Optimizing the Training of Co-Located Deep
Learning Models Using Cache-Aware Staggering

Kevin Assogba’, Bogdan Nicolae*, M. Mustafa Rafique’
"Rochester Institute of Technology, * Argonne National Laboratory
T{kta7930, mrafique} @cs.rit.edu, *bnicolae @anl.gov

Abstract—Despite significant advances, training deep learning
models remains a time-consuming and resource-intensive task.
One of the key challenges in this context is the ingestion of
the training data, which involves non-trivial overheads: read the
training data from a remote repository, apply augmentations and
transformations, shuffle the training samples, and assemble them
into mini-batches. Despite the introduction of abstractions such
as data pipelines that aim to hide such overheads asynchronously,
it is often the case that the data ingestion is slower than
the training, causing a delay at each training iteration. This
problem is further augmented when training multiple deep
learning models simultaneously on powerful compute nodes
that feature multiple GPUs. In this case, the training data
is often reused across different training instances (e.g., in the
case of multi-model or ensemble training) or even within the
same training instance (e.g., data-parallel training). However,
transparent caching solutions (e.g., OS-level POSIX caching) are
not suitable to directly mitigate the competition between training
instances that reuse the same training data. In this paper, we
study the problem of how to minimize the makespan of running
two training instances that reuse the same training data. The
makespan is subject to a trade-off: if the training instances start
at the same time, competition for I/O bandwidth slows down
the data pipelines and increases the makespan. If one training
instance is staggered, competition is reduced but the makespan
increases. We aim to optimize this trade-off by proposing a
performance model capable of predicting the makespan based
on the staggering between the training instances, which can be
used to find the optimal staggering that triggers just enough
competition to make optimal use of transparent caching in
order to minimize the makespan. Experiments with different
combinations of learning models using the same training data
demonstrate that (1) staggering is important to minimize the
makespan; (2) our performance model is accurate and can predict
the optimal staggering in advance based on calibration overhead.

Index Terms—Deep Learning, Caching and Reuse of Training
Data, Co-Located Training, Performance Modeling

I. INTRODUCTION

Deep learning (DL) models are rapidly gaining traction both
in the industry and scientific computing [1], driven by the
accumulation of massive data and the computing capability of
accelerators such as GPUs. In science, for example, instru-
ments that collect data at GB/s and 100+ TB/day present a
wide range of learning opportunities in areas such as fusion
energy science [2], lattice quantum chromodynamics [3], pty-
chography [4], drug design and response prediction [5], etc.

Training a DL model is data-intensive and requires exten-
sive computation, communication, and storage resources. For
example, vision models such as VIT [6] and natural language
models such as BERT [7] contain hundreds of millions of
parameters. GPU accelerators and Al runtimes have evolved

to take advantage of massive parallelism, enabling efficient
training of such large DL models. However, the problem of
feeding the training data to Al runtimes fast enough to take
advantage of efficient training remains a key challenge.

Modern DL runtimes such as PyTorch [8] and Tensor-
Flow [9] are beginning to acknowledge the importance of
optimizing the entire training data life-cycle: from reading the
training samples, augmenting them through transformations,
shuffling them to simulate pseudo-random sampling, and fi-
nally grouping them together into mini-batches that are fed
to the training. To this end, data pipeline abstractions were
proposed (such as NVIDIA’s DALI [10]) that asynchronously
overlap the steps in the training data life-cycle with actual
training steps. However, despite such asynchronous overlaps,
the data pipeline may not keep up with the training steps, in
which case each training step needs to wait until the next mini-
batch is available [11]. This may happen especially when the
training data is stored on a remote repository (such as a parallel
file system), in which case high I/O latencies and insufficient
I/0 bandwidth are to blame for stalls in the data pipeline [12].
In such scenarios, up to 85% of the training time may be spent
waiting for the data pipelines [13], [14].

This issue is amplified by the fact that modern HPC
systems feature compute nodes equipped with several GPUs
that compete for the limited I/O bandwidth. Specifically, each
GPU typically runs a different DL model training instance
that is attached to a different data pipeline, which means the
data pipelines compete for the I/O bandwidth to read the
training samples from the repository. Fortunately, in a large
number of scenarios, the training instances are related and
share the same training data. For example, this is the case for
multi-model learning (i.e., train different DL models to solve
the same problem, and use them in tandem to increase the
confidence in the inference results), neural architecture search
(automated exploration of DL model candidates feasible to
solve a problem), hyper-parameter optimization (fine-tuning
of DL model parameters such as learning rate and dropout).
Furthermore, it is often the case that different users (that are
unaware of each other) make use of the same standardized
training data (e.g., ImageNet [15]) to train their DL models.

Caching the training data is one possible solution to mitigate
the high I/O overheads of data pipelines [16]. It may even
happen automatically. For example, modern operating systems
use the spare memory available on the compute nodes to
cache the data read from POSIX file systems. Under ideal
circumstances, after training for an epoch (during which the

full training data is visited exactly once), subsequent epochs
(and other training instances sharing the same training data)
would be able to benefit from local caching to reduce or even
eliminate remote I/O to external repositories.

However, as the cost of traditional training that involves a
large number of epochs is increasing, techniques such as fine-
tuning a DL model using transfer learning [17] or applying an
early stopping policy during neural architecture search [18]
combined with transfer learning [19] is becoming more
popular. In this context, DL training is short-lived and runs
for one or a few epochs only. Furthermore, it is often the case
that they need to be scheduled simultaneously (e.g., because
they are part of an ensemble). Under such circumstances, the
interleaving of different access patterns causes high cache
contention, misses, and trashing, which limits the reuse op-
portunity of cached training data and therefore the overall
effectiveness of caching.

In this paper, we focus on the problem of how to efficiently
train co-located DL models that share the same input data
stored initially on a remote repository. For simplicity, we focus
on the case of pairs of DL models. In this case, our goal is to
minimize the training makespan, i.e., the duration until both
DL models are fully trained. As a secondary goal, we aim
to simultaneously reduce the resource utilization needed for
the training. We assume that the scheduler has the freedom to
start the two DL model training instances in any configuration:
simultaneously, serially (one after another), or staggered (start
one of the training instances after a delay). In either case, we
define resource utilization as the sum of the runtimes of the
individual training instances on the GPUs. In other words, if
we have the choice between starting two training instances
simultaneously or staggered, and in both cases, the makespan
is the same, we prefer the staggered configuration, because
in this case, we can assign other work on the GPU that is
scheduled to run the staggered training instance later.

A key observation that we leverage is the fact that it is
possible to use the same pseudo-random number generator
seed in the data pipelines of both DL models we aim to
train simultaneously. Using this approach, the training data
will be read in the same order by both training instances,
thereby negating the cache-trashing effect, since we avoid the
interleaving of different access patterns. On the other hand, the
contention for I/O bandwidth is more difficult to address, as
it is subject to a trade-off: if we start both training instances
at the same time, then this allows the maximum degree of
training parallelism at the cost of high I/O cache contention.
At the other extreme, if we run the training instances serially,
we avoid I/O contention at the cost of no training parallelism.
To solve this trade-off, we have to find the optimal staggering,
which measures how long to wait after starting the first training
instance until we start the second training instance, such as to
minimize the training makespan. To this end, we introduce
several contributions, summarized below:

« We study the impact of I/O overheads during the training

of both individual and pairs of DL models and identify
key metrics that enable the characterization and mitiga-

tion of caching and I/O contention triggered by the data
pipelines (Section IV).

« We introduce a performance model that requires minimal
calibration in the form of training the pair of DL models
for a few training steps under well-defined circumstances
derived from the metrics used in the characterization.
The model aims to predict the optimal staggering that
minimizes the training makespan, which indirectly also
reduces resource utilization. To this end, the performance
model leverages piece-wise consistent behavior patterns
(thanks to the iterative nature of DL model training),
which are composed as a state machine (Section V).

« We demonstrate the effectiveness of the performance
model to minimize the makespan and reduce the resource
utilization for the training of different pairs of popular DL
models and standardized datasets used in the Al commu-
nity. To this end, we run extensive experiments to measure
the training makespan of all possible staggerings and
show that our model can predict the optimal staggering
with an error of less than 1%, while reducing the training
makespan and resource utilization by more than 50%
compared with several baseline approaches (Section VI).

II. RELATED WORK

Deep Learning I/0 Optimization: Data movement is a
key performance bottleneck in modern DL training applica-
tions [20], [12] as approximately 62% of machine learning
workloads observe at least 1 ms of wait time and 16% spend
at least 100 ms waiting for the input data [21]. Stalls are in-
troduced by over-the-network data transfer, slow data pipeline
transformations, large discrepancies between modern hardware
accelerators and CPU processing speeds (especially when
transformations are performed on CPUs to avoid contention
for GPUs, where the training is performed) [22]. In particular,
the I/O access patterns (small, pseudo-random accesses) are
particularly challenging for traditional POSIX-based storage
systems such as parallel file systems (PFS) [23]. Pumma et
al. [24] have shown that memory-mapped databases can be
adapted to reorganize the training data such as to maximize
OS-level caching benefits and minimize POSIX metadata over-
heads (e.g., enumerate files in a directory). Other approaches
such as FanStore [25] provide a global cache layer on node-
local burst buffers in a compressed format, allowing POSIX-
compliant file access to the compressed data in user space.
Data pipelines that offer a streaming view over the training
data are becoming the norm in Al training, with industry-
standard approaches such as NVIDIA DALI [10] offering
asynchronous implementations that hide most overheads by
overlapping I/O reads, transformations, shuffling and batching
with the training. Such approaches are insufficient at a large
scale, as many training instances may share the training data
and therefore compete for the limited I/O bandwidth of the
repository storing it. In this case, collaborative caching of the
training data on the compute nodes is a popular technique.
Specifically, the compute nodes access each other’s cache pref-
erentially, which reduces the I/O contention on the repository.

This approach can be further optimized by maximizing the
reuse of training data thanks to the foreknowledge of the
access pattern [14], [13]. Other complementary directions are
the use of low-latency emerging memory technologies, e.g.,
CXL [26], or specialized DL model repositories to store and/or
cache candidates viable for transfer learning [27], which is a
scenario particularly relevant for short-lived training instances.

Performance Prediction: A large number of performance
modeling solutions rely on observations from traces of his-
torical application executions to predict the future application
performance [28], [29]. One possible approach is to use ML-
based numerical models to identify representative patterns
from collected data [30]. When the application generates
specific repetitive behavior patterns of performance metrics
over time (both in terms of runtimes or CPU, memory,
and network utilization), sequence-to-sequence DL models
(originally applied in natural language processing) have been
successfully adapted to identify these behavior patterns in
an online fashion [31]. Analytical approaches [32], [33] are
also used to collectively or separately model the computation,
communication, and I/O performance of DL workloads. They
are based on the fundamental observation that DL workload
executions follow a repetitive pattern where one mini-batch of
data is processed per iteration and the entire dataset is read in
each epoch [34]. Furthermore, learning runtime properties by
sampling tasks may also be used to predict properties of the
whole workload and avoid the assumption of cyclic execution
patterns [35]. Combining both numerical and analytical solu-
tions further optimizes the prediction process as fewer data
points need to be collected. It is important to note that while
such approaches can be effective at predicting the behavior of a
single DL training instance, in our scenario we are interested in
multiple DL training instances that are co-located and compete
for resources, which makes the problem more challenging.

Concurrent Execution of Co-Located DL Workloads:
The concurrent execution of co-located DL workloads leads to
workload interference through resource contention, bandwidth
bottleneck, race conditions, etc [36]. Different workloads
can be scheduled on dedicated GPUs to provide isolation
to training processes. However, this configuration does not
eliminate interference due to data pipelines competing for I/O
and CPU resources. In this regard, one particular aspect that
has proved successful is the load balancing of the stages of
the data pipeline across the CPU cores [13] (i.e., allocate
CPU cores to data pipeline stages proportionally to their
computational complexity). Nevertheless, the competition for
I/0O resources and OS-level caches leads to unpredictability in
workload performance depending on the co-located workload
and resource availability [37]. As a consequence, efforts have
emerged to optimize the training data layout and caching
strategies for frequent reuse [38], [39]. For example, Meta
has built a central data warehouse for training instances that
heavily filter massive and evolving datasets before reusing
them. Nevertheless, such efforts are often targeted at domain-
specific areas (e.g., recommender systems [40]).

To our best knowledge, we are the first to study the ben-

efits of optimal staggering of co-located DL model training
instances for the purpose of mitigating the contention of the
data pipelines through shared caches of training data, which
ultimately reduces the makespan and resource utilization.

III. BACKGROUND AND PROBLEM FORMULATION

Data pipelines abstract input data as a potentially infinite
sequence of training samples, e.g., tensors or composite types
(tuples, nested datasets, etc.). Training samples are not ac-
cessed individually, but in groups called mini-batches that are
assembled into a batch queue, working like an iterator used to
feed a new mini-batch at each training iteration. The path from
reading the input data to generating the mini-batches creates a
complex multi-stage producer-consumer pipeline, as illustrated
in Figure 1. Specifically, the training samples are read from
the repository (typically as files stored on a PFS), encoded
as tensors, optionally transformed using custom augmentation
functions, shuffled, and finally assembled into mini-batches,
which are finally enqueued into the batch queue.

A typical implementation of a data pipeline (such as
NVIDIA’s DALI [10]) is asynchronous, i.e., it fills the batch
queue in the background, without blocking the training iter-
ations. If the data pipeline cannot keep up with the training
iterations (i.e., the training iterations consume mini-batches
from the batch queue faster than the data pipeline can pro-
duce them), the training needs to wait for the data pipeline
between the iterations. Such I/O wait delays increase the
overall duration of the training. An example is illustrated in
Figure 2: the data pipeline assembles mini-batches one and two
quickly, but takes much longer for mini-batch three. Although
a large part of the overhead of assembling mini-batch three is
overlapped with the second training iteration, this still causes
a significant I/O wait delay until the third training iteration
can start. Furthermore, while these data pipelines are highly
optimized and can take advantage of both GPUs and CPUs to
parallelize the intermediate stages (decoding, transformations,
shuffling, etc.), I/O requests often become a weak link in the
pipeline, especially when they need to be served by a PFS,
bottlenecking the rest of the stages [12], [13].

For the purpose of this work, we assume two DL training
instances A and B that share the same training data. To
take advantage of caching, they are co-located on the same
compute node but run on different GPUs. If A and B overlap
during their runtime, then they will either compete for the I/O
bandwidth to the remote repository (if they need to access
different training samples that are not cached locally) or they
will compete for the cache (both for reads and writes). Our
goal is to minimize the makespan of finishing the training of
both A and B while reducing the GPU resource utilization
necessary to achieve this objective.

Since both A and B visit all training samples of the same
dataset exactly once during an epoch, a naive strategy could
simply start both A and B at the same time and let them
compete for I/O bandwidth to the remote repository, under
the assumption that any first-time read of a training sample
can be cached locally, therefore the I/O overhead of accessing

Filename
Queue

 Input E
producer

Interleav'e(), Map()

Sheiiile Batch E = enqueue
Clieue Queue D = dequeue
(preprocesed
samples)
| “ T L T
Shuffle() Prefetch() Batch()

Fig. 1. Data pipeline: multi-stage streaming of training data from a remote repository.

Batch 1 Batch 2

BHB
3 3

Batch
Queue

Training 1 Training 2

L *Y

1/0
Wait ‘
Training 3

Fig. 2. Data pipeline: mini-batches that accumulate slowly in the batch queue cause I/O wait delays that slow down the training.

the remote repository is paid only once, regardless of which
training instances issued the first time read. We explain why
such a naive strategy is sub-optimal in the next section.

IV. STUDY OF I/0O BOTTLENECKS DURING CO-LOCATED
TRAINING WITH VARIABLE STAGGERING

In this section, we aim to characterize the I/O and caching
behavior of co-located DL training instances that share the
same training data. It simultaneously motivates our contribu-
tion and explains key behavior patterns and metrics that are
leveraged by our contribution.

Since the I/O bandwidth to the remote repository is shared
by the two co-located DL training instances A and B, a naive
strategy that simply starts them at the same time amplifies the
I/O wait delays due to competition for limited I/O bandwidth,
especially when A and B visit the training data in a different
order. A simple fix to solve this issue would be to force A and
B to visit the training data in the same order, which would
maximize the reuse of locally cached training data.

We propose to achieve this by fixing the pseudo-random
number generator seed used by the data pipelines of A and
B to sample the training data, which effectively results in a
deterministic order of visiting the training data. However, a key
question is whether such a simple fix is enough to enable the
naive strategy to achieve our goal of minimizing the makespan.

As expected, this is not the case. To illustrate this point, we
construct an experimental setup that concurrently trains two

DL models (A: ResNet-50 and B: EfficientNet-B0), commonly
used as benchmarks, on two GPUs of the same compute
node. These DL models use the same standardized training
data (TinylmageNet [41]) available on a remote repository
(GlusterFS) and begin with a cold cache. For completeness,
please refer to the full description of the setup in Section VI-A.

We fix the pseudo-random number generator seed for the
data pipelines of A and B to implement a deterministic read
order of the training samples for the naive strategy. We say
the naive strategy has a staggering of 0% because both A and
B start at the same time. Then, we compare with alternative
experiments that start ResNet-50 first, then wait until X% of
the total runtime of ResNet-50 has passed (100% denotes the
total runtime of ResNet-50 when running standalone, without
competition for I/O bandwidth), then start EfficientNet-BO0. In
this case, we say the staggering is X%. A staggering of 100%
corresponds to the case when A and B run serially.

We depict the results in Figure 3. Indeed, as can be
observed, the naive strategy does not produce the minimum
makespan and leads to high resource utilization. By using a
staggering of 40%, the makespan can be reduced, while at the
same time the resource utilization of EfficientNet-B0O is 40%
lower since it starts later but finishes faster. In general, we
note the following important observations:

Observation 1 - I/O competition negatively impacts
the individual runtimes and resource utilization of both
training instances: Even with a fixed visiting order of the

I Staggering = 0%
2 Staggering = 20%

BN Staggering = 40%
B Staggering = 80%

I Staggering = 100%

1500

Makespan (s)
S
8

a
o
o

Res-50 + Eff-BO

ResNet-50 EfficientNet-BO

Fig. 3. Impact of variable staggering (delay of starting EfficientNet-BO relative
to ResNet50) on the training makespan. Lower is better.

training data, the competition for the I/O bandwidth of the
remote repository and the local cache creates a significant
bottleneck that slows down both DL training instances.

Observation 2 - The staggered training instance experi-
ences significant reduction in individual runtime and re-
source utilization due to caching: Specifically, EfficientNet-
B0 is almost 3x faster when most of its training data was
already cached by ResNet-50, which demonstrates that caching
effectively mitigates the I/O overheads of accessing the remote
repository that stores the training samples, as long as there is
no high I/O contention between the remote reads that populate
the cache and the cached reads of the staggered instance.

Observation 3 - Staggering reduces the makespan up to
an optimal point, then it experiences diminishing returns:
Since our primary goal is to minimize the makespan, not
the runtime and resource utilization of EfficientNet-BO from
a selfish perspective, we cannot simply wait until the training
data is fully cached by ResNet-50. In this case, there is a trade-
off: the training makespan of ResNet-50 and EfficientNet-BO
(Res-50 + Eff-BO) decreases as the staggering increases up
to 40%, then it begins increasing again, which confirms that
reducing I/O competition helps up to a point, after which it
negatively impacts the makespan.

Observation 4 - Minimizing the makespan through
staggering simultaneously reduces resource utilization: Not
only does the optimal staggering reduce the makespan (even
if by a small degree), but at the same time, it significantly
reduces resource utilization because the staggered training
instance does not consume any resources before it starts.
Therefore for the duration of the staggering, GPU, CPU, or
I/O resources can be used for other purposes.

To explain these observations better, in Figure 4 we depict
the I/O wait time during the first epoch of DL training for a
variable degree of staggering. The I/O wait time measures the
time interval between the beginning of the training iteration
and the moment when a mini-batch was successfully dequeued
from the batch queue of the data pipeline. Using the I/O wait
time, we can study how well the data pipeline hides the 1I/O
overheads asynchronously from the training steps.

As can be observed, starting from a cold cache results in
a constantly high I/O overhead in the case of ResNet-50.
However, as the staggering of EfficientNet-B0O increases, so
does the effectiveness of the OS-level caching at reducing

the I/O wait time of EfficientNet-B0. Eventually, EfficientNet-
BO catches up with the cache of ResNet-50, at which point
both training instances begin to experience high I/O wait
times. Thus, we propose that leveraging I/O wait times under
different circumstances (cold vs. warm cache, standalone vs.
concurrent execution subject to I/O competition) is an impor-
tant step towards a performance model that can predict the
optimal staggering.

V. OPTIMAL CACHE-AWARE STAGGERING USING
PERFORMANCE MODELING

In this section, we present our key contribution: based on the
observations detailed in Section IV, we propose a performance
model and methodology to find the optimal cache-aware stag-
gering that simultaneously minimizes the training makespan
and resource utilization of co-located training instances that
share the same input data.

A. Performance Model

To this end, we introduce the following notations: the first
training instance A starts at timestamp t4 = 0, exhibits an
average duration [4 of the training iterations which is extended
by an average I/O wait time W 4. Furthermore, we assume the
total number of training iterations is fixed per epoch (full pass
over the training data). A trains for a total of F4 epochs.
Similarly, training instance B starts at timestamp ¢ > 0, has
an average training iteration duration Ip and an average 1/O
wait time Wp. It trains for Ep epochs.

We force the data pipelines of both training instances to use
the same seed for their pseudo-random number generators used
for shuffling the training data. Thus, if tg > 0, then B will
initially consume the cached training samples of A (instead of
accessing them directly from the remote repository). Assuming
the I/O wait time of B for accessing the warm cache is
WB\cached’ if IB + WB\cached < IA + WA, then B will
eventually “catch up” with the cache of A, i.e., there exists t¢
such that A and B have processed the same number of mini-
batches. We denote N4 (t) and Np(t) as the number of mini-
batches (training iterations) processed at moment ¢ by each of
A and B respectively. Thus, N4(tc) = Ng(tc) = N. Then,
(Wa+14)x N =tc and (WB\cached +1Ig)x N =tc—tg.
By solving these equations, we obtain:

tg te
N=_"°¢
Wy + 14

)

te = 1— Wglcacheat+1B

Wa+1a
Then, if we denote the runtime of the first epoch of A as
T's1, the runtime of the first epoch of B as 11, the I/O wait
time of A under concurrency W4cone, the /O wait time of
B under concurrency Wpconc, and the total number of mini-
batches in an epoch as N, we have:

Ta1 =tc + (NE - N)(WA\conc +]A)
Ty =tc —tp+ (NE‘ - N)(WB|conc + IB)

Accordingly, the total runtimes 74 and Tp of training
instances A and B over 4 and Ep epochs are:

2

400+ 400
= > < 300
E 300 E 300 £
g g £ 200
i 200 i 200+ s
3 3 % 100
= 1004 —— ResNet-50 = 1001 —— ResNet-50 = —— ResNet-50
o EfficientNet-BO o EfficientNet-BO o EfficientNet-BO
T T T T T T T T T T T v T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
ElapsedTime (s) ElapsedTime (s) ElapsedTime (s)

Staggering w.r.t A =20%

Staggering w.r.t A = 40%

Staggering w.r.t A = 80%

Fig. 4. Analysis of the I/O wait time during the first epoch of DL training for a variable staggering.

Fig. 5. Representation of performance mode states. SR: Standalone, Remote
Data; CR: Concurrent, Remote Data; CL: Concurrent, Local (cache) Data;
CL/R: Concurrent, Local (cache) or Remote Data.

Ea
Ta=Ta + Z Ng X (WA\cached + IA)
e=2
. 3)
Tp =1p1 + Z Ng X (Wglcached + IB)
e=2
Finally, we obtain the makespan M = max (Ta,Tp + tp).
Thus, the optimal staggering denoted OS is:

“4)

In case Ip +Wpcachea > 1a+Wa, then B will not “catch
up” with the cache of A, therefore, it will always benefit from
caching and the optimal makespan is easy to calculate.

To account for all these alternative scenarios, we introduce
a state machine (depicted in Figure 5) that defines the piece-
wise behavior of the performance model, which simplifies the
implementation of our performance model. The state machine
accounts for the different I/O behaviors of the two training
instances during I/O competition as their runtime overlaps.

OS = arg Irtlin[maa: (Ta,Tp +1tB))
B

B. Predicting the Optimal Staggering

Using the performance model described above, we predict
the optimal staggering using two steps:

1) Obtain Ia, Ip, Wa, Wpg, WA|cached’ WB\cached’
W Ajcones WB|cone Dy means of micro-benchmarking in
order to calibrate the performance model.

2) Apply binary search to find the optimal staggering by
predicting the training makespan at each halving step
based on the performance model.

Note that the duration of the training iterations and the
I/O wait delay is stable, both when running the training
instances standalone and under concurrency, as discussed in
Section IV. Therefore, it is enough to run only a small number

TABLE I
SUMMARY OF THE PARAMETERS DESCRIBING THE DL MODEL PAIRS
EVALUATED IN OUR EXPERIMENTS.

Set Pairs of models Parameters Batch Number 1/0 duration Training
(Millions) Size of itera- per iteration duration per
tions (ms) iteration (ms)
1 A: Inception-V3 239 64 1560 489.9 258.7
B: ResNet-50 25.6 64 1560 449.3 303.6
5 A: ResNet-50 25.6 64 1560 449.3 303.6
- B: EfficientNet-BO 53 64 1560 5433 204.7
3 A: VGG-16 138.4 64 1560 278.8 462.2
B: Inception-V3 239 64 1560 489.9 258.7
A Sequential EEA Simultaneous A Our Model
o
N &
! w0 @
2000+ N 8 8 &
") N o
w0) r)

1402.7

Makespan

VGG-16 A)
Inc-V3 (B)

Inc-V3)
VGG-16 (B)

Res-50 A)
Inc-V3 (B)

Inc-V3()
Res-50 (B)

Eff-B0 (A)
Res-50 (B)

Res-50 (A)
Eff-BO (B)

Fig. 6. Training makespan for the compared approaches. Notations: Res-50
(ResNet-50), Eff-B0O (EffientNet-B0),
Inc-V3 (Inception-V3). Lower is better.

of training iterations in order to calibrate the performance
model. Furthermore, these parameters can be archived and
reused later if the same DL models are trained again, which is
often the case when the training data or the hyperparameters
change for an ensemble of DL models that train together.
Another important aspect to note is that our approach is
flexible and can predict the optimal staggering even after a DL
training instance has already started. In this case, it is enough
to simply perform the binary search between X % and 100%,
with X% denoting the current progress of the DL training
instance. By predicting the optimal staggering, makespan and
resource utilization with our approach, schedulers can explore
alternatives to decide how to co-locate pairs of DL training
instances that share the same training data. For example, it
may be possible that multiple training instances with different
rates of progress are a possible candidate for co-location, but
without anticipating the benefits of pairing a new training
instance with each of them, the decision would be arbitrary and
would cause sub-optimal makespan and/or resource utilization.

C. Implementation Details

We implemented our approach for PyTorch 1.13, using the
data pipeline provided by NVIDIA DALI 11.0. Note that DALI
is designed to be compatible with a variety of Al runtimes.
Therefore, our approach can be trivially extended to support
such Al runtime alternatives, including TensorFlow.

Specifically, we instrumented DALI’s batch queue to mea-
sure and log the I/O wait time of the data pipeline at fine
granularity for each iteration. Using the instrumented data
pipeline, we designed and developed a Python framework to
automate the calibration of the performance model. In this
regard, we run each DL model training for a small number K
of iterations in various combinations: standalone with a cold
cache that forces remote reads from the repository (to obtain
L4, I, W4, Wp), standalone with pre-cached training data (to
obtain Wy cached> WB|cached)s concurrent with cold cache (to
obtain W4 |cones WB|cone)- The final values of the parameters
are calculated as the averages of the K iterations and stored
in a catalog for future reuse (in case the same DL models are
trained again with different training data or hyperparameters).
Note that the reuse of the performance model parameters is
partially possible even when only one of the DL models of
the pair was trained before. For example, if A was trained
before together with B, but now needs to be trained together
with C, then we can directly reuse 14, Wa, Wyjcachea and
we only need to perform micro-benchmarks to obtain I¢, W¢,
Weicacheds Wajcones Wecone- By reusing these parameters,
we eliminate the overhead of performing the calibration.

Finally, we implemented the state machine describing the
piece-wise behavior of the performance model (introduced
in Section V-A) and the binary-search algorithm (introduced
in Section V-B) as a Python script that returns the optimal
staggering. It transparently interacts with the catalog and per-
forms the minimum amount of micro-benchmarking to obtain
any missing performance model parameters. Our approach is
generally applicable to any type of DL model as we do not
use parameters specific to the neural architecture. Instead, our
approach takes advantage of the iterative nature of the training
process and specifically the constant training time per mini-
batch during an epoch, which is true for the large majority of
training methods.

V1. EVALUATION
A. Experimental Setup

We evaluate our performance prediction model on the
Chameleon Cloud testbed [42], a cloud research environment
for experimentation. Our setup consists of two nodes, each
equipped with 24 hardware cores of Intel Xeon E5-2670 CPUs
(48 threads), 1 TB SATA hardware drive, 125 GB DDR4
memory, and 2 NVIDIA P100 GPUs. Each GPU has 16 GB of
memory. Compute nodes are also attached to a 2 TB GlusterFS
PFS located in the same data center and accessible through
a POSIX mount point. The storage node serves all training
datasets with the GlusterFS 9.6 server, and compute nodes
are equipped with a GlusterFS 9.6 client. All experiments are

B |deal Staggering == Our Model |

100% -
80%
(=2
£ 60%
@
S 40%-
@
& 20%-
0% | |
b o b b bo
Eff-BO(A) Inc-V3(A) Res-50(A) Inc-V3(A) VGG-16(A)
Res-50 (B) Res50(B) Inc-V3(B) VGG-16(B) Inc-V3 (B)
Fig. 7. Accuracy of our approach compared with the ideal staggering.

Notations are identical as in Figure 6.

executed with a software stack that consists of CUDA 11.2,
PyTorch 1.13, and NVIDIA DALI 11.0.

B. Compared Approaches

Throughout our evaluations, we use the following baselines
for comparison:

1) Sequential: We run the DL training instances sequen-
tially, starting with a cold cache: first A is allowed to run
to completion, after which B is started and fully benefits
from a warm cache. The training makespan is the sum of
the runtimes of A and B.

2) Simultaneous: We run the DL training instances simul-
taneously, starting with a cold cache. In this case, both A
and B compete for the I/O bandwidth to the GlusterFS
repository. The training makespan is the duration of the
slowest among A and B.

3) Ideal Staggering: This is an exhaustive search that tries
all possible staggering configurations in increments of
10% relative to the runtime of A to experimentally
determine the ideal staggering for B. It is intended as
a theoretical baseline that enables us to evaluate the
accuracy of the predictions of our performance model.

4) Our Approach: This is our approach as detailed in Sec-
tion V. The calibration needed to obtain the parameters
of the performance model was run for 100 iterations of
the first epoch and the results were averaged.

C. Summary of the workloads

We evaluate three pairs of co-located DL training instances.
For each pair, we study both the case when A starts first and B
follows, as well as the opposite. The three pairs were obtained
using four different standardized DL models frequently used
in the Al community: EfficientNet-B0, Inception-V3, ResNet-
50, and VGG-16. The training data used by each DL model is
the Tinylmagenet [41] dataset, which consists of a subset of
images from the larger ImageNet [15] dataset. Tinylmagenet is
also frequently used in the Al community. The characteristics
of the DL models and pairs are summarized in Table I.

D. Results: Training Makespan

We first analyze the training makespan for the six different
configurations corresponding to the pairs summarized in Ta-
ble I. The results are reported in Figure 6. As can be observed,
our approach obtains the lowest training makespan compared

I Staggering = 0% X7 Staggering = 20%

[Staggering = 40%

[XJ Staggering = 60% I Staggering = 80%

700 1600 2000
Eeoo- - 5 14007 8 0 = 1750 o “
E500] E g £12007 pgs e > W01 g iigsm sEnsl
5l B 1000+ S TI12501 TE oz ::: ::E
2 % so0 M3 OF OF S 1000 | gurC.S > N N
o B B e el B R
@ T 600+ ‘ 3o g 25 g 53 | g 7504 § . § . ‘ .
o o I
2007 -_g 400 .4 B s NS - 500 - § . § . ‘ .
= N)

'36100' = 200+ .: ‘ i H § . 2501 }1 H q . q .
| 1 BN N A PN Il NN N h N !
Res50 (A) IncV3(A) VGG-16 (A) Res50 (A) Inc-V3(A) VGG-16 (A) Res50 (A) Inc-V3(A) VGG-16 (A)
EffBO(B) Res-50(B) Inc-V3 (B) EffBO(B) Res50(B) Inc-V3 (B) EffBO(B) Res-50(B) Inc-V3 (B)

Fig. 8. Impact of staggering on I/O wait, execution time of 5 (second training instance), and makespan. Lower is better.

with both the sequential and the simultaneous approaches,
for all configurations. As expected, the sequential approach
is the slowest, followed by the simultaneous approach and our
solution. Interesting to observe that the sequential approach is
only 25% slower than the simultaneous approach, which shows
that the I/O overheads are large and introduce long I/O wait
times, thereby severely degrading the training performance.

Compared with the simultaneous approach, our approach
reduces the training makespan by a small amount (up to
5%). However, as noted in Section IV, this small benefit
is complemented by much lower resource utilization due to
the execution of instance B at a later time, which we will
discuss in the following sections. The fact that we can reduce
the makespan compared with the simultaneous approach in
all configurations is also significant in that it highlights the
recurring bottleneck caused by competing for the I/O band-
width to the remote repository and the local caches, despite
different degrees of asynchronous overlapping between the
data pipelines and the training iterations. We believe this
finding will be essential in the design of next-generation data
pipelines for multi-tenant DL training.

E. Results: Accuracy of the Optimal Staggering Prediction

Next, we focus on the accuracy of the optimal staggering
predictions using our approach, which is depicted in Figure 7.
As can be observed, our approach predicts the optimal stag-
gering within an error of less than 1% compared with the
ideal staggering, which is determined using an exhaustive
search that experimentally evaluates the makespan for all
possible staggering values (in increments of 10% relative to
the total standalone runtime of the first DL model training
instance when starting with a cold cache). This demonstrates
that our proposal is accurate despite using little information
obtained through a low-overhead calibration involving only a
few training iterations.

Furthermore, another important observation is that the opti-
mal staggering is mostly between 40%-60% of the runtime of
the first training instance, which means that we can afford to
wait for a long time before starting the second DL training in-
stance, thereby dramatically reducing its runtime and therefore
resource utilization (50% on average).

F. Results: Zoom on Different Levels of Staggering

Next, we study the impact of different degrees of staggering
(ranging from 0% to 80%) on the average I/O wait delay,
execution time of the second training instance B, and the
training makespan. This study helps us explain the findings we
presented in the previous sections. To this end, we rely on the
measurements obtained from the experiment that determines
the ideal staggering using an exhaustive search, as described
in Section VI-E. The results are illustrated in Figure 8.

Starting with the I/O wait delay, we can observe high values
for a staggering of 0% for the considered pairs. This means
the second training instance experiences minimal benefits from
caching due to the I/O competition. As the stagger increases,
the average I/O wait delay decreases, indicating that the
second training instance quickly consumes the cached training
samples until it “catches up” with the first training instance,
then it experiences I/O bottlenecks again. Interesting to note is
that the I/O wait delay becomes negligible after a staggering
of 60%, which correlates well with our previous findings that
identified the optimal staggering of 60% for pairs.

As expected, the average I/0 wait delay is a determining
factor in the runtime of training instance B, since these delays
are accumulated at every training iteration. Specifically, these
/O wait delays are large and can cause up to 3x slower
runtime under competition for I/O bandwidth in the case of
simultaneous start (staggering 0%).

An interesting trend is observable regarding the minimum
makespan: the optimal staggering is not necessarily correlated
with the minimum runtime of training instance B. For ex-
ample, EfficientNet-BO achieves the minimum runtime when
staggered 80% with respect to ResNet-50, which is visibly
lower than the runtime at a staggering of 60%. However,
the optimal makespan staggering is at 60%, not at 80%.
Same observation applies for Inception-V3 and ResNet-50.
This confirms the observations in Section I'V: staggering makes
better use of caching and reduces the makespan up until a
point, after which it provides diminishing returns.

Nevertheless, even if our main goal is to reduce the training
makespan, the optimal staggering is always close to the
minimum runtime of training instance B. Thus, our approach

600 600

@ n I «

£ 500 £ 400 £ 5001 £ 4007

g A: Inception-V3 g A: Inception-V3 E A:VGG-16 E

E 400 B: VGG-16 E 2004 B: VGG-16 i= 4004 B Inception-V3 | = 900

K T 5 s A:VGG-16

= 3007 = 0 = 300+ = B: Inception-V3
] § : 04

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Elapsed Time Elapsed Time Elapsed Time Elapsed Time
Staggering w.r.t A=0% Staggering w.r.t A = 20% Staggering w.r.t A= 0% Staggering w.r.t A=20%

% ? ? B 300

E 400 E 4004 E 4001 e

E E £ g 200

= 200 = 200 = 2004 =

s A: Inception-V3 5 A: Inception-V3 5 A:VGG-16 < 100 A:VGG-16

= B:VGG-16 = B:VGG-16 = B: Inception-V3 = B: Inception-V3

04, : : ; : 0+, : T ‘ 0+, : ‘ : : 04, ; : : - -
0 250 500 750 1000 0 500 1000 1500 0 250 500 750 1000 0 250 500 750 1000 1250
Elapsed Time Elapsed Time Elapsed Time Elapsed Time

Staggering w.r.t A = 40% Staggering w.r.t A =80%

Fig. 9. I/O wait time for Inception-V3 and VGG-16 with a variable staggering
(ranging 0%-80%).

achieves its second goal of enabling a significant reduction in
resource utilization, since a large delay in the start of training
instance B allows the GPU to be used for other workloads.

G. Results: Zoom on the Evolution of 1/O Wait Time

Our final set of results focuses on explaining the average
I/O wait delays discussed in the previous section. Figure 9
and Figure 10 zoom on the evolution of the /O wait delay
during the runtime of the VGG-16 and Inception-V3 DL
model pair. The moment when the second training instance
B fully consumes the training data cached by A (denoted ¢
in Section V) is marked using a horizontal bar.

For example, we notice when the staggering is 20%, VGG-
16 (in the role of A) loads data directly from the cache for
more than 250 seconds, whereas Inception-V3 (in the role of
B) consumes all cached data within 150 seconds. Among the
two training instances, VGG-16 has a longer training time
per mini-batch. Therefore, at the start of B, A has only
cached 460 mini-batches of the dataset. In the reverse scenario
where Inception-V3 is in the role of A and VGG-16 is in the
role of B, 800 mini-batches are cached when VGG-16 starts.
This gives VGG-16, in the reverse scenario, almost double
the amount of cached training data to amortize the I/O wait
delays until it catches up. Furthermore, since VGG-16 has
slower training iterations, it will consume this larger amount
of cached training data slower, giving more time to Inception-
V3 to further populate the cache meanwhile.

Thus, it is important to carefully consider the order of
execution of the DL workloads to minimize both the training
makespan and resource utilization.

VII. CONCLUSION AND FUTURE WORK

In this paper, we focus on the problem of how to efficiently
train co-located DL models that share the same input data
stored initially on a remote repository such as a parallel
file system. Specifically, given a pair of DL model training
instances, our goal is to minimize the training makespan, i.e.,
the duration until both DL models are fully trained. As a
secondary goal, we aim to simultaneously reduce the resource
utilization needed for the training.

Staggering w.r.t A = 40% Staggering w.r.t A=80%

Fig. 10. I/O wait time of VGG-16 and Inception-V3 with a variable staggering
(ranging 0%-80%).

Based on experimental evaluations, we have observed that
simply fixing the pseudo-random number generator of the
asynchronous data pipelines employed by Al runtimes in
order to obtain a deterministic read order of the training
samples for both instances is not enough to simply employ a
naive strategy that starts both training instances simultaneously
and takes advantage of local caching on the compute nodes.
The main reason for this observation is the high competition
for I/O bandwidth and local caches, which introduces large
I/O wait delays in the data pipeline and therefore increases
the training duration. Instead, a better strategy is to stagger
one of the training instances, which reduces the penalty of
competition and improves both the training makespan and
resource utilization (i.e., the staggered training instance starts
later and runs for a shorter runtime, thereby enabling GPUs
to be used for other workloads).

To this end, we proposed a performance model and method-
ology to find the optimal staggering that produces the mini-
mum makespan, which also reduces resource utilization. Our
approach is flexible and can be applied to take initial decisions
(i.e., how to schedule two related training instances that share
the same training data) as well as dynamic decisions (i.e.,
anticipate the benefits of co-locating a training instance with
another that already started). Compared with several baselines,
our approach obtains a shorter makespan, while at the same
time reducing the resource utilization of the staggered training
instances by more than 50%.

Encouraged by these results, we plan to extend our work in
the future in several directions: (1) model the performance of
multiple DL training instances that are dynamically submitted
by capturing the probability distribution followed by the
workloads submission or considering the makespan of two
instances as one and optimize the third instance accordingly;
(2) investigate how these findings can be used to design and
develop novel data pipelines for DL training that are aware of
co-located DL training instances that share the same training
data and provide optimized cache-sharing strategies under con-
currency for this purpose; (3) integrate our performance model
into an HPC cluster scheduler to improve the orchestration of
DL training workloads.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy (DOE), Office of Advanced Scien-
tific Computing Research, under under contract DE-AC02-
06CH11357. Furthermore, it was supported by the National
Science Foundation (NSF) under Awards No. 2106634 and
2106635.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

X. Wu, V. Taylor, J. M. Wozniak, R. Stevens, T. Brettin, and F. Xia,
“Performance, energy, and scalability analysis and improvement of
parallel cancer deep learning candle benchmarks,” in Proc. ICPP, 2019,
pp. 1-11.

I. Joseph, Y. Shi, M. Porter, A. Castelli, V. Geyko, F. Graziani,
S. Libby, and J. DuBois, “Quantum computing for fusion energy science
applications,” Physics of Plasmas, vol. 30, p. 010501, 2023.

C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein,
and T. Wettig, “Execution-cache-memory modeling and performance
tuning of sparse matrix-vector multiplication and lattice quantum chro-
modynamics on a64fx,” Concurrency and Computation: Practice and
Experience, vol. 34, p. e6512, 2022.

Z.Dong, Y.-L. L. Fang, X. Huang, H. Yan, S. Ha, W. Xu, Y. S. Chu, S. L.
Campbell, and M. Lin, “High-performance multi-mode ptychography
reconstruction on distributed gpus,” in Proc. IEEE NYSDS, 2018, pp.
1-5.

V. T. Sabe, T. Ntombela, L. A. Jhamba, G. E. Maguire, T. Govender,
T. Naicker, and H. G. Kruger, “Current trends in computer aided drug
design and a highlight of drugs discovered via computational techniques:
A review,” European Journal of Medicinal Chemistry, vol. 224, p.
113705, 2021.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL-HLT, 2019, pp. 4171-4186.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Proc.
NeurIPS, vol. 32, 2019.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

“NVIDIA Data Loading Library,” https://developer.nvidia.com/DALI.
J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram, “Analyz-
ing and mitigating data stalls in dnn training,” in Proc. VLDB Endow.,
2021, p. 771-784.

J. Liu, B. Nicolae, D. Li, J. M. Wozniak, T. Bicer, Z. Liu, and I. Foster,
“Large scale caching and streaming of training data for online deep
learning,” in Proc. FlexScience, 2022, pp. 19-26.

J. Liu, B. Nicolae, and D. Li, “Lobster: Load Balance-Aware 1/0 for
Distributed DNN Training,” in Proc. ICPP, 2022, pp. 1-11.

N. Dryden, R. Bohringer, T. Ben-Nun, and T. Hoefler, “Clairvoyant
prefetching for distributed machine learning i/0,” in Proc. ACM/IEEE
SC, 2021, pp. 1-15.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE CVPR, 2009,
pp. 248-255.

M. Arif, K. Assogba, and M. M. Rafique, “Canary: fault-tolerant faas
for stateful time-sensitive applications,” in Proc. ACM/IEEE SC, 2022,
pp. 568-583.

A. Ali, H. Sharma, R. Kettimuthu, P. Kenesei, D. Trujillo, A. Miceli,
I. Foster, R. Coffee, J. Thayer, and Z. Liu, “fairDMS: Rapid model
training by data and model reuse,” in Proc. IEEE CLUSTER, 2022, pp.
394-405.

Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A
survey on evolutionary neural architecture search,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 34, pp. 550-570, 2023.

10

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

H. Liu, B. Nicolae, S. Di, F. Cappello, and A. Jog, “Accelerating DNN
Architecture Search at Scale Using Selective Weight Transfer,” in Proc.
IEEE CLUSTER, 2021, pp. 82-93.

S. Kaneyv, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-
Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in Proc.
ISCA, 2015, pp. 158-169.

M. Kuchnik, A. Klimovic, J. Simsa, V. Smith, and G. Amvrosiadis,
“Plumber: Diagnosing and removing performance bottlenecks in ma-
chine learning data pipelines,” in Proc. MLSys, vol. 4, 2022, pp. 33-51.
D. Choi, A. Passos, C. J. Shallue, and G. E. Dahl, “Faster neural network
training with data echoing,” arXiv preprint arXiv:1907.05550, 2019.

F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, “I/o characterization and performance evaluation
of beegfs for deep learning,” in Proc. ICPP, 2019, pp. 1-10.

S. Pumma, M. Si, W. Feng, and P. Balaji, “Scalable deep learning via I/O
analysis and optimization,” ACM Transactions on Parallel Computing,
vol. 6, no. 2, pp. 1-34, 2019.

Z. Zhang, L. Huang, J. Pauloski, and I. T. Foster, “Efficient I/O for
neural network training with compressed data,” in Proc. IEEE IPDPS,
2020, pp. 409-418.

M. Arif, A. Maurya, and M. M. Rafique, “Accelerating performance of
gpu-based workloads using CXL,” in Proc. FlexScience, 2023, p. 27-31.
M. Madhyastha, R. Underwood, R. Burns, and B. Nicolae, “Dstore: A
lightweight scalable learning model repository with fine-grained tensor-
level access,” in Proc. ICS, 2023.

E. Gianniti, L. Zhang, and D. Ardagna, “Performance prediction of gpu-
based deep learning applications,” in Proc. IEEE SBAC-PAD, 2018, pp.
167-170.

S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy, A. Sabne,
and M. Burrows, “A learned performance model for tensor processing
units,” in Proc. MLSys, vol. 3, 2021, pp. 387-400.

S. Fu, S. Gupta, R. Mittal, and S. Ratnasamy, “On the use of ML for
blackbox system performance prediction,” in Proc. USENIX NSDI, 2021,
pp. 763-784.

S.-M. Tseng, B. Nicolae, G. Bosilca, E. Jeannot, A. Chandramowlish-
waran, and F. Cappello, “Towards portable online prediction of network
utilization using mpi-level monitoring,” in Proc. Euro-Par, 2019, pp.
47-60.

H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model
for deep neural networks,” in Proc. ICLR, 2017.

S. Lym, D. Lee, M. O’Connor, N. Chatterjee, and M. Erez, “Delta: Gpu
performance model for deep learning applications with in-depth memory
system traffic analysis,” in Proc. IEEE ISPASS, 2019, pp. 293-303.

X. Y. Geoffrey, Y. Gao, P. Golikov, and G. Pekhimenko, “Habitat: A
Runtime-Based computational performance predictor for deep neural
network training,” in Proc. USENIX ATC, 2021, pp. 503-521.

A. Jajoo, Y. C. Hu, X. Lin, and N. Deng, “A case for task sampling
based learning for cluster job scheduling,” in Proc. USENIX NSDI, 2022,
pp. 19-33.

G. F. M. Yeung, Proactive Interference-Aware Resource Management
in Deep Learning Training Cluster. Lancaster University (United
Kingdom), 2022.

L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The
application slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory,” in
Proc. IEEE/ACM MICRO, 2015, pp. 62-75.

D. Graur, D. Aymon, D. Kluser, T. Albrici, C. A. Thekkath, and
A. Klimovic, “Cachew: Machine learning input data processing as a
service,” in Proc. USENIX ATC, 2022, pp. 689-706.

W. Chen, S. He, Y. Xu, X. Zhang, S. Yang, S. Hu, X.-H. Sun,
and G. Chen, “icache: An importance-sampling-informed cache for
accelerating i/o-bound dnn model training,” in Proc. IEEE HPCA, 2023,
pp. 220-232.

M. Zhao, N. Agarwal, A. Basant, B. Gedik, S. Pan, M. Ozdal, R. Komu-
ravelli, J. Pan, T. Bao, H. Lu, S. Narayanan, J. Langman, K. Wilfong,
H. Rastogi, C.-J. Wu, C. Kozyrakis, and P. Pol, “Understanding data
storage and ingestion for large-scale deep recommendation model train-
ing,” in Proc. ISCA, 2022, pp. 1042-1057.

Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
231N, 2015.

K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proc. USENIX ATC, 2020, pp. 219-233.

