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Abstract—High-Performance Computing (HPC) workloads
generate large volumes of data at high-frequency during their
execution, which needs to be captured concurrently at scale.
These workloads exploit accelerators such as GPU for faster
performance. However, the limited onboard high-bandwidth
memory (HBM) on the GPU, and slow device-to-host memory
PCIe interconnects lead to I/O overheads during application ex-
ecution, thereby exacerbating their overall runtime. To overcome
the aforementioned limitations, techniques such as compression
and asynchronous transfers have been used by data management
runtimes. However, compressing small blocks of data leads
to a significant runtime penalty on the application. In this
paper, we design and develop strategies to optimize the trade-
off between compressing checkpoints instantly and enqueuing
transfers immediately versus accumulating snapshots and de-
laying compression to achieve faster compression throughput.
Our evaluations on synthetic and real-life workloads for different
systems and workload configurations demonstrate 1.3⇥ to 8.3⇥
speedup compared to the existing checkpoint approaches.

Index Terms—GPU compression and checkpointing, data ac-
cumulation, fast compression

I. INTRODUCTION

A. Motivation

High-Performance Computing (HPC) applications produce
massive amounts of distributed intermediate data during their
execution which must be captured consistently as checkpoints
in real-time under concurrency. While checkpointing have
been traditionally associated with fault tolerance, it is widely
used for productive scenarios as well, such as numerical
and performance reproducibility [1], revisiting previous states
in adjoint computations [2]–[4], posthoc analytics to study
divergence, producer-consumer patterns in workflows and real-
time analytics [5], capturing the lineage of DL model ancestors
in transfer learning scenarios [6]. Unlike the case of fault
tolerance, where the checkpoints are captured and/or restored
infrequently, for productive scenarios the checkpoint frequency
can be as small as tens of ms. Coupled with large checkpoint
sizes, this results in a need to sustain a checkpoint throughput
in the order of tens to hundreds of GB/s. While feasible on
GPUs (whose memory bandwidth is in the order of TB/s),
unfortunately there is not enough spare GPU memory capacity
to capture all checkpoints there. Therefore, checkpoints are
typically flushed to slower tiers of higher capacity (e.g., host
memory, NVMe, CXL, remote storage, etc), from where they
are reloaded back to GPU memory at a later time when they
need to be revisited.

Fig. 1: Checkpoint generation rate and sizes for different workloads
running with varying configurations.

As an example, consider the case of three different adjoint
computations, as shown in Figure 1. The first application,
Quantum-Optimal Control (QOC) [7], launches multiple sim-
ulations with different initial states of the quantum system
to evaluate the optimal control parameters (e.g., external
fields or pulses) to steer its evolution towards a specific
target state, generating checkpoints at rates of 100 GB/s per
simulation for a varying number of qubits (shown on the x-
axis). The second application models spinodal decomposition
in phase-field simulations using Cahn-Hilliard partial different
equations [8]. The ensemble launched in the Cahn-Hilliard
application explores different input parameters for studying
the statistical impact of each parameter and exploring the
phase space of the decomposition, generating checkpoints at
rates up to 75 GB/s for different cubic lattice sizes (shown
on the x-axis). Lastly, we consider the case of the Reverse-
Time Migration (RTM) [2] technique which is widely used
for seismic image processing in the oil and gas industry and
generates checkpoints from rates of 20 GB/s to 150 GB/s
for different wave field frequencies. The RTM application is
launched as an ensemble in which each simulation operates
on a chunk of the subsurface topology.

To reduce the overhead of flushing and restoring check-
points to/from slower tiers, multi-level checkpoint runtimes
and data movement engines such VELOC [9], ADIOS2 [10],
and FTI [11] exploit asynchronous transfer techniques that
overlap flushes with the computations by performing I/O
operations in the background. However, as the checkpoint
production rate increases, the spare GPU memory is filled
faster than the checkpoints can be flushed to slower tiers
over a PCIe link that can support only tens of GB/s. There-
fore, asynchronous multi-level checkpointing techniques are
insufficient to hide the I/O overheads, which results in longer



Fig. 2: Compression throughput with increasing input data size.

application runtime and GPU underutilization. The problem is
further complicated by the fact that HPC applications often
run ensembles that comprise multiple tasks, each of which is
deployed on a separate GPU and which share and compete for
the I/O bandwidth of the host memory.

To address this challenge, checkpoints can be compressed
before being flushed, under the assumption that the com-
pression reduces the checkpoint sizes enough so that asyn-
chronous multi-level techniques are not bottlenecked by slow
flushes [12]. However, compression algorithms have high
computational overhead and typically block the application
(i.e., they cannot be applied asynchronously like the flushes).

In this paper, we study how to apply blocking compression
algorithms in order to reduce the time spent waiting for
asynchronous flushes to slower tiers to finish, which typically
happens when computations are faster than flushes and there-
fore they can only partially overlap. We aim to minimize the
combined duration of compression and waits for asynchronous
flushes, which minimizes the overall checkpointing overhead
perceived by the application.

B. Limitations of the State-of-the-Art
HPC applications typically use various lossy and/or loss-

less [13] compression techniques to minimize congestion
on both storage tiers and I/O interfaces. Depending on the
data representation and the compression configuration, e.g.,
error bounds, compression throughput, and compression ratio,
the state-of-the-art GPU compressors, e.g., nvCOMP [14],
cuSZ [12], Mgard+ [15], and cuZFP [16], can achieve >300⇥
compression ratio. These compression libraries feature high
compression throughput for large input data sizes but they
perform poorly when compressing smaller data sizes. For
example, as shown in Figure 2, the state-of-art compression
library from Nvidia, i.e., nvCOMP, attains the peak compres-
sion throughput of ⇠550 GB/s only when the checkpoint
sizes are >200 MB, when tested on Nvidia A100 GPU
using 4 different compressors. Moreover, even if the nvCOMP
compressors are run on a separate CUDA stream, it blocks
the execution of all application kernels on the GPU, while
performing compression or decompression operations, leading
to longer overall application execution times. Therefore, the
compression ratio does not solely speed up the checkpointing
throughput or the end-to-end application execution time.

A widely used approach to eliminate the overheads of
slow compression for small-sized checkpoints is to accumulate
checkpoints until they sum up to the size at which the
compression can run at peak throughput. However, lever-
aging this approach using the nvCOMP compressor would
require deferring compression until a minimum of 200 MB
checkpoints are accumulated. However, such an approach has
two limitations: (1) the size of the available GPU cache
may not be adequate to stage the uncompressed accumulated
checkpoints and/or the scratch space required by the nvCOMP
compressor to compress the accumulated checkpoints; and
(2) the PCIe interface would be idle while checkpoints are
being accumulated, leading to application stalls due to delayed
flushes. To solve these limitations, we need to solve a multi-
objective optimization problem that takes into account the
checkpoint generation rate, the compression throughput, the
compressed sizes, and number of checkpoints in order to
devise an efficient asynchronous checkpoint pipeline. Existing
data-movement engines [10] and checkpointing runtimes [9],
[11] do not consider such aspects simultaneously.

C. Key Insights and Contributions
In this paper, we contribute with an asynchronous check-

point pipeline solution that determines an optimal checkpoint
schedule, i.e., what checkpoints to leave uncompressed, what
checkpoints to compress and what checkpoints to accumulate
and compress in bulk in order minimize the overhead perceived
by the application (i.e., total duration interruptions due to
compression and waiting for flushes to finish). We assume two
representative tiers: GPU memory and host memory. However,
our approach is generic and can be easily adapted to other tiers
with different characteristics. The key idea of our approach
is a dynamic programming algorithm that builds the optimal
checkpoint schedule using predictions of the compression
ratio, which are obtained from past experience with similar
checkpointing data generated in related ensemble runs of the
application. We summarize our contributions as follows:

1) We formulate the problem of compression overheads
when capturing small-sized high-frequency checkpoints
from the GPU memory to the host cache (§ II).

2) We propose a series of design principles to minimize the
asynchronous checkpoint flush times through multiple
key ideas: profiling initial simulations to obtain check-
point characteristics of HPC ensembles; using a mix of
uncompressed, compressed, and collectively compressed
checkpoints for flushing; sharing GPU cache between
uncompressed, accumulated, and ready-to-flush check-
points, and dynamic allocation and defragmentation of
GPU cache (§ III).

3) We implement our design principles in the VELOC [9],
a multi-level HPC checkpointing library. Although we
use Nvidia-based GPUs for prototyping, our ideas are
generic and can be adapted for other GPUs (§ III-C).

4) We perform a thorough evaluation to demonstrate the
effectiveness of our approach using the Nvidia DGX
A100 multi-GPU system. We use Intel OneAPI-based
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Fig. 3: M simulations running in an ensemble, each consisting of
a single process producing K = 4 checkpoints at varying intervals
(�t) with different compression ratio (CR).

DPC++ RTM application [17] and synthetic benchmarks
to study the performance of our approach for a diverse
range of checkpoint characteristics (§ IV).

II. PROBLEM FORMULATION

Consider an HPC ensemble consisting of M identical simu-
lations running on an HPC system where each simulation runs
N processes such that each process is exclusively mapped to
a single GPU. During its execution, each process produces K
checkpoints of constant size U , which are reused later. Each
process i can afford to dedicate only a fraction of the GPU
memory as a staging area to buffer, compress and flush its K
checkpoints to the host memory. The host memory has enough
capacity to collect all K ·N checkpoints of all processes.

Each time a new checkpoint j is generated in the GPU
memory, it is copied first to the staging area. If there is not
enough space available on the staging area, the process blocks
until enough space becomes available. After a copy of the
checkpoint was made on the staging area, the process can
optionally decide to further block in order to compress check-
point j and any other predecessor checkpoints accumulated
in the staging area in bulk. Then, the application continues
running and overlaps with the transfers of the checkpoints
(compressed or uncompressed) to host memory, which happen
asynchronously.

We assume that the checkpoint intervals and checkpoint
compression ratios are non-uniform and may evolve during
the simulation. However, we assume the simulations in the
ensemble are related and therefore produce a similar evolu-
tion (i.e., the checkpoint interval �tj and compression ratio
CRj of checkpoint j of process i remains similar for all
simulations in the ensemble). As an example, Figure 3 shows
the checkpointing pattern that we observe in real-life RTM
ensemble described in § IV-C1 for a simplified case where
each simulation employs a single process.

Under these circumstances, given an oracle that can predict
the compression ratio of all checkpoints (e.g., by compressing
all checkpoints of one of the simulations in the ensemble), our
goal is to obtain an optimal schedule that decides when to flush
uncompressed checkpoints vs. when to accumulate, compress
in bulk and flush the compressed data such as to minimize the
checkpointing overhead (interruptions due to compression and
waiting for flushes) during the simulation.

III. SYSTEM DESIGN

A. Design Principles

1) The Two Oracles: Profiling Checkpoints of the Ini-
tial Simulation of the Ensemble and Empirical Compression
Throughput Analysis: We consider that our HPC ensembles
are composed of identical simulations, which typically lead
to identical checkpoint characteristics across the simulations,
as highlighted by Figure 3 and empirically characterized in
§ IV-C1. For example, the RTM application launches an
ensemble to calculate the geological characteristics of large
surface areas, and each simulation runs the RTM kernels on a
smaller subsurface. Although the input data of each simulation
of the ensemble is distinct, we observe that the checkpoint gen-
eration rate and compression ratios of a given timestep across
different simulations remains consistent as shown in § IV-C1.
We leverage this similarity between checkpoints across multi-
ple simulations to generate a checkpoint-characteristic aware
compression and flush schedule. Albeit, compression ratio
prediction schemes [18] can be used to generate profiles for
ensembles with heterogeneous checkpointing characteristics.

a) Oracle to Predict Compressed Checkpoint Sizes and
Checkpoint Intervals: Using the formulation proposed in
§ II and shown in Figure 3, we build the first oracle to
predict the checkpointing characteristics as follows: (1) all the
checkpoints generated in the first simulation of the ensemble
are compressed individually to learn about the compressed
sizes of each checkpoint; and (2) the compressed sizes, along
with time elapsed since the last checkpoint are recorded
by the checkpointing runtime. We empirically demonstrate
the similarity of checkpoints across multiple simulations and
variability across a single simulation in § IV-C1.

b) Oracle to Determine the Compression Speed for Dif-
ferent Input Checkpoint Sizes: Next, we construct an oracle
to determine the compression throughput by past compression
logs or offline analysis for different data sizes. Given that the
compression throughput for a large proportion of compression
libraries (notably, including nvCOMP) is a function of data
size and not data content, the offline compression throughputs
obtained for different data sizes are applicable for all check-
points of the ensemble, irrespective of the checkpoint content.

The two oracles, coupled with the peak PCIe transfer
throughput of the system, support the following components of
our algorithm to generate an optimal checkpointing schedule:
cs[K]: compressed checkpoint sizes of all K checkpoints;
d[K]: time interval between consecutive checkpoints of a
simulation; comp time(x): the time taken by the compressor
to compress x bytes of data.

2) Mix of Uncompressed, Individually Compressed, and Ac-
cumulated Compressed Checkpoints: Depending on the time
interval between consecutive checkpoints and the number of
checkpoints, flushing all checkpoints in compressed or uncom-
pressed form is faster. For instance, if the time interval between
consecutive checkpoints is large enough to finish the transfer
of a checkpoint in uncompressed form, compression operations
should not be used because they slow down application



execution by blocking the application kernels. On the other
hand, if the time interval between consecutive checkpoints
is not large enough to flush uncompressed checkpoints, per-
forming compression to reduce checkpoint sizes may lead to
faster transfers depending on compression ratio, compression
speed, and GPU cache size. Lastly, to accelerate compression,
multiple checkpoints can be accumulated to perform collective
compression. While each of the aforementioned approaches,
i.e., flushing uncompressed, compress instantly and flush,
and accumulate and flush, have their own limitations and
advantages in minimizing the overall flushing time, in our
approach, we utilize a mix of all three strategies to devise
an efficient compression and flush schedule.

3) Dynamic Allocation and Defragmentation of Temporary
Compression Buffers: To run compression on the GPU, com-
pression libraries require a temporary buffer for writing the
compressed data. The size of this temporary buffer is slightly
larger than the size of the uncompressed input data due to two
reasons: (1) it assumes the worst-case of the input data to be
incompressible, i.e., the checkpoint consists of unique values
and cannot be compressed even by a small degree; (2) the com-
pressor header, which includes details about the compression
algorithm and meta-data corresponding to the uncompressed
checkpoint, adds to the size of the compressed data. While
the size of the compressed data is the same as the size of the
temporary buffer if the input data was incompressible, it can
be significantly smaller than the allocated temporary buffer
when the checkpoints are highly compressible.

Directly enqueuing these temporary compression buffers for
flushing to the host memory leads to cache underutilization
because of slow PCIe transfers. For instance, if a check-
point was compressed by 3⇥, two-thirds of the temporary
compression buffer is unutilized, and remains blocked until
the checkpoint is flushed to the host memory. While resizing
approaches can be adopted to reclaim unused space, GPU-
based memory allocation techniques do not natively support
resizing, and third-party memory allocation libraries such as
Umpire [19], lead to uneven fragments, due to which future
cache allocations are slow. Therefore, to avoid cache under-
utilization, before enqueueing the compressed checkpoints for
flushes, we perform fast defragmentation of the temporary
compression buffer as follows: (1) allocate a new buffer B
on the GPU cache, whose size is equal to the compressed
size of the checkpoint (sizeof(B)  sizeof(temp buffer));
(2) perform fast device-to-device copy (⇠500 GB/s) from
temporary buffer to buffer B; (3) enqueue buffer B for flushing
to the main memory; and (4) free the temporary buffer space.

Existing approaches allocate one temporary compression
buffer by assuming that the checkpoint sizes throughout the
application execution remain constant. Reusing a single buffer
leads to GPU cache underutilization, but eliminates the cost
of repetitive allocation and deallocation. However, this is not
suitable for accumulated checkpoints as the number of check-
points to accumulate is variable at different timesteps, and also
due to a hybrid mix of the three approaches, compression may
not be required, as described in § III-A2. Therefore, statically

allocating a fixed-size temporary buffer for compression is
both infeasible and leads to more wastage of the expensive
GPU cache. In our approach, we mitigate the GPU cache
underutilization due to temporary compression buffers by on-
demand allocating dynamic-sized buffers and defragmenting
them after the compression is complete.

4) Shared GPU Cache for Accumulated Checkpoints, Com-
pressor’s Temporary Buffer, and Ready-to-Flush Checkpoints:
The checkpoints stored on the GPU cache can be classified into
three groups: (1) accumulated checkpoints: these checkpoints
are stored in their uncompressed form for later compression;
(2) compressor’s temporary buffer: this GPU buffer is used by
the compressor to write compressed checkpoint and its size is
directly proportional to the size of input checkpoint; and (3)
ready-to-flush checkpoints: these checkpoints are ready to be
flushed to the host memory (similar to the buffering area).

Reserving a fixed fraction of the GPU cache for each of the
three categories simplifies GPU cache management, but leads
to underutilization because depending on the instantaneous
checkpoint generation throughput, compression speed, and
flush rate, the GPU cache required by each of the categories
is variable. For instance, reserving a large fraction of the
GPU cache for staging ready-to-flush checkpoints would be
sub-optimal if the compressed checkpoints can be easily
flushed between consecutive checkpoint invocations. Instead,
dedicating a larger fraction of the GPU cache to accumulate
checkpoints would have been a better design choice since it
would allow for faster compression speeds, leading to a more
optimal flush completion time. Therefore, our approach allows
sharing the limited GPU cache across all three groups.

5) GPU Cache Management using Stream-Ordered CUDA
Memory Pools: Sharing and managing the GPU cache effi-
ciently across the three different classes of data (§ III-A4)
is challenging due to differences in data sizes, differences
in production and consumption patterns, and the difference
in checkpoint lifetimes of each of these classes. Each of
these differences can be attributed to dynamic compression
ratios, compression speeds, and the fraction of GPU memory
available for each class. To efficiently support such divergent
classes of data on GPU cache, repetitive allocation, and
deallocation are required. Although we can allocate memory
directly on the GPU HBM at 160 GB/s on a system with 8⇥
GPU [20], performing frequent allocations introduces signifi-
cant penalties during checkpoint and compression, especially
since the peak compression speed (550 GB/s) is orders of
magnitude higher than the GPU memory allocation rate.

To support such high-frequency memory allocations and
deallocations on the GPU cache, we leverage CUDA-based
memory pools. Depending on the allocation size requested,
CUDA pools achieve 773⇥ to 9816⇥ faster GPU memory
allocation [21] as compared to the default GPU memory
allocation approach.

B. Accumulated Checkpoint Compression and Flushing
In this section, we formulate the algorithm to generate

the optimal checkpoint compression schedule based on the



oracles described in § III-A1, which complements our algo-
rithm by supplying the following parameters: total number of
checkpoints, n; the size of an uncompressed checkpoint, u;
checkpoint generation rate, d; and compressed sizes, cs; of all
checkpoints generated in the first simulation.

To generate an optimal checkpoint compression sched-
ule, we systematically search through all combinations of
compression decisions, i.e., U : flush in uncompressed form;
C: compress a single checkpoint and flush; A: accumulate
checkpoints on the GPU cache for later compression; and
X: compress accumulated checkpoints. Using the two oracles
(§ III-A1), we permute all U,C,A,X for a given checkpoint
j using the recursive decomposition described in Equation 1.

f(i) =
n

min
j=i+1

 flush(cs[j])+comp_time(u)+f(j+1)
flush(u)+f(j+1)

n
min

l=j+1

✓
flush(cs[j:l]) +

comp_time(u*(l-j))+f(l+1)

◆

!
(1)

Solving Equation 1 for f(0) yields an optimal schedule
for all simulations in the ensemble. To avoid the exponential
O(3N ) search through approaches such as backtracking, we
use a dynamic programming (DP) approach. Our proposed
DP-based approach, shown in Algorithm 1, generates an
optimal compression schedule in O(N · T ), where T is the
checkpointing time when all checkpoints are uncompressed.

Specifically, our algorithm uses the oracle functions to
model the timesteps of the main application thread ta and
asynchronous flushing thread tf based on the amount of GPU
cache available g. We construct a vector of maps for memoiz-
ing the intermediate results of optimal flush strategies for ith
checkpoint at the ith index of the vector. The map entries in
the vector are of the form htf : (ta, ug)i, where tf , ta, and
ug represent the timestamps of flush completion, application
execution, and used GPU cache, respectively. Similarly, for
storing the intermediate solutions, vector s stores a map of tf
and a string of compression plan, which is composed of char-
acters (U,C,A,X), indicating the corresponding compression
strategy to be adopted at the given index of the string.

Using the decomposition from Equation 1, the minimum
checkpointing time for ith checkpoint, when paired with
previous combinations from dp[min(i� 1, 0)], is given as the
lesser of three approaches: (1) individually compress and flush
(Lines 10-15); (2) flush without compression (Lines 16-21);
or (3) accumulate the next k checkpoints to compress them
collectively before flushing (Line 22-29). The output string is
composed of characters {U,C,A,X} and is indicative of the
optimal checkpoint compression strategy for all the remainder
simulations of the ensemble.

C. Implementation

We implement our approach in VELOC [9], which is a
production-ready multi-level user-space checkpointing library.
VELOC is optimized for CUDA-enabled GPU, and provides
parameterized configuration of GPU and host-cache space, fast
GPU and pinned host cache initialization, asynchronous DMA-
enabled device-to-host transfers, and state-machine-enabled

Algorithm 1: Algorithm to generate checkpoint accu-
mulation and compression schedule.

Input : n: total number of checkpoints, u: uncompressed
checkpoint size, g: GPU cache capacity, hcs, di:
tuples of compressed sizes and checkpoint intervals
from the oracle. P : const. peak PCIe bandwidth.

Output: S: a string of the optimal compression plan, where
S[i] 2 (U,C,A,X) denotes the compression plan
to be adopted for the ith checkpoint.

1 Function get_compression_schedule(n, u, cs, d):
2 dp [{0 : (0, 0)}] // {tflush:(tapp, used_gpu)}
3 s [{0 : ””}] // {tflush: plan}
4 r  get_temp_buffer(u) // r = u+ comp_header

5 if u+ r > g _ d2h(u) < max(d) then
6 S  ‘U ’ ⇤ n; return S;
7 for i 0 to n do
8 j  min(i� 1, 0)
9 for {tf , (ta, ug)} 2 dp[j] do

// Individually compress ckpt. i

10 tac  ta + comp_time(u) + d[i]
11 ugc  u+r+cs[i]+min(0, ug�P⇥(tac�ta))
12 tfc  d2h(cs[i]) +max(tf , tac )
13 if (a[i][tfc ][0] > tac ) then
14 dp[i] dp[j] [ {tfc , (tac , ugc � u� r)}
15 s[i][tfc ] s[j][tf ] [ ‘C’

// Do not compress ckpt. i

16 tau  ta + d[i]
17 ugu  u+min(0, ug � P ⇥ (tau � ta))
18 tfu  d2h(u) +max(tf , tau)
19 if a[i][tfu][0] > tau then
20 dp[i] dp[j] [ {tfu, (tau, ugu)}
21 s[i][tfu] s[j][tf ] [ ‘U ’

// Accumulate and compress ckpts. i · · · i + k

22 for k  2 to min(n� i, bg/(u+ r)c) do
23 l i+ k � 1
24 taa  ta + comp_time(k ⇤ u) + ⌃(d[i : l])
25 r0  get_temp_buffer(k ⇤ u)
26 uga  k ⇤ u+ r0 + ⌃(cs[i :

l]) +min(0, ug � P ⇤ (taa � ta))
27 tfa  d2h(⌃(cs[i : l])) +max(tf , taa)
28 if (a[l][tfa][0] > taa) then
29 dp[i] dp[j][{tfa, (taa, uga�k⇤u�r0)}
30 s[i][tfa] s[j][tf ] [ ‘A’ ⇤ (k � 1) [ ‘X’

31 return s[n� 1][min(dp[n� 1].keys())]

efficient prefetching [4], [20]. We integrate Nvidia’s nvCOMP
compression library [14] with VELOC to compress check-
points using multiple compressors, e.g., GDeflate, LZ4, and
BitComp [12], [14]. We improve the compression and cache
management performance by adopting two optimizations: (1)
proactively preloading nvCOMP library on the GPU at initial-
ization to eliminate runtime penalties due to lazy loading of
the library, and (2) pre-faulting CUDA memory pool for faster
cache allocations.
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Fig. 4: Flow of different checkpointing approaches.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We conduct our experiments on ALCF’s ThetaGPU HPC
testbed 1 that consists of 24 Nvidia DGX A100 nodes.
Each node is equipped with 1 TB DDR4 memory (20 GB/s,
8 NUMA domains), two 64-core AMD Rome CPUs (256
threads), four 3.84 TB Gen 4 NVMe drives (4 GB/s) and 8
Nvidia A100 GPUs aggregating to a total of 320 GB HBM
memory. On each node, 8 A100 GPUs are connected with each
other using 6 NVSwitches and with the host memory through
a PCIe Gen 4 interface. The peak unidirectional Device-to-
Device (D2D), and pinned Device-to-Host (D2H) (and vice
versa) bandwidths on each GPU are 500 GB/s and 25 GB/s,
respectively. Two GPUs share the same PCIe interconnect via
PCIe switch to the host buffer, which effectively reduces their
D2H bandwidths during concurrent access, and also allows for
only 4 out of the 8 available NUMA domains to be directly
accessible from the GPUs. All the nodes run Nvidia CUDA
v11.4.152, nvCOMP v2.6.1, OneAPI/DPC++ v2023.0.0, and
OpenMPI v4.1.0 on top of the Ubuntu 20.04.6 OS. In our
experiments, we use a single node consisting of 8 GPUs to
study the impact of PCIe interface contention and DRAM
write bandwidth under node-local concurrency.

B. Compared Approaches

We compare the approaches shown in Figure 4 as follows:
1) No Compression: This is the first approach in Figure 4

and represents the typical state-of-the-art strategy employed
by data movement engines and checkpointing runtimes, i.e.,
individual transfers of the uncompressed checkpoints from the
GPU memory to the host memory. Although many approaches
perform the transfers synchronously (e.g., ADIOS2 [10]), we
compare with an asynchronous approach [4] that overlaps the

1https://www.alcf.anl.gov/alcf-resources/theta

transfers with the computations by using the spare GPU mem-
ory as a buffer. This approach was shown to be significantly
faster than synchronous approaches, hence a better baseline.
We denote this approach No compress in our evaluations.

2) On-the-fly Individual Checkpoint Compression: In this
approach, the checkpoints are compressed one at a time
at their source, i.e., the GPU HBM in our case, by the
checkpointing runtime. This approach is widely used for accel-
erating data transfer for out-of-core stencil computations [22],
reverse-mode adjoint computations [23], and reducing data-
stream intensity from scientific equipment, e.g., Advanced
Photon source [24]. Therefore, we consider this approach
as representative of state-of-the-art GPU-compression-enabled
data movement techniques. To this end, we configure the
GPU-enabled VELOC checkpointing runtime to perform data
compression before storing the checkpoints on the GPU cache.
This approach is labeled as Compress single in our evaluations
and is illustrated as the second approach in Figure 4.

3) Our Approach: Finally, we compare the aforementioned
approaches with our proposal, which is based on the design
principles listed in § III-A. As described in § III-C, this
approach represents the optimized checkpoint accumulation
and compression scheme using the dynamic-programming
formulation listed in Algorithm III-B and is illustrated as the
third approach in Figure 4.

C. Evaluation Methodology

We evaluate each of the above-mentioned approaches using
the following metrics and scenarios:

1) Real-life Application – RTM: As an application example,
we consider the case of seismic imaging and characterization
of geological substructures using the Reverse-Time Migra-
tion (RTM) technique. RTM is a widely used technique in
the oil and gas industry for the exploration of reservoirs
and aids geophysicists in understanding geology formation,
faults, and fractures. In terms of checkpointing, the RTM
application can be characterized as an adjoint computation,
in which the checkpoints produced during the forward pass
are later consumed (in reverse order) by the backward pass to
cross-correlate and form the subsurface image. However, for
the cases of debugging, exploring alternate models for cross-
correlation, and post hoc analysis, the checkpoints produced
in the forward mode are consumed by different agents/jobs of
the workflow ensemble.

a) RTM Configuration: In our evaluations, we run an
open-source version of the RTM application, written in
DPC++, for various source frequencies of the wavefield. While
lower source frequencies are used by RTM to compute the
coarse-grained topology of the subsurface, higher frequencies
are used to study the finer details of the underlying sub-
structures. In practice, the high-frequency RTM simulations
are usually run in distributed mode on several GPUs using
domain decomposition and produce the same checkpoint sizes
at the same intervals, as those generated by running low-
frequency simulations on a single GPU. Therefore, without



(a) Compression ratios and checkpoint generation
rate for different RTM source frequencies.

(b) Variations in compression ratios of RTM app. at
every checkpoint in an ensemble of 20 simulations.

(c) Variation in checkpoint generation rates across
20 shots for 66 checkpoints.

Fig. 5: Checkpointing characteristics for varying RTM source frequencies (Figure 5a); Variations in compression ratios (Figure 5b) and
checkpoint generation rates (Figure 5c) of 20 RTM simulations for RTM source frequency=4.

loss of generality, we restrict our configuration options to mul-
tiple low-frequency (2 . . . 8) RTM simulations. The number of
checkpoints produced during the execution of a single seismic
shot in the RTM application, in addition to other configuration
options, depends on the source frequency of the simulation.
Since the varying number of checkpoints would add another
dimension of variability to our evaluations, we tune the
dt-relax parameter, such that all simulations produce 66
checkpoints (maximum number of checkpoints produced by
the lowest frequency) to evaluate a consistent number of
timesteps (checkpoints) for different source frequencies.

b) RTM Dataset: We use the open-source 2004 BP
velocity benchmark dataset [25], which is widely used for
benchmarking depth migration in geology. The dataset consists
of 1348 seismic shots, out of which we use 20 representative
shots (601-620) in our evaluations to limit the amount of exe-
cution time for different sets of configurations and approaches.

c) Analysis of RTM Checkpointing Characteristics: We
study the checkpoint generation and compression characteris-
tics of the RTM application across 20 representative seismic
shots to understand the I/O and compute patterns that can be
exploited to build efficient checkpoint compression schedules.

We first analyze the compression ratio of the RTM appli-
cation running these 20 seismic shots. Figure 5a shows a
statistical overview of the distribution of compression ratio
and checkpoint generation rates for different source frequen-
cies across the 20 representative seismic shots. Here, the
compression ratio and checkpoint generation rates are both
a function of source frequency and show some degrees of
variance in compression ratio and checkpoint generation. We
further investigate these variations by considering the case
of a source frequency of 4 Hz. Figure 5b shows a violin
plot representing the variance in compression ratio of the
66 checkpoints, across 20 different seismic shots. In each
shot across 66 checkpoints, the size of the uncompressed
buffer is constant, but their compressed sizes differ based on
the contents of the checkpoint. We observe that during the
initial checkpoints, the checkpoints are highly compressible,
i.e., show high compression ratios, and gradually become less
compressible. This is because, during the later timesteps of
the simulation, the wave field becomes more complex due
to interference resulting in checkpoints with more unique

data points and low compression ratios. We highlight and re-
iterate two important observations from this graph: (1) the
compression ratio of checkpoints while processing a single
seismic shot is not consistent; and (2) the compression ratio,
for a given timestep (checkpoint number), shows at most
10% variation across the 20 different seismic shots. From the
perspective of checkpointing, observation (1) leads to uneven
GPU cache utilization which results in fragmentation, and
variability in the amount of compressed checkpoints flushed to
the host memory across the slow PCIe interface. The second
observation with similarity in compression ratio reveals that
the checkpoint-compression schedules generated based on the
compressed sizes of the first seismic shot would be nearly
optimal for the remainder of simulations in the ensemble.

Next, we evaluate the checkpoint generation rates across
the 20 representative shots. As observed in Figure 5c, the
checkpoint generation rate across different checkpoints, even
for a single shot, is variable. Since the size of all checkpoints
in uncompressed format is the same, varying checkpoint gener-
ation rates suggest that the time interval between consecutive
checkpoints of a single shot is variable. Specifically, for a
given seismic shot, the initial checkpoints are generated at
⇠40 GB/s until timestep 32, after which they are generated at
the rate of ⇠57 GB/s. However, as seen in the violin plot in
Figure 5c, the checkpoint generation rate at a given timestep
across all 20 seismic shots is near similar, i.e., irrespective of
the input dataset, the time taken by the RTM kernel to run
consecutive timesteps is similar across all 20 seismic shots.

2) Synthetic Benchmarks: We develop a series of synthetic
benchmarks to evaluate the performance of various checkpoint
compression approaches on varying application characteris-
tics. These benchmarks generate synthetic checkpoints for
which the compression ratio, checkpoint interval, number of
checkpoints, and scalability can be parameterized. Unlike the
case of RTM, which has a variable compression ratio and
checkpointing interval while processing different timesteps in
a single simulation (seismic shot), the synthetic benchmarks
produce all checkpoints at uniform intervals and constant
compression ratios, similar to those generated by the QOC
and Cahn-Hilliard 1.

This benchmark enables us to evaluate a wide range of
application characteristics and configurations in our experi-



Fig. 6: Checkpointing throughput for varying
RTM source frequencies.

Fig. 7: Compression schedule decisions for
varying RTM source frequencies.

Fig. 8: Checkpointing throughput for varying
GPU cache sizes for the RTM ensemble.

Fig. 9: Checkpointing throughput for varying
checkpoint rates of synthetic benchmark.

Fig. 10: Checkpointing throughput for vary-
ing comp. ratios of synthetic benchmark.

Fig. 11: Weak scaling for concurrent check-
pointing using synthetic benchmark.

ments. To control the compression ratio of the checkpoint,
we set (cr � 1)/cr elements of the floating point buffer to
be checkpointed as 0.0F, where cr represents the supplied
compression ratio. Similar to the case of RTM, the synthetic
benchmark ensembles consist of 20 simulations, but instead of
producing 66 checkpointing per simulation, we generate 100
checkpoints of 2 MB each per simulation to more extensively
evaluate our proposal for a larger number of checkpoints. The
checkpoint generation rate is controlled by simulating ‘sleep
cycles’ between consecutive checkpoints.

3) Performance Metrics and Multi-level Cache Configu-
rations: In our evaluations, we measure the checkpointing
throughput (GB/s) perceived by the ensemble of RTM applica-
tion and synthetic benchmarks. Additionally, we study the se-
quence of checkpoint compression schedules generated by our
approach for varying RTM source frequencies to understand
the composition of uncompressed, singly compressed, and
cumulatively compressed checkpoints. We consider that the
host cache is large enough to store all checkpoints generated
by the ensemble in uncompressed form, which can be extended
to local or remote storage (PFS), if required.

Depending upon the source frequency of RTM simulation,
the total size of all checkpoints generated by a single seismic
shot can vary from 600 MB to 1.6 GB. Unless otherwise noted,
we set the available spare GPU HBM available as GPU cache
to 128 MB. A small GPU cache size allows the application
to consume a major fraction of the expensive low-capacity
GPU HBM for latency-critical kernels and creates challenging
scenarios for evaluating our approach since lower cache sizes
limit the number of checkpoints that can be accumulated.

D. Performance Results

1) Checkpointing Throughput: In our first set of experi-
ments, we evaluate the checkpointing throughput as observed

by the application. This is an important metric because it
measures the amount of overheads incurred by the application
as a result of checkpoint operations. A higher checkpoint
throughput indicates faster completion of flushes and minimal
blocking time for the application, indicating higher is better.

We first measure the checkpointing throughput for the
RTM application for variable simulation source frequency. As
observed in Figure 6, the checkpoint throughput for a low
source frequency of 2 Hz using compress single checkpoint at
a time approach is 2.8⇥ slower than the case in which we flush
without compression or our approach. This is because, at lower
source frequencies, the checkpoint generation rate (17 GB/s)
is lower than the peak PCIe bandwidth (25 GB/s), therefore
flushing checkpoints in uncompressed form is more efficient
as compared to flushing in compressed form. However, our
approach shows slightly lower checkpointing throughput as
compared to the case of No-compress. This is because the
oracle described in Section III-A1 performs compression of
all checkpoints during the first simulation to generate an
optimal checkpoint schedule. Due to a very slow checkpoint
generation rate and less number of seismic snapshots in the
ensemble, our approach could not offset the cost of the
profiling phase required to run the algorithm. However, starting
with higher source frequencies, which are more widely used
in production, we observe that our approach outperforms No
compress and Compress single approaches by 3.2⇥–8.3⇥ and
1.3⇥–1.8⇥, respectively. At higher source frequencies, since
the checkpoint size are larger, and the checkpoint generation
frequency is high, the compress single approach shows higher
checkpointing throughput. However, even at higher source
frequencies, our approach outperforms the compress single
case by at least 1.3⇥.

Next, we evaluate the checkpoint compression and flush
schedule generated by our approach at various RTM source



frequencies to understand the proportion of uncompressed,
individually compressed, and collectively compressed check-
points. Figure 7, shows the decision made for each checkpoint
number (simulation timestep). For lower source frequencies
(2 Hz), the checkpointing throughput (17 GB/s) is lower than
the peak PCIe bandwidth of 25 GB/s, due to which our
approach favors flushing checkpoints in uncompressed form.
However, we observe that as the checkpoint generation rate
and checkpoint sizes increase for higher source frequencies,
our approach accumulates more number of checkpoint for
faster compression and flushing, resulting in up to 58 GB/s
higher checkpointing throughput as compared to the approach
of compressing individually.

Given that the application is composed of multiple computa-
tions, communication, and I/O operations in addition to check-
pointing, the speedup observed in checkpointing throughput is
not directly translated to the end-to-end application speedup.
Based on the set of RTM configurations we evaluated, our
proposed accumulated checkpointing approach minimizes the
overall application runtime by at least 28% and up to 3.4⇥
as compared to compressing individually and flushing without
compression strategies.

2) Impact of Variable GPU Cache Size: We next evaluate
the checkpointing throughput as a function of the amount
of GPU cache available for checkpointing. Given that the
GPU can concurrently run multiple applications using GPU
sharing techniques, such as CUDA MPS or MIG, limiting the
amount of GPU HBM for caching allows us to understand the
performance of our proposal under more constrained setups.
Although the total checkpoint size for synthetic benchmarks in
uncompressed form is 200 MB, we vary the GPU cache from
64 MB, which is typically the amount of GPU memory unused
by application in practice, to 1 GB to study how effectively
can our approach utilize larger than available caches. As
shown in Figure 8, our approach incrementally performs better
with increasing GPU cache sizes, showing up to 4.1⇥ and
2.4⇥ speedup as compared to no compression and individual
compression approaches, respectively. For the GPU cache size
of 64 MB, our approach shows ⇠3% slower checkpointing
throughput as compared to the case of individual compression
because compressing individually is the optimal decision for
the given cache size, and our oracle profiling could not offset
the overheads within the small ensemble runtime.

3) Impact of Variable Checkpoint Generation Rates: We
now evaluate the checkpointing throughput as a function of
the checkpoint generation rate by varying the checkpoint
generation rate for synthetic benchmarks from 40 GB/s (more
than the PCIe peak transfer bandwidth) to 400 GB/s (to capture
extreme scenarios beyond those observed in Figure 1). As ob-
served in Figure 9, for varying checkpoint generation rates, our
approach outperforms the other approaches by at least 2.27⇥
and demonstrates a near-consistent checkpointing throughput.
Both the other approaches, however, show lower checkpointing
throughput with increasing checkpointing generation pressure
because they have lower opportunities to overlap flushes with
application kernels.

4) Impact of Variable Compression Ratios: Our next set of
experiments evaluates the performance of checkpoint through-
put for an increasing compression ratio. This study helps
us understand the performance of various compression and
flushing approaches for different variations of sparse and
dense checkpoints. We vary the compression ratio from 4⇥
to 28⇥, which imposes higher compressed sizes and therefore
more pressure at checkpoint flushing than those observed
in the RTM application (Figure 5b). Figure 10 shows that
our approach outperforms the other approaches by 3.7⇥ for
different compression ratios.

5) Scalability Analysis: We evaluate the performance of
checkpointing throughput for an increasing number of pro-
cesses on the node. When operating at scale, all GPUs compete
for both PCIe bandwidth multiplexed through PCIe switches
to GPU pairs and the writes on the host memory. Figure 11
shows a weak scalability analysis showing that increasing
the concurrent number of processes that capture checkpoints
in uncompressed form reduces the checkpointing throughput
by up to 57%. However, our checkpoint accumulation-based
approach demonstrates excellent scalability by outperforming
the no compression and single compression approaches by
3.6⇥ and 4.9⇥ at scale, respectively.

V. RELATED WORK

A. GPU-based Compression Libraries
GPU-based compression libraries are widely used across

broad range of applications ranging from scientific simulations
to deep learning [3]. Several lossy and lossless compression
efforts such as nvCOMP [14], cuSZ [12], Mgard+ [15], and
cuZFP [16] focus on accelerating compression throughput and
compression ratio by parameterizing the compressor based on
various use-cases. However, none of these techniques focus
on optimizing compression and/or decompression throughputs
for small-sized input datasets.

B. HPC Checkpointing and Data Movement Runtimes
Application-level checkpointing runtimes such as FTI [11],

VELOC [9], and SCR [26] require the application to define
critical data structures for checkpointing, which are then
flushed asynchronously to lower memory and storage tiers.
ADIOS2 [10], a unified high-performance I/O framework, is
widely used in HPC for efficient data movement across storage
tiers. Various other efforts have focused on optimizing collab-
orative GPU-cache sharing [27], fast cache initialization [20],
and modern CXL memory support [28], [29]. While these
approaches focus on optimizing I/O through asynchronous
multi-level transfers and data lifecycle, they do not sup-
port efficient accumulation-based GPU compression for faster
throughput. CupCake [30], a recent effort, aims at maximizing
compression throughput by fusing tensors during gradient
synchronization but is specifically designed for multi-GPU all-
gather communication and assumes a consistent compression
ratio and input data arrival (checkpoint generation) rate, due
to which it cannot be applied to a broader class of applications
that we consider in this paper.



VI. CONCLUSIONS

In this paper, we address the problem of inefficient asyn-
chronous checkpointing due to the slow compression of
small-sized high-frequency checkpoints in simulations of HPC
ensembles generated on the GPU. Existing checkpointing
runtimes and data movement engines either lack support for
GPU-enabled compression or adopt a simplistic approach of
instantly compressing checkpoints regardless of the compres-
sion overheads. We demonstrate, using three HPC ensembles,
that the checkpoint data rate is significantly higher than
the PCIe interface, warranting compression, but the small
sizes of checkpoints incur huge overheads on application
runtime, even when using state-of-the-art compressors such as
nvCOMP. To solve this challenge, we designed and developed
a checkpoint accumulation approach that leverages the spare
capacity of GPU high-bandwidth memory to minimize the
overall checkpointing time of simulations in an ensemble. Our
approach shows up to 8⇥ higher checkpointing throughput as
compared to existing asynchronous checkpointing approaches.
Encouraged by these results, in the future, we plan to explore
partial compression, remote-GPU-based compression, asyn-
chronous multi-level persistent flushing, and coupled check-
point production-consumption across workflows.
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