minimizing a time average per unit time, similar to our fractional objective

(8). However, the offline computational methods of [4][5] cannot be directly used for our online problem. That is because

time averages are not preserved under nonlinear transformations. Related work in [6][7] treats offline and online control for

opportunistic Markov decision problems where states include random perturbations similar to the A[k] parameters of the current

paper. Data center applications of renewal optimization are in [8]. Applications to general asynchronous systems are in [9].

The renewal optimization problem (5)-(7) is first posed in [1] (see also Chapter 7 of [2]). The solution in [1] constructs virtual

queues for each time average inequality constraint (6) and makes a decision for each task k to minimize a drift-plus-penalty

ratio:

E

[

∆̃[k]− vR[k]
]

E [T [k]]
(13)

where ∆[k] is the change in a Lyapunov function on the virtual queues; ∆̃[k] is a simplified version of ∆[k] that neglects

second order terms; and v > 0 is a parameter that affects accuracy. An exact minimization of the ratio of expectations in (13)
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cannot be done unless the probability distribution for the A[k] states is known. A method for approximating the minimization

of (13) is given in [1] based on sampling the A[k] values over a window of previous tasks, although only a partial convergence

analysis is given there. This prior work is based on the Lyapunov drift and max-weight scheduling methods developed by

Tassiulas and Ephremides for fixed timeslot queueing systems [10][11].

A different approach in [3] uses a Robbins-Monro iteration for a special case problem that seeks only to maximize time

average reward R/T (with no penalties Y [k]). The policy of [3] chooses (T [k], R[k]) ∈ Row(A[k]) for each task k to

minimize R[k]− θ[k− 1]T [k], where θ[k− 1] is an estimate of θ∗ that is updated at the completion of each task according to

the Robbins-Monro iteration

θ[k] = θ[k − 1] + η[k](R[k]− θ[k − 1]T [k])

where η[k] is a stepsize. See [12] for the original Robbins-Monro algorithm and [13][14][15][16][17][18] for extensions in

other contexts. This approach is desirable because it does not require sampling from a window of past A[k] values. Further,

under a particular vanishing stepsize rule, the optimality gap of the algorithm is shown to decrease like O(1/
√
k), which is

also shown to be asymptotically optimal [3]. However, it is unclear how to extend the Robbins-Monro technique to handle

time average penalties Y [k] as considered in the current work. Further, while the vanishing stepsize method in [3] enables fast

convergence, it makes increasing investments in the probability model and cannot adapt if the system probabilities change. For

example, if A[k] is sampled from a single probability distribution for the first 104 tasks, the θ[k] value quickly converges to a

value near the optimal θ∗. Now suppose that, starting with task 104 + 1, nature switches the probability distribution (without

informing the algorithm of this change). The vanishing stepsize makes it difficult for θ[k] to change to what it needs for the new

distribution. It may take an additional 104 tasks before θ[k] starts to approach the new θ∗ value needed for efficient decisions

on the new distribution. The analysis in [3] shows a fixed stepsize rule is better for adaptation but has a slower convergence

time of O(1/ϵ3).
Fixed stepsizes are known to enable adaptation in other contexts. For online convex optimization, Zinkevich shows in [19]

that a fixed stepsize enables regret to be within O(ϵ) of optimality (as compared to the best fixed decision in hindsight)

over any sequence of Θ(1/ϵ2) steps. For adaptive estimation, a recent work [20] considers the problem of removing bias

from Markov-based samples. The work [20] develops an adaptive Robbins-Monro technique that averages between two fixed

stepsizes. Adaptive algorithms are also of recent interest in convex bandit problems, see [21][22].

D. Our contributions

We develop a new algorithm for renewal optimization that, unlike [1], does not require probability information or sampling

from the past. The new algorithm has explicit convergence guarantees and meets the optimal asymptotic convergence time bound

of [3]. Unlike the Robbins-Monro algorithm of [3], our new algorithm allows for general time average penalty constraints.

Furthermore, our algorithm is adaptive and achieves performance within O(ϵ) of optimality over any sequence of Θ(1/ϵ2)
tasks. This fast adaptation is enabled by using a new hierarchical decision structure for each task k: At the start of task k, a

max-weight rule is used to choose (T [k], R[k], Y [k]) ∈ Row(A[k]); At the end of task k, an auxiliary variable is updated to

guide the system towards maximized time average reward. Care is taken to ensure the auxiliary variable varies slowly enough

(at the timescale of the desired adaptation) so that maximizing the desired fractional objective can be accurately approximated

by maximizing a nonfractional objective.

E. Notation

This paper often refers to a collection of consecutive equations by the first and last equation number separated by a hyphen.

For example, “optimization problem (8)-(10)” refers to the equations (8), (9), (10). For vectors x, y ∈ R
n we use inner product

x⊤y =
∑n

i=1 xiyi and Euclidean norm ||x|| =
√∑n

i=1 x
2
i .

II. PRELIMINARIES

A. Boundedness assumptions

Assume there are nonnegative constants tmin, tmax, rmax, c, yi,min, yi,max (with tmin > 0) such that for all k ∈ {1, 2, 3, . . .},

all A[k], and all possible choices of (T [k], R[k], Y [k]) ∈ Row(A[k]), the following boundedness assumptions surely hold:

tmin ≤ T [k] ≤ tmax (14)

0 ≤ R[k] ≤ rmax (15)

||Y [k]|| ≤ c (16)

− yi,min ≤ Yi[k] ≤ yi,max ∀i ∈ {1, . . . , n} (17)

where ||Y [k]|| is the Euclidean norm of Y [k] = (Y1[k], . . . , Yn[k]).
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Constraint (15) assumes all rewards R[k] are nonnegative. This is without loss of generality: If the system can have negative

rewards in some bounded interval −rmin ≤ R[k] ≤ rmax, where rmin is some given positive constant, we define a new

nonnegative reward

G[k] = R[k] + (rmin/tmin)T [k]

The objective of maximizing G/T is the same as the objective of maximizing R/T . The new reward G[k] satisfies:

0 ≤ G[k] ≤ rmax + (rmin/tmin)tmax ∀k ∈ {1, 2, 3, . . .}

B. Stochastic assumptions

Fix (Ω,F , P ) as the probability space. The probability space contains random matrices {A[k]}∞k=1 and a random variable

U with the following structure:

• Assume {A[k]}∞k=1 is a sequence of independent and identically distributed (i.i.d.) random matrices. Each matrix A[k] has

size M [k]×(n+2), where M [k] is a random variable that takes positive integer values. Each of the rows r ∈ {1, . . . ,M [k]}
has the form (1). Given M [k] = m, the random matrix A[k] has size m × (n + 2) and its entries are random variables

that have an arbitrary joint distribution, with the only stipulation that all rows surely satisfy the boundedness assumptions

(14)-(17).

• Assume there is a random variable U : Ω → [0, 1] that is uniformly distributed over [0, 1] and independent of {A[k]}∞k=1.

The random variable U can be used, if desired, as an independent source of randomness to facilitate potentially randomized

row selection decisions.1

C. The sets Γ and Γ

For each task k ∈ {1, 2, 3, . . .}, define a decision vector (T [k], R[k], Y [k]) to be a random vector that satisfies

(T [k], R[k], Y [k]) ∈ Row(A[k])

Let Γ ⊆ R
n+2 be the set of all expectations E [(T [k], R[k], Y [k])] for a given task k, considering all possible decision vectors.

The set Γ considers all conditional probabilities for choosing a row given the observed A[k]. The {A[k]}∞k=1 matrices are i.i.d.

and so Γ is the same for all k ∈ {1, 2, 3, . . .}. It can be shown that Γ is nonempty, bounded, and convex (see [2]). Its closure

Γ is compact and convex.

For any sequence of decision vectors and for m ∈ {1, 2, 3, . . .}, define

E
[
(T [m], R[m], Y [m])

]
=

1

m

m∑

k=1

E [(T [k], R[k], Y [k])]

The right-hand-side is a convex combination of points in the convex set Γ and so

E
[
(T [m], R[m], Y [m])

]
∈ Γ ∀m ∈ {1, 2, 3, . . .} (18)

Define the history up to task m as

H[m] = (A[1], A[2], . . . , A[m− 1])

where H[1] is defined to be the constant 0. The following lemma collects results from [2][3].

Lemma 1: Suppose {A[k]}∞k=1 are i.i.d. and satisfy the boundedness assumptions (14)-(17). Then

a) For every (t, r, y) ∈ Γ and k ∈ {1, 2, 3, . . .}, there exists a decision vector (T ∗[k], R∗[k], Y ∗[k]) ∈ Row(A[k]) that is

independent of H[k] and that satisfies (with probability 1):

E [(T ∗[k], R∗[k], Y ∗[k])|H[k]] = (t, r, y)

b) If {(T [k], R[k], Y [k])}∞k=1 is a sequence of decision vectors from a causal decision policy that, for each k, makes the

decision (T [k], R[k], Y [k]) ∈ Row(A[k]) as a measurable function of {U,A[1], A[2], . . . , A[k]}, then the following sample

path result holds:

lim
m→∞

dist
(
(T [m], R[m], Y [m]),Γ

)
= 0 (with prob 1) (19)

where dist(y,Γ) denotes the Euclidean distance between a vector y ∈ R
n+2 and the convex set Γ ⊆ R

n+2.

Proof: The proof is similar to arguments in [2][3]. For completeness, the Appendix fills in minor details.

1Formally, a single U ∼ Unif[0, 1] can be measurably mapped to an infinite sequence {U [k]}∞
k=1 of i.i.d. Unif[0, 1] random variables that, if desired, can

be accessed sequentially over tasks k ∈ {1, 2, 3, . . .}.
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D. The deterministic problem

Consider the following deterministic problem

Maximize: r/t (20)

Subject to: yi ≤ 0 ∀i ∈ {1, ..., n} (21)

(t, r, y) ∈ Γ (22)

where Γ is the closure of Γ. Recall that (t, r, y) ∈ Γ implies t ≥ tmin > 0 and so there are no divide-by-zero issues. Using (18)

and arguments similar to those given in [2], it can be shown that: (i) The stochastic problem (8)-(10) is feasible if and only

if the deterministic problem (20)-(22) is feasible; (ii) If feasible, the optimal objective values are the same [2]. Specifically, if

(t∗, r∗, y∗) solves (20)-(22) then

θ∗ = r∗/t∗

where θ∗ is the optimal objective for both the stochastic problem (8)-(10) and the deterministic problem (20)-(22).

Assume the following Slater condition holds: There is a value s > 0 and a vector (ts, rs, ys) ∈ Γ such that

ysi ≤ −s ∀i ∈ {1, . . . , n} (23)

III. ALGORITHM

A. Parameters and constants

The algorithm uses parameters v > 0, α > 0, q = (q1, . . . , qn) with qi ≥ 0 for all i ∈ {1, . . . , n}, to be precisely determined

later. The constants tmin, tmax, rmax, yi,min, yi,max, c from the boundedness assumptions (14)-(17) are assumed known. Define

γmin = 1/tmax (24)

γmax = 1/tmin (25)

The algorithm introduces a sequence of auxiliary variables {γ[k]}∞k=0 with initial condition γ[0] = γmin, and with γ[k] chosen

in the interval [γmin, γmax] for each task k ∈ {1, 2, 3, . . .}.

B. Intuition

For intuition, temporarily assume time averages converge to constants with probability 1. Define:

Y i = lim
m→∞

1

m

m∑

k=1

Yi[k]

1/γ = lim
m→∞

1

m

m∑

k=1

1/γ[k]

The idea is to solve the following time averaged problem:

Maximize: lim
m→∞

1
m

∑m
k=1 R[k]γ[k]/γ[k − 1]

1
m

∑m
k=1 1/γ[k − 1]

(26)

Subject to: Y i ≤ 0 ∀i ∈ {1, . . . , n} (27)

T ≤ 1/γ (28)

γ[k] ∈ [γmin, γmax] ∀k (29)

(T [k], R[k], Y [k]) ∈ Row(A[k]) ∀k (30)

γ[k] varies “slowly” over k (31)

This is an informal description of our goals because the constraint “γ[k] varies slowly” is not precise (also, the above problem

assumes limits exist). Intuitively, if γ[k] does not change much from one task to the next, the above objective is close to

R/1/γ, which (by the second constraint) is less than or equal to the desired objective R/T . This is useful because, as we

show, the above problem can be treated using a novel hierarchical optimization method.
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C. Virtual queues

To enforce the constraints Y i ≤ 0, for each i ∈ {1, . . . , n} define a process Qi[k] with initial condition Qi[1] = 0 and

update equation

Qi[k + 1] = [Qi[k] + Yi[k]]
qiv
0 ∀k ∈ {1, 2, 3, . . .} (32)

where v > 0 and q = (q1, . . . , qn) are given nonnegative parameters (to be precisely sized later), and where [z]qiv0 denotes the

projection of the real number z onto the interval [0, qiv]. Specifically

[z]qiv0 =







qiv if z > qiv
z if z ∈ [0, qiv]
0 else

To enforce the constraint T ≤ 1/γ, define a process J [k] by

J [k + 1] = [J [k] + T [k]− 1/γ[k]]∞0 ∀k ∈ {1, 2, 3, . . .} (33)

with initial condition J [1] = 0. By construction, Qi[k] is nonnegative and upper-bounded by qiv, while J [k] is merely

nonnegative. The processes Qi[k] and J [k] shall be called virtual queues because their update resembles a queueing system

with arrivals and service for each k. Such virtual queues are standard for enforcing time average inequality constraints in

stochastic systems (see [2][23]).

For each task k and each i ∈ {1, . . . , n}, define 1i[k] as the following indicator function:

1i[k] =

{
1 if Qi[k] > qiv − yi,max

0 else
(34)

Lemma 2: Fix k0 and m as positive integers. Under the iterations (32) and (33), we have for any decision vectors

{(T [k], R[k], Y [k])}∞k=1 and for all i ∈ {1, . . . , n}:

1

m

k0+m−1∑

k=k0

(Yi[k]− 1i[k]yi,max) ≤
qiv

m
(35)

1

m

k0+m−1∑

k=k0

(T [k]− 1/γ[k]) ≤ J [k0 +m]

m
(36)

Proof: Fix i ∈ {1, . . . , n} and k ∈ {1, 2, 3, . . .}. We first claim

Yi[k]− 1i[k]yi,max ≤ Qi[k + 1]−Qi[k] (37)

To verify (37), consider the two cases:

• Case 1: Suppose Qi[k] + Yi[k] > qiv. It follows by (32) that Qi[k + 1] = qiv. Since Yi[k] ≤ yi,max, we have Qi[k] >
qiv − yi,max and so 1i[k] = 1. It follows that (37) reduces to Yi[k] − yi,max ≤ qiv − Qi[k], which is true because the

left-hand-side is always nonpositive while the right-hand-side is always nonnegative.

• Case 2: Suppose Qi[k] + Yi[k] ≤ qiv. The update (32) then gives Qi[k + 1] ≥ Qi[k] + Yi[k], so (37) again holds (recall

yi,max ≥ 0).

Summing (37) over k ∈ {k0, . . . , k0 +m− 1} gives

k0+m−1∑

k=k0

(Yi[k]− 1i[k]yi,max) ≤ Qi[k0 +m]−Qi[k0]

≤ qiv

where the final equality holds because the update (32) ensures Qi[k] ∈ [0, qiv] for all k. Dividing by m proves (35).

To prove (36), observe the update (33) implies

J [k + 1] ≥ J [k] + T [k]− 1/γ[k] ∀k ∈ {1, 2, 3, . . .} (38)

Summing over k ∈ {k0, . . . , k0 +m− 1} gives

J [k0 +m]− J [k0] ≥
k0+m−1∑

k=k0

(T [k]− 1/γ[k])

The result follows by dividing by m and observing J [k0] ≥ 0.

The lemma shows the following: To ensure the desired time average inequality constraints are close to being satisfied over

a sequence of m consecutive tasks, decisions should be made to keep J [k] bounded (so the right-hand-side of (36) vanishes

as m gets large) and to ensure Yi[k] rarely crosses the qiv − yi,max threshold (so 1i[k] on the left-hand-side of (35) is rarely

nonzero).
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D. Lyapunov drift

Define Q[k] = (Q1[k], . . . , Qn[k]). Define

L[k] =
1

2
J [k]2 +

1

2
||Q[k]||2

where ||Q[k]||2 =
∑n

i=1 Qi[k]
2. The process L[k] can be viewed as a Lyapunov function on the queue state for task k. Define

∆[k] = L[k + 1]− L[k]

Lemma 3: Under the iterations (32) and (33), we have for any decision vectors {(T [k], R[k], Y [k])}∞k=1 and for all positive

integers k
∆[k] ≤ b+ J [k](T [k]− 1/γ[k]) +Q[k]⊤Y [k] (39)

where b is a constant defined by

b =
1

2

[
c2 + (tmax − tmin)

2
]

with c given in (16), and where Q[k]⊤Y [k] =
∑k

i=1 Qi[k]Yi[k].
Proof: Fix k ∈ {1, 2, 3, . . .}. Squaring (32) and using ([z]qiv0 )2 ≤ z2 for all z ∈ R gives

Qi[k + 1]2 ≤ (Qi[k] + Yi[k])
2

= Qi[k]
2 + Yi[k]

2 + 2Qi[k]Yi[k]

Summing over i ∈ {1, . . . , n} and dividing by 2 gives

1

2
||Q[k + 1]||2 ≤ 1

2
||Q[k]||2 + 1

2
||Y [k]||2 +Q[k]⊤Y [k]

≤ 1

2
||Q[k]||2 + 1

2
c2 +Q[k]⊤Y [k] (40)

where we have used the boundedness assumption (16). Similarly, squaring (33) and using ([z]∞0 )2 ≤ z2 for all z ∈ R gives

1

2
J [k + 1]2 ≤ 1

2
J [k]2 +

1

2
(T [k]− 1/γ[k])2 + J [k](T [k]− 1/γ[k]) (41)

Summing (40) and (41) gives

∆[k] ≤ 1

2
[c2 + (T [k]− 1/γ[k])2] + J [k](T [k]− 1/γ[k]) +Q[k]⊤Y [k]

The result follows by observing that

(T [k]− 1/γ[k])2 ≤ (tmax − tmin)
2

which holds by the boundedness assumption (14) and the fact 1/γ[k] ∈ [tmin, tmax].

E. Discussion

The above lemma implies that

∆[k]− vR[k] ≤ b− vR[k] + J [k](T [k]− 1/γ[k]) +Q[k]⊤Y [k] (42)

The expression ∆[k]−vR[k] is called the drift plus penalty expression because ∆[k] is associated with the drift of the Lyapunov

function L[k], and −vR[k] is a weighted version of the reward for task k (multiplied by −1 to turn a reward into a penalty).

As shown in [2], algorithms that minimize the right-hand-side of similar drift-plus-penalty expressions can treat stochastic

problems that seek to minimize the time average of an objective function subject to time average inequality constraints. This

could be used to treat the problem (26)-(31) if the objective (26) were changed to minimizing −R and if the (ambiguous)

constraint (31) were removed.

We cannot use the drift-plus-penalty method for problem (26)-(31) because the objective is a ratio of averages, rather than

a single average. For this, we design a novel hierarchical version of the drift-plus-penalty method that, for each task k does:

• Step 1: Choose (T [k], R[k], Y [k]) ∈ Row(A[k]) to greedily minimize the right-hand-side of (42) (ignoring the term of

this right-hand-side that depends on γ[k]);
• Step 2: Treating γ[k − 1], T [k], R[k], Y [k] as known constants, choose γ[k] ∈ [γmin, γmax] to minimize

γ[k]

γ[k − 1]
(−vR[k] + J [k](T [k]− 1/γ[k]) +Q[k]⊤Y [k])

︸ ︷︷ ︸

for (26)

+
αv2

2
(γ[k]− γ[k − 1])2

︸ ︷︷ ︸

for (31)

where the term in the first underbrace relates to the desired objective (26) and arises by multiplying both sides of (42) by

γ[k]/γ[k − 1]; the term in the second underbrace is a weighted “prox-type” term that, for our purposes, acts only to enforce

constraint (31).
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F. Algorithm

Fix parameters v > 0, α > 0, q = (q1, . . . , qn) with qi ≥ 0 for i ∈ {1, . . . , n} (to be sized later). Fix γ[0] = γmin. For each

task k ∈ {1, 2, 3, . . .}, the algorithm proceeds as follows:

• Row selection: Observe Q[k], J [k], A[k] and treat these as given constants. Choose (T [k], R[k], Y [k]) ∈ Row(A[k]) to

minimize

−vR[k] + J [k]T [k] +Q[k]⊤Y [k]

In the case of ties, break the tie in favor of the smallest indexed row.

• γ[k] selection: Observe Q[k], J [k], γ[k−1], and the decisions (T [k], R[k], Y [k]) just made by the row selection, and treat

these as given constants. Choose γ[k] ∈ [γmin, γmax] to minimize

γ[k]
[
−vR[k] + J [k]T [k] +Q[k]⊤Y [k]

]
+

γ[k − 1]αv2

2
(γ[k]− γ[k − 1])2

The explicit solution to this quadratic minimization is:

γ[k] =

[

γ[k − 1] +
vR[k]− J [k]T [k]−Q[k]⊤Y [k]

γ[k − 1]αv2

]γmax

γmin

(43)

where[z]γmax
γmin

denotes the projection of z ∈ R onto the interval [γmin, γmax].
• Virtual queue updates: Update the virtual queues via (32) and (33).

G. Basic analysis

Fix k ∈ {1, 2, 3, . . .}. The row selection decision of our algorithm implies

−vR[k] + J [k]T [k] +Q[k]⊤Y [k] ≤ −vR∗[k] + J [k]T ∗[k] +Q[k]⊤Y ∗[k] (44)

where (T ∗[k], R∗[k], Y ∗[k]) is any other vector in Row(A[k]) (including any decision vector for task k that is chosen according

to some optimized probability distribution).

The γ[k] selection decision of our algorithm chooses γ[k] ∈ [γmin, γmax] to minimize a function of γ[k] that is β-strongly

convex for parameter β = γ[k− 1]αv2. Therefore, by standard strongly convex pushback results (see, for example, Lemma 2.1

in [17], [24], Lemma 6 in [25]), the following holds for any other γ∗ ∈ [γmin, γmax]:

γ[k]
[
−vR[k] + J [k]T [k] +Q[k]⊤Y [k]

]
+

γ[k − 1]αv2

2
(γ[k]− γ[k − 1])2

≤ γ∗ [−vR[k] + J [k]T [k] +Q[k]⊤Y [k]
]
+

γ[k − 1]αv2

2
(γ∗ − γ[k − 1])2 − γ[k − 1]αv2

2
(γ∗ − γ[k])2

︸ ︷︷ ︸

≤ γ∗ [−vR∗[k] + J [k]T ∗[k] +Q[k]⊤Y [k]∗
]
+

γ[k − 1]αv2

2
(γ∗ − γ[k − 1])2 − γ[k − 1]αv2

2
(γ∗ − γ[k])2

where the first inequality gives an underbrace to highlight the pushback term that arises from strong convexity; the second

inequality holds by (44) and the fact γ∗ > 0.

Dividing the above inequality by γ[k − 1] > 0 gives

γ[k]

γ[k − 1]
[−vR[k] + J [k]T [k] +Q[k]⊤Y [k]] +

αv2

2
(γ[k]− γ[k − 1])2

≤ γ∗

γ[k − 1]
[−vR∗[k] + J [k]T ∗[k] +Q[k]⊤Y ∗[k]] +

αv2

2
(γ∗ − γ[k − 1])2 − αv2

2
(γ∗ − γ[k])2 (45)

The following lemma is obtained by mere arithmetic rearrangements of the inequality (45).

Lemma 4: For any sample path of {A[k]}∞k=1, for each k ∈ {1, 2, 3, . . .} our algorithm yields a drift-plus-penalty expression

∆[k]− vR[k] that surely satisfies

∆[k]− vR[k] ≤ b+
γ∗

γ[k − 1]
[−vR∗[k] + J [k](T ∗[k]− 1/γ∗) +Q[k]⊤Y ∗[k]]

+
αv2

2
(γ∗ − γ[k − 1])2 − αv2

2
(γ∗ − γ[k])2

+
(vrmax + cv||q||+ (tmax − tmin)|J [k]|)2

2γ2
minαv

2
(46)
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where ∆[k] − vR[k], γ[k], γ[k − 1] refer to the actual values that arise in our algorithm; (T ∗[k], R∗[k], Y ∗[k]) ∈ Row(A[k])
is any decision vector for task k (not necessarily the decision vector chosen by our algorithm); γ∗ is any real number in the

interval [γmin, γmax].
Proof: Adding −J [k]/γ[k − 1] to both sides of (45) gives

LHS[k] :=
γ[k]

γ[k − 1]
[−vR[k] + J [k](T [k]− 1/γ[k]) +Q[k]⊤Y [k]] +

αv2

2
(γ[k]− γ[k − 1])2

≤ γ∗

γ[k − 1]
[−vR∗[k] + J [k](T ∗[k]− 1/γ∗) +Q[k]⊤Y ∗[k]] +

αv2

2
(γ∗ − γ[k − 1])2 − αv2

2
(γ∗ − γ[k])2 (47)

where, for simplicity of the arithmetic, we have defined LHS[k] according to the Left-Hand-Side of the above inequality. By

rearranging terms in the definition of LHS[k] we have

LHS[k] = −vR[k] + J [k](T [k]− 1/γ[k]) +Q[k]⊤Y [k]

+
(γ[k]− γ[k − 1])

γ[k − 1]
[−vR[k] + J [k](T [k]− 1/γ[k]) +Q[k]⊤Y [k]]

+
αv2

2
(γ[k]− γ[k − 1])2

≥ ∆[k]− vR[k]− b+
(γ[k]− γ[k − 1])

γ[k − 1]
[−vR[k] + J [k](T [k]− 1/γ[k]) +Q[k]⊤Y [k]]

+
αv2

2
(γ[k]− γ[k − 1])2

≥ ∆[k]− vR[k]− b−

(
−vR[k]+J[k](T [k]−1/γ[k])+Q[k]⊤Y [k]

γ[k−1]

)2

2αv2
(48)

where the first inequality holds by (39); the final inequality holds by the fact that for all real numbers x, y:

yx+
αv2

2
x2 ≥ − y2

2αv2

which holds by completing the square (in this case we use x = γ[k]− γ[k − 1]). Now observe that

| − vR[k]| ≤ vrmax

|J [k](T [k]− 1/γ[k])| ≤ (tmax − tmin)|J [k]|
|Q[k]⊤Y [k]| ≤ ||Q[k]|| · ||Y [k]|| ≤ cv||q||

where the final inequality uses Cauchy-Schwarz, the boundedness assumption (16), and the fact 0 ≤ Qi[k] ≤ qiv for all i.
Substituting these bounds into the right-hand-side of (48) gives

LHS[k] ≥ ∆[k]− vR[k]− b− (vrmax + cv||q||+ (tmax − tmin)|J [k]|)2
2γ[k − 1]2αv2

Substituting this into (47) proves the result.

H. Expected drift-plus-penalty

Recall that H[k] = (A[1], . . . , A[k−1]) and note that H[k] determines Q[k] and J [k], that is, (Q[k], J [k]) is H[k]-measurable.

Lemma 5: Suppose the problem (20)-(22) is feasible with optimal solution (t∗, r∗, y∗) ∈ Γ and optimal objective value

θ∗ = r∗/t∗. Then for all k ∈ {1, 2, 3, . . .} we have (with probability 1):

E [∆[k]− vR[k]|H[k]] ≤ b+
−vθ∗

γ[k − 1]
+

αv2

2
E
[
(1/t∗ − γ[k − 1])2 − (1/t∗ − γ[k])2|H[k]

]

+
(vrmax + cv||q||+ (tmax − tmin)|J [k]|)2

2γ2
minαv

2
(49)

Proof: Fix k ∈ {1, 2, 3, . . .}. Fix (t, r, y) ∈ Γ. Observe that t ∈ [tmin, tmax] and so 1/t ∈ [γmin, γmax]. By Lemma 1a,

there is a decision vector (T ∗[k], R∗[k], Y ∗[k]) ∈ Row(A[k]) that is independent of H[k] such that

E [(T ∗[k], R∗[k], Y ∗[k])|H[k]] = (t, r, y) (50)
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Substituting this (T ∗[k], R∗[k], Y ∗[k]), along with γ∗ = 1/t, into (46) gives

∆[k]− vR[k] ≤ b+
1/t

γ[k − 1]
[−vR∗[k] + J [k](T ∗[k]− t) +Q[k]⊤Y ∗[k]]

+
αv2

2
(1/t− γ[k − 1])2 − αv2

2
(1/t− γ[k])2

+
(vrmax + cv||q||+ (tmax − tmin)|J [k]|)2

2γ2
minαv

2
(51)

Taking conditional expectations and using (50) gives

E [∆[k]− vR[k]|H[k]] ≤ b+
1/t

γ[k − 1]
[−vr +Q[k]⊤y]

+
αv2

2
E
[
(1/t− γ[k − 1])2 − (1/t− γ[k])2|H[k]

]

+
(vrmax + cv||q||+ (tmax − tmin)|J [k]|)2

2γ2
minαv

2
(52)

This holds for all (t, r, y) ∈ Γ. Since (t∗, r∗, y∗) ∈ Γ, there is a sequence of points {(tj , rj , yj)}∞j=1 in Γ that converges to

(t∗, r∗, y∗). Taking a limit over such points in (52) gives

E [∆[k]− vR[k]|H[k]] ≤ b+
1/t∗

γ[k − 1]
[−vr∗ +Q[k]⊤y∗]

+
αv2

2
E
[
(1/t∗ − γ[k − 1])2 − (1/t∗ − γ[k])2|H[k]

]

+
(vrmax + cv||q||+ (tmax − tmin)|J [k]|)2

2γ2
minαv

2

Recall the optimal solution has y∗ = (y∗1 , . . . , y
∗
n) with y∗i ≤ 0 for all i. The result is obtained by substituting Q[k]⊤y∗ ≤ 0

and r∗/t∗ = θ∗.

IV. REWARD GUARANTEE

Fix ϵ > 0. This section proves that our algorithm yields

E
[
R[m]

]

E
[
T [m]

] ≥ θ∗ −O(ϵ)

when m is suitably large and when parameters v, q are sized appropriately with ϵ. This shows that desirable reward performance

holds over the tasks {1, . . . ,m}. More strongly, this section shows the same result holds over any sequence of m consecutive

tasks. The corresponding result for the time average penalty constraints Y [m] is shown in Section V.

A. Deterministic bound on J [k]

Lemma 6: Under any {A[k]}∞k=1 sequence, our algorithm yields

0 ≤ J [k] ≤ v(β1 + β2) (53)

where β1 and β2 are nonnegative constants defined

β1 =
(1 + rmax +

∑n
i=1 qiyi,min)

tmin
(54)

β2 =
1

v
⌈αvγmax(γmax − γmin)⌉ (tmax − tmin) (55)

where ⌈z⌉ denotes the smallest integer greater than or equal to the real number z.

Proof: Define

m = ⌈αvγmax(γmax − γmin)⌉ (56)

We first make two claims:

• Claim 1: If J [k0] ≤ vβ1 for some task k0 ∈ {1, 2, 3, . . .}, then

J [k] ≤ v(β1 + β2) ∀k ∈ {k0, k0 + 1, . . . , k0 +m}
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To prove Claim 1, observe that for each task k we have

T [k]− 1/γ[k] ≤ tmax − 1/γmax = tmax − tmin

Thus, the update (33) implies that J [k] can increase by at most tmax− tmin on any given task k. Thus, J [k] can increase

by at most m(tmax − tmin) over any sequence of m or fewer tasks. By construction, m(tmax − tmin) = vβ2. It follows

that if J [k0] ≤ vβ1 then J [k] ≤ vβ1 + vβ2 for all k ∈ {k0, k0 + 1, . . . , k0 +m}.

• Claim 2: If J [k] ≥ vβ1 for some task k ∈ {1, 2, 3, . . .} then γ[k] ≤ γ[k − 1], and in particular

γ[k] ≤ max

{

γmin, γ[k − 1]− 1

γmaxαv

}

To prove Claim 2, suppose J [k] ≥ vβ1. Observe that

vR[k]− J [k]T [k]−Q[k]⊤Y [k]

γ[k − 1]αv2

(a)

≤ vrmax − vβ1tmin +
∑n

i=1 qivyi,min

γ[k − 1]αv2

(b)
=

−1

γ[k − 1]αv

≤ −1

γmaxαv

where inequality (a) holds because R[k] ≤ rmax, T [k] ≥ tmin, and −Qi[k]Yi[k] ≤ qivyi,min for all i ∈ {1, . . . , n};

equality (b) holds by definition of β1. Claim 2 follows in view of the iteration (43).

Since J [1] = 0 ≤ vβ1, Claim 1 implies J [k] ≤ v(β1 + β2) for all k ∈ {1, . . . , 1 + m}. We now use induction: Suppose

J [k] ≤ v(β1 + β2) for all k ∈ {1, . . . , k0} for some positive integer k0 ≥ 1 + m. We show this is also true for k0 + 1. If

J [k] ≤ vβ1 for some k ∈ {k0 + 1−m, . . . , k0} then Claim 1 implies J [k0 + 1] ≤ v(β1 + β2) and we are done.

Now suppose J [k] > vβ1 for all k ∈ {k0 + 1−m, . . . , k0}. Claim 2 implies

γ[k0 + 1−m] ≥ γ[k0 −m] ≥ . . . ≥ γ[k0]

Therefore, if γ[k] = γmin for some k ∈ {k0 + 1−m, . . . , k0} then γ[k0] = γmin = 1/tmax and the update (33) gives

J [k0 + 1] = [J [k0] + T [k0]− tmax]
∞
0 ≤ J [k0] ≤ v(β1 + β2)

and we are done. We now show the remaining case γ[k] > γmin for all k ∈ {k0 + 1 − m, . . . , k0} is impossible. Suppose

γ[k] > γmin for all k ∈ {k0 + 1−m, . . . , k0} (we reach a contradiction). Then Claim 2 implies

γ[k]− γ[k − 1] ≤ − 1

γmaxαv
∀k ∈ {k0 + 1−m, . . . , k0}

Summing over k ∈ {k0 + 1−m, . . . , k0} gives

γ[k0]− γ[k0 −m] ≤ − m

γmaxαv

and so

γ[k0] ≤ γmax − m

γmaxαv
(a)

≤ γmax − (γmax − γmin)

= γmin

where inequality (a) holds by definition of m in (56). This contradicts the fact that γ[k0] > γmin.

B. Reward over any consecutive m tasks

For postive integers m, k0, define R[k0;m] and T [k0,m] as empirical averages over the m consecutive tasks that start with

task k0:

R[k0;m] =
1

m

k0+m−1∑

k=k0

R[k]

T [k0;m] =
1

m

k0+m−1∑

k=k0

T [k]
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Theorem 1: Suppose the problem (20)-(22) is feasible with optimal solution (t∗, r∗, y∗) ∈ Γ and optimal objective value

θ∗ = r∗/t∗. Then for any parameters v > 0, α > 0, q = (q1, . . . , qn) ≥ 0 and all positive integers k0,m, our algorithm yields

E
[
R[k0;m]

]

E
[
T [k0;m]

] ≥ θ∗ − d1
v

− vd2
m

− rmax/tmin

m
(57)

where d1, d2 are defined

d1 =
b+ 1

2γ2

min
α
(rmax + c||q||+ (tmax − tmin)(β1 + β2))

2

tmin
(58)

d2 =
1
2 ||q||2 + 1

2 (β1 + β2)
2 + α

2 (γmax − γmin)
2 + θ∗(β1 + β2)

tmin
(59)

In particular, fixing qi ≥ 0 and ϵ > 0 and choosing v = 1/ϵ, α = 1, gives for all k0:

E
[
R[k0;m]

]

E
[
T [k0;m]

] ≥ θ∗ −O(ϵ) ∀m ≥ 1/ϵ2 (60)

Similar behavior holds when replacing α = 1 with α = c1/max[c2, 1/2] where c1, c2 are fine tuned constants (defined later)

in (65),(66).

Proof: Fix k ∈ {2, 3, 4, . . .}. Using iterated expectations and substituting |J [k]| ≤ v(β1 + β2) into (49) gives

E [∆[k]− vR[k]] ≤ b− vθ∗E

[
1

γ[k − 1]

]

+
αv2

2
E
[
(1/t∗ − γ[k − 1])2 − (1/t∗ − γ[k])2

]

+
(rmax + c||q||+ (tmax − tmin)(β1 + β2))

2

2γ2
minα

(61)

Manipulating the second term on the right-hand-side above gives

−vθ∗E

[
1

γ[k − 1]

]

= −vθ∗E [T [k − 1]] + vθ∗E

[

T [k − 1]− 1

γ[k − 1]

]

≤ −vθ∗E [T [k − 1]] + vθ∗E [J [k]− J [k − 1]]

where the final inequality holds by (38). Substituting this into the right-hand-side of (61) gives

E [∆[k]− vR[k]] ≤ b− vθ∗E [T [k − 1]] + vθ∗E [J [k]− J [k − 1]]

+
αv2

2
E
[
(1/t∗ − γ[k − 1])2 − (1/t∗ − γ[k])2

]

+
(rmax + c||q||+ (tmax − tmin)(β1 + β2))

2

2γ2
minα

(62)

Summing the above over k ∈ {k0 + 1, . . . , k0 +m} and dividing by mv gives

1

mv
E [L[k0 +m+ 1]− L[k0 + 1]]− 1

m

k0+m∑

k=k0+1

E [R[k]]

≤ b

v
− θ∗

1

m

k0+m∑

k=k0+1

E [T [k − 1]] +
θ∗

m
E [J [k0 +m]− J [k0]]

+
αv

2m
E
[
(1/t∗ − γ[k0])

2 − (1/t∗ − γ[k0 +m])2
]

+
(rmax + c||q||+ (tmax − tmin)(β1 + β2))

2

2vγ2
minα

≤ b

v
− θ∗E

[
T [k0;m]

]
+

θ∗

m
v(β1 + β2)

+
αv

2m
(γmax − γmin)

2

+
(rmax + c||q||+ (tmax − tmin)(β1 + β2))

2

2vγ2
minα

(63)

where the final inequality substitutes the definition of T [k0;m] and uses:

J [k] ≤ v(β1 + β2) ∀k
(1/t∗ − γ[k])2 ≤ (γmax − γmin)

2 ∀k
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Rearranging terms in (63) gives

E
[
R[k0;m]

]
≥ θ∗E

[
T [k0;m]

]
− E [R[k0 +m]−R[k0]]

m

− 1

mv
E [L[k0 + 1]− L[k0 +m+ 1]]

−
b+ 1

2γ2

min
α
(rmax + c||q||+ (tmax − tmin)(β1 + β2))

2

v

− v

m
(
α

2
(γmax − γmin)

2 + θ∗(β1 + β2))

Terms on the right-hand-side have the following bounds:

− E [R[k0 +m]−R[k0]] ≥ −rmax

− E [L[k0 + 1]− L[k0 +m+ 1]] ≥ −E [L[k0 + 1]] ≥ −1

2
||vq||2 − 1

2
v2(β1 + β2)

2

where the final inequality uses

L[k0 + 1] =
1

2
||Q[k0 + 1]||2 + 1

2
J [k0 + 1]2

and uses the fact that for all k we have ||Q[k]|| ≤ ||vq|| (since 0 ≤ Qi[k] ≤ qiv from (32)) and 0 ≤ J [k] ≤ v(β1 + β2) (from

(53)). This proves the result upon usage of the constants d1, d2.

C. No penalty constraints

A special and nontrivial case of Theorem 1 is when the only goal is to maximize R/T , the time average reward per unit

time, with no additional constraints on the Yi[k] processes. This can be viewed as the case n = 0 (so there are no Yi[k]
processes). Equivalently, it can be treated by using q = 0 in Theorem 1.

To consider this n = 0 case, let R[m] and T [m] be averages over tasks {1, . . . ,m}. Fix ϵ > 0. The work [3] showed that,

in the absence of a-priori knowledge of the probability distribution of the A[k] matrices, any algorithm that runs over over

tasks {1, 2, 3, . . . ,m} and achieves

E
[
R[m]

]

E
[
T [m]

] ≥ θ∗ −O(ϵ)

must have m ≥ Ω(1/ϵ2). That is, the convergence time is necessarily Ω(1/ϵ2). The work in [3] developed a Robbins-Monro

iterative algorithm with a vanishing stepsize to achieve this optimal convergence time. In particular, the algorithm in [3] achieves

E
[
R[m]

]

E
[
T [m]

] ≥ θ∗ −O(1/
√
m) ∀m ∈ {1, 2, 3, . . .}

The vanishing stepsize means the algorithm of [3] cannot adapt to changes. The algorithm of the current paper achieves the

optimal convergence time using a different technique. The parameter v can be interpreted as an inverse stepsize parameter, so

the stepsize is a constant ϵ = 1/v. With this constant stepsize, the algorithm is adaptive and achieves reward per unit time

within O(ϵ) of optimality over any consecutive sequence of Θ(1/ϵ2) tasks for which the {A[k]} matrices have i.i.d. behavior,

regardless of whether the distribution was different before the start of that sequence.

The asymptotic results of Theorem 1 hold for any α that remains a Θ(1) constant regardless of the size of ϵ (the suggestion

α = 1 was made for simplicity). The value α can be fine tuned. Using v = 1/ϵ, q = 0 in (57) gives

E
[
R[k0;m]

]

E
[
T [k0;m]

] ≥ θ∗ − ϵd1 −
d2
ϵm

− (rmax/tmin)

m
∀m ∈ {1, 2, 3, . . .} (64)

where

d1 =
b+ 1

2γ2

min
α
(rmax + (tmax − tmin)(β1 + β2))

2

tmin

d2 =
1
2 (β1 + β2)

2 + α
2 (γmax − γmin)

2 + θ∗(β1 + β2)

tmin

where

β1 + β2 =
1 + rmax + α(1/tmin − 1/tmax)(tmax − tmin)

tmin

The term −ϵd1 in (64) does not vanish as m → ∞. Choosing α > 0 to minimize d1 amounts to minimizing

1

α

[

rmax +
(tmax − tmin)(1 + rmax)

tmin
+ α

(
tmax − tmin

tmin

)(
tmax

tmin
+

tmin

tmax
− 2

)]2
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That is, choose α > 0 to minimize
c1√
α
+ c2

√
α

where

c1 = rmax +
(tmax − tmin)(1 + rmax)

tmin
(65)

c2 =

(
tmax − tmin

tmin

)(
tmax

tmin
+

tmin

tmax
− 2

)

(66)

This yields α = c1/c2. To avoid a very large value of α (which affects the d2 constant) in the special case c2 < 1/2, one

might adjust this to using α = c1
max[c2,1/2]

.

D. Sample path limit

Lemma 7: Suppose the problem (20)-(22) is feasible with optimal solution (t∗, r∗, y∗) ∈ Γ and optimal objective value

θ∗ = r∗/t∗. Then for any parameters v > 0, α > 0, q = (q1, . . . , qn) ≥ 0 and all positive integers k0,m, our algorithm yields

lim inf
m→∞

R[m]

T [m]
≥ θ∗ − d1

v
with prob 1

where d1 is given in (58).

Proof: The proof relates expectations and sample paths in a manner that is similar to Theorem 4.4 in [2]. Let (t∗, r∗, y∗) ∈ Γ
solve (20)-(22) and let θ∗ = r∗/t∗. For k ∈ {1, 2, 3, . . .} define

X[k] = ∆[k]− vR[k]− αv2

2
(1/t∗ − γ[k − 1])2 +

αv2

2
(1/t∗ − γ[k])2

W [k] = E [X[k]|H[k]]−X[k]

where H[k] = (A[1], . . . , A[k− 1]), and we observe that X[1], . . . , X[k− 1] are determined from the information H[k]. Next

observe that there is a positive number z such that for each k ∈ {1, 2, 3, . . .} we have

• E [W [k]|H[k]] = 0.

• |W [k]| ≤ z.

where the final fact holds because all virtual queues are deterministically bounded. For each positive integer m define W [m] =
1
m

∑m
k=1 W [k]. It follows by the law of large numbers for martingale differences (see [26]) that

lim
m→∞

W [m] = 0 with prob 1 (67)

We have

W [m] =

(

1

m

m∑

k=1

E [X[k]|H[k]]

)

−X[m] (68)

By definition of X[k] we obtain

X[m] =
1

m

m∑

k=1

X[k]

=
L[m+ 1]− L[1]

m
− vR[m]− αv2

2m
(1/t∗ − γ[0])2 +

αv2

2m
(1/t∗ − γ[m])2

= −vR[m] +G1[m] (69)

where G1[m] is a random sequence that satisfies

lim
m→∞

G1[m] = 0 (surely) (70)

which holds because all virtual queues are deterministically bounded, as are values L[m+ 1] and (1/t∗ − γ[m])2.

We have by (49) that for each positive integer k ≥ 2:

E [X[k]|H[k]] ≤ b− vθ∗

γ[k − 1]
+

(vrmax + cv||q||+ v(tmax − tmin)(β1 + β2))
2

2γ2
minαv

2

= d1tmin − vθ∗
1

γ[k − 1]

= d1tmin − vθ∗T [k − 1] + vθ∗(T [k − 1]− 1/γ[k − 1])

≤ d1tmin − vθ∗T [k − 1] + vθ∗(J [k]− J [k − 1])
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where the first inequality uses the definition of d1 in (58); the final inequality uses (38); we have assumed k ≥ 2 so that

T [k − 1] makes sense on the right-hand-side. Summing over k ∈ {2, . . . ,m} and using d1tmin(m− 1)/m ≤ d1tmin gives

1

m

m∑

k=1

E [X[k]|H[k]] ≤ E [X[1]]

m
+ d1tmin − vθ∗T [m] +

vθ∗T [m]

m
+ vθ∗

(J [m]− J [1])

m

= −vθ∗T [m] + d1tmin +G2[m] (71)

where G2[m] is a random process that satisfies

lim
m→∞

G2[m] = 0 (surely) (72)

Subtracting X[m] from both sides of (71) and using (68) gives

W [m] ≤ −vθ∗T [m] + d1tmin +G2[m]−X[m]

= −vθ∗T [m] + d1tmin +G2[m] + vR[m]−G1[m]

where the final equality uses (69). Dividing both sides by vT [m] and rearranging terms gives

R[m]

T [m]
− θ∗ ≥ −d1tmin

vT [m]
+

W [m]

vT [m]
+

G1[m]−G2[m]

vT [m]

≥ −d1
v

+
−|W [m]|
vtmin

− |G1[m]−G2[m]|
vtmin

Taking m → ∞ and using (67), (70), (72) gives (with prob 1)

lim inf
m→∞

(R[m]/T [m]− θ∗) ≥ −d1
v

V. CONSTRAINTS

This section considers the process Y [k] ∈ R
n, where n is a given positive integer (the case n = 0 is considered in

Subsection IV-C). The hierarchical nature of our algorithmic decision for each task k allows an analysis of the virtual queues

Q[k] separately from the γ[k] decisions. Define

Z[k] = ||Q[k]|| ∀k ∈ {1, 2, 3, . . .}

Recall that H[k] = (A[1], . . . , A[k − 1]) and knowledge of H[k] determines Q[k] and Z[k] (that is, Q[k] and Z[k] are

H[k]-measurable).

Theorem 2: Assume the Slater condition (23) holds for some s > 0 and vector (ts, rs, ys) ∈ Γ. Then for all k ∈ {1, 2, 3, . . .}
our algorithm gives

E [Z[k + 1]− Z[k]|H[k]] ≤
{

c if Z[k] < λ
−s/2 if Z[k] ≥ λ

(73)

and

|Z[k + 1]− Z[k]| ≤ c (74)

where c is defined in (16) and λ is defined

λ = max

{
vd0
s

− s

4
,
s

2

}

(75)

d0 = 2rmax + 2(β1 + β2)(tmax − tmin) + c2/v (76)

Proof: Fix k ∈ {1, 2, 3, . . .}. To prove (74), we have

Z[k + 1] = ||Q[k + 1]||
(a)

≤ ||Q[k] + Y [k]||
≤ ||Q[k]||+ ||Y [k]||
≤ Z[k] + c (77)
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where inequality (a) holds by the queue update (32) and the nonexpansion property of projections; the final inequality uses

||Y [k]|| ≤ c from (16). Similarly,

||Q[k + 1]−Q[k]||2 =

n∑

i=1

(Qi[k + 1]−Qi[k])
2

(a)
=

n∑

i=1

([Qi[k] + Yi[k]]
qiv
0 − [Qi[k]]

qiv
0 )2

(b)

≤
n∑

i=1

(Qi[k] + Yi[k]−Qi[k])
2

= ||Y [k]||2
(c)

≤ c2 (78)

where (a) holds by substituting the definition of Qi[k + 1] from (32) and the fact Qi[k] = [Qi[k]]
viq
0 ; (b) holds by the

nonexpansion property of projections; (c) holds because ||Y [k]|| ≤ c from (16). Furthermore

Z[k + 1] = ||Q[k + 1]||
≥ ||Q[k]|| − ||Q[k + 1]−Q[k]||
≥ Z[k]− c (79)

where the final inequality holds by (78). The inequalities (77) and (79) together prove (74).

We now prove (73). The case Z[k] < λ follows immediately from (74). It suffices to consider Z[k] ≥ λ. The queue update

(32) ensures

||Q[k + 1]||2 ≤ ||Q[k]||2 + c2 + 2Q[k]⊤Y [k] (80)

The Slater condition holds and so there is a decision vector (T ∗[k], R∗[k], Y ∗[k]) ∈ Row(A[k]) that satisfies (with prob 1):

E [(T ∗[k], R∗[k], Y ∗[k])|H[k]] = (ts, rs, ys) (81)

By (44) we have

−vR[k] + J [k]T [k] +Q[k]⊤Y [k] ≤ −vR∗[k] + J [k]T ∗[k] +Q[k]⊤Y ∗[k]

Multiplying the above inequality by 2 and rearranging terms gives

2Q[k]⊤Y [k] ≤ 2v(R[k]−R∗[k]) + 2J [k](T ∗[k]− T [k]) + 2Q[k]⊤Y ∗[k]

≤ 2vrmax + 2v(β1 + β2)(tmax − tmin) + 2Q[k]⊤Y ∗[k]

where the final inequality uses J [k] ≤ v(β1 + β2). Substituting this into the right-hand-side of (80) gives

||Q[k + 1]||2 ≤ ||Q[k]||2 + c2 + 2vrmax + 2v(β1 + β2)(tmax − tmin) + 2Q[k]⊤Y ∗[k]

= ||Q[k]||2 + vd0 + 2Q[k]⊤Y ∗[k]

= Z[k]2 + vd0 + 2Q[k]⊤Y ∗[k]

where d0 is defined in (76). Taking conditional expectations of both sides and using (81) gives (with prob 1)

E
[
||Q[k + 1]||2|H[k]

]
≤ Z[k]2 + vd0 + 2Q[k]⊤ys

(a)

≤ Z[k]2 + vd0 − 2s

n∑

i=1

Qi[k]

(b)

≤ Z[k]2 + vd0 − 2sZ[k]

where inequality (a) holds by (23); inequality (b) holds by the triangle inequality

Z[k] = ||Q[k]|| ≤
n∑

i=1

Qi[k]

Jensen’s inequality and the definition Z[k + 1] = ||Q[k + 1]|| gives

E [Z[k + 1]|H[k]]
2 ≤ E

[
||Q[k + 1]||2|H[k]

]
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Substituting this into the previous inequality gives

E [Z[k + 1]|H[k]]
2 ≤ Z[k]2 + vd0 − 2sZ[k]

= (Z[k]− s/2)2 − s2/4 + vd0 − sZ[k]

(a)

≤ (Z[k]− s/2)2 − s2/4 + vd0 − sλ

(b)

≤ (Z[k]− s/2)2

where (a) holds because we assume Z[k] ≥ λ; (b) holds because λ ≥ vd0/s− s/4 by definition of λ in (75). Definition of λ
also implies λ ≥ s/2. Since Z[k] ≥ λ ≥ s/2 we can take square roots to obtain

E [Z[k + 1]|H[k]] ≤ Z[k]− s/2

The above theorem is in the form required of Lemma 4 in [27] and so we obtain the following corollary:

Corollary 1: Assume the Slater condition (23) holds for some s > 0 and vector (ts, rs, ys) ∈ Γ. Then for all k0 ∈
{1, 2, 3, . . .} and all z0 ∈ ×n

i=1[0, vqi], given Z[k0] = z0, our algorithm gives (with probability 1):

E

[

eηZ[k]|H[k0]
]

≤ d+ (eηz0 − d)ρk−k0 ∀k ∈ {k0, k0 + 1, k0 + 2, . . .} (82)

where

η =
s/2

c2 + cs/6
(83)

ρ = 1− ηs/4 (84)

d =
(eηc − ρ)eηλ

1− ρ
(85)

where λ is given in (75). Further, it holds that s/2 ≤ c, eηc ≤ ρ, and 0 < ρ < 1.

Proof: This follows by applying Lemma 4 in [27] to the result of Theorem 2.

The above corollary implies that the distribution of Z[k] = ||Q[k]|| decays exponentially fast. This is useful to ensure the

events Qi[k] > vqi − yi,max are rare (meaning 1i[k] = 1 is rare, which is important for satisfying the constraints because of

Lemma 2). It suffices to choose q = (q1, . . . , qn) as a constant that does not scale with the parameter v, but that is suitably

large. For simplicity we choose qi to be the same for all i ∈ {1, . . . , n}.

Theorem 3: Assume the Slater condition (23) holds for some s > 0 and vector (ts, rs, ys) ∈ Γ. Fix q1 ≥ 2d0/s and fix

qi = q1 for i ∈ {1, . . . , n}. Fix ϵ > 0. Assume v = max{1/ϵ, 3s2

4d0

}. For all i ∈ {1, . . . , n}, all k0 ∈ {1, 2, 3, . . .}, and all

m ≥ ⌈ 4vq1
√
n

s ⌉+ v2 we have (with probability 1):

1

m

k0+m−1∑

k=k0

E [Yi[k]|H[k0]] ≤ O(ϵ)

Proof: Since queues are bounded, we have Qi[k0] ∈ [0, vqi] for all i ∈ {1, . . . , n}, and so

||Q[k0]|| ≤ v
√∑n

i=1 q
2
i = vq1

√
n

Fix z0 = ||Q[k0]|| and note that z0 ∈ [0, vq1
√
n]. Define k1 = ⌈ 4vq1

√
n

s ⌉. Fix i ∈ {1, . . . , n}, k0 ∈ {1, 2, 3, . . .}, m ≥ k1 + v2.

From (35) and the fact qi = q1 we have

1

m

k0+m−1∑

k=k0

Yi[k] ≤
q1v

m
+

yi,max

m

k0+k1−1∑

k=k0

1i[k] +
yi,max

m

k0+m−1∑

k=k0+k1

1i[k]

≤ q1v

m
+

yi,maxk1
m

+
yi,max

m

k0+m−1∑

k=k0+k1

1i[k]

Since q1 is a Θ(1) constant that does not scale with ϵ, and since m ≥ k1 + v2, we have

q1v

m
≤ O(ϵ)

yi,maxk1
m

≤ O(ϵ)
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It suffices to show

1

m

k0+m−1∑

k=k0+k1

E [1i[k]|H[k0]] ≤ O(ϵ) (86)

To this end, observe by definition of 1i[k] in (34)

eη(qiv−yi,max)1i[k] ≤ eηQi[k] ≤ eηZ[k]

Taking conditional expectations and using (82) gives for all k ≥ k0 + k1:

eη(qiv−yi,max)E [1i[k]|H[k0]] ≤ d+ (eηz0 − d)ρk−k0

≤ d+ eηz0ρk−k0

Summing over the (fewer than m) terms and dividing by m gives

eη(qiv−yi,max)
1

m

k0+m−1∑

k=k0+k1

E [1i[k]|H[k0]] ≤ d+
eηz0ρk1

m

k0+m−1∑

k=k0+k1

ρk−k1−k0

≤ d+
eηz0ρk1

m

1

1− ρ

Recall that qi = q1 for all i. To show (86) it suffices to show

de−η(q1v−yi,max) ≤ O(ϵ) (87)

e−η(q1v−yi,max)
eηz0ρk1

(1− ρ)m
≤ O(ϵ) (88)

In fact we show both these terms are much smaller than O(ϵ).

By assumption, v ≥ 3s2

4d0

and so from (75)

λ =
vd0
s

− s

4
(89)

By definition of d in (85):

de−η(q1v−yi,max) =
(eηc − ρ)eηλ

1− ρ
eηyi,maxe−ηq1v

(a)

≤ 1

1− ρ
eη(c+λ+yi,max−q1v)

(b)
=

1

1− ρ
eη(c+vd0/s−s/4+yi,max−q1v)

=

(
eη(yi,max+c−s/4)

1− ρ

)

e−ηv(q1−d0/s)

(c)

≤
(
eη(yi,max+c−s/4)

1− ρ

)

e−ηvd0/s

(d)

≤
(
eη(yi,max+c−s/4)

1− ρ

)

e−(ηd0/s)/ϵ

(e)

≤ O(e−(ηd0/s)/ϵ)

≤ O(ϵ)

where (a) holds because 0 < ρ < 1 (recall Corollary 1); (b) holds by (89); (c) holds because q1 ≥ 2d0/s; (d) holds because

v ≥ 1/ϵ; (e) holds because yi,max, η, c, s, ρ are all Θ(1) constants that do not scale with ϵ. The term goes to zero exponentially

fast as ϵ → 0, much faster than O(ϵ). This proves (87).

To show (88), we have

e−η(q1v−yi,max)
eηz0ρk1

(1− ρ)m
≤ eηyi,max

(1− ρ)m
eηz0ρk1

=
eηyi,max

(1− ρ)m
eηz0+k1 log(ρ) (90)
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By definition of ρ in (84) we have

k1 log(ρ) = k1 log(1− ηs/4)

≤ −k1ηs/4

which uses the fact log(1 + x) ≤ x for all x > −1 (recall from Corollary 1 that ηs/4 < 1). Adding ηz0 to both sides gives

ηz0 + k1 log(ρ) ≤ η(z0 − k1s/4)

(a)

≤ η(vq
√
n− k1s/4)

(b)

≤ 0

where (a) holds because z20 ≤ n(vq)2; (b) holds by definition of k1. Substituting the above inequality into (90) gives

e−η(q1v−yi,max)
eηz0ρk1

(1− ρ)m
≤ eηyi,max

(1− ρ)m

≤ eηyi,max

(1− ρ)(k1 + v2)

≤ O(ϵ2)

≤ O(ϵ)

where we have used v ≥ 1/ϵ.

A. Discussion

The case n = 0 has no penalties Yi[k] and the algorithm uses a single parameter v > 0 that is scaled (using v = 1/ϵ)
for a tradeoff between adaptation time and proximity to the optimal solution. When n > 0 the algorithm has a parameter

v > 0 and another parameter q1 > 0. Theorem 3 suggests q1 ≥ 2d0/s. This requires rough knowledge of d0/s, where s is the

Slater parameter. In practice there is little danger in choosing q1 to be too large. Indeed, even choosing q1 = ∞ works well

in practice. Intuitively, this is because the virtual queue update (32) for q1 = ∞ reduces to

Qi[k + 1] = max {Qi[k] + Yi[k], 0} ∀k ∈ {1, 2, 3, . . .}
which means 1i[k] = 0 for all k and the inequality (35) can be modified to

1

m

k0+m−1∑

k=k0

Yi[k] ≤
Qi[k0 +m]−Qi[k0]

m
(91)

for all positive integers k0,m. Intuitively, the Slater condition still ensures a negative drift condition similar to (73), so that

||Q[k]|| is still concentrated so it is rarely much larger than the λ parameter in (35), where λ = Θ(v). Intuitively, while the

J [k] virtual queue would no longer be deterministically bounded, it would stay within its existing bounds with high probability.

Taking expectations of (91) would then produce a right-hand-side proportional to v/m, which is O(ϵ) whenever v = 1/ϵ and

m ≥ 1/ϵ2. We do not pursue this line of analysis because our use of finite qi values enables strong deterministic bounds on

Qi[k] and J [k]. Thus, our analysis over any sequence of tasks {k0, . . . , k0 +m− 1} indeed holds regardless of the history of

the system before task k0, including the (rare) cases when the virtual queues hit their upper bound values before task k0.

VI. SIMULATION

A. System 1

This subsection considers sequential project selection with the goal of maximizing reward per unit time (with no penalty

processes Yi[k]). The system is similar to one simulated in [3]. The i.i.d. matrices {A[k]} have two columns and a random

number of rows. The number of rows is equal to number of project options for task k. Two different distributions for A[k] are

considered in the simulations (specified at the end of this subsection). Both distributions have tmin = 1, tmax = 10, rmax = 500.

Fig 2 illustrates results for a simulation over 104 tasks using i.i.d. {A[k]} with Distribution 1. The vertical axis in Fig. 2

represents the accumulated reward per task starting with task 1 and running up to the current task k:
∑k

j=1 E [R[j]]
∑k

j=1 E [T [j]]

where the expectations E [R[j]] and E [T [k]] are approximated by averaging over 40 independent simulation runs. Fig.

2 compares the greedy algorithm of always choosing the task k that maximizes the instantaneous R[k]/T [k] value; the

(nonadaptive) Robbins-Monro algorithm from [3] that uses a stepsize η[k] = 1
k+1 ; the proposed adaptive algorithm for the
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Fig. 2. System 1: Accumulated reward per unit time for the proposed adaptive algorithm (with v ∈ {1, 2, 10}), the vanishing-stepsize Robbins-Monro
algorithm; and the greedy algorithm. All data points are averaged over 40 independent simulations.

Fig. 3. System 1: Testing adaptation over a simulation of 2 × 104 tasks with a distributional change introduced at the halfway point (task 104). The two

horizontal dashed lines represent optimal θ∗ values for the two distributions. Each point for task k0 is the result of a moving window average

∑
200

k=1
E[R[k0−k]]

∑
200

k=1
E[T [k0−k]]

,

where expectations are obtained by averaging over 40 independent simulations. The adaptive algorithm (with v = 10) quickly adapts to the change. The
Robbins-Monro algorithm takes a long time to adapt.

cases v = 1, v = 2, v = 10 (and using α = c1/max[c2, 1/2]). The dashed horizontal line in Fig. 2 is the optimal θ∗ value

corresponding to Distribution 1. The value θ∗ is difficult to calculate analytically, so we use an empirical value obtained by

the final point on the Robbins-Monro curve. It can be seen that the greedy algorithm has significantly worse performance

compared to the others. The Robbins-Monro algorithm, which uses a vanishing stepsize, has the fastest convergence and the

highest achieved reward per unit time. As predicted by our theorems, the proposed adaptive algorithm has convergence time

that gets slower as v is increased, with a corresponding tradeoff in accuracy, where accuracy relates to the proximity of the

converged value to the optimal θ∗. The case v = 1 converges quickly but has less accuracy. The cases v = 2 and v = 10 have

accuracy that is competitive with Robbins-Monro.

Fig. 3 illustrates the adaptation advantages of the proposed algorithm. Figure 3 considers simulations over 2 × 104 tasks.

The first half of the simulation refers to tasks {1, . . . , 104}, the second half refers to tasks {104+1, . . . , 2× 104}. The {A[k]}
matrices in the first half are i.i.d. with Distribution 1; in the second half they are i.i.d. with Distribution 2. Nobody tells

the algorithms that a change occurs at the halfway mark, rather, the algorithms must adapt. The two dashed horizontal lines
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represent optimal θ∗ values for Distribution 1 and Distribution 2. Data in Fig. 3 is plotted as a moving average with a window

of the past 200 tasks (and averaged over 40 independent simulations). As seen in the figure, the adaptive algorithm (with

v = 10) produces near optimal performance that quickly adapts to the change. In stark contrast, the Robbins-Monro algorithm

adapts very slowly to the change and takes roughly (3/4) × 104 tasks to move close to optimality. The adaptation time of

Robbins-Monro is much slower than its convergence time starting at task 1. This is due to the vanishing stepsize and the

fact that, at the time of the distribution change, the stepsize is very small. Theoretically, the Robbins-Monro algorithm has an

arbitrarily large adaptation time, as can be seen by imagining a simulation that uses a fixed distribution for a number of tasks

x before changing to another distribution: The stepsize at the time of change is η[x] = 1/(x + 1), hence an arbitrarily large

value of x yields an arbitrarily large adaptation time.

Fig. 3 shows the greedy algorithm adapts very quickly. This is because the greedy algorithm maximizes R[k]/T [k] for each

task k without regard to history. Of course, the greedy algorithm is the least accurate and produces results that are significantly

less than optimal for both distributions. To avoid clutter, the adaptive algorithm for cases v = 1, v = 2 are not plotted in

Fig. 3. Only the case v = 10 is shown because this case has the slowest adaptation but the most accuracy (as compared to

v = 1, v = 2 cases). While not shown in Fig. 3, it was observed that the accuracy of the v = 2 case was only marginally

worse than that of the v = 10 case (similar to Fig. 2).

The two distributions used in Fig. 2 and Fig. 3 are:

• Distribution 1: With M [k] being the random number of rows, we use P [M [k] = 1] = 0.1, P [M [k] = 2] = 0.6,

P [M [k] = 3] = 0.15, P [M [k] = 4] = 0.15. The first row is always [T1, R1] = [1, 0] and represents a “vacation” option

that lasts for one unit of time and has zero reward (as explained in [3], it can be optimal to take vacations a certain

fraction of time, even if there are other row options). The remaining rows r, if any, have parameters [Tr, Rr] generated

independently with Tr ∼ Unif [1, 10] and Rr = TrGr where Gr ∼ Unif [0, 50] and is independent of Tr.

• Distribution 2: We use P [M [k] = 1] = 0, P [M [k] = 2] = 0.2, P [M [k] = 3] = 0.4, P [M [k] = 4] = 0.4. The first row is

always [T1, R1] = [1, 0]. The other rows r are independently chosen as a random vector [Tr, Rr] with Tr ∼ Unif [1, 10],
Rr = GrTr +Hr with Gr, Hr independent and Gr ∼ Unif [10, 30], Hr ∼ Unif [0, 200].

B. System 2
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System 2: Evolution of reward per unit time

Greedy

Adaptive (v=10)

Adaptive (v=50)

Adaptive (v=200)
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Fig. 4. Time average reward up to task k for the adaptive algorithm (v ∈ {10, 50, 200}); the DPP algorithm with ratio averaging; the greedy algorithm.

This subsection considers a device that processes computational tasks with the goal of maximizing time average profit subject

to a time average power constraint of pav = 1/3 energy/time. There is a penalty process Y [k] and so the Robbins-Monro

algorithm of [3] cannot be used. We compare the adaptive algorithm of the current paper the drift-plus-penalty ratio method

of [1]. The ratio of expectations from the main method in [1] requires knowledge of the probability distribution on A[k]. A

heuristic is proposed in [1] that uses a drift-plus-penalty minimization of −v(R[k] − θ[k − 1]T [k]) +Q[k]Y [k], which has a

simple decision complexity for each task that is the same as the decision complexity of the adaptive algorithm proposed in

the current paper, and where θ[k] is defined as a running average:

θ[k] =

∑k
i=1 R[i]

∑k
i=1 T [i]
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Fig. 5. Corresponding time averaged power for the simulations of Fig. 4. The horizontal asymptote is pav = 1/3.

It is argued in [1] that, if the heuristic converges, it converges to a point that is within O(ϵ) of optimality, where the parameter

v is chosen as v = 1/ϵ. We call this heuristic “DPP with ratio averaging” in the simulations.2 We also compare to a greedy

method that removes any row r of A[k] that does not satisfy Energyr[k]/Tr[k] ≤ 1/3, and chooses from the remaining rows

to maximize Rr[k]/Tr[k].
The i.i.d. matrices {A[k]} have three columns and three rows of the form:

A[k] =





1 0 0
T2[k] R2[k] Y2[k]
T3[k] R3[k] Y3[k]





where Yr[k] = Energyr[k]− (1/3)Tr[k] for i ∈ {2, 3}. The first row corresponds ignoring task k and remaining idle for 1 unit

of time, earning no reward but using no energy, so (T1[k], R1[k], Y1[k]) = (1, 0, 0). The second row corresponds to processing

task k at the home device. The third row corresponds to outsourcing task k to a cloud device. Two distributions are considered

(specified at the end of this subsection). Under Distribution 1 the reward is the same for both rows 2 and 3, but the energy and

durations of time are different. Under Distribution 2 the reward is higher for processing at the home device. Both distributions

have tmin = 1, tmax = 12, rmax = 20. We use α = c1/max[c2, 1/2] for the adaptive algorithm. Under the distributions used,

the greedy algorithm is never able to use row 2, can always use either row 1 or 3, and always selects row 3.

Figs. 4 and 5 consider reward and power for simulations over 5000 tasks with i.i.d. {A[k]} under Distribution 1. Fig. 4

plots the running average of
∑

k
i=1

E[R[i]]
∑

k
i=1

E[T [i]]
where expectations are attained by averaging over 40 independent simulations. The

horizontal asymptote illustrates the optimal θ∗ as obtained by simulation. The simulation uses v = 50 for the DPP with ratio

averaging because this was sufficient for an accurate approximation of θ∗, as seen in Fig. 4. The adaptive algorithm is considered

for v = 10, v = 50, v = 200. As predicted by our theorems, it can be seen that the converged reward is closer to θ∗ as v is

increased (the case v = 200 is competitive with DPP with ratio averaging). Fig. 5 plots the corresponding running average of∑
k
i=1

E[Energy[i]]
∑

k
i=1

E[T [i]]
. The disadvantage of choosing a large value of v is seen by the longer time required for time averaged power

to converge to the horizontal asymptote pav = 1/3. Figs. 4 and 5 show the greedy algorithm has the worst reward per unit

time and has average power significantly under the required constraint. This shows that, unlike the other algorithms, the greedy

algorithm does not make intelligent decisions for using more power to improve its reward. Considering only the performance

shown in Figs. 4 and 5, the DPP with ratio averaging heuristic demonstrates the best convergence times, which is likely due

to the fact that it uses only one virtual queue Q[k] while our adaptive algorithm uses Q[k] and J [k]. It is interesting to note

that the adaptive algorithms and the DPP with ratio averaging heuristic both choose row 1 (idle) a significant fraction of time.

This is because, when a task has a small reward but a large duration of time, it is better to throw the task away and wait idle

for a short amount of time in order to see a new task with a hopefully larger reward.

The adaptation advantages of our proposed algorithm are illustrated in Figs. 6 and 7. Both figures plot performance over

a moving average with window size w = 200 and average over 100 independent simulations. The first half of the simulation

2Another method described in [3] approximates the ratio of expectations using a window of w past samples. The per-task decision complexity grows with
w and hence is larger than the complexity of the algorithm proposed in the current paper. For ease of implementation, we have not considered this method.
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Fig. 6. Adaptation performance when the distribution is changed halfway through the simulation. Horizontal asymptotes are θ∗1 and θ∗2 for Distribution 1
and Distribution 2. The adaptive algorithm settles into the new optimality point θ∗2 while DPP with ratio averaging cannot adapt.

Fig. 7. Corresponding average power for the simulations of Fig. 6. The horizontal asymptote is pav = 1/3.

uses i.i.d. {A[k]} with Distribution 1, the second half uses Distribution 2. The two horizontal asymptotes in Fig. 6 are the

optimal θ∗1 and θ∗2 values for Distribution 1 and Distribution 2. As seen in the figure, both the adaptive algorithm and the

DPP with ratio averaging heuristic quickly converge to the optimal θ∗1 value associated with Distribution 1 (the rewards under

the adaptive algorithm are slightly less than that of the heuristic). At the time of change, the adaptive algorithm has a spike

that lasts for roughly 2000 tasks until it settles down to θ∗2 . This can be viewed as the adaptation time, and can be decreased

by decreasing the value of v (at a corresponding accuracy cost). It converges from above to θ∗2 because, as seen in Fig. 7,

the spike marks a period of using more power than the required amount. In contrast, the DPP with ratio averaging algorithm

cannot adapt and never increases to the optimal value of θ∗2 .

The distributions used are as follows: For each task k there are two independent random variables U1[k], U2[k] ∼ Unif [0, 1]
generated. Then

• Distribution 1: Note that R2[k] = R3[k] and T2[k] < T3[k] always.

(T2[k], R2[k], Energy2[k]) = (1 + 9U1[k], 10U1[k](U2[k] + 1), 1 + 9U1[k])

(T3[k], R3[k], Energy3[k]) = (6 + 6U1[k], 10U1[k](U2[k] + 1), U1[k])
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• Distribution 2: The R2[k] value is increased in comparison to Distribution 1.

(T2[k], R2[k], Energy2[k]) = (1 + 9U1[k],min{20(U2[k] + 1), 20}, 1 + 9U1[k])

(T3[k], R3[k], Energy3[k]) = (6 + 6U1[k], 10U1[k](U2[k] + 1), U1[k])

C. Weight adjustment

While the Θ(1/ϵ2) adaptation times achieved by the proposed algorithm are asymptotically optimal, an important question

is whether the coefficient can be improved by some constant factor. Specifically, this section attempts to reduce the 2000-task

adaptation time seen in the spikes of Figs. 6 and 7 without degrading accuracy. We observe that the J [k] and Y [k] queues

are weighted equally in the Lyapunov function L[k] = 1
2J [k]

2 + 1
2Y [k]2. More weight can be placed on Y [k] to emphasize

the average power constraint and thereby reduce the spike in Fig. 7. This can be done with no change in the mathematical

analysis by redefining the penalty as Y ′[k] = wY [k] for some constant w > 0. The constraint Y ≤ 0 is the same as Y
′ ≤ 0.

We use w = 2 and also double the v parameter from 50 to 100, which maintains the same relative weight between reward

and Q[k] but deemphasizes the J [k] virtual queue by a factor of 2.

Figs. 8 and 9 plot performance over 3×104 tasks with Distribution 1 in the first third, Distribution 2 in the second third, and

Distribution 1 in the final third. The adaptive algorithm and the DPP with ratio averaging algorithm use the same parameters

as in Figs. 6 and 7. The reweighted adaptive algorithm uses v = 100 and Y ′[k] = 2Y [k]. It can be seen that the reweighting

decreases adaptation time with no noticeable change in accuracy. This illustrates the benefits of weighting the power penalty

Y [k] more heavily than the virtual queue J [k].
The simulations in Figs. 8 and 9 further show that the proposed adaptive algorithms can effectively handle multiple

distributional changes. Indeed, the reward settles close to the new optimality point after each change in distribution. In contrast,

the DPP with ratio averaging algorithm, which was not designed to be adaptive, appears completely lost after the first distribution

change and never recovers. This emphasizes the importance of adaptive algorithms.
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System 2: Tweaking weights for reward adaptation
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Fig. 8. Comparing the reward of the reweighted adaptive scheme over a simulation where the distribution is changed twice. Horizontal asymptotes are θ∗1
and θ∗2 for Distribution 1 and Distribution 2. Parameters for the adaptive and DPP with ratio averaging algorithms are the same as for Figs. 6 and 7.

VII. CONCLUSION

This paper gives an adaptive algorithm for renewal optimization, where decisions for each task k determine the duration of

the task, the reward for the task, and a vector of penalties. The algorithm operates without knowledge of system probabilities,

has a low per-task decision complexity, and has asymptotic performance that achieves an optimal convergence time bound. A

new hierarchical decision rule enables the algorithm to achieve within ϵ of optimality over any sequence of Θ(1/ϵ2) tasks over

which the probability distribution is fixed, regardless of system history. The Θ(1/ϵ2) adaptation time matches prior converse

results that show convergence time must be Ω(1/ϵ2) even when no penalty processes Y [k] are considered and when convergence

focuses on tasks {1, . . . ,m} rather than on any consecutive sequence of m tasks.
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Fig. 9. Corresponding average power for the simulations of Fig. 8. The horizontal asymptote is pav = 1/3.

APPENDIX – DETAILS ON LEMMA 1

Part (a) of Lemma 1 uses arguments similar to those in [2]: The definition of Γ ensures any (t, r, y) ∈ Γ can be realized

as an unconditional expectation E [(T ∗[k], R∗[k], Y ∗[k])] under some particular conditional probability rule for choosing a

row given the observed A[k]. The vector (T ∗[k], R∗[k], Y ∗[k]) can be made independent of H[k] by using the independent

U ∼ Unif[0, 1] to make randomized decisions (the variable U is defined in Section II-B). Independence implies that any version

of the conditional expectation E [(T ∗[k], R∗[k], Y ∗[k])|H[k]] is almost surely equal to the unconditional expectation.

Part (b) of Lemma 1 uses concepts from Lemma 11 and Theorem 6 in [3]: Define

W [k] = (T [k], R[k], Y [k])− E [(T [k], R[k], Y [k])|U,H[k]]

Observe that for each k > 1, (W [1], . . . ,W [k − 1]) is (U,H[k])-measurable. Fix k1 < k2. We have by iterated expectations:

E
[
W [k1]W [k2]

⊤] = E
[
E
[
W [k1]W [k2]

⊤|(U,H[k2])
]]

= E
[
W [k1]E

[
W [k2]

⊤|(U,H[k2])
]]

(92)

= E
[
W [k1]0

⊤] (93)

= 0

where (92) holds because W [k1] is (U,H[k2])-measurable; (93) holds by definition of W [k2]. Then {W [k]}∞k=1 are bounded

and uncorrelated random vectors, so

lim
m→∞

1

m

m∑

k=1

W [k] = 0 (almost surely) (94)

Since (U,H[k]) is independent of A[k], arguments similar to Lemma 2 in [3] imply E [(T [k], R[k], Y [k])|U,H[k]] ∈ Γ almost

surely for all k. Then, convexity of Γ implies (almost surely)

1

m

m∑

k=1

E [(T [k], R[k], Y [k])|U,H[k]] ∈ Γ ∀m ∈ {1, 2, 3, . . .}

Substituting the definition of W [k] implies (almost surely):

1

m

m∑

k=1

((T [k], R[k], Y [k])−W [k]) ∈ Γ ∀m ∈ {1, 2, 3, . . .}

meaning the distance between (T [m], R[m], Y [m]) and the set Γ is almost surely less than or equal to || 1m
∑m

k=1 W [k]||, which

converges to 0 almost surely by (94).
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