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Abstract. Nakamoto’s longest-chain consensus paradigm now powers
the bulk of the world’s cryptocurrencies and distributed finance infras-
tructure. An emblematic property of longest-chain consensus is that it
provides probabilistic settlement guarantees that strengthen over time.
This makes the exact relationship between settlement error and settle-
ment latency a critical aspect of the protocol that both users and system
designers must understand to make informed decisions. A recent line of
work has finally provided a satisfactory rigorous accounting of this rela-
tionship for proof-of-work longest-chain protocols, but those techniques
do not appear to carry over to the proof-of-stake setting.

This article develops a new analytic approach for establishing such set-
tlement guarantees that yields explicit, rigorous settlement bounds for
proof-of-stake longest-chain protocols, placing them on equal footing with
their proof-of-work counterparts. Our techniques apply with some adap-
tations to the proof-of-work setting where they provide improvements to
the state-of-the-art settlement bounds for proof-of-work protocols.

1 Introduction

Satoshi Nakamoto introduced the longest-chain consensus paradigm in the 2008
Bitcoin whitepaper [21]. Since its original proposal, the framework has been
extended and generalized, and variants of longest-chain protocols now support
the bulk of the world’s cryptocurrencies and decentralized finance infrastructure.

The fundamental dynamics of the algorithm—in particular, the rate at which
participants converge to achieve consensus—depend primarily on three critical
parameters: rh, the rate at which honest players are elected to advance the
system; ra, the rate at which adversarial players are elected to advance the
system; and Δ, the maximum network delay. Despite the visible prominence of
the algorithm and over a decade of concerted effort by the research community,
the relationship between these critical parameters and the resulting consensus
guarantee is still not well understood.

The last few years have witnessed rapid progress on this question. In
2020, two independent articles [8,12] precisely determined the region of triples
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(rh, ra,Δ) for which longest-chain consensus eventually provides consistency,
which is to say that participants in the system eventually converge on a finite
prefix of the ledger. These results apply to both proof-of-work and proof-of-stake
longest-chain protocols and, somewhat surprisingly, prove that their fundamen-
tal “regime of security” is the same.

Practice, however, demands explicit settlement guarantees, as blockchain
users in the real world must be able to determine when transactions in the ledger
have in fact settled with known risk. Likewise, deployed systems must explic-
itly calibrate block production rate against (estimated) network delays to yield
reasonable settlement latency. Such explicit settlement guarantees in the proof-
of-work setting have been the subject of an active thread of research [13,19,20].
These works have succeeded in providing satisfactory results for proof-of-work
systems with conservative parameters similar to those used in Bitcoin. But sig-
nificant gaps still remain for more aggressive parameters such as those used
in Ethereum (before its switch to proof of stake). Furthermore, very little is
known about the proof-of-stake setting, where the only explicit result makes the
unrealistic assumption that the network has zero delay (Δ = 0) [16]. This is
particularly concerning as it seems that in recent years we have been witnessing
the sentiment of preference for PoS over PoW due to the environmental impact
of PoW, and longest-chain PoS represents a fair share of PoS deployments.

The main purpose of this article is to develop a new analytic approach for
rigorous settlement guarantees for longest-chain rule protocols in the presence
of network delays. While the new approach is somewhat simpler than previous
techniques, the chief advantage is that it provides estimates that are both tight
enough to directly inform practice and can be explicitly calculated in time poly-
nomial in the relevant parameters. Our new techniques provide improvements
over the state-of-the-art settlement bounds for proof-of-work longest-chain pro-
tocols [13]; more importantly, they also yield the first concrete settlement bounds
for proof-of-stake longest-chain, placing them on equal footing with their proof-
of-work counterparts. Finally, our analysis in both cases is the first to apply
to the entire security regime: in particular, if longest-chain consensus possesses
eventual security for a triple of parameters (rh, ra,Δ), our approach provides
explicit bounds of security that converge exponentially quickly.

Our techniques and results apply to a wide family of longest-chain proto-
cols, including all proof-of-work protocols following Nakamoto’s Bitcoin white
paper [21] and all proof-of-stake protocols axiomatized in [16] (such as variants
of Ouroboros [2,4,7,17] and Snow White [6]). Deployed systems based on these
protocols include Bitcoin [21], Ethereum,1 Dogecoin, Cardano,2 Polkadot,3 and
Mina.4

1 https://ethereum.org/, prior to its shift to PoS in September 2022. The analysis also
applies to currently deployed Ethereum Classic (ETC) and PoW Ethereum (ETHW)
blockchains. In the rest of the paper, we refer to all these three instances together as
“PoW-based Ethereum,” or simply Ethereum if no confusion can arise.

2 https://cardano.org/.
3 https://polkadot.network/.
4 https://minaprotocol.com/.

https://ethereum.org/
https://cardano.org/
https://polkadot.network/
https://minaprotocol.com/
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Our Techniques. Our analysis provides a family of recurrence relations that
determine, for a fixed transcript of the leader-election lotteries during the proto-
col’s execution, a sufficient condition for transaction settlement in any execution
with this sequence of lottery outcomes. Coupling this with the stochastic process
that governs leader election yields an efficient procedure for computing explicit
upper bounds on settlement failure probabilities. An analogous procedure can
provide lower bounds on these probabilities which we use to demonstrate the
tightness of our upper bounds.

It is most convenient to discuss our approach in the context of recent related
works, viz. [8,12,13]. The main difficulty in the analysis arises from accounting
for network delays, as honest players may fail to see each other’s latest mes-
sages (blocks) and end up undermining each other’s contributions. Tackling this
requires analysis of the complex sequencing of honest and adversarial blocks
when a sequence of elected leaders repeatedly fall within Δ time of a previous
leader. The combinatorics and resulting stochastic process are particularly diffi-
cult during “close races,” i.e., when the adversary possesses a private chain that
is about as long as the public chain. In such circumstances, honest leaders may
be manipulated to contribute to the adversary’s (now revealed) chain. Roughly
speaking, the articles that settled the security regime [8,12] did so by focusing
on the more tractable case where the protocol is not in a close race, which is
sufficient to characterize the asymptotic behavior of the protocol.

In more detail, [8] focuses on a special type of blocks they call “Nakamoto
blocks.” The definition of Nakamoto blocks depends on the indefinite future,
making them a powerful tool to analyze asymptotic security. But the distri-
bution of Nakamoto block instances is highly complicated (and self-correlated)
and thus difficult to tightly estimate, making these appear unsuitable for our
goal of exact analysis. Similarly, the analysis in [12], roughly speaking, accounts
for the close-race situation by considering a sequence of about Δ2 back-to-back
sequences of Δ-long silence followed by a unique honest lottery success, an event
with a constant yet extremely small probability. This is again sufficient for an
asymptotic analysis but spoils any chance of obtaining concrete tight and prac-
tical bounds. Unfortunately, this looseness in the close-race analysis appears to
be a necessary consequence of their approach where the execution is seen as a
sequence of steps with potentially significant inter-step interactions.

The recent article [13] that achieved practical settlement estimates for the
proof-of-work setting made progress on exactly this issue with a new method of
“deferrals.” Intuitively, time is divided into periods of Δ and message delivery
is restricted to occur at the end of each Δ period. The adversary is allowed
to either deliver a message at the end of a period or “defer” its delivery to the
end of the next period. This significantly simplifies the analysis as it reduces
the large space of adversarial strategies to a single choice per block: whether or
not to defer it. Unfortunately, this method of deferrals is not applicable in the
proof-of-stake setting because a proof-of-stake adversary can produce as many
blocks as it wishes from a single leadership election success. In particular, an
optimal deferral strategy may choose to defer a part of same-success adversarial
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Fig. 1. Left: Cardano (PoS) block-based settlement failure for a 10% adversary and
2 seconds delay. Right: Ethereum (PoW) block-based settlement failure for a 10%
adversary and 2 s delay, and results from [13] for comparison.

blocks, leading again to a large, complex strategy space that appears analytically
intractable.

Our approach in this paper is, in some sense, the opposite of the deferral
framework. Conceptually, our key idea is to divide time into judiciously defined
periods—called phases in the rest of the paper—that are separated by Δ-long
intervals of honest silence. Observe that when honest players carry out protocol
execution in a given phase, they are aware of all honest messages (blocks) from
all previous phases. From the perspective of the previous analysis of [12], this can
be viewed as an aggressive expansion of the notion of a “step” so that they are
long enough that troublesome inter-step interactions disappear. Indeed, it fol-
lows fairly easily that analysis of the protocol can be cleanly decomposed into a
phase-by-phase analysis, without complicated interactions between phases. The
natural concern with such an approach is that phases themselves are much more
complex, both from a combinatorial perspective and in terms of the resulting
stochastic process. Our principal contribution is to show that phases can be ana-
lyzed with high precision by examining certain global properties of the phase that
were not available to analyses that operated on a “symbol-by-symbol” (or “step-
by-step”) level. For example, we show that a particular combinatorial quantity,
“minimal honest depth,” can capture most of the information necessary to charac-
terize the relevant behavior of honest parties during the phase; this corresponds
to the minimal possible maximal-chain growth in the phase over all blocktrees
consistent with the phase; furthermore, this quantity gives rise to an analyti-
cally manageable stochastic process. These techniques significantly simplify the
combinatorial treatment of longest chain rules and, aside from providing the
first practical settlement bounds for the proof-of-stake setting, they also deliver
improved guarantees in the proof-of-work case.

Example Results. Figure 1 shows some example results for both PoW-based
Ethereum and Cardano (the largest longest-chain PoS blockchain at the time of
writing). We assume an adversary that controls 10% of the total mining power



Practical Settlement Bounds for Longest-Chain Consensus 111

or stake, and a network with maximum 2 s delay. The expected block interval
in Ethereum and Cardano is around 13 s and 20 s, respectively. Our results for
Cardano are within two confirmation blocks of optimality. Specifically, with a
confirmation depth of 15 blocks, we can bound the settlement error probability
at within 4.811 × 10−6 and 1.943 × 10−5. Furthermore, the settlement error
probability with 13 blocks is at least 2.143 × 10−5 (the lower bound), which
is larger than the settlement error upper bound at 15 blocks. Similarly, our
results for PoW-based Ethereum are within three or four confirmation blocks of
optimality.

Additionally, our results allow us to compare for the first time the settlement
speed of longest-chain protocols based on PoW versus PoS. We provide such com-
parison in Fig. 5 for Cardano’s parametrization, quantifying the tradeoff between
these two approaches.

2 Preliminaries and Model

Basic Notation. We use N to denote the set of natural numbers with zero, i.e.,
N = {0, 1, 2, . . .}. Throughout this paper, we use the symbol Δ ∈ N to denote
the maximum delay of a message, expressed in slots. Most of the notions defined
below depend on Δ, but we keep this dependence implicit for the sake of lighter
notation. When we want to refer to maximum delay expressed in seconds rather
than slots, in line with previous work we use the symbol Δr, where “r” stands
for “real”.

2.1 Modeling Blockchains with Network Delay

Our modeling of the protocol and its execution environment adopts and extends
the model from [12,13] and applies to both PoW and PoS. We summarize the
model here for completeness.

A longest-chain protocol is carried out by a set of parties of two types: hon-
est parties follow the protocol and adversarial parties may deviate arbitrarily.
The execution timeline is divided into consecutive discrete short time intervals
called slots. In each slot, each party evaluates a private lottery (implemented for
example using a cryptographic hash function for PoW or a verifiable random
function [5] for PoS) to determine whether she is eligible to act as a slot leader
for that slot, which affords her the right to contribute to the ledger by creating
block(s). We use a characteristic string to indicate a summary of the outcomes
of the lottery in each slot.

More concretely, given an alphabet Σ = N × N, a characteristic string w =
w1 . . . wn ∈ Σn is a sequence of symbols over Σ. Intuitively, each symbol wi =
(hi, ai) ∈ Σ indicates that hi honest parties and ai adversarial parties were
eligible slot leaders for slot i, based on their private lotteries. For a characteristic
string w = w1 . . . wn ∈ Σn where each wi = (hi, ai) ∈ N×N, we define #h(w) :=∑n

i=1 hi and similarly #a(w) :=
∑n

i=1 ai, i.e., the total number of honest and
adversarial slot leaders over a sequence of slots corresponding to w. Moreover,
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we sometimes make use of a similar quantity #[a](w) that denotes the number
of symbols in w with positive second coordinate, i.e.,

#[a](w) := |{i ∈ {1, . . . , n} | wi �∈ N × {0}}| .

A longest-chain protocol calls for parties to exchange blockchains, each of
which is an ordered sequence of blocks beginning with a distinguished “genesis
block,” known to all parties. When an honest party becomes a slot leader, she
always creates a single block, and follows the longest-chain rule which dictates
that she adds her block to the longest blockchain she has observed thus far; she
also broadcasts the new block(-chain) to all other parties. When an adversarial
party becomes a slot leader, what he is allowed to do differs between PoW
and PoS. Intuitively, in PoW an adversarial success allows for creating a single
block that extends an arbitrary chain chosen by the adversary, while in PoS
an adversarial success can be used to create any number of blocks and hence
extend any number of previously existing chains by one block. Naturally, the
adversary is not forced to immediately propagate his blocks, and can distribute
them strategically.

More formally, let Ct denote the collection of all blockchains created by the
end of slot t and let H(Ct) denote the subset of all chains in Ct whose last block
was created by an honest party. Set C0 = {G}, where G denotes the unique chain
consisting solely of the genesis block. The genesis block is considered “honest”;
thus H(C0) = C0. It is convenient to adopt the convention that C−t = H(C−t) =
{G} for any negative integer −t < 0. Then the protocol execution proceeds as
follows. For each slot t = 1, 2, . . .:

– Initiate Ct := Ct−1 and H(Ct) := H(Ct−1).
– Given wt = (h, a) the following modifications are applied:

• The adversary must perform the following honest iteration exactly h
times: select any collection of chains V for which H(Ct−1−Δ) ⊆ V ⊆ Ct.
This is the “view” of the honest slot leader, who applies the longest chain
rule to V, selects the longest chain L ∈ V (resp. L ∈ V ∩ Ct−1 in PoS)
where ties are broken by the adversary, and adds a new block to create a
new chain L′, which is added to Ct and also H(Ct).

• If a > 0, the adversary may perform the following adversarial iteration
at most a times for PoW or an arbitrary number of times for PoS: select
a single blockchain C from Ct (in PoS, it must be from Ct−1) and add
a block to create a new chain C ′, which is added to Ct. H(Ct) remains
unchanged.

Note that the synchrony assumption is reflected in the description of the
honest iteration: the adversary is obligated to deliver all chains produced by
honest parties that are Δ slots old, i.e., the set of chains in H(Ct−1−Δ).

Also note that the model grants the adversary to power to break ties in the
longest-chain rule. Considering that the adversary selects both the view V of
each honest party and is empowered to break ties, the structure of the resulting
sequence of chains (that is, the directed acyclic graph naturally formed by the
blocks) is determined entirely by the adversary and the characteristic string.
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We make several additional remarks. First, we permit the adversary to have
full view of the characteristic string during this process. In reality, a PoS adver-
sary can only predict its own lottery successes, not those of honest parties,
while in PoW, neither successes are predictable. Hence our modeling here only
makes the adversary stronger. (Looking ahead, this strengthening only affects
our upper bounds, as we determine lower bounds via concrete attacks that can
be performed by a realistic adversary, see Sect. 5.) Second, we have placed an
implicit constraint on the adversary: the only means of producing a new chain is
to append a block (containing a proof of a slot leadership) to an existing chain. In
practice, this constraint is guaranteed with cryptographic hash functions. Third,
we assume that the distribution of slot leaders is impervious to adversarial tam-
pering and, as in previous treatments, is fixed throughout the analysis. This is
motivated by the fact that settlement in deployed protocols takes place at much
smaller time scales than shifts in mining power or stake distributions. Lastly,
the model does not reflect attacks exploiting rational behaviors of parties, such
as selfish-mining attacks [10], beyond simply considering such parties corrupt.

2.2 Ledger Consensus

In the context of ledger consensus protocols (also referred to as blockchain [11] or
state machine replication [22] protocols), one is usually interested in preserving
two properties, consistency and liveness, formulated in [11,18,22]. Consistency
means that once a block (or equivalently, a transaction within it) is considered
settled by some honest party, then it is present in the currently held chains of all
parties, and remains that way forever. In this work we consider the block-based
settlement rule for longest-chain consensus, where a party considers a block
settled if it appears a particular number of blocks deep in the longest chain
currently known to that party. Block-based settlement is adopted in practice,
and is generally preferable to time-based settlement, as argued in [13].

To describe consistency and liveness concisely under the longest-chain rule,
we define the set of Δ-dominant chains Dt ⊆ Ct in each time step t. The set
Dt ⊆ Ct is determined entirely by Ct and H(Ct−1−Δ): namely, Dt is the set of
all chains in Ct that are at least as long as the longest chain in H(Ct−1−Δ). The
intuition behind this definition is that, in a time slot t, it is in principle possible
for the adversary to manipulate an honest party into adopting any Δ-dominant
chain, as the adversary is only obligated to deliver those chains in H(Ct−1−Δ)
and the chains in Dt are at least as long as those in H(Ct−1−Δ).

Consistency for block-based settlement; with parameter k. A block B
that is k blocks deep in some chain in Dt is contained in every chain C ∈ Dt′

for all t′ ≥ t.

The goal of this paper is to bound (from both above and below) the probability
that consistency is violated as a function of the parameter k.

For completeness, we also mention the liveness property [12], though it is not
the focus of this paper.
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Liveness; with parameter u. For any two slots t1, t2 > 0 with t1 + u ≤ t2,
and any chain C ∈ Dt2 , there is a time t′ ∈ {t1, . . . , t1 + u} and a chain
C ′ ∈ H(Ct′) \ H(Ct′−1) such that C ′ is a prefix of C.

3 Proof-of-Work Settlement

In this section we first showcase our approach in the more familiar PoW setting,
where it provides tighter results than state-of-the-art settlement bounds.

3.1 Proof-of-Work Blocktrees

We formally capture the above protocol dynamics by the combinatorial notion
of a PoW tree. It is a variant of the “fork” concept first considered for the proof-
of-stake case in [2,7,17] and more recently also employed for PoW-analysis [1,12,
13]. An example PoW tree is shown in Fig. 2, illustrating several of the concepts
defined below.

Definition 1 (PoW tree). Let n ∈ N. A PoW tree for the string w ∈ Σn is
a directed, rooted tree F = (V,E) with a pair of functions

l# : V → {0, . . . , n} and ltype : V → {h, a}

satisfying the axioms below. Edges are directed “away from” the root so that there
is a unique directed path from the root to any vertex. The value l#(v) is referred
to as the label of v. The value ltype(v) is referred to as the type of the vertex:
when ltype(v) = h, we say that the vertex is honest; otherwise it is adversarial.

(A1) the root r ∈ V is honest and is the only vertex with label l#(r) = 0;
(A2) for any pair of honest vertices v, w for which l#(v)+Δ < l#(w), len(v) <

len(w), where len() denotes the depth of the vertex;
(W3) the sequence of labels l#() along any directed path is non-decreasing;
(W4) if wi = (hi, ai) then there are exactly hi honest vertices and at most ai

adversarial vertices in F with the label i.

We will refer to PoW trees simply as trees when the context is clear. Unless
explicitly stated otherwise, throughout the paper we reserve the term “tree” for
the above structure, as opposed to the underlying graph-theoretic notion.

A PoW tree abstracts a protocol execution with a simple but sufficiently
descriptive discrete structure. Its vertices and edges stand for blocks and their
connecting hash links (in reverse direction), respectively. The root represents the
genesis block, and for each vertex v, l#(v) and len(v) denote the slot in which
the corresponding block was created and the block’s depth, respectively.

It is easy to see the correspondence between the above axioms and the con-
straints imposed in the protocol execution. In particular, (A1) corresponds to
the trusted nature of the genesis block; (A2) reflects the fact that given suffi-
cient time, as needed for block propagation in the network, an honest party will
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Fig. 2. A PoW tree F for the characteristic string w with Δ = 1. Honest vertices
are shown with double-struck boundaries, while adversarial vertices are simple circles.
Vertices are labeled with l#(·). The tree indicates a k-consistency violation for k = 4
—given by the red and blue chains—in a circumstance where the simple private-chain
attack does not succeed: in particular, the tree constructs two alternate chains with
disjoint suffixes of length 5, while only three adversarial proofs of work are discovered
over this period. We remark that F = F�1 , since the last symbol of w is (0, 0), and that
F�1 is obtained by removing the adversarial vertex with label 8. Thus len(F�1) = 5, this
maximum length achieved by the blue chain. Note, then, that the two chains indicated
in red and blue each have advantage equal to zero, and both are dominant. Considering
that these chains share no vertices after the root, they witness β1(F ) ≥ 0 for the tree
F and hence β1(w) ≥ 0 for the characteristic string w. (Color figure online)

take into account the blocks produced by previous honest parties. Axiom (W3)
reflects that the blocks’ ordering in a chain must be consistent with the order of
their creation and finally (W4) reflects that honest players produce exactly one
block per PoW success, while the adversary might forgo a block-creation oppor-
tunity. Looking ahead, the labeling of the above axioms reflects that while (A1)
and (A2) will apply universally to PoW and PoS alike, axioms (W3) and (W4)
are specific to PoW, and will be replaced for PoS analysis by appropriate varia-
tions (S3) and (S4) in Sect. 4.

Definition 2 (PoW tree notation). We write F 	W w if F is a PoW tree
for the characteristic string w. When the setting is clear from context or not
germane to the discussion, we drop the superscript and simply write F 	 w. If
F ′ 	 w′ for a prefix w′ of w, we say that F ′ is a subtree of F if F contains
F ′ as a consistently-labeled subgraph. A tree F 	 w is public if all leaves are
honest. The trivial tree, consisting solely of a root vertex, is considered public.
The public core of a tree F , denoted F , is the maximal public subtree of F .

An individual blockchain constructed during the protocol execution is repre-
sented by the notion of a chain, defined next.

Definition 3 (Chains). A path in a tree F originating at the root is called
a chain (note that a chain does not necessarily terminate at a leaf). As there
is a one-to-one correspondence between directed paths from the root and vertices
of a tree, we routinely overload notation so that it applies to both chains and
vertices. Specifically, we let len(T ) denote the length of the chain, equal to the
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number of edges on the path; recall that len(v) also denotes the depth of a vertex.
We sometimes emphasize the tree from which v is drawn by writing lenF (v). We
further overload this notation by letting len(F ) denote the length of the longest
chain in a tree F . Likewise, we let l#(·) apply to chains by defining l#(T ) :=
l#(v), where v is the terminal vertex on the chain T . We say that a chain is
honest if the last vertex of the chain is honest. For a vertex v in a tree F , we
denote by F (v) the chain in F terminating in v.

Definition 4 (Branches). For an integer � ≥ 1 and for two chains T and T ′

of a tree F , we write T ∼� T ′ if the two chains share a vertex with a label greater
than or equal to �. The set of all chains T ′ ∈ F such that T ∼� T ′ is called the
branch of T in F and denoted BF (T ; �); when � can be inferred from context, we
write BF (T ).

Intuitively, T ∼� T ′ guarantees that the respective blockchains agree on the
state of the ledger up to time slot �. Looking ahead, the adversary can make two
honest parties disagree on the state of the ledger up to time � only if she makes
them hold two blockchains chains T �∼� T ′.

Definition 5 (Tree trimming; dominance). For a string w = w1 . . . wn and
some k ∈ N, we let w�k

= w1 . . . wn−k denote the string obtained by removing
the last k symbols. For a tree F 	 w1 . . . wn we let F�k

	 w�k
denote the tree

obtained by retaining only those vertices labeled from the set {1, . . . , n − k}.
For convenience, we sometimes prefer to emphasize the remaining length of the
string (resp. tree), and denote by wm� and Fm� the m-symbol prefix of w and
the corresponding tree, formally wm� := w�n−m and Fm� := F �n−m. We say that
a chain T in F is dominant if len(T ) ≥ len(F�Δ).

Observe that honest chains appearing in F�Δ
are those that are necessarily

visible to honest players at a round just beyond the last one described by the
characteristic string. Correspondingly, the notion of a dominant chain matches
the use of this term in Sect. 2.1.

Looking ahead, our approach is to analyze phases that end with Δ consecutive
slots with no honest successes. Hence, at the end of each phase the characteristic
string has the form wx with x ∈ ({0} × N)Δ. We note the following fact.

Fact 1. For a characteristic string of the form wx, where x ∈ ({0} × N)Δ,
any tree F 	 wx has the property that len(F�Δ

) = len(F ) and hence dominance
follows simply from len(T ) ≥ len(F ).

Definition 6 (Honest depth hΔ). For x ∈ {0, 1}∗, we define hΔ(x) induc-
tively so that hΔ(ε) = 0, hΔ(x0) = hΔ(x), and hΔ(x1) = hΔ(x�Δ)+1. We often
overload hΔ to apply to strings from Σ∗ = (N×N)∗, in which case symbols with
non-zero first coordinate (i.e., from ((N \ {0}) × N)∗ are counted as 1s, while
symbols from ({0} × N)∗ are treated as 0s.

The honest depth hΔ(x) of a string x captures the minimum growth of honest
blockchains over a period of slots corresponding to x. More concretely, it is the
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minimum number of times during x that an honest slot leader must create a
block at a higher depth because it is guaranteed to “see” an honest blockchain
at one depth lower that was created at least Δ slots earlier.

3.2 PoW Characteristic Quantity: Margin (β�)

As shown in previous works [1,12,13], the core quantity useful for analyzing
PoW longest-chain blockchains is margin, defined next.

Definition 7 (PoW Margin β�). For a PoW tree F 	W w, we define the
advantage of a chain T ∈ F as

αF (T ) = len(T ) − len(F�Δ) .

Observe that αF (T ) ≥ 0 if and only if T is dominant in F . For � ≥ 1, we define
the margin of a tree F as

β�(F ) = max
Th �∼�Ta

Th is dominant

αF (Ta) ,

this maximum extended over all pairs of chains (Th, Ta) where Th is dominant
and Ta �∼� Th. We call the pair (Th, Ta) the witness chains for F if the above
conditions are satisfied; i.e., Th is dominant, Th �∼� Ta, and β�(F ) = αF (Ta).
Note that there might exist multiple such pairs in F , but under the condition � ≥ 1
there will always exist at least one such pair, as the trivial chain T0 containing
only the root vertex satisfies T0 �∼� T for any T and � ≥ 1, in particular T0 �∼� T0.
For this reason, we will always consider β� only for � ≥ 1.

We overload the notation and let

β�(w) = max
F	Ww

β�(F ) .

We call a PoW tree F 	Ww a witness tree for w if β�(w) = β�(F ); again many
witness trees may exist for a string w.

There is a known tight connection between margin and settlement, captured
by the following lemma and motivating our effort to upper-bound β�.

Lemma 1 ([12,13]). Consider an execution of a PoW blockchain for L slots
as described above, resulting in a characteristic string w = w1 . . . wL. Let B be a
block produced in slot � ∈ [L], and let t > � be such that B is contained in some
chain C ∈ Dt. If for every t′ ∈ {t, . . . , L} we have β�(w1 . . . wt′) < 0 then B is
contained in every C ′ ∈ Dt′ for all t′ ∈ {t, . . . , L}.

Note that if a tree F 	Ww has β�(F ) < 0 then all chains T of length at least
len(F�Δ) belong to the same branch, which we call the main branch.

Definition 8 (Main branch, PoW). Let w ∈ Σn, � ≥ 1, and F 	Ww such that
β�(F ) < 0. The unique branch of F that contains all chains of length at least
len(F�Δ) (and possibly other chains) is called the main branch of F and denoted
MW(F ).
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3.3 Main PoW Theorem

The goal of Sect. 3 is to provide recurrences that allow us to upper-bound the
value of margin β�(w) for any PoW characteristic string w. As shown in Lemma 1,
this allows us to upper-bound the probability of a settlement violation in any
execution with leadership lottery outcomes captured by w.

We approach this challenge by splitting w into consecutive, non-overlapping
substrings called phases, in a way that ensures the following property:

Phase property: any honest party producing a block in a particular phase is
at that time necessarily aware of all honest blocks that have been produced
in all previous phases.

To ensure this property, we determine phase boundaries in w so that two con-
secutive phases are separated by a Δ-long sequence of slots in which no honest
successes occur. Notice that this clearly implies the phase property, as any hon-
est block created in phase i will have been delivered to all honest parties within
Δ slots, before the beginning of phase i + 1.

More formally, we devise a recurrence determining the quantity β�(wsxt)
based on the value β�(ws) and the suffix xt, where w, x ∈ Σ∗ are arbitrary
characteristic strings, while s, t ∈ ({0} × N)Δ represent Δ-long periods with
no honest successes. Together with the trivial initial condition β�(ε) = 0 for
the empty string ε, this gives us a phase-based inductive characterization of β�,
where xt denotes the currently processed phase. Our main result in this section
is the following theorem providing such a characterization.

Theorem 1 (The PoW Phase Recurrence). Let � ≥ 1, let w, x ∈ (N×N)∗

and s, t ∈ ({0} × N)Δ be characteristic strings. We have:

Margin recurrence. β�(ε) = 0. Furthermore,

β�(wsxt)

⎧
⎪⎨

⎪⎩

= β�(ws) + #a(xt) − hΔ(x)
if β�(ws) < −#a(xt)
or β�(ws) > hΔ(x),

≤ min{0, β�(ws)} +#a(xt) otherwise.

Crossing zero. If |ws| ≥ � − 1 and β�(ws) = 0 then β�(ws(1, 0)(0, 0)Δ) = –1 .

Hot, cold, and critical regions. We establish the recurrences above over a
sequence of lemmas. These lemmas consider β� in one of the regions that we
informally call hot, cold, and critical. A quantity is said to be in the hot region
if its value is sufficiently above zero, such that the currently considered phase
cannot bring it down to zero. On the other hand, it is said to be in the cold region
if it is sufficiently negative so that it won’t climb to zero within the current phase.
Finally, it is said to be in a critical region if it is close to zero as detailed below.

The critical region corresponds to the situation of a “close race” discussed
in Sect. 1. This is the most difficult situation to analyze as special behaviors
of the considered quantities (in this case β�) manifest here: most notably, it is
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possible in this region for a new honest success to make things worse for the
honest players. For example, consider a situation where an honest player builds
a new block B on a chain so that it is exactly one block longer than the best
competing chain; now, an additional honest block produced by an honest player
that has not seen B can be placed on the competing chain which “neutralizes”
this one-block advantage. In contrast, in the hot and cold regions, this second
honest block is merely wasted: it does not benefit the honest players but does
not hurt either.

With the above discussion, Theorem 1 says that in both the hot and cold
regions, β� exactly follows an ideal recurrence

β�(wsxt) = β�(ws) + #a(xt) − hΔ(x) (1)

where it increases by 1 for each adversarial success, and decreases by 1 whenever
the pattern of honest successes enforces an increase in the honest depth hΔ.
In the critical region, β�(wsxt) can still be upper-bounded by both #a(xt) and
β�(ws)+#a(xt). Intuitively, this means that if β�(ws) is “close to zero” from the
negative side, then the worst-case behavior observed in the subsequent phase xt is
as if the ideal recurrence was applied but xt contained no honest successes, while
if β�(ws) is “close to zero” from the positive side, β�(wsxt) is still upper-bounded
by #a(xt). Finally, note that these rules by themselves would never permit β�

to descend below zero; for this purpose we establish a separate statement that
if β�(ws) = 0, then a subsequent phase containing only a single success that is
honest, brings margin into negative values.

We remark that the exact behavior near zero appears to be quite complicated,
in part because there is no longer a clear optimal strategy for the adversary to
neutralize honest successes. We identified the simplest and most common sce-
nario, i.e., a single honest success followed by a Δ period of no success, that
transitions the quantity from zero to negative. There might be other advanced
patterns of honest successes that cannot be neutralized but we treat as thought
they can. This is also why we give an upper bound rather than an exact recur-
rence in the critical region.

3.4 Existing Tools: Tree Compression and the PoW Restructuring
Lemma

In our PoW arguments we make use of special honest vertices called tight that
are, informally speaking, at the minimal depth that the preceding part of the tree
allows without violating the axiom (A2). Here we define these vertices formally
and summarize several useful properties they have. In particular, in Lemma 3
we show how a PoW tree that has a tight vertex at each possible depth (we call
such trees compressed) allows for a complex restructuring operation that leads
to a lower-bound on the margin of the underlying characteristic string.

Definition 9. Let F 	 w ∈ Σn. An honest vertex v of F is called tight if
len(v) = len(Fl#(v)−Δ−1�) + 1. The tree F is said to be compressed if, for every
depth 0 ≤ d ≤ len(F ), there is a tight honest vertex v of depth d.
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We recall two lemmas established in [12]. The first asserts that witness trees
may be assumed to be compressed without loss of generality. The second iden-
tifies and analyses a restructuring operation in compressed trees. Proofs of both
lemmas, adapted to our notation but following those of previous work, appear
in the full version [14].

Lemma 2 ([12]). Let w ∈ (N × N)∗ and s ∈ ({0} × N)Δ. Then there exists a
witness tree F 	Wws that is compressed.

Lemma 3 (Restructuring lemma, [12]). Let � ≥ 1, let w ∈ Σ∗ be a char-
acteristic string and F 	Ww be a compressed PoW tree for w; let T1 �∼� T2 be
arbitrary chains in F . For i ∈ {1, 2}, let vi be an honest vertex on Ti and let Ai

denote the set of all adversarial vertices on Ti deeper than vi. If l#(v1) ≤ l#(v2)
then

β�(w) ≥ αF (v1) + |A1 ∪ A2| .

3.5 Outside of the Critical Region

We establish the ideal recurrence (1) outside of the critical region in a sequence
of three lemmas: first, Lemma 4 shows that the recurrence gives a lower bound
for β�, and then Lemmas 5 and 6 show that it is also an upper bound in the cold
and the hot region, respectively.

Lemma 4 (Lower bound). Let � ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)Δ

be characteristic strings. Then

β�(wsxt) ≥ β�(ws) + #a(xt) − hΔ(x) .

Proof. Let F be a witness PoW tree F 	Wws, and let (Th, Ta) be a pair of witness
chains in F , i.e., Th �∼� Ta, Th is dominant in F , and αF (Ta) = β�(F ) = β�(ws).

We construct a tree F ′ 	Wwsxt such that β�(F ′) = β�(F ) + #a(xt) − hΔ(x).
Namely, we add #a(xt)+#h(x) new vertices to F in two steps. First, we extend
Ta by a path consisting of #a(xt) adversarial vertices that we label consistently
with xt to satisfy axiom (W4), call the resulting chain T ′

a. Second, we also add
#h(x) honest vertices that form a subtree rooted in the terminating vertex of
Th, where each of these honest vertices is always put at the minimal depth
allowed by axiom (A2), and labeling them consistently with x to again satisfy
axiom (W4). Let T ′

h denote a chain terminating in some maximum-depth newly
added honest vertex. The resulting tree (call it F ′) is indeed a PoW tree: it
is easy to observe that all axioms of a PoW tree are satisfied by construction.
Note that lenF ′(T ′

a) = lenF (Ta)+#a(xt), lenF ′(T ′
h) = lenF (Th)+hΔ(x), and we

have T ′
h �∼� T ′

a as these chains share no new vertices. Finally, T ′
h is clearly domi-

nant, and hence the pair (T ′
h, T ′

a) witnesses β�(F ′) = β�(F ) +#a(xt)− hΔ(x) as
desired. �

Lemma 5 (Cold region). Let � ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)Δ

be characteristic strings. If β�(ws) < −#a(xt) then

β�(wsxt) ≤ β�(ws) + #a(xt) − hΔ(x) .
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The proof of Lemma 5 is an adaptation of the proof of Lemma 8 from [12] to
our setting. Note that our new approach of processing the characteristic string
by phases allows for a stronger statement: the ideal recurrence is shown to hold
closer to the critical region. At the same time, the proof becomes simpler.

Proof. Let w′ := wsxt and let F ′ be a witness PoW tree F ′ 	Ww′; let (T ′
h, T ′

a)
be a pair of witness chains in F ′ such that len(T ′

h) = len(F ′
�Δ). Furthermore, let

F := F ′|ws|� 	Wws and define Th := (T ′
h)|ws|� and Ta := (T ′

a)|ws|�, i.e., Th and Ta

are the restrictions of T ′
h and T ′

a to vertices with labels at most |ws|; we have
Th, Ta ∈ F by definition of F . Note that, as s, t contain no honest successes, we
have F�Δ = F and F ′

�Δ = F ′, and

len(F ′
�Δ) ≥ len(F�Δ) + hΔ(x) . (2)

By our assumption of negative β�(ws), there is a well-defined main branch
MW(F ). We first establish that, intuitively speaking, any chains in F outside
of MW(F ) are, after ws, extended by adversarial vertices only.

Claim. Consider any chain T ∈ F such that T �∈ MW(F ) and any T ′ ∈ F ′ that
extends T in F ′ so that T = T ′

|ws|�. Then the set of vertices T ′ \ T contains no
honest vertices.

To see this, observe that any honest vertex in F ′ with label greater than
|ws| must have depth at least len(F�Δ) + 1 = len(F ) + 1 by axiom (A2), hence
all vertices in T ′ \ T with depth at most len(F ) must be adversarial. However,
len(T ) + #a(xt) < len(F ). To see this, note that we have αF (T ) ≤ β�(ws) as
T �∈ MW(F ) and hence again there exists some dominant chain in MW(F ) that
forms a witness pair with T . Moreover, β�(ws) < −#a(xt) by assumption, and
this together implies len(T ) + #a(xt) < len(F ) and hence len(T ′) < len(F ).
This already shows that there are no honest vertices in T ′ \ T and establishes
Claim 3.5.

We now argue that Th ∈ MW(F ). Towards contradiction, assume that Th �∈
MW(F ). Then Claim 3.5 applies to Th and T ′

h \ Th contains no honest vertices,
hence

len(T ′
h) ≤ len(Th) + #a(xt) . (3)

However, by assumption len(Th)− len(F ) = αF (Th) ≤ β�(ws) < −#a(xt), where
the first inequality holds as Th �∈ MW(F ) and hence there exists some dominant
chain in MW(F ) that forms a witness pair with Th. Hence len(Th) < len(F ) −
#a(xt), and using equations (3) and (2) gives us len(T ′

h) < len(F ) ≤ len(F ′), a
contradiction with the definition of T ′

h. Therefore, Th ∈ MW(F ).
Since T ′

h �∼� T ′
a, it also follows that Th �∼� Ta, and at most one of these

chains belongs to MW(F ), hence we have Ta �∈ MW(F ). By Claim 3.5, T ′
a \ Ta

contains no honest vertices. Hence we have len(T ′
a) ≤ len(Ta) + #a(xt) and we

can combine this with Eq. (2) to get

β�(ws) ≥ αF (Ta) = len(Ta) − len(F ) ≥ len(T ′
a) − #a(xt) − len(F ′) + hΔ(x)

= αF ′(T ′
a) − #a(xt) + hΔ(x) = β�(w′) − #a(xt) + hΔ(x) ,



122 P. Gaži et al.

where the first inequality is again justified by Ta �∈ MW(F ). This concludes the
proof of Lemma 5. �

Lemma 6 (Hot region). Let � ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)Δ

be characteristic strings. If β�(ws) > hΔ(x) then

β�(wsxt) ≤ β�(ws) + #a(xt) − hΔ(x) . (4)

The proof of the above lemma employs as a crucial ingredient the tree com-
pression concept and the restructuring lemma that we recalled in Sect. 3.4.

Proof of Lemma 6. As in the cold case, the proof begins with a witness tree
F ′ for wsxt and shows how to construct a tree F ∗ 	 ws for which β�(F ∗) ≥
β�(wsxt)−#a(xt) + hΔ(x); this completes the theorem as β�(ws) ≥ β�(F ∗). To
set down notation, define F ′ 	 wsxt to be a compressed witness tree with witness
chains (T ′

h, T ′
a); we then consider the restriction F 	 ws of F ′ to the string ws

and, in particular, the restrictions (Th, Ta) of the witness chains (T ′
h, T ′

a) to F .
To prepare for the main argument, we establish a few straightforward properties
of these two trees. First, observe that the inequality

len(F ′
�Δ

) = len(F ′) ≥ len(F �Δ
) + hΔ(x) = len(F ) + hΔ(x) (5)

follows immediately from Fact 1, tree axiom (A2), the definition of honest height,
and the fact that s and t contain no honest successes. We then establish that
there are no honest vertices on T ′

a with label exceeding |ws|; in other words, there
are no honest vertices in T ′

a \ Ta. Towards a contradiction, assume that there is
an honest vertex in T ′

a \ Ta and let v′
a be such an honest vertex with maximum

label (and hence maximum depth). Since l#(v′
a) > |ws|, all vertices u on T ′

a with
len(u) > len(v′

a) also have l#(u) > l#(v′
a) > |ws| and, by maximality of v′

a, all
these vertices are adversarial; hence there are at most #a(xt) subsequent vertices
(on T ′

h) by axiom (W4). However, as v′
a is honest we also have len(v′

a) ≤ len(F ′).
Combining these, we conclude β�(wsxt) = len(T ′

a)− len(F ′) ≤ len(T ′
a)− len(v′

a) ≤
#a(xt). Combining this with the assumption β�(ws) > hΔ(x) yields a direct
contradiction to Lemma 4, which asserts that β�(wsxt) ≥ β�(ws) + #a(xt) −
hΔ(x). We conclude that there are no honest vertices on T ′

a\Ta and, in particular,
that len(T ′

a) − len(Ta) ≤ #a(xt).
The last honest vertices on the chains Th and Ta play a central role in the

remainder of the analysis; these we denote vh and va, respectively. We handle the
two cases l#(vh) ≥ l#(va) and l#(vh) < l#(va) separately, in either setting con-
cluding the argument with an application of Lemma 3 to a vertex with minimal
label.

The case l#(vh) < l#(va). We define the sets Aa and A′
a to consist of the

adversarial vertices appearing after va on Ta in F and F ′, respectively; thus
Aa ⊂ A′

a. We likewise define Ah and A′
h for the chain Th and vertex vh.

We first establish that

len(va) ≤ len(vh) + |A′
h| . (6)
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Recalling that T ′
h is dominant, len(va) ≤ len(F ) ≤ len(F ′) = len(F ′

�Δ
) = len(T ′

h).
In the case when all vertices of T ′

h after vh are adversarial, the inequality (6)
follows immediately because len(T ′

h) = len(vh) + |A′
h|. Otherwise, there is a first

honest vertex v′
h on T ′

h that appears after vh; by definition, this vertex does not
lie in F and is labeled by an index in x. Considering that the quiet region s lies
between the labels for va and v′

h, we must have len(va) < len(v′
h) by axiom (A2).

Combining this with the fact that len(v′
h) ≤ len(vh)+ |A′

h|+1, the inequality (6)
follows. We may then conclude that

β�(wsxt) = αF ′(T ′
a) = len(T ′

a) − len(F ′
�Δ

) = len(T ′
a) − len(F ′)

= len(va) + |A′
a| − len(F ′) ≤ len(vh) + |A′

a| + |A′
h| − len(F ′) .

(7)

Now we invoke Lemma 3 with chains Th, Ta and vertices vh, va in F . By assump-
tion l#(vh) < l#(va), and hence we obtain

β�(ws) ≥ αF (vh) + |Aa ∪ Ah| = len(vh) + |Aa| + |Ah| − len(F ) (8)

using the definition of αF , Fact 1, and the observation that l#(vh) < l#(va)
implies vh �= va and together with the definition of vh, va this means that
Aa ∩ Ah = ∅ and |Aa ∪ Ah| = |Aa| + |Ah|. Combining (7) and (8), we conclude
that

β�(wsxt) − β�(ws) ≤ |A′
a| − |Aa| + |A′

h| − |Ah| − (
len(F ′) − len(F )

)

≤ #a(xt) − hΔ(x)

as desired. The last inequality follows from (5) and the fact that there are no
more than #a(xt) adversarial vertices in F ′ that do not lie in F .

The case l#(vh) ≥ l#(va). We remark that the tree F is compressed. To see
this, note that any honest vertex v of F ′ labeled from the suffix xt must have
height strictly larger than len(F�Δ

) by axiom (A2); on the other hand, in light of
Fact 1 len(F�Δ

) = len(F ) since ws ends with a quiet period and it follows that
the removal of the honest vertices labeled by xs does not affect those of depth at
most len(F ). In particular, F still has an honest vertex of each relevant height
and is compressed.

We now invoke Lemma 3 with the chains Ta, Th and vertices va, vh in F .
Since l#(va) ≤ l#(vh), we obtain:

β�(ws) ≥ αF (va) + |Aa| = αF (Ta) = lenF (Ta) − len(F�Δ
)

≥ (lenF ′(T ′
a) − #a(xt)) − (

len(F ′) − hΔ(x)
)

(9)
= αF ′(T ′

a) − #a(xt) + hΔ(x) = β�(wsxt) − #a(xt) + hΔ(x) ,

where the inequality in line (9) follows from (5). This concludes the proof. �


3.6 The Critical Region

Finally, it remains to tackle the behavior of β� in the critical region. We establish
the two upper bounds mentioned in Sect. 3.3 in Lemmas 7 and 8, and show the
crossing-zero property in Lemma 9.
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Lemma 7. Let � ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)Δ be characteristic
strings. Then

β�(wsxt) ≤ β�(ws) + #a(xt) .

Proof. As before, let w′ := wsxt and let F ′ be a witness PoW tree F ′ 	Ww′; let
(T ′

h, T ′
a) be a pair of witness chains in F ′ such that len(T ′

h) = len(F ′
�Δ) = len(F ′)

(cf. Fact 1). Furthermore, let F := F ′|ws|� 	Wws and define Th := (T ′
h)|ws|� and

Ta := (T ′
a)|ws|�, i.e., Th and Ta are the restrictions of T ′

h and T ′
a to vertices with

labels at most |ws|; we have Th, Ta ∈ F by definition of F . Moreover, let TH be
a chain in F such that len(TH) = len(F ).

If TH �∼� Ta, we have β�(ws) ≥ αF (Ta). Looking at the set of vertices T ′
a \Ta

in F ′, let H ⊆ T ′
a \ Ta denote the set of those vertices v ∈ T ′

a \ Ta that satisfy
len(F ) < len(v) ≤ len(F ′). Intuitively, H covers the vertices in the extension
T ′

a \ Ta that have depths in which F ′ might contain honest vertices with labels
greater than |ws|. Observe that therefore |H| ≤ len(F ′)− len(F ) and all vertices
in (T ′

a \ Ta) \ H are adversarial. This gives us

β�(w′) − β�(ws) ≤ (
len(T ′

a) − len(F ′)
) − (

len(Ta) − len(F )
)

= (len(T ′
a) − len(Ta)) − (

len(F ′) − len(F )
)

≤ (|H| +#a(xt)) − (
len(F ′) − len(F )

) ≤ #a(xt)

as desired.
On the other hand, if TH ∼� Ta then we have TH �∼� Th, and

β�(w′) − β�(ws) ≤ (
len(T ′

a) − len(F ′)
) − (len(Th) − len(TH))

≤ (
len(T ′

a) − len(F ′)
)
+ (len(TH) − len(Th)) .

Observe that if len(T ′
a)− len(F ′) > 0, all vertices on T ′

a with depth greater than
len(F ′) must be adversarial by definition of F ′. Similarly, if len(TH)−len(Th) > 0,
then all vertices on T ′

h with depth d satisfying len(Th) ≤ d ≤ len(F ) = len(TH)
must be adversarial, as the minimum depth at which honest vertices labeled
from x can appear is len(F ) + 1 due to axiom (A2) and the fact that s contains
no honest successes. Putting these two facts together, we get len(T ′

a)− len(F ′)+
len(TH) − len(Th) ≤ #a(xt), concluding the proof also for this case. �

Lemma 8. Let � ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)Δ be characteristic
strings. If β�(ws) ≤ hΔ(x) then

β�(wsxt) ≤ #a(xt) .

Proof (sketch). The lemma can be established by an argument identical to the
proof of Lemma 6, with a single exception.

Using the notation from that proof, in this case we do not prove that T ′
a \Ta

contains no honest vertices as before. Instead, we observe that if there actually
is an honest vertex on T ′

a \ Ta, then by definition of Ta this vertex has a label
exceeding |ws|, and hence the deepest honest vertex in T ′

a can only be followed
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by at most #a(xt) adversarial vertices. This directly implies β�(wsxt) ≤ #a(xt)
and proves the lemma for this case.

Otherwise we again have no honest vertices on T ′
a \ Ta, and the rest of the

argument is identical to the proof of Lemma 6 as it never again invokes the
assumption about β�(ws). The argument gives us β�(wsxt) ≤ β�(ws)+#a(xt)−
hΔ(x), and since here we assume β�(ws) ≤ hΔ(x) we can conclude β�(wsxt) ≤
#a(xt) as desired. �

Lemma 9. Let � ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)Δ be characteristic
strings. If |ws| ≥ � − 1 and β�(ws) = 0 then

β�(ws(1, 0)(0, 0)Δ) ≤ −1 .

Proof. Let w′ := ws(1, 0)(0, 0)Δ and towards a contradiction, assume β�(w′) ≥ 0.
By definition of β�, there exists a witness PoW tree F ′ 	Ww′ and two chains T ′

1, T
′
2

in F ′ such that T ′
1 �∼� T ′

2, αF ′(T ′
1) = 0, αF ′(T ′

2) ≥ 0, and T ′
1 terminates with

the unique (and honest) vertex with l#(v′
h) = |ws| + 1 prescribed by w′; let us

call this vertex v′
h. (Note that (T ′

1, T
′
2) are not necessarily witness chains as we

don’t ask for αF ′(T ′
2) = β�(F ′), this allows us to require that T ′

1 terminates
in v′

h without loss of generality.) Denote F := F ′|ws|� 	W ws and note that F
is in fact obtained from F ′ by just removing v′

h. As #h(s) = 0 and |s| = Δ,
by axiom (A2) we have lenF ′(v′

h) > len(F ) and hence len(F ′
�Δ) = len(F ′) >

len(F ) = len(F�Δ). Let T1 := (T ′
1)|ws|�. Note that as T ′

1 �∼� T ′
2 and |ws(1, 0)| ≥ �,

we must have v′
h �∈ T ′

2 and T ′
1 �= T ′

2, hence T ′
2 also exists in F and T1 �∼� T ′

2 in
F . As len(F�Δ) < len(F ′

�Δ), we have αF (T1) ≥ 0 and αF (T ′
2) > 0, resulting in

β�(ws) ≥ β�(F ) > 0, a contradiction. �


4 Proof-of-Stake Settlement

4.1 Proof-of-Stake Blocktrees

The execution of a longest-chain PoS protocol is in principle similar to the exe-
cution of its PoW counterpart, with two notable differences, described in passing
already in Sect. 2.1. Most importantly, the effect of an adversarial lottery suc-
cess is different: it allows the adversary to create an arbitrary number of blocks
for the corresponding slot, while in PoW a single lottery success only leads to
a single block. Second, a valid PoS chain may only contain at most one block
from any given slot, while in PoW the adversary can in principle use multiple
adversarial blocks from the same slot to extend the same chain.

To model this behavior, we consider the same alphabet Σ = N × N for
characteristic strings also in the PoS case. However, the notion of a tree needs
to be adapted to capture the above differences. The resulting notion of a PoS
tree conceptually matches the ‘fork’ notion from previous PoS works [2,7].

Definition 10 (PoS tree). A PoS tree is defined exactly as a PoW tree (cf.
Definition 1), except that axioms (W3) and (W4) are replaced by the following
axioms:
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F � w =(1, 0)

1

(0, 0) (2, 0)

3

3

(1, 0)

4

(0, 1)

5

5

(0, 1)

6

6

(2, 0)

7

7

(0, 0) (1, 0)

9

(0, 0) (2, 0)

11

11

(0, 0)

0

Fig. 3. A public PoS tree F for the characteristic string w with Δ = 1, using the
same graphical representation as Fig 2. The tree indicates a successful double spend
attack given by the orange and blue chains and highlights a notable feature of the
proof-of-stake setting: the adversary’s ability to play multiple blocks in slots 5 and 6
permits a double spend attack in circumstances where there would be no attack in the
proof-of-work case. We remark that F = F = F�1 = F�1 , since all leaves of F are honest
and the last symbol of w is (0, 0). Clearly len(F �1) = 5. The two chains indicated in
red and blue each have advantage equal to zero, and both are dominant. Considering
that these chains share no vertices after the root, they witness μ1(F ) ≥ 0 for the tree
F and hence for the characteristic string w. (Color figure online)

(S3) the sequence of labels l#() along any directed path is strictly increasing;
(S4) if wi = (hi, ai) then there are exactly hi honest vertices of F with the label

i and if the number of adversarial vertices with label i is nonzero then
ai > 0.

The two changes to tree axioms formally capture the two differences from the
PoW setting, listed above. Note that the notation laid out in Definitions 2–6, as
well as Fact 1, immediately apply also to the PoS case. An example PoS tree is
depicted in Fig. 3.

4.2 PoS Characteristic Quantities: Reach (ρ) and Margin (μ�)

As established in an existing line of work on PoS protocols going back to [17],
the dynamics of a PoS longest-chain protocol can be captured by a pair of
quantities called reach and margin. Note that this is in contrast to the PoW case
where a single quantity is sufficient (see Sect. 3), and represents the additional
complexity in analyzing the PoS case. We recall the notions of reach and margin
as generalized in [3], and adapt them to our notation. For consistency with these
works, we refer to μ� as margin; no confusion should arise as it is always clear
whether we consider the PoW or PoS margin.

Definition 11 (PoS reach, margin). For a public PoS tree F 	Sw, we define
the advantage of a chain T ∈ F exactly as in the PoW case in Definition 7.
We define the reserve of a chain T in F to be the number of adversarial indices
appearing in w after the last index in T ; specifically, if v is the terminal vertex
of T , we define
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reserveF (T ) := |{i > l#(v) | wi = (hi, ai) ∧ ai > 0}| .

We then define
reachF (T ) := αF (T ) + reserveF (T ) ,

ρ(F ) := max
T in F

reachF (T ) and ρ(w) := max
F	S

w
F public

ρ(F ) .

For a given w, we sometimes refer to a tree F and a chain T maximizing the
above expressions as a witness tree and a witness chain, respectively; note that
these are not necessarily unique.

For a public PoS tree F 	S w we define the margin of F , denoted μ�(F ), to
be the “penultimate” reach taken over chains T1, T2 of F such that T1 �∼� T2:

μ�(F ) := max
T1 �∼�T2

(
min{reachF (T1), reachF (T2)}

)
.

There might exist multiple such pairs in F , but under the condition � ≥ 1 there
will always exist at least one such pair, as the trivial chain T0 containing only
the root vertex satisfies T0 �∼� T for any T and � ≥ 1, in particular T0 �∼� T0.
For this reason, we will always consider μ�(·) only for � ≥ 1. We again overload
the notation by defining

μ�(w) := max
F	S

w
F public

μ�(F ) .

We use the terms witness tree and witness chains analogously also in the case
of margin, it will be always clear from the context whether we are referring to
witnesses with respect to reach or margin.

Intuitively, there is again a natural connection between margin and settle-
ment: if w is a characteristic string capturing the execution of the PoS blockchain
up to some current time t, and μ�(w) < 0 for some � < t, then any tree F 	S w
that resulted from the execution has μ�(F ) < 0 and hence does not allow the
adversary to make any honest party at time t adopt a blockchain that would
not agree with its current chain up to the index �. In other words, all chains
with non-negative reach share their prefix up to slot �, i.e., belong to the same
branch. This connection was formally established for PoS in [7,17]; we summa-
rize it for our setting in the following lemma. This will motivate our effort to
upper-bound μ�.

Lemma 10 ([7,17]). Consider an execution of a PoS blockchain for L slots as
described above, resulting in a characteristic string w = w1 . . . wL. Let B be a
block produced in slot � ∈ [L], and let t > � be such that B is contained in some
chain C ∈ Dt. If for every t′ ∈ {t, . . . , L} we have μ�(w1 . . . wt′) < 0 then B is
contained in every C ′ ∈ Dt′ for all t′ ∈ {t, . . . , L}.

Similarly as before, if a PoS-tree F 	Sw has μ�(F ) < 0 then all chains T with
reachF (T ) ≥ 0 at least len(F�Δ) belong to the same branch. This justifies the
following definition.
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Definition 12 (Main branch, PoS). Let w ∈ Σn, � ≥ 1, and F 	Sw such that
μ�(F ) < 0. The unique branch of F that contains all chains with non-negative
reach (and possibly other chains) is called the main branch of F and denoted
MS(F ).

4.3 Main PoS Theorem

The main result of this section is the following theorem, which is an analogue of
Theorem 1 for the PoS case.

Theorem 2 (The PoS Phase Recurrences). Let � ≥ 1, let w, x ∈ (N×N)∗

and s, t ∈ ({0} × N)Δ be characteristic strings. Then we have:

Reach. ρ(ε) = 0. Furthermore,

ρ(wsxt)

{
= ρ(ws) + #[a](xt) − hΔ(x) if ρ(ws) > hΔ(x),
≤ #[a](xt) otherwise.

Margin. If |wsxt| < � then μ�(wsxt) = ρ(wsxt), otherwise

μ�(wsxt)

{
= μ�(ws) + #[a](xt) − hΔ(x) if μ�(ws) < −#[a](xt),
≤ ρ(wsxt) otherwise.

Crossing zero. If |ws| ≥ � − 1 and ρ(ws) = μ�(ws) = 0 then

μ�(ws(1, 0)(0, 0)Δ) ≤ −1 .

Theorem 2 describes the characteristic PoS quantities ρ and μ� in terms
of phase-based recurrences. Similarly to the PoW case, the quantities behave
differently in the three regions. Recall that a quantity is informally said to be
in the hot region if it is sufficiently positive, such that the currently considered
phase cannot bring it down to zero; it is said to be in the cold region if it is
sufficiently negative so that it won’t climb to zero within the current phase; and
finally, it is said to be in the critical region if it is so close to zero that the effects
of the special behavior the quantity exhibits around zero are manifested within
this phase.

Informally speaking, Theorem 2 states that the reach quantity, as long as it
remains within the hot region, exactly performs an “ideal recurrence”

ρ(wsxt) = ρ(ws) + #[a](xt) − hΔ(x) , (10)

where it increases by 1 for each adversarially-successful slot, and decreases by 1
whenever the pattern of honest successes enforces an increase in the honest depth
hΔ. Whenever reach approaches the critical region (recall that reach is never
negative by definition), we only upper-bound it with the quantity #[a](xt)—note
that this is analogous to the outcome of the ideal recurrence in a hypothetical
case where the honest successes first bring ρ to zero where the remaining honest
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successes have no effect, while the remaining adversarial successes increase ρ
back up to #[a](xt). As for margin, before slot � it is identical to reach, and after
slot � it (again exactly) performs an analogue of the ideal recurrence (10) as long
as it remains within the cold region, while outside of it we only make use of the
trivial upper bound by ρ. Finally, we also establish a statement describing the
crossing of zero, analogous to PoW.

4.4 Bounding Reach

The following lemma establishes the tightness of the ideal recurrence (10) for
reach in the hot region.

Lemma 11 (Reach in the hot region). Let � ≥ 1, let w, x ∈ (N × N)∗ and
s, t ∈ ({0} × N)Δ be PoS characteristic strings. If ρ(ws) > hΔ(x) then

ρ(wsxt) = ρ(ws) + #[a](xt) − hΔ(x) .

Proof. Denote w′ := wsxt. We first prove a lower bound on ρ(w′). Towards that,
consider a public witness tree G 	Sws for reach in wx, and let U be the witness
chain achieving reachG(U) = ρ(ws). Let vh be some maximum-depth honest
vertex in G, i.e., lenG(vh) = len(G). Construct a labeled rooted tree G′ from G
by adding #h(x) honest vertices that form a subtree rooted in vh, where each of
these honest vertices is always put at the minimal depth allowed by axiom (A2),
and labeling them consistently with x. Observe that by construction, G′ is a
valid public PoS-tree for w′. Using Fact 1 and the construction of G′ we have
len(G′

�Δ) = len(G′) = len(G) + hΔ(x), and hence

ρ(w′) ≥ reachG′(U) = αG′(U) + reserveG′(U)

= (αG(U) − hΔ(x)) +
(
reserveG(U) + #[a](xt)

)

= ρ(ws) + #[a](xt) − hΔ(x) > #[a](xt) , (11)

where the last inequality follows by our assumption on ρ(ws).
Towards an upper bound, let F ′ 	S w′ be a public witness tree for reach in

w′, and let T ′ be the witness chain for reach in F ′, i.e., reachF ′(T ′) = ρ(w′). Let
F := F ′|ws|� 	Sws and let T be the restriction of T ′ to F . Using Fact 1 and the
fact that F and F ′ are by definition public, we have F�Δ = F , F ′

�Δ = F ′, and
len(F ′

�Δ) ≥ len(F�Δ) + hΔ(x).
We now establish that T = T ′. Indeed, if that is not the case, let v′ be the

terminating honest vertex of T ′. Since l#(v′) > |ws|, it must be reserve(T ′) ≤
#[a](xt); and since v′ is honest, we have ρ(w′) = reachF ′(T ′) ≤ #[a](xt). This
would be a contradiction with (11), proving that T = T ′.

Given the above, we have

ρ(w′) = reachF ′(T ′) = αF ′(T ′) + reserveF ′(T ′)

≤ (αF (T ) − hΔ(x)) +
(
reserveF (T ) + #[a](xt)

)

= reachF (T ) + #[a](xt) − hΔ(x) ≤ ρ(ws) + #[a](xt) − hΔ(x)

as desired. �
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It remains to prove the upper bound for reach in the critical region, this is
done in the following lemma.

Lemma 12 (Reach approaching zero). Let � ≥ 1, let w, x ∈ (N × N)∗ and
s, t ∈ ({0} × N)Δ be PoS characteristic strings. If ρ(ws) ≤ hΔ(x) then

ρ(wsxt) ≤ #[a](xt) .

Proof. Let w′, F ′, T ′, F, T be as in the proof of Lemma 11. We again have F�Δ =
F , F ′

�Δ = F ′, and len(F ′
�Δ) ≥ len(F�Δ) + hΔ(x).

Towards a contradiction, assume that ρ(wsxt) = reachF ′(T ′) > #[a](xt). As
F ′ is public, clearly T ′ is honest without loss of generality, and lenF ′(T ′) ≤
len(F ′), hence we have reserveF ′(T ′) > #[a](xt). However, this is only possible
if reserveF ′(T ′) accounts also for some indices i (where w′

i = (hi, ai) and ai > 0)
that satisfy i < |ws|, i.e., some adversarial vertices labeled from ws, and hence
T ′ = T . However, given that len(F ′

�Δ) ≥ len(F�Δ) + hΔ(x), this means that
reachF (T ) > hΔ(x) and therefore ρ(w) > hΔ(x), contradicting our assumption
and hence concluding the proof. �


4.5 Bounding Margin

Towards bounding the quantity μ�(·), first observe that its definition directly
implies that μ�(w) ≤ ρ(w) for any w ∈ Σ∗. Moreover, for any w with |w| < �, we
actually have μ�(w) = ρ(w) as, recalling the definition of μ�(F ) and the relation
�∼�, notice that any chain T with l#(T ) < � satisfies T �∼� T , and hence the
witness chains T1, T2 for μ�(F ) may satisfy T1 = T2.

We now proceed to prove a lower bound on μ�.

Lemma 13 (Margin lower bound). Let � ≥ 1, let w, x ∈ (N × N)∗ and
s, t ∈ ({0} × N)Δ be characteristic strings. If μ�(ws) < −#[a](xt) then

μ�(wsxt) ≥ μ�(ws) + #[a](xt) − hΔ(x) .

The proof of the above lemma uses the same approach as the proof of
Lemma 4 in the PoW case, we give it in the full version [14] for completeness.
Note that in the PoS case, the construction given in the proof only works under
the assumption μ�(ws) < −#[a](xt), which is however exactly the region we are
interested in.

We now turn to upper-bounding μ� in the specific case μ�(ws) < −#[a](xt).
Given that as observed above, for any ws satisfying |ws| < � we have μ�(ws) =
ρ(ws) ≥ 0, this bound is only applicable after |ws| ≥ �.

Lemma 14 (Margin in the cold region). Let � ≥ 1, let w, x ∈ (N × N)∗

and s, t ∈ ({0} × N)Δ be PoS characteristic strings. If μ�(ws) < −#[a](xt) then

μ�(wsxt) ≤ μ�(ws) + #[a](xt) − hΔ(x) .

The proof of Lemma 14 is an adaptation of the proof of Lemma 5 to the PoS
setting, we give it in the full version [14] for completeness.

The previous two lemmas together establish that margin follows an analogue
of the ideal recurrence (10) in the cold region.
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4.6 Crossing Zero

Finally, we show that if after slot � both quantities are equal to zero, margin can
descend to negative values. The proof of Lemma 15 uses essentially the same
reasoning as that of Lemma 9, we provide it in the full version.

Lemma 15. Let � ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)Δ be characteristic
strings. If |ws| ≥ � − 1 and ρ(ws) = μ�(ws) = 0 then

μ�(ws(1, 0)(0, 0)Δ) ≤ −1 .

4.7 A Practical PoS Adversary

In order to evaluate the strength of our settlement bounds, we describe and
analyze a natural practical adversary in the proof-of-stake setting. It is analogous
to the conventional “private-chain attack” adversary in the PoW setting.

In general, the adversary maintains two chains (L, S) and a “public depth”
p, equal to the current depth of the deepest honest block. We collect this data
together, writing ({L, S}, p), and use l and s to denote the lengths of the chains
L and S. We adopt the convention that L is the longer and S is the shorter
of the two chains, with ties broken arbitrarily. The adversary will maintain the
invariant that l ≥ max(p, s) and that L and S diverge after �. Then it is clear that
l−p is a lower bound for reach and that s−p is a lower bound on margin. Given
a current adversarial state ({L, S}, p), we describe how the adversary responds
to a new phase corresponding to a characteristic string x for which #a(x) = a
and hΔ(x) = h.

In preparation for the full description, we set some terminology. Consider a
chain C in this context (which is to say that C is one of S and L). We define the
adversarial extension to be the chain Ca obtained by adding a path of #a(x)
adversarial vertices to the end of C; this chain extension is consistent with x.
If the length of C is at least p, we additionally define the honest extension Ch

as follows: Define Th to be a tree, rooted at the unique vertex of C of depth
p, that contains one vertex for each honest success in x arranged so that each
vertex is at the minimal depth dictated by Δ delay. The depth of this tree is
hΔ(x). Then define Ch, the honest extension of C, to be any path in this tree of
maximal depth (thus having depth p + hΔ(x)). Note that this honest extension
Ch is consistent with the characteristic string x of the new phase.

Prior to �, the adversary maintains the invariant that L = S. A new phase
with characteristic string x is fielded by constructing both the adversarial and
honest extensions of L, called La and Lh, respectively, and assigning L′ to be
the longer of these. The resulting state is L′ (and S′ = L′). In the case where
this phase includes the slot �, the resulting state is ({La, Lh}, p + h); observe
that these do not share a vertex with label � or more.

After �, there are two cases depending on ({L, S}, p). If s < p, no honest
blocks can be immediately placed on S. In this case, define S′ = Sa, the adver-
sarial extension of S and define L′ be the longer of La and Lh, the adversarial
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and honest extensions of L. The resulting output state is ({L′, S′}, p + h). The
second case arises when s ≥ p: here we carry out the same procedure but reverse
the roles of L and S: specifically, the honest spur is added to S rather than L,
yielding two extensions of interest Sh and Sa. The longer of these is declared
to be S′; L′ is defined to be the simple adversarial extension of L. Note that
while these rules are defined in terms of features of the entire phase, they can
be carried out in an online fashion with no particular attention to placement
of honest vertices (except that all blocks are delivered to honest parties with
maximal delay). Note, furthermore, that the attack requires no tie breaking and
can be thus carried out by an adversary that requires no capabilities beyond
globally and uniformly delayed honest messages. (In contrast, it is not clear how
to practically implement adaptive adversarial tie breaking.)

In terms of the recurrence relations (for μ� and ρ) that this yields, prior to � we
have μ� = ρ by definition and ρ′ = μ′

� = max(0, ρ+a−h) by construction. After
�, reach continues to satisfy ρ′ = max(0, ρ+a−h). If μ� < 0 it similarly satisfies
μ′

� = μ�+a−h. Otherwise, μ� is non-negative. We say that a configuration-input
pair is “critical” if ρ + a − h < 0 (and μ� ≥ 0). If the setting is critical, then
margin satisfies μ′

� = ρ + a − h. (Note that in this case, the two chains have
switched roles.) Otherwise, set μ′

� = 0 for convenience (as the exact value is not
important to track).

5 Numerical Evaluation

In this section, we study explicit bounds provided by our analysis. We implement
our analytical framework and make the code available at https://github.com/
renling/LCanalysis/. We are interested in both PoW and PoS longest-chain con-
sensus, and we pick one representative system for each. For PoW blockchains we
study PoW-based Ethereum because its relatively short block interval presents
a more challenging subject for analysis, while Bitcoin with its long block inter-
val was already given fairly tight bounds [13,15]. For PoS blockchains we study
Cardano, which implements the Ouroboros Praos protocol [7].

5.1 Modeling the Slot Leader Distribution

We assume the slot leader election is an ideal lottery. That is to say, the probabil-
ity that any party (honest or adversary) becomes a leader in a slot is proportional
to its hashing power (for PoW) or its stake5 (for PoS), and this probability is
independent of any other parties or any other slot. Thus, the total number of
slot leaders in a given slot is given by a sum of Bernoulli random variables, one
for each party. When there are sufficiently many parties, the sum of Bernoulli

5 This is a slight simplification in the case of Ouroboros Praos, where the probability
of a party that holds an s-fraction of stake (for s ∈ [0, 1]) becoming a slot leader is in
fact 1−(1−f)s for a constant f set to 1/20 in Cardano. We adopt this simplification
for the sake of broader applicability of our bounds.

https://github.com/renling/LCanalysis/
https://github.com/renling/LCanalysis/
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random variables can be approximated by a Poisson random variable. More con-
cretely, we model the number of honest leaders in a single slot as a Poisson
random variable of parameter rh, and the number of adversarial leaders in a sin-
gle slot as a Poisson random variable of parameter ra. Then, rh

rh+ra
(resp. ra

rh+ra
)

is the fraction of honest (resp. adversarial) hashing power in PoW, or stake in
PoS. Furthermore, 1

rh+ra
is the expected time it takes for one slot leader to

appear, which is the target inter-block time. The inter-block time of Ethereum
is roughly 13 s; the inter-block time of Cardano is 20 s. We can then derive rh

and ra from the target block interval of the blockchain systems, and the assumed
adversarial fraction.

Next, we need to make an assumption on the network propagation delay
(recall that we denote it Δr when denominated in seconds). The 90th percentile
block propagation time for Ethereum has been measured to be around 2 s [9],
hence we will use 2 s as one example value of Δr. We will also give results for
Δr = 5 s as a more conservative estimate. We did not find public propagation
delay measurements for Cardano, but since Cardano and Ethereum have very
similar block sizes, we use the same estimated values of Δr (i.e., 2 s and 5 s) for
Cardano as well.

5.2 Symbol Distribution in a Phase

As our recurrences from Sects. 3 and 4 work at the phase granularity, the first
step of the numeric evaluation is to compute the distribution of symbols in a
phase. We will use PoS as the example in this subsection. The treatment for
PoW is very similar.

Let xt be the characteristic string corresponding to a phase where x ∈ (N ×
N)∗ and t ∈ ({0}×N)Δ. There are three quantities our recurrences need for each
phase:

– #h(x), the total number of honest successes in the phase,
– #[a](xt), the total number of slots with adversarial successes in the phase,

and
– hΔ(x), the honest depth of the phase.

The latter two quantities are directly used in the recurrences, and we will explain
the role of #h(x) in Sect. 5.3.

We now explain how we can compute the joint distribution of the above three
quantities for a given slot. By definition, whenever there is a Δ period with no
honest successes, the phase ends. We will process one honest success at a time,
and at each step, update the joint probability density functions (pdf) of the
three quantities of interest. This way makes it easy to compute the distribution
of #h(x). Each step has a probability of ending the phase and the i-th step gives
the probability of #h(x) = i. To compute the distributions of the other two
quantities, we introduce and keep track of the distributions of two additional
random variables representing elapsed times:
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– S: elapsed time since the beginning of the phase, and
– ShΔ

: elapsed time since the last increase of honest depth.

Let Th be the interarrival time between the current honest success and the previ-
ous honest success. Th as an interarrival time in a Poisson point process follows
an exponential distribution. With each new honest success, the distribution of
S is updated by a simple convolution of Th and the original S (which yields
the pdf of the sum of two random variables). The distribution of ShΔ

can be
similarly updated except that we always have ShΔ

< Δ, so the post-Δ portion
of the resulting pdf (after convolution) is reset and added to the its pdf at 0
(i.e., probability of ShΔ

= 0). This post-Δ portion of the resulting pdf is also
the probability that the new honest success increments the honest depth hΔ(x),
allowing us to compute the distribution of hΔ(x). From here, we can also com-
pute the distribution of the latest inter-honest-success time Th conditioned on
whether or not hΔ(x) is incremented. We can then compute the distribution
of adversarial successes during this latest Th, again conditioned on whether or
not hΔ(x) is incremented. Lastly, we can update the distribution of #[a](xt)
and the joint distribution of all three quantities by convolving it with the above
conditional pdfs.

5.3 Evaluating the Recurrence

Once we have the characteristic string distribution within a phase, it is relatively
straightforward to numerically evaluate the recurrences. We again focus on the
PoS case. The PoW case is similar (in fact, simpler, because there is only one
quantity involved in the PoW recurrence).

Initially, we must settle on a distribution of (μ�, ρ) at time �, which corre-
sponds to the moment the transaction of interest appears in a block). While this
does depend on �, the distribution converges quickly to a geometric distribution
for reasonably large �. For this reason, we will use the stationary distribution of
the initial (μ�, ρ) as its distribution at time �. Also observe that before �, the
margin μ� was equal to reach ρ, making ρ the only quantity of interest. Intu-
itively, this initial distribution of ρ represents the number of private blocks that
the adversary has on top of the longest public honest block when the transaction
of interest enters the ledger.

Next, we need to evolve the recurrence until settlement happens. Unfortu-
nately, we do not know when exactly settlement happens as that depends on the
adversarial strategy and the initial value of ρ. Therefore, we instead evolve the
recurrence until the earliest possible time that a settlement error could occur.
Observe that a settlement error can occur only after 2k−s lottery successes have
occurred since �, where s is value of ρ at time � and k is the settlement depth.
This is because two chains of length k must exist for the adversary to cause a
settlement error. (For example, if ρ = 2k at time �, an adversary can immedi-
ately activate the settlement of “buried by k blocks” and violate consistency.) To
do so, we need the distribution of the total number of successes in each phase,
which is also why we need the quantity #h(x) in the joint distribution of a phase.
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Fig. 4. Left: Ethereum (PoW) block-based settlement failure for a 10% adversary,
results from [13] for comparison. Right: Cardano (PoS) block-based settlement failure
for a 10% adversary. (The right-side legend applies to both figures.)

From here, we keep evolving the recurrence, but “freezing” any probability
mass on positive values of the margin. We then evolve the system forward until
the (exponentially decaying) contributions from further evolution are negligible.

The same approach can be used to numerically evaluate the concrete attack
described in Sect. 4.7 to yield lower bounds on the settlement failure probability
for PoS blockchains. The lower bounds for PoW blockchains are based on a
simple private-mining attack.

5.4 Numerical Results

Figure 4 is a more detailed version of Fig. 1 from the introduction. It depicts
our settlement bounds for Ethereum, compared to the best previous bounds for
Ethereum [13]; as well as our new settlement bounds for Cardano. We provide
more numerical results in the full version [14].

Our methods also enable a direct comparison between PoW and PoS block-
chains in terms of settlement error and settlement delay. Figure 5 plots our set-
tlement upper bound for Cardano and compares it against a hypothetical PoW
blockchain with the same inter-block time as Cardano, and under the same
network delay and adversarial ratio. We can see that given the same system
parameters and at the same settlement depth, a PoS blockchain has a larger set-
tlement error; equivalently, to obtain the same settlement error, a PoS blockchain
needs a slightly higher settlement depth. This is an expected price being paid
for avoiding the enormous energy consumption of PoW, and is caused by giving
the adversary the extra power of creating as many blocks as it wishes using a
single success. Our results allow this price to be precisely quantified for the first
time.
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Fig. 5. Comparison of block-based settlement failure upper bounds for Cardano (PoS,
10% adversary, Δr = 2s) and a hypothetical PoW protocol with the same parametriza-
tion.

6 Conclusions: Practical Relevance

The goal of our work is to provide concrete settlement bounds with practi-
cal applicability to deployed longest-chain protocols. We provide the first such
bounds for longest-chain PoS, and along the way also derive the best existing
settlement bounds for PoW.

We remark that in specific PoS systems there may be additional security fac-
tors that affect settlement times. For example, while the lottery in protocols such
as Ouroboros [17] cannot be biased by an adversary, another class of protocols
including Ouroboros Praos [7] and Snow White [6] allow for so-called grinding
of the randomness beacon. While the results of this paper describe the intrinsic
aspects of longest-chain rule and apply to both of these protocol classes, for the
latter one an additional term accounting for grinding must be considered. For-
tunately, these two sources of settlement failure can be studied independently
and combined in a straightforward fashion.

While the concrete results we quote consider the parametrizations of
Ethereum and Cardano, our methods can be directly applied to compute these
statistics for any other choice of block interval, block propagation delay Δr,
and assumed share of adversarial power. In each specific case, the value Δr can
be estimated based on measurements, such as those we reference for Ethereum.
Finally, estimating the fraction of adversarially controlled stake ultimately comes
down to each user’s belief about the state of stake distribution across the set
of users; nonetheless our results allow each individual user to choose their set-
tlement rule based on their own beliefs about the system and their acceptable
failure probability (perhaps depending on the transacted amount).
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