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Abstract 

Severe plastic deformations under high pressure are used to produce nanostructured 

materials but were studied ex-situ. We introduce rough diamond anvils to reach 

maximum friction equal to yield strength in shear and perform the first in-situ study of 

the evolution of the pressure-dependent yield strength and nanostructural parameters 

for severely pre-deformed Zr. ω-Zr behaves like perfectly plastic, isotropic, and 

strain-path-independent. This is related to reaching steady values of the crystallite size 

and dislocation density, which are pressure-, strain- and strain-path-independent. 

However, steady states for α-Zr obtained with smooth and rough anvils are different, 

which causes major challenge in plasticity theory.   

Impact statement 

In-situ study of severe plastic deformation of ω-Zr with rough diamond anvils 

revealed that pressure-dependent yield strength, crystallite size, and dislocation 

density are getting steady and plastic strain- and strain-path-independent.   

1. Introduction

Processes involving severe plastic deformations (SPD) under high pressure are 

common in producing nanostructured materials [1-8], in functional materials 

experiencing extreme stresses under contact friction, collision, and penetration, and in 

geophysics [9,10]. The effects of SPD under high pressure on microstructure 

evolution are mostly studied with high-pressure torsion (HPT) with metallic or 

ceramic anvils [1-4]. Stationary states after SPD in terms of torque, hardness, grain 

size, and dislocation density are well-known in literature, particularly after HPT, 

along with many cases where they were not observed [1-8, 11]. However, all these 

results were not observed in-situ but obtained postmortem after pressure release and 

further treatment during sample preparation for mechanical and structural studies (see 

supplement). The direct effect of pressure and the combined effect of pressure and 

plastic straining on the yield strength, crystallite size, and dislocation density were not 

determined. This is very important because, as we will see, the yield strength of the ω-



Zr doubles at ~13 GPa, but hardness and, consequently, yield strength after pressure 

release are independent of the pressure at HPT [12]. During pressure release after 

HPT of Ni, crystallite size increases, and dislocation density decreases by a factor of 2 

[13]. Similar results were obtained for Zr under hydrostatic loading [14]. 

Robust method for measurement of the yield strength in compression ÿ�(�) under high pressure p is lacking. The main difficulty in studying plasticity,

structural changes, and contact friction is that they depend on five components of the 

plastic strain tensor �� and its entire path ����þ�
, making an unspecifiable number of 

combinations of independent parameters. The yield surface in the 5D deviatoric stress ý space ÿ(ý, ��, ���ÿ�/) = ÿ�(�) depends on �, ��, and ���ÿ�/
, demonstrating strain 

hardening/softening and strain-induced anisotropy. This complexity makes it 

impossible to determine the complete evolution of the yield surface, even at small 

strains and ambient condition. For measurement of yield strength at high pressure, all 

methods [15-17] treat the yield surface as ÿ(ý) = ÿ�(�), i.e., like for perfectly plastic 

material (for which the yield surface is independent of �� and ���ÿ�/
, i.e., is fixed in

the 5D stress space), and dependence on �� and ���ÿ�/
is neglected and merged in 

pressure, which causes large error. One of the methods to determine the yield strength 

in shear �� = ÿ�/√3 in diamond anvil cell (DAC) is based on applying the 

simplified equilibrium equation 
��̅�� = 2 2��/ , assuming the anvil-sample contact 

friction stress �� = �� [16-18] (see supplement). Here, �̅ is the pressure averaged

over the sample thickness h. However, recent experiments [15, 19] show that �� <��. Coupled simulations and experiments demonstrate that �� = �� only in a small 

region, even above 100 GPa [20]. We introduce rough diamond anvil (rough-DA), 

whose culet is roughly polished to increase friction (Figure 1). We demonstrated that 

maximum friction �� = �� is reached for rough-DA, which allowed us to robustly 

determine ÿ�(�) and plastic friction.  



 

Figure 1. Surface asperity profile of a smooth anvil and a rough-DA. (a) Traditional smooth-DA 

with an asperity profile range [-10 nm; 10 nm] and (b) rough-DA with range [-500 nm; 500 nm].   

 

It was hypothesized in [18] that, above some level of plastic strain in 

monotonous straining (straining path without sharp changes in directions), the initially 

isotropic polycrystalline materials deform as perfectly plastic and isotropic with a 

strain path-independent surface of the perfect plasticity �(ý) = ÿ�(�) (Figure 2). 

Some qualitative supportive arguments for the perfect plastic behavior are presented 

in [18], but the quantitative experimental proof is lacking for any material. Here, we 

severely pre-deformed commercial Zr by multiple rolling until saturation of its 

hardness. We show that after the α-ω phase transformation, for four different 

compression stages (i.e., for very different �� and ���ÿ�/
), all pressure distributions 

of ω-Zr are described by single function ÿ� = 1.24 + (0.0965 ± 0.0016)� (ÿ�ÿ). 

This is possible only if the material behaves like perfectly plastic, isotropic, and 

independent of �� and ���ÿ�/
. Similarly, friction stress �� = �� = 0.72 +(0.0557 ± 0.0009)� (ÿ�ÿ) is also independent of �� and ���ÿ�/

. The perfectly 

plastic state is connected to reaching a steady nanostructure, determined here by in-

situ synchrotron XRD in terms of crystallite (grain) size d and dislocation density ÿ, 

which do not change under successive plastic straining. For rough-DA in α-Zr at the 

beginning of α-ω transformation, ý� is smaller, and ÿ� is larger than those from 

smooth anvils, i.e., rough-DA produces a different, more refined steady 



nanostructure. The steady nanostructure for ω-Zr after transformation is the same for 

smooth and rough-DAs and is pressure-independent. 

Figure 2. Evolving yield surface and fixed surface of perfect plasticity. Schematic of the evolution 

of the yield surface ÿ(ý, ��, ���ÿ�/) = ÿ�(�) until it reaches the fixed surface of perfect

plasticity �(ý) = ÿ�(�) in <5D= space of deviatoric stresses ý at fixed p. The initial yield surface

and �(ý) = ÿ�(�) are isotropic (circles). Two other yield surfaces depend on �� and ���ÿāℎ, and

acquire strain-induced anisotropy, namely shifted centers O1 and O2 (back stress) and ellipsoidal shape 

due to texture. When the yield surface reaches �(ý) = ÿ�(�), the material deforms like perfectly

plastic, isotropic with the fixed surface of perfect plasticity. 

2. Materials and methods

We heavily pre-deformed the commercially pure (99.8%) α-Zr slab with an initial 

thickness of 5.25 mm by multiple rolling down to 163-165 µm until saturation of its 

hardness. 3 mm diameter disks were punched out for compression in DAC with 

rough-DAs, and smooth-DAs for comparison. The pressure distribution is determined 

using measured lattice parameters through 3rd-order Birch-Murnaghan equation of 



state from [19]. Samples were compressed gradually up to ~14-15 GPa at the culet 

center. In-situ synchrotron XRD in axial diffraction geometry were performed at 16-

BM-D beamline at HPCAT at Advanced Photon Source with a wavelength of 0.3100 

Å and recorded with Perkin Elmer detector. The measurements were performed along 

two perpendicular culet diameters (230 µm) in 10 µm steps. The sample thickness 

(see Table S1) was measured through x-ray intensity absorption using the linear 

attenuation equation [19]. The diffraction images were converted to unrolled patterns 

using FIT2D software [21] and then analyzed through Rietveld refinement using 

MAUD software [22] to obtain the lattice parameters, volume fractions of ω-Zr, 

microstrains, crystallite sizes, and dislocation density [23] (see supplement). 

3. Results and Discussion

We assume and then prove that after SPD and phase transformation, the initially 

isotropic polycrystalline Zr deforms as perfectly plastic and isotropic with a strain 

path-independent surface of the perfect plasticity �(ý) = ÿ�(�) (Figure 2). To 

determine the pressure dependence of the yield strength of ω-Zr, the pressure 

distribution of fully transformed region can be used only, i.e., region around culet 

center of 3 GPa step and the whole diameters after 3 GPa step. Assuming von Mises 

yield condition with ÿ� = ÿ�0 + Ā�, and considering non-hydrostatic stress and

heterogeneity along thickness, the equilibrium equation averaged over thickness is 

advanced to (see supplement):  ��̅�� = 2� ��0+Ā�̅/ →  �̅ = (�0 + ��0Ā ) þý� (2� Ā �2�0/ ) 2 ��0Ā ;  � = 2(1+0.524Ā)√3(120.262Ā), (1) 

where �0 is the pressure at point ÿ0. From Equation (1), ÿ�(�̅) = 2�ℎ ��̅�� = 2� ��̅�(�ℎ). (2) 

The pressure distributions are plotted vs. ÿ/ℎ in Figure 3. To extract the yield 

strength utilizing data at all compression steps and positions, pressure distributions 

from different compression stages are shifted horizontally to the same position. Figure 

3 shows that for four different compression stages all pressure distributions overlap 



with each other and are described by Equation (1) with single pressure dependence ÿ� = 1.24 + (0.0965 ± 0.0016)� (ÿ�ÿ). Note that ÿ�0 = 1.24 ÿ�ÿ is converted

from the hardness of ω-Zr from [24], HV=3.72 GPa, based on the known relationship ÿ�0 = Ā�/3, proving that �� is reached with rough-DA. Finite element simulations

of the processes in DAC [20, 25, 26] and Figure S1 demonstrate that for different 

material positions and compression stages, ��, ���ÿ�/
, and material rotations vary 

substantially. Consequently, the ability to describe all four curves with single function ÿ�(�) demonstrates strict proof, for the first time, that for the monotonous loading 

with rough-DAs, ω-Zr deforms as perfectly plastic and isotropic material with �� 

and ���ÿ�/
-independent surface of perfect plasticity. Since �� and ���ÿ�/

 are the

only reasons for the strain-induced anisotropy, independence of the yield surface of 

them implies isotropy also from the theory. Similar, friction stress �� = �� = ��√3 =0.72 + (0.0557 ± 0.0009)� (GPa) is also independent of �� and ���ÿ�/
. 



Figure 3. Pressure in single-phase ω-Zr vs. r/h. Solid lines correspond to Equation (1) for ÿþ0 =1.24 GPa and b=0.0965. Equation (1) is not valid around the culet center due to reduction in friction 

stress to zero at the symmetry axis. Dashed line shows the position where data is truncated. The unified 

curve for all loadings (necessary for using data from all four compression stages as a single data set) is 

obtained by shifting each curve (which is allowed by differential Equation (1)) along the horizontal 

axis by distance shown in parentheses. Note that uncertainty of pressure as well as crystallite size and 

dislocation density in the following are smaller than the symbols. 

We connect perfectly plastic behavior with reaching steady nanostructure. After 

completing phase transformation in the whole sample, crystallite size ý� for 6, 10, 

and 14 GPa steps scatters between 40 and 60 nm, being practically independent of 

radius (Figure 4(a)). Dislocation density ÿ�=1.04(19) ×1015m-2 is also independent of

radius (Figure 4(b)). Since ��, ���ÿ�/
, and p strongly vary with radius and increasing

load, this indicates that steady nanostructure, which is independent of pressure, ��, and ���ÿ�/
, is reached. Using the general equation for the yield strength as a

combination of the Taylor contribution due to dislocation density and Hall-Petch 

contribution due to grain size [27], we obtain: ÿ̅� = ÿ̃�(�) + ÿÿ0.5 + Āý20.5.   (3) 

Eq. (3) shows consistency between steady states in ÿ̅�, ÿ, and d. 

Figure 4. Radial distribution of the crystallite size (a) and dislocation density (b) in ω-Zr for three 

loading steps after full transformation. Since ��, ���ÿāℎ, and p strongly vary with radius and



increasing load, approximate independence of ý� and ÿ� of radius and load indicates that steady

nanostructure in terms of crystallite size and dislocation density, which is independent of pressure, ��, and ���ÿāℎ, is reached.

Pressure-independence of the steady microstructure is consistent with pressure-

independence of hardness for single-phase Zr for � < 4 GPa and 6 < � < 40 GPa 

[12], Ti for � < 4 GPa and 20 < � < 40 GPa [28], and Fe for � < 7 GPa and 28 < � < 40 GPa [11]. After HPT of Ni, at the periphery (where the steady state is 

reached) 0.17 ≤ ý ≤ 0.2 microns for 3 < � < 9 GPa [2, 29], which is within an 

error and is consistent with the pressure-independent hardness for 2 < � < 40 GPa 

[11]. Larger grain size for 1 GPa may be related to not reaching a steady state due to 

smaller friction and plastic strain. Pressure-independent grain size was reached in V 

[30], Hf, Pt, Ag, Au, Al, Cu, and Cu-30%Zn [11]. The supplement gives some 

rationales for the pressure independence of the grain size for ω-Zr and difference 

between known ex-situ and our in-situ rules.   

For ω-Zr, with smooth and rough-DA, the steady ÿ� = (0.95 ± 0.05) ×1015�22 and (1.04 ± 0.19) × 1015�22, respectively, and ý� = 49 ± 1 nm and47 ± 6 nm, respectively, are practically the same. A completely different situation is 

with α-Zr, which has three steady states: 

1. After multiple rolling at ambient pressure, with ÿ� = (1.00 ± 0.02) ×1015�22 and ý� = 75 ± 1 nm.

2. After deformation with smooth anvils, just before initiation of the α-ω phase

transformation at 1.36 GPa, with ÿ� = (1.26 ± 0.07) × 1015�22 and ý� =65 ± 1 nm.

3. After deformation with rough-DA, just before initiation of the α-ω

transformation at 0.67 GPa, with ÿ� = (1.83 ± 0.03) × 1015�22 and ý� =48 ± 2 nm.

The reason for different steady states cannot be related to the different pressures only 

because its effect is non-monotonous within a small pressure range. Our results about 

the existence of multiple steady states are consistent with known results that different 



ways to produce SPD (e.g., HPT, ECAP, etc.) lead to different steady grain sizes [1-3, 

31]. However, different steady dislocation density and crystallite size mean different 

yield strengths ÿ�ÿ (�) (which we could not determine robustly due to the small 

number of experimental points for single-phase α-Zr) and surfaces of perfect plasticity �ÿ(Ā) = ÿ�ÿ (�) (Figure 5). Each of these states was obtained at quite different plastic

strain and strain paths, so each of them supposed to be independent of �� and ���ÿ�/
. 

But if this is true, how can steady ÿ, d, and ÿ�ÿ (�) be different, and which of these 

steady values should be used in plasticity theory? Thus, the existence of multiple 

steady states leads to the formulation of a new major challenge in the plasticity and 

microstructure evolution theories: for which classes of �� and ���ÿ�/
 and may be

pressure path, material behaves along each of the surfaces �ÿ(Ā) = ÿ�ÿ (�) with

corresponding steady ÿ and ý, and for which loading classes the material behavior 

jumps from one surface to another with different steady ÿ and ý? When this 

problem is resolved, one will be able to explain why different SPD technologies lead 

to different steady ÿ and ý [1-3, 31], and how to design the loading paths to reduce 

the ÿ, and increase ý and strength. One of the potential reasons for different steady 

states may be related to the qualitatively different character of the plastic flow, like 

transition from the laminar to hierarchical turbulent flow at different scales with 

different degrees of complexity [32-34].  



Figure 5. Evolving yield surface and several fixed surfaces of perfect plasticity. Part of the 

schematic with the internal fixed surface of perfect plasticity �1(Ā) = ÿ�1(�) in "5D" space of

deviatoric stresses ý at fixed p coincides with that in Figure 2. The difference is in the presence of 

several other fixed surfaces of perfect plasticity �ÿ(Ā) = ÿ�ÿ (�) with larger yield strengths ÿ�ÿ (�).

4. Concluding remarks

In this paper, the first in-situ study of the rules of dislocation density, crystallite size, 

yield surface, and contact friction under high pressure and SPD is presented. In 

particular, after some critical plastic strain, ω-Zr behaves like perfectly plastic and 

isotropic, with fixed plastic strain and the strain-path-independent surface of the 

perfect plasticity �(ý) = ÿ�(�). The perfectly plastic behavior is connected to 

another rule: crystallite size and dislocation density of α and ω-Zr are getting p (only 

for ω-Zr),  �� and ���ÿ�/
-independent and reach steady values. Pressure in single-

phase α-Zr is too low to claim pressure independence. 

To provide a robust method to determine ÿ�(�) and plastic friction stress, we 

introduce rough-DA with increased height of asperities, for which maximum friction �� = �� is reached. We also advanced the simplified equilibrium equation and 

utilized data after reaching perfectly plastic state only, thus avoiding mixing of the 



effect of �� and ���ÿ�/ and pressure. That is why the found relationship, ÿ� =1.24 + (0.0965 ± 0.0016)� (GPa), is much more precise than could be obtained 

with previous methods. Reaching �� = �� implies that the plastic friction �� = �� =0.72 + (0.0557 ± 0.0009)� (GPa) is also independent of �� and ���ÿ�/
. 

Three different steady states are obtained for α-Zr after multiple rolling and 

with smooth and rough-DAs, all are independent of �� and ���ÿ�/. This leads to the 

new key problem in plasticity theory: for which classes of ��, ���ÿ�/
, and maybe

pressure path material behaves along each of the surfaces �ÿ(Ā) = ÿ�ÿ (�) and for

which loading classes the material behavior jumps from one surface to another? 

Solution to this problem will allow one to explain why different SPD technologies 

lead to different steady grain sizes and dislocation densities and how to design the 

loading paths to reduce the grain size and increase dislocation density and strength. 

Similar studies can be repeated for any other material system.  

Obtained results suggest a more economical way to produce the desired steady 

nanostructure. Instead of SPD at high pressure, e.g., by HPT, one can reach one of the 

steady nanostructures by SPD at normal pressure (e.g., by rolling or ECAP) and then 

reach steady nanostructure with smaller grain size at relatively small plastic strain and 

low pressure by compression without or with HPT. Rough-DAs also reduce the phase 

transformation pressure, which will be discussed in future work. Also, rough-DAs 

eliminate the problem of describing contact friction required for modeling 

deformational processes in DAC [20, 25, 35]. For traditional HPT with 

ceramic/metallic anvils, friction reaches the maximum possible level due to large 

asperities. Utilizing rough-DAs in rotational DAC [36-38] will allow in-situ studies of 

HPT. In addition, to increase the maximum possible pressure in DAC, toroidal 

grooves are used [38], which increase friction [18]. This can be done with rough-DAs 

more uniformly throughout the culet and with smaller stress concentrators.  

Importantly, our findings are formulated in the language of plasticity theory 

(plastic strain and strain path tensors, yield surface, etc.) instead of technological 



language, which allows one to use the obtained knowledge to significantly enrich 

fundamental plasticity and the formulation and application of plastic models to 

various processes.  
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Supplementary Methods 

 

1. Evaluation of the yield strength under high pressure 

 

Pressure dependence of the yield strength is of great interest to many disciplines for 

various reasons. It determines:  

(a) strength of structural elements working under extreme loads, in particular, different 

high-pressure apparatuses, including DAC, rotational DAC, and apparatuses with metallic or 

ceramic dies for high-pressure torsion;  

(b) the maximum pressure that can be achieved in materials compressed in DAC (see 

Equation (1));  

(c) material flow in different technologies, like high-pressure material synthesis, 

extrusion, forging, cutting, polishing, and ball milling;  

(d) maximum possible friction in heavily loaded contacts and related wear;  

(e) the level of shear (deviatoric) stresses that can be applied to materials. The shear 

stresses drastically affect the phase transformations, chemical reactions, and other structural 

changes [1, 19, 24, 36-38, 40, 41];  

(f) plastic flow and geodynamic processes in Earth and other planets, including 

earthquakes. 

There are two approaches to estimate yield strength under pressure in a DAC-like 

device, which exploit x-ray diffraction in either radial or axial diffraction geometry. With 

radial diffraction geometry, the yield strength in compression can be estimated from the 

lattice strains (distortion of crystal lattice planes) measured by synchrotron x-ray diffraction. 

Since the compression direction is perpendicular to the x-ray beam, lattice strains are 

detectable because axial compression symmetry and diffraction symmetry do not coincide. 

With this method, all the components of the elastic strain tensor in single crystals comprising 

polycrystalline samples can be determined. Combined with high-pressure single-crystal 

elastic constants, lattice strains can be used to estimate yield strength with proper mechanical 

assumptions [42]. Despite obtaining a large amount of experimental information and broad 

usage, this method suffers from several disadvantages:  

(a) All measurements are averaged over the diameter of the sample, and the radial 

gradient of strain and stress fields is unavoidable due to contact friction. The macroscopic 

stress state also includes shear stresses, which are not included in the treatment. To reduce the 
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effect of friction, a relatively small ratio of the sample diameter to thickness Ă/ℎ needs to be 

used, which also limits the axial displacement and applied plastic strain. 

(b) When estimating yield strength from the lattice strains, different chosen 

mechanical assumptions to determine effective elastic properties of the polycrystalline 

aggregate (Reuss, Voigt, Hill, self-consistent, etc.) leads to different results.  

(c) For multiphase materials, lattice strains give an estimation of stress in a single 

phase only. The mixture theory for the yield strength of multiphase material is not well 

developed, especially for the large difference in the yield strength of phases [43, 44].  

(d) Yield strength depends on the pressure, plastic strain, and grain size that evolve 

during deformation. By presenting the yield strength versus pressure, all these effects are 

prescribed to the pressure only, which introduces large errors.  

With axial diffraction geometry, yield strength is estimated using radial pressure 

gradient and sample thickness based on the simplified mechanical equilibrium equation in 

radial direction r [16-18], combined with the assumption that the friction stress reaches the 

yield strength in shear �ÿ: 

                                                               
ĂĂ̅ĂĄ = 2 2��(Ă)/  ,                                                         (S1) 

where Ă̅ is the pressure, averaged over the sample thickness. Previously, the pressure was 

measured at the surface using the ruby fluorescence method, and thickness was measured on 

recovered samples after unloading. Currently, pressure Ă̅ can be measured using x-ray 

diffraction and thickness using x-ray absorption. The advantage of Equation (S1) is that it 

does not include constitutive equations and assumptions, making it available for multiphase 

material. Disadvantages are:  

(a) Due to the low friction coefficient of the diamond, the friction stress is much lower 

than the yield strength in shear �ÿ. We found here that for smooth anvils up to 15 GPa, the 

ratio ��/�ÿ = 0.39 2 0.46  away from the center characterizes underestimate in the �ÿ(Ă) in 

previous works [16-18]. This is the reason why this method significantly underestimates the 

yield strength.  

(b) Stress � and strain �Ă tensor fields are strongly heterogeneous along the radius, 

and material undergoes very different plastic straining path �ĂĂÿĆ/
 at different positions. Since 

the yield strength depends on pressure, �Ă, and �ĂĂÿĆ/
, but is presented as a function of 

pressure only, this also introduces large errors.  

(c) Equation (S1) neglects heterogeneity along the thickness and difference between 

pressure and normal stresses. 
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We eliminate all the above drawbacks and advance mechanical equilibrium Equation 

(S1) to the form of Equation (1) from the main text, which considers the heterogeneity of all 

stresses across the sample thickness, in the following part. 

 

2. Derivation of the advanced averaged equilibrium equation 

 

 Problem formulation. For compression of a sample in the DAC, �33, �11, and �22 are 

the normal stress components along the load (vertical), radial, and azimuthal directions, 

respectively; �31 is the shear stress; �ÿ and �ÿ are the yield strength in compression and shear 

respectively. Compressive stresses are negative. Pressure is defined as: 

                                                        Ă = 2(�11 + �22 + �33)/3 .                                          (S2) 

All stresses and pressure are functions of Ą and 2�/ℎ in a cylinder coordinate system with the 

origin at the center of the sample cylinder, where ℎ is the sample thickness; in particular, Ă(0) 

corresponds to the symmetry plane � = 0 and Ă(1) corresponds to the contact surface 2�/ℎ =1. Pressure (or any stress), averaged over the sample thickness, is defined as: 

                                                                 Ă̅ = 1/ ∫ Ă/0 Ă�.                                                        (S3) 

The contact friction stress �� is defined by the simplified mechanical equilibrium equation.  

                                                               
Ă��11ĂĄ = 2 2��(Ă(1))/   .                                                 (S4)      

The pressure-dependent yield strength in compression �ÿ and shear �ÿ = �ÿ/√3 (based on the 

von Mises equivalent stress) are: �ÿ = �ÿ0 + ĀĂ;  �ÿ = �ÿ/√3 = (�ÿ0 + ĀĂ)/√3 .                      (S5) 

Note that �ÿ depends on the local pressure Ă. At the contact surface, symmetry plane, and for 

averaged over the thickness, we have different pressures and yield strengths:  

                     �ÿ(1) = �ÿ0 + ĀĂ(1);   �ÿ(0) = �ÿ0 + ĀĂ(0);     ��ÿ = �ÿ0 + ĀĂ̅ .                 (S6) 

     �ÿ(1) = (�ÿ0 + ĀĂ(1)) /√3; �ÿ(0) = (�ÿ0 + ĀĂ(0)) /√3; �ÿ̅ = (�ÿ0 + ĀĂ̅)/√3 . 

 

For maximum possible friction provided by the rough-DA, we have: 

                                  ��(Ă(1)) = �ÿ(1) = 1√3 �ÿ(1) = 1√3 (�ÿ0 + ĀĂ(1)) .                          (S7) 

With expression in Equation (S7), the equilibrium Equation (S4) specifies as: 

                                             
Ă��11ĂĄ = 2 2√3 ��(1)/ = 2 2√3 ��0+ĀĂ(1)/  .                                            (S8) 
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Since we assume that in XRD experiments, the distribution of pressure Ă̅(Ą) averaged over 

the thickness is measured, we need to express ��11 and Ă(1) in Equation (S11) in terms of Ă̅(Ą). Traditionally, this difference is neglected, i.e., it is assumed ��11 = Ă(1) = Ă̅(Ą), which 

introduces errors.  

 Analytical evaluation of the stress and pressure fields. We assume that the material 

behaves as perfectly plastic and isotropic macroscopically, with the surface of perfect 

plasticity �(�) = �ÿ(Ă) in the 5D deviatoric stress tensor s space. This surface is independent 

of the plastic strain tensor �Ă and its path �ĂĂÿĆ/
. Such behavior can be achieved after large 

enough preliminary plastic deformation leading to saturation of hardness [18]. The pressure-

dependent von Mises yield condition (i.e., Drucker-Prager yield condition) is assumed: 

 �(�) = 1√2 √(�11 2 �22)2 + (�11 2 �33)2 + (�22 2 �33)2 + 6�132 = �ÿ(Ă) = √3�ÿ(Ă). (S9)    

 

Equilibrium equations are: 

 ∂�11∂Ą + ∂�13∂Ā + �112�22Ą = 0;                                          (S10)  

 
∂�33∂Ā + ∂�13∂Ą + �13Ą = 0.                                                 (S11)                                        

 

The following assumptions are made: 

(a) It approximately follows from the finite element method simulations and DAC 

experiments: �11 = �22. Then plasticity condition Equation (S9) simplifies to: (�11 2 �33)2 + 3�312 = �ÿ2(Ă) = 3�ÿ2(Ă).                   (S12)                                                

(b) Stress �33 is independent of �. However, it does not mean that: 

 
∂�13∂Ą + �13Ą = 0   →    �13 = �0(�) Ą0Ą  .                              (S13)                                     

because at the contact surface, �0(�) may equal constant �ÿ for all Ą for material with 

pressure-independent yield strength. �33 that is independent of � means two other terms in 

Equation (S11) make small contributions to �33. 

For plane strain, when the term 
�13Ą  in Equation (S11) is absent, a slightly modified 

Prandtl's solution for the maximum possible contact friction [45] for stresses that satisfy 

equilibrium equations and plasticity conditions are: �33(Ā)�� = �33(0)�� + 2Ą/  ;                                                  (S14) 
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�13�� = 2Ā/  ;                                                          (S15) 

                                                                                                                                       

                    �11�� = �33(0)�� + 2Ą/ + √3√1 2 (2Ā/ )2 = �33(Ą)�� + √3√1 2 (2Ā/ )2
;               (S16) 

                                 Ă�� = 2 2�11+�333�� = 2 �33(Ą)�� 2 23 √3√1 2 (2Ā/ )2
 .                          (S17)           

The difference with Prandtl's solution is in multiplier √3 instead of 2 in Equation (6) for �11. 

The reason is that we use the von Mises condition and �11 = �22, which results in Equation 

(S12), while in Prandtl's solution, the Tresca condition along with plane strain assumption 

leads to the yield condition (�11 2 �33)2 + 4�312 = �ÿ2 = 4�ÿ2. 

Equation (S16) and Equation (S17) lead to the relationship: 

                                                          
�11�� = 2 Ă�� + √33 √1 2 (2Ā/ )2

 .                                            (S18) 

Stress ��11 and pressure Ă̅, averaged over the sample thickness are 

                               
��11 ��(Ă̅) = 1/ ∫ �11��/0 Ă� = �33(0)��(Ă̅) + 2Ą/ + √3�4 = �33��(Ă̅) + √3�4  ;                        (S19) 

                                    
Ă̅��(Ă̅) = 2 �33��(Ă̅) 2 √3�6  .                           (S20) 

We assumed that �ÿ is constant during averaging and then substituted in the result �ÿ(Ă̅). It is 

possible to avoid this assumption, but the final equations are getting too bulky and unusable 

analytically for our purposes. Note that the averaged value of ��11 is much closer to the value 

of �11(2�/ℎ) at the symmetry plane �11(0) than at the contact surface �11(1). For example, (�11(0) 2 �33)/(√3�ÿ) = 1, �11(1) 2 �33 = 0, and (��11 2 �33)/(√3�ÿ) = 0.79. Similar, (Ă(0) + �33)/(2�ÿ/√3) = 21, Ă(1) 2 �33 = 0, and (��11 2 �33)/(2�ÿ/√3) = 20.79. 

Equation (S19) and Equation (S20) lead to the relationship: ��11��(Ă̅) = 2 Ă̅��(Ă̅) + √3�12  .                                                   (S21) 

We aim to find the relationship between ��11, �11(0), and �11(1). We will use the following 

identity: 

  ��11 = �11(1)� + �11(0)(1 2 �);   � : = ��112�11(0)�11(1)2�11(0) .                  (S22) 

Where � is treated as the weight factor. Utilizing Equation (S16) and Equation (S19), we 

obtain: � = 1 2 �4 ��(Ă̅)��(Ă(0)) = 1 2 �4 ��0+ĀĂ̅��0+ĀĂ(0) .                                       (S23) 

Similar, 
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Ă̅ = Ă(1)� + Ă(0)(1 2 �);   � = Ă̅2Ă(0)Ă(1)2Ă(0) .                            (S24) 

Here we used the same symbol � because, from Equation (S17) and Equation (S20), it has the 

same expression (Equation (S23)) as for �11. Also, we obtain from Equation (S16) and 

Equation (S18): �11(1) = 2Ă(1) = �33; �11(0) = 2Ă(0) + √33 �ÿ(Ă(0)) = 2Ă(0) + 13 �ÿ(Ă(0));   (S25) 

from Equation (S17): Ă(0) = 2�33 2 1.155�ÿ(Ă(0)) = 2�33 2 0.667�ÿ(Ă(0)) = Ă(1) 2 0.667�ÿ(Ă(0)); (S26) 

from Equation (S21): ��11 = 2Ă̅ + 0.453�ÿ(Ă̅) = 2Ă̅ + 0.262�ÿ(Ă̅) = 0.262�ÿ0 + Ă̅(0.262Ā 2 1).         (S27) 

Elaborating Equation (S26) with allowing for Equation (S6): Ă(0) = Ă(1) 2 0.667�ÿ(Ă(0)) = Ă(1) 2 0.667[�ÿ0 + ĀĂ(0)] → Ă(0) = Ă(1)20.667��01+0.667Ā  .   (S28) 

Substitution of Equation (S28) in Equation (S23) and Equation (S24) results in: Ă̅ = Ă(1)� + Ă(1)20.667��01+0.667Ā (1 2 �);   � = 1 2 (0.785 + 0.524Ā) ��0+ĀĂ̅��0+ĀĂ(1) .       (S29) 

Resolving linear equations Equation (S29) for � and Ă(1), we obtain: � = 0.4111.910+Ā ;                                                           (S30) 

 Ă(1) = 0.524�ÿ0 + (1 + 0.524Ā)Ă̅.                                      (S31) 

Substituting in Equation (S6) for �ÿ(1) in Equation (S31), we obtain: �ÿ(1) = �ÿ0 + ĀĂ(1) = (�ÿ0 + ĀĂ̅)(1 + 0.524Ā)                             (S32) 

Substituting Equation (S27) and Equation (S32) in Equation (S8) results in the final 

equilibrium equation for parameters �ÿ0 and Ā from the best fit to experiments: ĂĂ̅ĂĄ = 2 2√3  1+0.524Ā120.262Ā  ��0+ĀĂ̅/  .                                            (S33) 

Equation (S33) is the final mechanical equilibrium equation expressed in terms of measured 

pressure Ă̅ averaged of the sample thickness, which is used as Equation (1) in the main text to 

determine the pressure dependence of the yield strength. It transforms to the known Equation 

[16-18] for Ā = 0 only. We want to use data from all four compression stages as a single data 

set. To do this, we must justify a way to combine all data in a single plot. Equation (S33) and 

its solution in Equation (1) in the main text have the following properties:  

(a) Pressure distribution depends on the dimensionless geometric parameter Ą/ℎ rather 

than on Ą and ℎ separately.  
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(b) Pressure distribution curves for different applied forces and compression can be 

overlapped by shifting curves along the Ą-axis without changing �ÿ(Ă), since change Ą → Ą +ÿ does not violate Equation (S33). Indeed, one can choose the same Ă0 for all curves and 

choose constant ÿ for each curve such that 
Ą+ÿ/ = āāĀąĆ is the same for all curves.  

These properties are used in Figure 3 in the main text. Practically, one can choose a 

fixed (Ă� ,  Ą�) point in the Ă 2 Ą/ℎ plane for all curves to pass through. Then the curve that 

originally passes through the point (Ă� ,  Ąÿ), should be shifted in the positive direction by the 

distance (Ą� 2 Ąÿ)/ℎ, so that the new curve passes through (Ă�,  Ą�). Then we used all the 

points in the shifted curve in Figure 3 to find the best fit for Equation (S33) (or Equation (1) 

in the main text).  

 

3. Dislocation density estimation 

The crystallite sizes and microstrains extracted from the refinement using MAUD were used 

to estimate the dislocation density. Dislocation density can be expressed as [23]: 

                                                             Ā = √ĀāĀÿą .                                                       (S34)  

where Āā and Āÿą are the contribution to overall dislocation density from crystallite size and 

microstrain, respectively. Contribution from crystallite size is:  

                                                             Āā = 3Ă2 .                                                           (S35) 

Where d is crystallite size. Contribution from the microstrain is determined by the Equation: 

                                                             Āÿą = ��2/Ā2.                                                     (S36) 

Where � is the microstrain; Ā is the magnitude of the Burgers vector; � = 6ÿý( āÿ ln (Ą/Ą0)) is a 

material constant; ā and ÿ are Young9s modulus and shear modulus, respectively; ý is a 

constant that lies between 2 and ÿ/2 based on the distribution of strain; Ą is the radius of 

crystallite with dislocation; Ą0 is a chosen integration limit for dislocation core. In this study, ý = ÿ/2 is the gaussian distribution of strain. Moduli ā, ÿ and their pressure dependence for 

ω-Zr are taken from [46], respectively. A reasonable value of ln (Ą/Ą0) being 4 is used [23].  

α-Zr has a dominant prismatic slip system of {11�00}+112�0, [47-50]. For ω-Zr, a prismatic {112�0}+11�00, and basal {0001}+11�00, dominant slip system is suggested based on plasticity 

modeling [51]. Since the crystal lattice gets compressed under pressure, the length of the 

Burger vector is calculated using pressure-dependent lattice constants. It is worth to note that 

when estimating dislocation density using the Williamson-Smallman method, we only 

consider one dominant dislocation slip system. However, to accommodate arbitrarily 
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imposing plastic strain on polycrystals, auxiliary slip systems are usually needed. With 

changing orientation of grains during deformation, the Schmid factor of slip systems changes, 

and thus slip system activities, which is the percentage of plastic strain accommodated by 

certain slip systems, will be different. This may induce uncertainty in dislocation density 

estimation. Note that nanocrystals usually do not have a cell structure because cell boundaries 

are transformed into grain boundaries [4, 52]. That is why the crystallite size is equal to the 

grain size. 

 

4. Some additional experimental details  

The material in this study is commercially pure (99.8%) α-Zr (Fe: 330 ppm; Mn: 27 ppm; Hf: 

452 ppm; S: <550 ppm; Nd: <500 ppm). We chose Zr as our first test material since Zr and its 

alloy are widely used in the aerospace, military, medical, and nuclear industries experiencing 

potential high-pressure environments. The sample thickness during compression (see Table 

S1) was measured through x-ray intensity absorption using the linear attenuation equation 

with density corrected to the corresponding pressure, similar to [19].  

 

Table S1. The thickness of Zr sample compressed with rough-DAs at corresponding 

compression steps marked by the peak pressure at the culet center.  

Compression step initial 3 GPa 6 GPa 10 GPa 14 GPa 

Thickness (µm) 163 48 40 32 26 

 

 

 

Supplementary Discussion 

 

1. Scatter in crystallite size and dislocation density in ω-Zr after completing phase 

transformation 

 

While the crystallite size and the dislocation density in ω-Zr after completing the phase 

transformation are independent of the radius (Figure 4), there are some scatters around the 

average along the radius. Also, the dislocation densities vary slightly between 6, 10, and 14 

GPa steps. These scatters cannot be attributed to the dependence of the crystallite size and 

dislocation density on pressure, plastic strain, and strain path. Indeed, pressure strongly and 
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monotonously reduces, plastic strain strongly and monotonously increases along the radius, 

and the plastic strain path also changes monotonically. However, there is no clear radial 

dependence of the crystallite size and the dislocation density. Because of the large fluctuation, 

the slight difference in the average dislocation density between 6, 10, and 14 GPa steps also 

cannot be solely attributed to the growing pressure and plastic strain. A possibility is that the 

observed fluctuations in the crystallite size and the dislocation density after phase 

transformation completed are due to evolving texture (i.e., dynamically changing distribution 

of crystallographic orientations and uncharacterized preferred orientations) during the plastic 

deformation with increasing pressure and errors in post-processing of XRD patterns as 

described in dislocation density estimation section. 

 

2. The rationale for pressure-independence of the steady grain size 

2.1. Main equations 

The existence of steady values of the grain size, dislocation density, and hardness 

(yield strength) and the parameters they affect are discussed in reviews [1-8]. While pressure 

dependence of the grain size was not quantitatively analyzed in the literature, some models 

and correlations are used for the steady grain size at normal pressure. For example, in [53], 

the following equation is derived: Ăÿ�ĀĀ = ý3 exp (2 ÿā4Ă�) (ĀĀÿÿĀ2�ā�� )0.25 ( ĀÿĀ)0.5 (ÿ�)1.25,            (S37) 

where b is the magnitude of Burgers vector, ý3 and ÿ are constants,  � is the self-diffusion 

activation energy, R is the gas constant, k is Boltzmann9s constant,  T is the absolute 

temperature, ĀĀÿ is the frequency factor for pipe diffusion, G is the shear modulus, �ā is the 

initial dislocation velocity, Ā is the stacking fault energy,  � = Ā�/3 is the normal stress, and 

HV is the hardness. Equation (S37) was further transformed in [54] to:  Ăÿ�ĀĀ = ý3 exp (2 ÿ��4�ÿ) (ĀĀÿÿĀ2�ā�� )0.25 ( ĀÿĀ)0.5 (ÿ�)1.25
,        (S38) 

where �ÿ is the melting temperature, ÿ = 0.037, � = 17.5 .  There are also some different 

simpler relationships in terms of steady hardness Ā�, like: Ăÿ�Ā�Ā = ý ( ÿĀ�)ÿ
                                                 (S39) 

with m=1.667 in [54] and m=1.25 in [53], and in terms of stacking fault energy Ā, like Ăÿ�Ā�Ā = ÿ ( ĀÿĀ)ă
                                                  (S40) 
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with q=0.5 in [53], q=0.4 in [54], and q= 0.653 for HPT and q=0.696 for equal channel 

angular pressing in [55]. Besides, a relationship in terms of melting temperature is provided in 

[53, 54]: Ăÿ�Ā�ÿĀ = 3818 exp(20.00056�ÿ).                                   (S41) 

Note that there is a clear difference between the steady grain size obtained by HPT and 

processes at normal pressure, like ECAP, which is attributed to the reduction of the minimum 

grain size with pressure. This is probably related to damage that occurs at low pressure during 

plastic deformation and stress release, which are not taken into account in the following 

analysis. Alternatively, or in addition, monotonous straining produces finer grain than the 

cyclic [3]. For monotonous straining during HPT, larger grain size for low pressure (e.g., for 

Ni for 1 GPa [2, 29]) may be related to not reaching a steady state due to smaller friction and 

plastic strain. To be safe, we assume that the following analysis of direct effects of pressure is 

applicable above some critical pressure, similar to our data for ω-Zr. There are many other 

parameters that are not taken into account. In particular, we still cannot explain the effect of 

the deformation with the smooth and rough diamond anvils.    

A linear pressure dependence of grain size is assumed: ĂÿÿĀ = ĂÿÿĀ0 (1 2 ÿĂ),                                             (S42)  

where ĂÿÿĀ0  is the grain size at 0 GPa and a is small in comparison with the unity coefficient. 

We will show in the following evaluations that the pressure-induced reduction in the grain 

size does not exceed uncertainty in our grain size measurement 6/47 = 0.13 over a pressure 

range from 6 to 14 GPa, corresponding to the value of ÿ within:  20.0163 f 2 0.138 f ÿ f 0.138 = 0.0163  (GPa21).                      (S43) 

Such a pressure dependence of the grain size is undetectable with our in-situ synchrotron 

XRD measurements. 

 

1.2 Pressure dependence of the main material parameters affecting steady grain size 

To analyze the pressure dependence of the grain size, we also assume a linear pressure 

dependence of any material property C: ÿ = ÿ0(1 2 ýĂ),                                               (S44) 

where p is the pressure, ÿ0 is the property at p=0, and A is small compared to the unity 

coefficient. First, we need to collect the pressure dependence of the main properties of ω-Zr 

that affect it. 

Yield strength from this study: 
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�ÿ = 1.24 + 0.0965Ă = 1.24(1 + 0.0778Ă).                        (S45) 

Shear modulus from [26]: ÿ = 45.1(1 + 0.0132Ă).                                          (S46) 

Bulk modulus from [14] � = 102.4(1 + 0.0286Ă).                                         (S47) 

Magnitude of the Burgers vector: Ā = Ā0 (1 2 Ă3�) ~Ā0(1 2 0.0033Ă).                                 (S48) 

Melting temperature from [56]: �ÿ = 2125(1 + 0.0094Ă).                                         (S49) 

Stacking fault energy (SFE) affects steady grain size, particularly in terms of the 

combination of twinning and dislocation mechanisms of plasticity. The lower stacking fault 

energy is the higher contribution of twinning to plastic flow. Significant twinning is observed 

in α-Zr [48, 50]. It is known that a reduction in grain size suppresses twinning [57]. We are 

not aware of works reporting twinning in nanocrystalline ω-Zr. Papers [51, 58] quantitatively 

reproduce experimentally observed in [51] texture by combining different slip modes only. 

That is why the minimum grain size for ω-Zr may depend on the SFE for reasons other than 

twinning, like grain size recovery, dislocation absorption by grain boundaries, and dislocation 

climbing [54].  

Let us estimate the pressure-dependence of the SFE by analyzing parameter ÿą� in Ā =Ā0(1 + ÿą�Ă). Since we are unaware of data on the pressure dependence of the SFE for Zr or 

any other simple hexagonal metal, we will use available data for 9 fcc metals in [59] for the 

intrinsic stacking faults. Data for the energy of the extrinsic stacking faults are quite similar. 

Results are collected in Table S2. The largest ÿą� = 0.071 GPa21 is for Ag, which has the 

smallest Ā0 = 16.9 mJ/m2, then ÿą� = 0.024 GPa21 for Au with Ā0 = 32.6 mJ/m2. For all 

other 7 metals with larger Ā0, ÿą� varies between 0.0077 and 0.0186 GPa-1. For 3 other fcc 

metals, Ca, Sr, and Pb, Ā is getting negative with pressure, i.e., ÿą� < 0. Note that in [60], for 

Ag Ā = 27.3(1 2 0.09Ă) mJ/m2 and for Cu, it is Ā = 47.3(1 2 0.01Ă) mJ/m2 in the 

pressure range 24 GPa f Ă f 4 GPa, i.e., ÿą� < 0 and is close in magnitude to the positive 

values in [59]. Based on the above results, we assume ÿą� = 0.01 for omega Zr, i.e., Ā = Ā0 (1 + 0.01Ă).                                             (S50) 

1.3. Evaluating the pressure dependence of the grain size 

While evaluating the effect of pressure in Eqs. (S37)-(S41), we utilize the linear 

approximation in the Taylor series, e.g., 
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(1+ĀĂ)(1+āĂ)Ā(1+�Ă)(1+ÿĂ)ÿ j 1 + (Ā 2 � + āĀ 2 ÿă)Ă;                               (S51) exp(2ý(1 + ÿĂ)) j exp(2ý)(1 2 ÿýĂ);                            (S52) exp(2ý(1 + ÿĂ)) (1+ĀĂ)(1+āĂ)Ā(1+�Ă)(1+ÿĂ)ÿ j g2�(1 + (2ÿý + Ā 2 � + āĀ 2 ÿă)Ă.     (S53) 

Let us start with Eq. (S40). Using pressure dependence of SFE, G and b, we obtain: 

                                               ( ĀÿĀ)ă j ( Ā0ÿ0Ā0)ă (1 + 0.0001ăĂ);                                (S54) ĂÿÿĀĀ = Ā ( ĀÿĀ)ă j ĂÿÿĀ0 (1 + (0.0001ă 2 0.0033)Ă).                   (S55) 

Thus, for any q accepted in the literature, from 0.4 to 0.696, the pressure dependence of ( ĀÿĀ)ă
 

is negligible, and the pressure dependence of ĂÿÿĀĀ
 is determined by the pressure dependence 

of the Burgers vector. For extreme case q=0 (which corresponds to the independence of the 

minimum grain size of 
ĀÿĀ suggested in [61]), ÿ = 0.0033 < 0.0163 (see Eq. (S43)), and the 

effect of pressure on the grain size according to Eq. (S40) is undetectable experimentally.  

Since the pressure dependence of Ā of ω-Zr is not well defined, we will determine the limits 

of its variation which still make the grain size pressure independent. Assuming Ā =Ā0(1 + ÿą�Ă), we obtain: ĂÿÿĀĀ j ĂÿÿĀ0 (1 + (0.0099 + ÿą�)ăĂ 2 0.0033Ă).                              (S56) 

For ÿą� > 0, assuming the largest q=0.696, we obtain from Eq. (S43) that for ÿą� < 0.0381, 

the pressure effect on grain size will be undetectable in our experiments. For ÿą� < 0, 

assuming the smallest q=0.4, we obtain from Eq. (S43) that ÿą� > 20.0226. For metals in 

Table S2 with relatively high SFE like Zr (except for Ag with a significantly lower SFE), their ÿą� values are within the range of (-0.0226, 0.0381). Thus, Eq. (S40) agrees with pressure-

independent steady grain size in our experiments.  

 Next, we evaluate the effect of the pressure dependence of the melting temperature 

from Eq. (S49) on the ĂÿÿĀ�ÿ  using Eq. (S41). With the help of Eq. (S52), we obtain ĂÿÿĀ�ÿ j ĂÿÿĀ0 (1 2 0.0112Ă).                                            (S57) 

Comparison with Eq. (S43) shows that Eq. (S41) agrees with the pressure-independent steady 

grain size in our experiments. Since the dependence of ĂÿÿĀ�ÿ  in Eq. (S41) comes from the 

relationship between melting temperature �ÿ and the activation energy of self-diffusion, we 

can conclude that the latter also cannot lead to the pressure dependence of the grain size. 
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 The effect of the shear modulus, hardness and the yield strength can be studied based 

on Eq. (S39). Hardness for Zr is independent of pressure applied during HPT [12], which 

gives: ĂÿÿĀÿ j ĂÿÿĀ0 (1 + (0.0132ÿ 2 0.0033)Ă).                               (S58) 

For m=1.667 in [61], we have ÿ = 20.0186, which is slightly larger in magnitude than 

0.0163 and is marginally detectable. For m=1.25 in [53], one gets ÿ = 20.0132, which is 

undetectable experimentally. For an averaged value ÿ = 20.0159, Eq. (S43) is met. Note that 

in Eq. (S38), the net effect of the shear modulus comes from three terms. If we consider all of 

them, m should be reduced by 0.25. For m=1.417, we have ÿ = 20.0154 and Eq. (S43) is 

met. However, initially in [54] for Eqs. (S37) and (S38), combination (ÿ/�)1.25 is used 

instead of (ÿ/Ā�)1.25, where � is the external stress. Then � is equaled to the yield strength, 

which is not true (because external stress for HPT can be much larger than the yield strength), 

and then the yield strength is substituted with Ā�/3. Now, we will substitute Ā� = 3�ÿ in 

Eq. (S39) and take pressure dependence of the yield strength into account:  Ăÿ�Ā��Ā = þ ( ÿ��)ÿ
.                                                  (S60) 

We obtain ĂÿÿĀ�� j ĂÿÿĀ0 (1 2 (0.0646ÿ + 0.0033)Ă).                             (S61) 

Even for smaller m=1.25, we obtain  ÿ = 0.0841, which is more than 5 times larger than the 

limit in Eq. (S43). Since we do not have any parameter with such a large a to compensate for 

the effect of �ÿ(Ă), we can conclude that including pressure-dependent yield strength �ÿ(Ă) 

as one of the parameters affecting the steady grain size contradicts our experimental results, 

which show pressure-independent minimum grain size. This also excludes the argument that 

the pressure independent minimum grain size is caused by some specific deformation 

mechanisms (like dislocations, twinning, or grain boundary sliding) or transition from laminar 

to turbulent flow [32-34], because all of them are reflected in the experimental pressure 

dependent yield strength.  

 Finally, collecting all terms in Eq. (S38) and pressure dependence of �ÿ, ÿ, Ā, and Ā, 

we obtain the combined effect of the pressure on the grain size: ĂÿÿĀ j ĂÿÿĀ0 (1 + 0.0037Ă),                                                    (S62) 

which is 4.4 times smaller than can be detected in our experiments. It is clear from Eq. (S54) 

for q=0.5 that the SFE does not contribute to Eq. (S62), i.e., the term with Ā can be eliminated 

from Eq. (S38). An increase in the grain size with p, while negligible, is counterintuitive. It 
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comes mostly from the term (ÿ/�)1.25, which is not well-defined in [53, 54] because � is 

quite arbitrary. If we eliminate this term, then we obtain:  ĂÿÿĀ j ĂÿÿĀ0 (1 2 0.0128Ă),                                                    (S63) 

which looks more realistic but is still, according to Eq. (S43), undetectable in our experiment. 

Thus, the known expressions for the grain size dependence of various material parameters 

confirm our finding that the steady grain size is pressure independent.  

   

Table S2. Stacking fault energy and pressure dependence parameter ÿą� from [12] 

 Co Ni Cu Rh Pd Ag Ir Pt Au Ā0 (mJ/m2) 168.3 153 42.4 203.4 139.5 16.9 357.2 288.1 32.6 ÿą�  (GPa21) 0.0077 0.0078 0.0165 0.0113 0.0186 0.0710 0.0076 0.0111 0.0245 

 

3. Relationship between the yield surface and surface of perfect plasticity 

 

Our results provide the first quantitative proof of the fixed isotropic pressure-

dependent surface of perfect plasticity independent of �Ă and �ĂĂÿĆ/
, which is far beyond the 

observation and description in terms of the 'steady hardness'. However, it is well-known that 

severely deformed materials exhibit plastic strain-induced texture and anisotropy,   including 

the Bauschinger effect described by back stresses. Thus, the traditional yield surface is 

evolving, anisotropic, and depends on �Ă and �ĂĂÿĆ/
 (Figure 2). To resolve this seeming 

contradiction, we use two different surfaces in <5D= space of deviatoric stresses � at fixed p: 

traditional evolving anisotropic yield surface ÿ(�, �Ă, �Ă�ÿĆ/) = ��(Ă) and fixed isotropic 

surface of perfect plasticity �(�) = �ÿ(Ă). After some critical plastic strain, the yield surface 

reaches �(�) = �ÿ(Ă), and at further monotonous loading, it moves with the deviatoric stress 

vector s along the fixed isotropic surface  �(�) = �ÿ(Ă). Thus, the material deforms like 

perfectly plastic, isotropic with the fixed surface of perfect plasticity. However, during sharp 

change in loading direction or unloading and reloading in a different direction in the stress 

space, flow occurs in accordance with actual evolving anisotropic yield surface ÿ(�, �Ă, �ĂĂÿĆ/) = ��(Ă). Due to limited measurement capabilities and strongly heterogeneous 

fields, and the complexity of equation ÿ(�, �Ă, �ĂĂÿĆ/) = �ÿ(Ă), it is impossible to determine it 

experimentally. However, finding the surface of perfect plasticity �(�) = �ÿ(Ă) is very 
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important because it fully characterizes material's behavior after some critical level of severe 

plastic deformation and for monotonous loading. Note that the isotropy of the surface of 

perfect plasticity �(�) = �ÿ(Ă) follows not only from experiments but from the theory. 

Indeed, since initially polycrystalline material with stochastic grain orientation without texture 

is isotropic, its anisotropy during deformation can come from �Ă and �ĂĂÿĆ/
 only, i.e., it is 

strain-induced. Since �(�) = �ÿ(Ă) is independent of �Ă and �ĂĂÿĆ/
, the only source for 

anisotropy disappears. Note that the steady state in the yield strength does not correspond to 

the steady state in torque in high-pressure torsion [62], mostly due to the complexity of the 

friction condition. Also, in [63], steady yield strength and dislocation density independent of 

the changes in strain rate path were obtained in molecular dynamics simulations for a single 

crystal Ta. These results were called <a tantalizing general hypothesis that merits further 

scrutiny.= 

 

4. Notes on the importance of in-situ studies of severe plastic deformations under high 

pressure 

 

As mentioned in the main text, the effects of severe plastic deformations under high pressure 

on phase transformations and microstructure evolution are mostly studied with HPT with 

metallic or ceramic anvils. However, all these results were obtained postmortem after pressure 

release and further treatment during sample preparation for mechanical and structural studies. 

The only paper [13] studies the dislocation density and crystallite size in Ni during HPT in a 

single peripheral region in situ. However, the beam passes also through a significant 

protrusion part of a sample, which underwent relatively small plastic strain under compression 

and had lower and very heterogeneous stresses. This brings essential inaccuracy, which varies 

during the torsion. Also, since data are collected from a single region and for material without 

phase transformation, the existence of the steady dislocation density and crystallite size can be 

concluded only. Their independence from pressure and straining path and other our 

conclusions cannot be drawn from [13]. Note that importance of in-situ molecular dynamics 

analysis versus ex-situ experiments was stressed in [63].  

 While we obtained complete phase transformation to ω-Zr in some regions under 

compression at 3 GPa at the center (Fig. 3) and in the entire sample at 6 GPa, in [12] retaining 

α-Zr was observed at HPT even after 20 turns. It is written in [12]: <Although this suggests 

that the complete transformation does not occur, there can be a possibility that a reverse 

transformation from the ω phase to the α phase might have occurred during mechanical 
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polishing for the preparation of the XRD specimens as reported in an earlier experiment that 

the reverse transformation occurred during cold machining.< A complete transformation in 

our in-situ experiments confirms the reverse transformation during cold machining and further 

underlines the importance of in-situ studies. Note that preparing a sample for TEM/SEM may 

lead to additional changes in the phase fraction, dislocation density, and grain size.     

 While our results are consistent with known results [1-8, 11] on the existence of the 

stationary states after severe plastic straining in terms of hardness, grain size, and dislocation 

density, and independence of these states of pressure, they mean much more. Our results are 

obtained directly under pressure versus local pressure at each sample point. Previous results 

were obtained at the normal pressure and versus averaged pressure over the sample during 

HPT. Since pressure is distributed very heterogeneously, using an averaged pressure contains 

a significant error. As an example, independence of the hardness HV=3�ÿ0 and, consequently, 

the yield strength of pressure at HPT is obtained for Zr for p<4 GPa and 6<p<40 GPa [12], Ti 

for p<4 GPa and 20<p<40 GPa [28], for p<4 GPa and 6<p<40 GPa,  V [30], Ni, Hf, Pt, Ag, 

Au, Al, Cu, and Cu-30%Zn [11]. However, it does not imply that the yield strength is 

independent of the pressure since we obtained explicit pressure dependence for Zr. Similarly, 

the independence of dislocation density and grain size measured at the ambient pressure of the 

pressure during HPT does not imply that our in-situ measurements should give independence 

of dislocation density and grain size of the actual pressure. That is why such independence 

that we found is a new result. Also, since pressure is distributed very heterogeneously, 

utilization of an averaged pressure contains a significant error. 
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Supplementary Figures 

 

 

 

Figure S1. Distributions of components of Lagrangian plastic strains in a quarter of a sample for three 

loadings characterized by the maximum pressure in a sample. Very heterogeneous and nontrivial distributions 

are observed, caused by heterogeneous contact friction. At the symmetry axis (left side of a sample) and symmetry 

plane (bottom of a sample), shear strains āĄĀĂ  are zero. At the contact surface with a diamond (top of a sample), 

shear strains and particle rotations reach their maximum due to large contact friction. During compression, each 

material particle flows radially in the region with larger shear and different proportions of the normal strain, i.e., 

is subjected to complex nonproportional straining, very different from other particles. Thus, numerous plastic 

strain tensors and straining paths are realized. Adopted with changes from [26] with permissions.   
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