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Abstract

Severe plastic deformations under high pressure are used to produce nanostructured
materials but were studied ex-situ. We introduce rough diamond anvils to reach
maximum friction equal to yield strength in shear and perform the first in-situ study of
the evolution of the pressure-dependent yield strength and nanostructural parameters
for severely pre-deformed Zr. w-Zr behaves like perfectly plastic, isotropic, and
strain-path-independent. This is related to reaching steady values of the crystallite size
and dislocation density, which are pressure-, strain- and strain-path-independent.
However, steady states for o-Zr obtained with smooth and rough anvils are different,

which causes major challenge in plasticity theory.

Impact statement
In-situ study of severe plastic deformation of w-Zr with rough diamond anvils
revealed that pressure-dependent yield strength, crystallite size, and dislocation

density are getting steady and plastic strain- and strain-path-independent.

1. Introduction

Processes involving severe plastic deformations (SPD) under high pressure are
common in producing nanostructured materials [1-8], in functional materials
experiencing extreme stresses under contact friction, collision, and penetration, and in
geophysics [9,10]. The effects of SPD under high pressure on microstructure
evolution are mostly studied with high-pressure torsion (HPT) with metallic or
ceramic anvils [1-4]. Stationary states after SPD in terms of torque, hardness, grain
size, and dislocation density are well-known in literature, particularly after HPT,
along with many cases where they were not observed [1-8, 11]. However, all these
results were not observed in-situ but obtained postmortem after pressure release and
further treatment during sample preparation for mechanical and structural studies (see
supplement). The direct effect of pressure and the combined effect of pressure and
plastic straining on the yield strength, crystallite size, and dislocation density were not

determined. This is very important because, as we will see, the yield strength of the -



Zr doubles at ~13 GPa, but hardness and, consequently, yield strength after pressure
release are independent of the pressure at HPT [12]. During pressure release after
HPT of Ni, crystallite size increases, and dislocation density decreases by a factor of 2
[13]. Similar results were obtained for Zr under hydrostatic loading [14].

Robust method for measurement of the yield strength in compression
0, (p) under high pressure p is lacking. The main difficulty in studying plasticity,

structural changes, and contact friction is that they depend on five components of the
plastic strain tensor &, and its entire path egath, making an unspecifiable number of

combinations of independent parameters. The yield surface in the 5D deviatoric stress
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s space f(s, &, € ’

= 0y,(p) dependson p, &, and & , demonstrating strain

hardening/softening and strain-induced anisotropy. This complexity makes it
impossible to determine the complete evolution of the yield surface, even at small
strains and ambient condition. For measurement of yield strength at high pressure, all
methods [15-17] treat the yield surface as f(s) = g, (p). i.e., like for perfectly plastic

path

P 1.e., is fixed in

material (for which the yield surface is independent of &, and &

path

the 5D stress space), and dependence on &, and &,

is neglected and merged in
pressure, which causes large error. One of the methods to determine the yield strength
in shear 7, = 0,/ /3 in diamond anvil cell (DAC) is based on applying the

. o e . dp 2t . .
simplified equilibrium equation — = — =%, assuming the anvil-sample contact
dr h

friction stress 7y = 7,, [16-18] (see supplement). Here, P is the pressure averaged

over the sample thickness 4. However, recent experiments [15, 19] show that 7, <
T,. Coupled simulations and experiments demonstrate that 7 = 7,, only in a small
region, even above 100 GPa [20]. We introduce rough diamond anvil (rough-DA),
whose culet is roughly polished to increase friction (Figure 1). We demonstrated that
maximum friction 7y = T, is reached for rough-DA, which allowed us to robustly

determine oy, (p) and plastic friction.
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Figure 1. Surface asperity profile of a smooth anvil and a rough-DA. (a) Traditional smooth-DA

with an asperity profile range [-10 nm; 10 nm] and (b) rough-DA with range [-500 nm; 500 nm].

It was hypothesized in [18] that, above some level of plastic strain in
monotonous straining (straining path without sharp changes in directions), the initially
isotropic polycrystalline materials deform as perfectly plastic and isotropic with a
strain path-independent surface of the perfect plasticity ¢(s) = o, (p) (Figure 2).
Some qualitative supportive arguments for the perfect plastic behavior are presented
in [18], but the quantitative experimental proof is lacking for any material. Here, we
severely pre-deformed commercial Zr by multiple rolling until saturation of its

hardness. We show that after the a-® phase transformation, for four different

path

compression stages (i.e., for very different &, and &,

), all pressure distributions
of w-Zr are described by single function g;, = 1.24 + (0.0965 + 0.0016)p (GPa).

This is possible only if the material behaves like perfectly plastic, isotropic, and

independent of €, and €5*™. Similarly, friction stress 77 = 7, = 0.72 +

(0.0557 + 0.0009)p (GPa) is also independent of €, and €5*". The perfectly

plastic state is connected to reaching a steady nanostructure, determined here by in-
situ synchrotron XRD in terms of crystallite (grain) size d and dislocation density p,
which do not change under successive plastic straining. For rough-DA in o-Zr at the
beginning of a-o transformation, d, is smaller, and p, is larger than those from

smooth anvils, i.e., rough-DA produces a different, more refined steady



nanostructure. The steady nanostructure for o-Zr after transformation is the same for

smooth and rough-DAs and is pressure-independent.

f(s, &, 0% = 0, (p)

o(s) = o,(p)

Figure 2. Evolving yield surface and fixed surface of perfect plasticity. Schematic of the evolution

of the yield surface f(s, &, sgath

) = 0,(p) until it reaches the fixed surface of perfect

plasticity ¢(s) = 0,,(p) in “5D” space of deviatoric stresses s at fixed p. The initial yield surface
and ¢(s) = g, (p) are isotropic (circles). Two other yield surfaces depend on &, and egath, and
acquire strain-induced anisotropy, namely shifted centers O; and O: (back stress) and ellipsoidal shape

due to texture. When the yield surface reaches ¢(s) = g, (p), the material deforms like perfectly

plastic, isotropic with the fixed surface of perfect plasticity.

2. Materials and methods

We heavily pre-deformed the commercially pure (99.8%) a-Zr slab with an initial
thickness of 5.25 mm by multiple rolling down to 163-165 um until saturation of its
hardness. 3 mm diameter disks were punched out for compression in DAC with
rough-DAs, and smooth-DAs for comparison. The pressure distribution is determined

using measured lattice parameters through 3™-order Birch-Murnaghan equation of



state from [19]. Samples were compressed gradually up to ~14-15 GPa at the culet
center. In-situ synchrotron XRD in axial diffraction geometry were performed at 16-
BM-D beamline at HPCAT at Advanced Photon Source with a wavelength of 0.3100
A and recorded with Perkin Elmer detector. The measurements were performed along
two perpendicular culet diameters (230 pm) in 10 um steps. The sample thickness
(see Table S1) was measured through x-ray intensity absorption using the linear
attenuation equation [19]. The diffraction images were converted to unrolled patterns
using FIT2D software [21] and then analyzed through Rietveld refinement using
MAUD software [22] to obtain the lattice parameters, volume fractions of ®-Zr,

microstrains, crystallite sizes, and dislocation density [23] (see supplement).

3. Results and Discussion

We assume and then prove that after SPD and phase transformation, the initially
isotropic polycrystalline Zr deforms as perfectly plastic and isotropic with a strain
path-independent surface of the perfect plasticity ¢(s) = 0, (p) (Figure 2). To
determine the pressure dependence of the yield strength of ®-Zr, the pressure
distribution of fully transformed region can be used only, i.e., region around culet

center of 3 GPa step and the whole diameters after 3 GPa step. Assuming von Mises
yield condition with o, = 039 + bp, and considering non-hydrostatic stress and

heterogeneity along thickness, the equilibrium equation averaged over thickness is

advanced to (see supplement):

ap
dr

0. .=
oy+bP

— 0 _ 0
A — P=P+ D exp(-ApTl) -2, g = LD (g

h b = V3(1-0.262b)’
where P, is the pressure at point 7. From Equation (1),
= dp dp
O'y(P) = —Ahg =—A @ (2)

h
The pressure distributions are plotted vs. r/h in Figure 3. To extract the yield
strength utilizing data at all compression steps and positions, pressure distributions

from different compression stages are shifted horizontally to the same position. Figure

3 shows that for four different compression stages all pressure distributions overlap



with each other and are described by Equation (1) with single pressure dependence
oy, = 1.24 + (0.0965 £ 0.0016)p (GPa). Note that g, = 1.24 GPa is converted
from the hardness of o-Zr from [24], HV=3.72 GPa, based on the known relationship
oy = HV /3, proving that 7, is reached with rough-DA. Finite element simulations

of the processes in DAC [20, 25, 26] and Figure S1 demonstrate that for different

. .. . ath . .
material positions and compression stages, &ps sg , and material rotations vary

substantially. Consequently, the ability to describe all four curves with single function
oy(p) demonstrates strict proof, for the first time, that for the monotonous loading
with rough-DAs, o-Zr deforms as perfectly plastic and isotropic material with &,

path
p

path

» are the

and &, -independent surface of perfect plasticity. Since &, and &

only reasons for the strain-induced anisotropy, independence of the yield surface of
Oy

them implies isotropy also from the theory. Similar, friction stress 7 = T, = =

0.72 4 (0.0557 + 0.0009)p (GPa) is also independent of &, and eg‘““.
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Figure 3. Pressure in single-phase ®-Zr vs. r/h. Solid lines correspond to Equation (1) for o,

1.24 GPa and »=0.0965. Equation (1) is not valid around the culet center due to reduction in friction
stress to zero at the symmetry axis. Dashed line shows the position where data is truncated. The unified
curve for all loadings (necessary for using data from all four compression stages as a single data set) is
obtained by shifting each curve (which is allowed by differential Equation (1)) along the horizontal
axis by distance shown in parentheses. Note that uncertainty of pressure as well as crystallite size and

dislocation density in the following are smaller than the symbols.

We connect perfectly plastic behavior with reaching steady nanostructure. After
completing phase transformation in the whole sample, crystallite size d,, for 6, 10,
and 14 GPa steps scatters between 40 and 60 nm, being practically independent of

radius (Figure 4(a)). Dislocation density p,=1.04(19) x10m2is also independent of

path

radius (Figure 4(b)). Since &, &,

, and p strongly vary with radius and increasing
load, this indicates that steady nanostructure, which is independent of pressure,

&p, and sgath, 1s reached. Using the general equation for the yield strength as a

combination of the Taylor contribution due to dislocation density and Hall-Petch

contribution due to grain size [27], we obtain:
gy = 6y(p) + ap®> + pd 0%, 3)

Eq. (3) shows consistency between steady states in d,, p, and d.
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Figure 4. Radial distribution of the crystallite size (a) and dislocation density (b) in ®-Zr for three

loading steps after full transformation. Since &, sg“th, and p strongly vary with radius and



increasing load, approximate independence of d,, and p = of radius and load indicates that steady
nanostructure in terms of crystallite size and dislocation density, which is independent of pressure,

g,, and sgath , is reached.

Pressure-independence of the steady microstructure is consistent with pressure-
independence of hardness for single-phase Zr for p < 4 GPa and 6 < p < 40 GPa
[12], Ti for p < 4 GPa and 20 < p < 40 GPa [28], and Fe for p < 7 GPa and
28 < p < 40 GPa [11]. After HPT of Ni, at the periphery (where the steady state is
reached) 0.17 < d < 0.2 microns for 3 < p < 9 GPa [2, 29], which is within an
error and is consistent with the pressure-independent hardness for 2 < p < 40 GPa
[11]. Larger grain size for 1 GPa may be related to not reaching a steady state due to
smaller friction and plastic strain. Pressure-independent grain size was reached in V
[30], Hf, Pt, Ag, Au, Al, Cu, and Cu-30%Zn [11]. The supplement gives some
rationales for the pressure independence of the grain size for o-Zr and difference
between known ex-situ and our in-situ rules.

For o-Zr, with smooth and rough-DA, the steady p, = (0.95 £ 0.05) x
105m~2 and (1.04 + 0.19) x 10*5m~2, respectively, and d,, = 49 + 1 nm and
47 + 6 nm, respectively, are practically the same. A completely different situation is
with a-Zr, which has three steady states:

1. After multiple rolling at ambient pressure, with p, = (1.00 £ 0.02) X

10m~2 and d, = 75+ 1 nm.

2. After deformation with smooth anvils, just before initiation of the a-w phase
transformation at 1.36 GPa, with p, = (1.26 £ 0.07) X 10>m™2 and d, =
65+ 1 nm.

3. After deformation with rough-DA, just before initiation of the a-®
transformation at 0.67 GPa, with p, = (1.83 + 0.03) x 10®>m~2 and d, =
48 + 2 nm.

The reason for different steady states cannot be related to the different pressures only
because its effect is non-monotonous within a small pressure range. Our results about

the existence of multiple steady states are consistent with known results that different



ways to produce SPD (e.g., HPT, ECAP, etc.) lead to different steady grain sizes [1-3,

31]. However, different steady dislocation density and crystallite size mean different
yield strengths Gf, (p) (which we could not determine robustly due to the small
number of experimental points for single-phase a-Zr) and surfaces of perfect plasticity
Pi(s) = af, (p) (Figure 5). Each of these states was obtained at quite different plastic

path

strain and strain paths, so each of them supposed to be independent of &, and &, .

But if this is true, how can steady p, d, and 0}, (p) be different, and which of these

steady values should be used in plasticity theory? Thus, the existence of multiple

steady states leads to the formulation of a new major challenge in the plasticity and

path

P and may be

microstructure evolution theories: for which classes of & and &

pressure path, material behaves along each of the surfaces @'(s) = af, (p) with

corresponding steady p and d, and for which loading classes the material behavior
jumps from one surface to another with different steady p and d? When this
problem is resolved, one will be able to explain why different SPD technologies lead
to different steady p and d [1-3, 31], and how to design the loading paths to reduce
the p, and increase d and strength. One of the potential reasons for different steady
states may be related to the qualitatively different character of the plastic flow, like
transition from the laminar to hierarchical turbulent flow at different scales with

different degrees of complexity [32-34].
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Figure 5. Evolving yield surface and several fixed surfaces of perfect plasticity. Part of the
schematic with the internal fixed surface of perfect plasticity ¢*(s) = g, (p) in "5D" space of
deviatoric stresses s at fixed p coincides with that in Figure 2. The difference is in the presence of

several other fixed surfaces of perfect plasticity ¢‘(s) = af, (p) with larger yield strengths 03", (p).

4. Concluding remarks
In this paper, the first in-situ study of the rules of dislocation density, crystallite size,
yield surface, and contact friction under high pressure and SPD is presented. In
particular, after some critical plastic strain, ®-Zr behaves like perfectly plastic and
isotropic, with fixed plastic strain and the strain-path-independent surface of the
perfect plasticity ¢@(s) = o, (p). The perfectly plastic behavior is connected to
another rule: crystallite size and dislocation density of a and ®-Zr are getting p (only
for o-Zr), &, and egath—independent and reach steady values. Pressure in single-
phase a-Zr is too low to claim pressure independence.

To provide a robust method to determine gy, (p) and plastic friction stress, we
introduce rough-DA with increased height of asperities, for which maximum friction
Ty = Ty, is reached. We also advanced the simplified equilibrium equation and

utilized data after reaching perfectly plastic state only, thus avoiding mixing of the



effect of &, and sgath and pressure. That is why the found relationship, o, =

1.24 + (0.0965 £ 0.0016)p (GPa), is much more precise than could be obtained

with previous methods. Reaching 74 = 7, implies that the plastic friction 7 =7, =
0.72 + (0.0557 £ 0.0009)p (GPa) is also independent of €, and ",
Three different steady states are obtained for a-Zr after multiple rolling and

with smooth and rough-DAs, all are independent of &, and Sgath. This leads to the

path

new key problem in plasticity theory: for which classes of &,, &,

, and maybe

pressure path material behaves along each of the surfaces ¢'(s) = af, (p) and for

which loading classes the material behavior jumps from one surface to another?
Solution to this problem will allow one to explain why different SPD technologies
lead to different steady grain sizes and dislocation densities and how to design the
loading paths to reduce the grain size and increase dislocation density and strength.
Similar studies can be repeated for any other material system.

Obtained results suggest a more economical way to produce the desired steady
nanostructure. Instead of SPD at high pressure, e.g., by HPT, one can reach one of the
steady nanostructures by SPD at normal pressure (e.g., by rolling or ECAP) and then
reach steady nanostructure with smaller grain size at relatively small plastic strain and
low pressure by compression without or with HPT. Rough-DAs also reduce the phase
transformation pressure, which will be discussed in future work. Also, rough-DAs
eliminate the problem of describing contact friction required for modeling
deformational processes in DAC [20, 25, 35]. For traditional HPT with
ceramic/metallic anvils, friction reaches the maximum possible level due to large
asperities. Utilizing rough-DAs in rotational DAC [36-38] will allow in-situ studies of
HPT. In addition, to increase the maximum possible pressure in DAC, toroidal
grooves are used [38], which increase friction [18]. This can be done with rough-DAs
more uniformly throughout the culet and with smaller stress concentrators.

Importantly, our findings are formulated in the language of plasticity theory

(plastic strain and strain path tensors, yield surface, etc.) instead of technological



language, which allows one to use the obtained knowledge to significantly enrich
fundamental plasticity and the formulation and application of plastic models to

various Processes.
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Supplementary Methods

1. Evaluation of the yield strength under high pressure

Pressure dependence of the yield strength is of great interest to many disciplines for
various reasons. It determines:

(a) strength of structural elements working under extreme loads, in particular, different
high-pressure apparatuses, including DAC, rotational DAC, and apparatuses with metallic or
ceramic dies for high-pressure torsion;

(b) the maximum pressure that can be achieved in materials compressed in DAC (see
Equation (1));

(c) material flow in different technologies, like high-pressure material synthesis,
extrusion, forging, cutting, polishing, and ball milling;

(d) maximum possible friction in heavily loaded contacts and related wear;

(e) the level of shear (deviatoric) stresses that can be applied to materials. The shear
stresses drastically affect the phase transformations, chemical reactions, and other structural
changes [1, 19, 24, 36-38, 40, 41];

(f) plastic flow and geodynamic processes in Earth and other planets, including
earthquakes.

There are two approaches to estimate yield strength under pressure in a DAC-like
device, which exploit x-ray diffraction in either radial or axial diffraction geometry. With
radial diffraction geometry, the yield strength in compression can be estimated from the
lattice strains (distortion of crystal lattice planes) measured by synchrotron x-ray diffraction.
Since the compression direction is perpendicular to the x-ray beam, lattice strains are
detectable because axial compression symmetry and diffraction symmetry do not coincide.
With this method, all the components of the elastic strain tensor in single crystals comprising
polycrystalline samples can be determined. Combined with high-pressure single-crystal
elastic constants, lattice strains can be used to estimate yield strength with proper mechanical
assumptions [42]. Despite obtaining a large amount of experimental information and broad
usage, this method suffers from several disadvantages:

(a) All measurements are averaged over the diameter of the sample, and the radial
gradient of strain and stress fields is unavoidable due to contact friction. The macroscopic

stress state also includes shear stresses, which are not included in the treatment. To reduce the
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effect of friction, a relatively small ratio of the sample diameter to thickness d/h needs to be
used, which also limits the axial displacement and applied plastic strain.

(b) When estimating yield strength from the lattice strains, different chosen
mechanical assumptions to determine effective elastic properties of the polycrystalline
aggregate (Reuss, Voigt, Hill, self-consistent, etc.) leads to different results.

(c) For multiphase materials, lattice strains give an estimation of stress in a single
phase only. The mixture theory for the yield strength of multiphase material is not well
developed, especially for the large difference in the yield strength of phases [43, 44].

(d) Yield strength depends on the pressure, plastic strain, and grain size that evolve
during deformation. By presenting the yield strength versus pressure, all these effects are
prescribed to the pressure only, which introduces large errors.

With axial diffraction geometry, yield strength is estimated using radial pressure
gradient and sample thickness based on the simplified mechanical equilibrium equation in
radial direction r [16-18], combined with the assumption that the friction stress reaches the
yield strength in shear 7,,:

- 9

dr h

where p is the pressure, averaged over the sample thickness. Previously, the pressure was
measured at the surface using the ruby fluorescence method, and thickness was measured on
recovered samples after unloading. Currently, pressure p can be measured using x-ray
diffraction and thickness using x-ray absorption. The advantage of Equation (S1) is that it
does not include constitutive equations and assumptions, making it available for multiphase
material. Disadvantages are:

(a) Due to the low friction coefficient of the diamond, the friction stress is much lower
than the yield strength in shear 7,,. We found here that for smooth anvils up to 15 GPa, the
ratio 77 /7,, = 0.39 — 0.46 away from the center characterizes underestimate in the gy, (p) in

previous works [16-18]. This is the reason why this method significantly underestimates the
yield strength.

(b) Stress o and strain &, tensor fields are strongly heterogeneous along the radius,

pat

P " at different positions. Since

and material undergoes very different plastic straining path &€

path

the yield strength depends on pressure, &,, and &,

, but is presented as a function of
pressure only, this also introduces large errors.
(c) Equation (S1) neglects heterogeneity along the thickness and difference between

pressure and normal stresses.



We eliminate all the above drawbacks and advance mechanical equilibrium Equation
(ST) to the form of Equation (1) from the main text, which considers the heterogeneity of all

stresses across the sample thickness, in the following part.
2. Derivation of the advanced averaged equilibrium equation

Problem formulation. For compression of a sample in the DAC, o033, 041, and g,, are
the normal stress components along the load (vertical), radial, and azimuthal directions,
respectively; 734 is the shear stress; g, and t,, are the yield strength in compression and shear
respectively. Compressive stresses are negative. Pressure is defined as:

p = —(011 + 032 +033)/3. (S2)
All stresses and pressure are functions of r and 2z/h in a cylinder coordinate system with the
origin at the center of the sample cylinder, where h is the sample thickness; in particular, p(0)
corresponds to the symmetry plane z = 0 and p(1) corresponds to the contact surface 2z/h =

1. Pressure (or any stress), averaged over the sample thickness, is defined as:

_ 1 h

p= Efo pdz. (S3)
The contact friction stress ¢ is defined by the simplified mechanical equilibrium equation.

oy _ _ 217(p(D) (S4)
dr h '

The pressure-dependent yield strength in compression gy, and shear 7,, = a,,/ /3 (based on the
von Mises equivalent stress) are:

oy =0y +bp; 1, =0,/N3=(0)+bp)/V3. (S5)
Note that g, depends on the local pressure p. At the contact surface, symmetry plane, and for
averaged over the thickness, we have different pressures and yield strengths:

0,(1) = o) + bp(1); 0,(0) =0 + bp(0); G, =0y +bp. (S6)

7,(1) = (039 + bp(l)) /N3 1,(0) = (039 + bp(O)) /N3 T, = (o) +bp)/V3.

For maximum possible friction provided by the rough-DA, we have:

7 (p(D) = 7,,(1) = 20, (1) = = (09 + bp(D)) (S7)

With expression in Equation (S7), the equilibrium Equation (S4) specifies as:

doy, . 2 oy(1) 2 ap+bp(1)

dr =~ 3 h V3 h

(S8)



Since we assume that in XRD experiments, the distribution of pressure p(r) averaged over
the thickness is measured, we need to express ;; and p(1) in Equation (S11) in terms of
p(r). Traditionally, this difference is neglected, i.e., it is assumed G;; = p(1) = p(r), which
introduces errors.

Analytical evaluation of the stress and pressure fields. We assume that the material
behaves as perfectly plastic and isotropic macroscopically, with the surface of perfect

plasticity ¢ (s) = 0,,(p) in the 5D deviatoric stress tensor s space. This surface is independent

path

of the plastic strain tensor &, and its path &,

. Such behavior can be achieved after large
enough preliminary plastic deformation leading to saturation of hardness [18]. The pressure-

dependent von Mises yield condition (i.e., Drucker-Prager yield condition) is assumed:

p(s) = %\/(0'11 — 022)% + (011 — 033)% + (022 — 033)% + 6T13% = 0,,(p) = \/gTy(P)- (S9)

Equilibrium equations are:

0011 0713 011—022 _ .

P + P + " =0; (S10)
9033 | 071z | Tas _
P P + " = 0. (S11)

The following assumptions are made:
(a) It approximately follows from the finite element method simulations and DAC
experiments: 011 = 022. Then plasticity condition Equation (S9) simplifies to:

(011 — 033)* + 375, = 03%(17) = 3T321(P)~ (S12)
(b) Stress o033 1s independent of z. However, it does not mean that:

3]
SEAE=0 o 3= (S13)

because at the contact surface, 7o(z) may equal constant oy, for all r for material with
pressure-independent yield strength. g;3 that is independent of z means two other terms in
Equation (S11) make small contributions to o35.

For plane strain, when the term % in Equation (S11) is absent, a slightly modified

Prandtl's solution for the maximum possible contact friction [45] for stresses that satisfy

equilibrium equations and plasticity conditions are:

033(1) _ 033(0) 2r

+2, (S14)

9
Ty Ty h
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T13 __ 2z

=3 : (S15)
&_ 0'33(0) 2_7' _ Z_Z z —O-L(r) —_ 2—Z 2. Sl6
Ty_ Ty +h+\/§ 1 (h) B Ty +\/§ ! (h)’ ( )
p _ 2011+033 __ _ 033(1) _ z — E 2
Y 3ty 1y AENE (h) ' G17

The difference with Prandtl's solution is in multiplier V'3 instead of 2 in Equation (6) for ;.
The reason is that we use the von Mises condition and g;; = g,5, which results in Equation
(S12), while in Prandtl's solution, the Tresca condition along with plane strain assumption

. o, . 2 _ _
leads to the yield condition (011 — 033)* + 473, = 0 = 475.

Equation (S16) and Equation (S17) lead to the relationship:

011 _ D £ _(4z 2
m=-Z+ 2 (%) (S18)
Stress 07, and pressure p, averaged over the sample thickness are
011 _ hayy _ 033(0) Q 033 V3m |
@ R0 T, T T, + Tt 5@ 4 S19)
P__ _ 0 _\3m
w®  n® 6 (520)

We assumed that 7,, is constant during averaging and then substituted in the result 7, (p). It is
possible to avoid this assumption, but the final equations are getting too bulky and unusable
analytically for our purposes. Note that the averaged value of g4, is much closer to the value

of g,1(2z/h) at the symmetry plane g;4(0) than at the contact surface g, (1). For example,
(011(0) - 0-33)/(\/§Ty) = 1, 0-11(1) — 033 = 0, and (511 - 0-33)/(\/§Ty) = 0.79. Simﬂar,
(p(0) + 033) /(27 /¥3) = =1, p(1) — 033 = 0, and (51, — 033)/(27,,/V3) = —0.79.
Equation (S19) and Equation (S20) lead to the relationship:

Oou _ __P V3
7y (D) 7y (D)

(S21)

We aim to find the relationship between 74, 011(0), and a;1(1). We will use the following

identity:

_ O11— (0)
g11 = 011 (Dw + 01,(0)(1 — w); w:= m . (S22)

Where w is treated as the weight factor. Utilizing Equation (S16) and Equation (S19), we
obtain:

T Uy(ﬁ) _ T 0§+bﬁ
4 0y(p(0)) 4 09+bp(0) ’

w = (S23)

Similar,



_ 5-p(0)
p=pLw+p0)1-w);, w= pg)’fp(o) . (S24)

Here we used the same symbol w because, from Equation (S17) and Equation (S20), it has the
same expression (Equation (S23)) as for g;4. Also, we obtain from Equation (S16) and
Equation (S18):
011 (D) = —p(1) = 033;  611(0) = —p(0) + 21, (p(0)) = —p(0) +2 0, (p(0)); (S25)
from Equation (S17):
p(0) = —033 — 1.1557,(p(0)) = —0g33 — 0.6670,,(p(0)) = p(1) — 0.667a,(p(0)); (S26)
from Equation (S21):
011 = —P + 0.4537,(p) = —p + 0.2620,,(p) = 0.2620y + p(0.262b — 1). (S27)
Elaborating Equation (S26) with allowing for Equation (S6):

p(1)-0.6670

p(0) = p(1) — 0.6670,(p(0)) = p(1) — 0.667[0y + bp(0)] - p(0) = . (528
Substitution of Equation (S28) in Equation (S23) and Equation (S24) results in:
_ p(1)-0.6670y _ ) 4 oy+bp
p=p(Dw+ —ocen (1-w); w=1-(0.785+ 0.524b) Fbp(D (S29)
Resolving linear equations Equation (S29) for w and p(1), we obtain:
0.411
"~ 1.9104b° (S30)
p(1) = 0.52403(,’ + (14 0.524b)p. (S31)
Substituting in Equation (S6) for g,,(1) in Equation (S31), we obtain:
0,(1) = a + bp(1) = (a7 + bp)(1 + 0.524b) (S32)
Substituting Equation (S27) and Equation (S32) in Equation (S8) results in the final
equilibrium equation for parameters 039 and b from the best fit to experiments:
dp _ 2 1+0.524b oy+bp
dr V3 1-0262b h (833)

Equation (S33) is the final mechanical equilibrium equation expressed in terms of measured
pressure p averaged of the sample thickness, which is used as Equation (1) in the main text to
determine the pressure dependence of the yield strength. It transforms to the known Equation
[16-18] for b = 0 only. We want to use data from all four compression stages as a single data
set. To do this, we must justify a way to combine all data in a single plot. Equation (S33) and
its solution in Equation (1) in the main text have the following properties:

(a) Pressure distribution depends on the dimensionless geometric parameter r/h rather

than on r and h separately.



(b) Pressure distribution curves for different applied forces and compression can be
overlapped by shifting curves along the r-axis without changing o, (p), since change r - r +
C does not violate Equation (S33). Indeed, one can choose the same p, for all curves and
choose constant C for each curve such that % = const is the same for all curves.

These properties are used in Figure 3 in the main text. Practically, one can choose a
fixed (py, 7¢) point in the p — r/h plane for all curves to pass through. Then the curve that
originally passes through the point (py, 1;), should be shifted in the positive direction by the
distance (17 — 1;)/h, so that the new curve passes through (py, 7¢). Then we used all the

points in the shifted curve in Figure 3 to find the best fit for Equation (S33) (or Equation (1)

in the main text).

3. Dislocation density estimation
The crystallite sizes and microstrains extracted from the refinement using MAUD were used

to estimate the dislocation density. Dislocation density can be expressed as [23]:
P =/ PcPms - (S34)
where p. and p,,s are the contribution to overall dislocation density from crystallite size and

microstrain, respectively. Contribution from crystallite size is:
3

pe =g (835)
Where d is crystallite size. Contribution from the microstrain is determined by the Equation:
Pms = ke? /b2, (S36)
Where ¢ is the microstrain; b is the magnitude of the Burgers vector; k = 6mA (m) isa

material constant; E and G are Young’s modulus and shear modulus, respectively; A is a
constant that lies between 2 and /2 based on the distribution of strain; r is the radius of
crystallite with dislocation; 7, is a chosen integration limit for dislocation core. In this study,
A = 1 /2 is the gaussian distribution of strain. Moduli E, G and their pressure dependence for
o-Zr are taken from [46], respectively. A reasonable value of In (r/r,) being 4 is used [23].
o-Zr has a dominant prismatic slip system of {1100}(1120) [47-50]. For w-Zr, a prismatic
{1120}(1100) and basal {0001}(1100) dominant slip system is suggested based on plasticity
modeling [51]. Since the crystal lattice gets compressed under pressure, the length of the
Burger vector is calculated using pressure-dependent lattice constants. It is worth to note that
when estimating dislocation density using the Williamson-Smallman method, we only

consider one dominant dislocation slip system. However, to accommodate arbitrarily

8



imposing plastic strain on polycrystals, auxiliary slip systems are usually needed. With
changing orientation of grains during deformation, the Schmid factor of slip systems changes,
and thus slip system activities, which is the percentage of plastic strain accommodated by
certain slip systems, will be different. This may induce uncertainty in dislocation density
estimation. Note that nanocrystals usually do not have a cell structure because cell boundaries
are transformed into grain boundaries [4, 52]. That is why the crystallite size is equal to the

grain size.

4. Some additional experimental details

The material in this study is commercially pure (99.8%) a-Zr (Fe: 330 ppm; Mn: 27 ppm; Hf:
452 ppm; S: <550 ppm; Nd: <500 ppm). We chose Zr as our first test material since Zr and its
alloy are widely used in the aerospace, military, medical, and nuclear industries experiencing
potential high-pressure environments. The sample thickness during compression (see Table
S1) was measured through x-ray intensity absorption using the linear attenuation equation

with density corrected to the corresponding pressure, similar to [19].

Table S1. The thickness of Zr sample compressed with rough-DAs at corresponding

compression steps marked by the peak pressure at the culet center.

Compression step | initial | 3GPa | 6 GPa | 10 GPa | 14 GPa

Thickness (um) 163 48 40 32 26

Supplementary Discussion

1. Scatter in crystallite size and dislocation density in ®-Zr after completing phase

transformation

While the crystallite size and the dislocation density in ®-Zr after completing the phase
transformation are independent of the radius (Figure 4), there are some scatters around the
average along the radius. Also, the dislocation densities vary slightly between 6, 10, and 14
GPa steps. These scatters cannot be attributed to the dependence of the crystallite size and

dislocation density on pressure, plastic strain, and strain path. Indeed, pressure strongly and



monotonously reduces, plastic strain strongly and monotonously increases along the radius,
and the plastic strain path also changes monotonically. However, there is no clear radial
dependence of the crystallite size and the dislocation density. Because of the large fluctuation,
the slight difference in the average dislocation density between 6, 10, and 14 GPa steps also
cannot be solely attributed to the growing pressure and plastic strain. A possibility is that the
observed fluctuations in the crystallite size and the dislocation density after phase
transformation completed are due to evolving texture (i.e., dynamically changing distribution
of crystallographic orientations and uncharacterized preferred orientations) during the plastic
deformation with increasing pressure and errors in post-processing of XRD patterns as

described in dislocation density estimation section.

2. The rationale for pressure-independence of the steady grain size
2.1. Main equations

The existence of steady values of the grain size, dislocation density, and hardness
(yield strength) and the parameters they affect are discussed in reviews [1-8]. While pressure
dependence of the grain size was not quantitatively analyzed in the literature, some models
and correlations are used for the steady grain size at normal pressure. For example, in [53],

the following equation is derived:

dmi Gb?
i = Az exp (— 1) (2557)
o

RONO RN

where b is the magnitude of Burgers vector, A3 and [ are constants, @ is the self-diffusion
activation energy, R is the gas constant, k is Boltzmann’s constant, 7 is the absolute
temperature, Dpo 1s the frequency factor for pipe diffusion, G is the shear modulus, v, is the
initial dislocation velocity, y is the stacking fault energy, o = HV /3 is the normal stress, and

HYV is the hardness. Equation (S37) was further transformed in [54] to:

dmin _ Ay exp (_ ﬁﬂ) (DLGbZ)O.zs (é)o.s (5)1.25’ (S38)

b 4T/ \ VokT
where Ty, is the melting temperature, § = 0.037,4 = 17.5 . There are also some different

simpler relationships in terms of steady hardness HV, like:

dfnin — i m

= A () (539)
with m=1.667 in [54] and m=1.25 in [53], and in terms of stacking fault energy y, like

d%lin — Y 9

= () (540
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with g=0.5 in [53], g=0.4 in [54], and g= 0.653 for HPT and ¢=0.696 for equal channel
angular pressing in [55]. Besides, a relationship in terms of melting temperature is provided in

[53, 54]:

arm

mTi" = 3818 exp(—0.00056T,). (S41)

Note that there is a clear difference between the steady grain size obtained by HPT and
processes at normal pressure, like ECAP, which is attributed to the reduction of the minimum
grain size with pressure. This is probably related to damage that occurs at low pressure during
plastic deformation and stress release, which are not taken into account in the following
analysis. Alternatively, or in addition, monotonous straining produces finer grain than the
cyclic [3]. For monotonous straining during HPT, larger grain size for low pressure (e.g., for
Ni for 1 GPa [2, 29]) may be related to not reaching a steady state due to smaller friction and
plastic strain. To be safe, we assume that the following analysis of direct effects of pressure is
applicable above some critical pressure, similar to our data for ®-Zr. There are many other
parameters that are not taken into account. In particular, we still cannot explain the effect of
the deformation with the smooth and rough diamond anvils.

A linear pressure dependence of grain size is assumed:

dmin = dmin (1 — ap), (S42)

where d3,;,, is the grain size at 0 GPa and «a is small in comparison with the unity coefficient.
We will show in the following evaluations that the pressure-induced reduction in the grain
size does not exceed uncertainty in our grain size measurement 6/47 = 0.13 over a pressure

range from 6 to 14 GPa, corresponding to the value of a within:

0.13 0.13 -1y

—0.0163 < 5 <acs el 0.0163 (GPa (S43)

Such a pressure dependence of the grain size is undetectable with our in-situ synchrotron

XRD measurements.

1.2 Pressure dependence of the main material parameters affecting steady grain size
To analyze the pressure dependence of the grain size, we also assume a linear pressure
dependence of any material property C:

C=C°(1-Ap), (S44)
where p is the pressure, C? is the property at p=0, and A is small compared to the unity
coefficient. First, we need to collect the pressure dependence of the main properties of ®-Zr
that affect it.

Yield strength from this study:
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oy, = 1.24 4+ 0.0965p = 1.24(1 + 0.0778p). (S45)

Shear modulus from [26]:

G = 45.1(1 + 0.0132p). (S46)
Bulk modulus from [14]
K =102.4(1 + 0.0286p). (S47)
Magnitude of the Burgers vector:
b = by (1 =) ~by(1 — 0.0033p). (S48)
Melting temperature from [56]:
T, = 2125(1 + 0.0094p). (S49)

Stacking fault energy (SFE) affects steady grain size, particularly in terms of the
combination of twinning and dislocation mechanisms of plasticity. The lower stacking fault
energy is the higher contribution of twinning to plastic flow. Significant twinning is observed
in o-Zr [48, 50]. It is known that a reduction in grain size suppresses twinning [57]. We are
not aware of works reporting twinning in nanocrystalline o-Zr. Papers [51, 58] quantitatively
reproduce experimentally observed in [51] texture by combining different slip modes only.
That is why the minimum grain size for ®-Zr may depend on the SFE for reasons other than
twinning, like grain size recovery, dislocation absorption by grain boundaries, and dislocation
climbing [54].

Let us estimate the pressure-dependence of the SFE by analyzing parameter azf iny =
yo(l + ag fp). Since we are unaware of data on the pressure dependence of the SFE for Zr or
any other simple hexagonal metal, we will use available data for 9 fcc metals in [59] for the
intrinsic stacking faults. Data for the energy of the extrinsic stacking faults are quite similar.
Results are collected in Table S2. The largest agr = 0.071 GPa~1is for Ag, which has the
smallest y© = 16.9 mJ/m?, then asr = 0.024 GPa™" for Au with y° = 32.6 mJ/m?. For all
other 7 metals with larger y°, a s varies between 0.0077 and 0.0186 GPa™!. For 3 other fcc
metals, Ca, Sr, and Pb, y is getting negative with pressure, i.e., ag;s < 0. Note that in [60], for
Agy = 27.3(1 — 0.09p) mJ/m? and for Cu, itis y = 47.3(1 — 0.01p) mJ/m? in the
pressure range —4 GPa < p < 4 GPa, i.e., asy < 0 and is close in magnitude to the positive
values in [59]. Based on the above results, we assume agr = 0.01 for omega Zr, i.e.,

Yy =7°(1+0.01p). (S50)
1.3. Evaluating the pressure dependence of the grain size
While evaluating the effect of pressure in Eqgs. (S37)-(S41), we utilize the linear

approximation in the Taylor series, e.g.,
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(1+bp)(1+cp)™
(1+kp)(1+mp)4

exp(—A(1 + ap)) = exp(—A)(1 — adp); (S52)

~1+(b—k+cn—mq)p; (S51)

(A+bp)(A+cp)" 4
exp(—A(1 + ap))m ~e 1+ (—aA+b—k+cn—mqg)p. (S53)

Let us start with Eq. (S40). Using pressure dependence of SFE, G and b, we obtain:

v\ _ (" \? _
(L) = (ﬁ) (1 + 0.0001gp); (S54)
q
i =b (L)' ~ %, (1 + (0.0001q — 0.0033)p). (S55)

q
Thus, for any g accepted in the literature, from 0.4 to 0.696, the pressure dependence of (ﬁ)

is negligible, and the pressure dependence of d’,;u-n is determined by the pressure dependence
of the Burgers vector. For extreme case g=0 (which corresponds to the independence of the

minimum grain size ofGy—b suggested in [61]), a = 0.0033 < 0.0163 (see Eq. (S43)), and the

effect of pressure on the grain size according to Eq. (S40) is undetectable experimentally.
Since the pressure dependence of ¥ of ®-Zr is not well defined, we will determine the limits
of its variation which still make the grain size pressure independent. Assuming y =
¥°(1 + assp), we obtain:
Y
dmin

For agr > 0, assuming the largest g=0.696, we obtain from Eq. (S43) that for azr < 0.0381,

~ d%, (1 + (0.0099 + ass)gp — 0.0033p). (S56)

the pressure effect on grain size will be undetectable in our experiments. For azr < 0,
assuming the smallest g=0.4, we obtain from Eq. (S43) that a;y > —0.0226. For metals in

Table S2 with relatively high SFE like Zr (except for Ag with a significantly lower SFE), their
asr values are within the range of (-0.0226, 0.0381). Thus, Eq. (540) agrees with pressure-

independent steady grain size in our experiments.

Next, we evaluate the effect of the pressure dependence of the melting temperature

from Eq. (S49) on the dm using Eq. (S41). With the help of Eq. (S52), we obtain

min

Tm
dmin

~ dY.,(1—0.0112p). (S57)
Comparison with Eq. (S43) shows that Eq. (S41) agrees with the pressure-independent steady

grain size in our experiments. Since the dependence of dz;’l"}n in Eq. (S41) comes from the
relationship between melting temperature T, and the activation energy of self-diffusion, we

can conclude that the latter also cannot lead to the pressure dependence of the grain size.
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The effect of the shear modulus, hardness and the yield strength can be studied based
on Eq. (S39). Hardness for Zr is independent of pressure applied during HPT [12], which
gives:

ds.. ~dS. (1+ (0.0132m — 0.0033)p). (S58)
For m=1.667 in [61], we have a = —0.0186, which is slightly larger in magnitude than
0.0163 and is marginally detectable. For m=1.25 in [53], one gets a = —0.0132, which is
undetectable experimentally. For an averaged value a = —0.0159, Eq. (S43) is met. Note that
in Eq. (S38), the net effect of the shear modulus comes from three terms. If we consider all of
them, m should be reduced by 0.25. For m=1.417, we have a = —0.0154 and Eq. (S43) is
met. However, initially in [54] for Eqgs. (S37) and (S38), combination (G /o)'%® is used
instead of (G/HV)'2>, where o is the external stress. Then o is equaled to the yield strength,
which is not true (because external stress for HPT can be much larger than the yield strength),
and then the yield strength is substituted with HV /3. Now, we will substitute HV = 30, in

Eq. (S39) and take pressure dependence of the yield strength into account:

dprn o (G\"
(7). (560
We obtain
d;fin = dglin(l — (0.0646m + 0.0033)p). (S61)

Even for smaller m=1.25, we obtain a = 0.0841, which is more than 5 times larger than the
limit in Eq. (S43). Since we do not have any parameter with such a large a to compensate for
the effect of g,,(p), we can conclude that including pressure-dependent yield strength oy, (p)
as one of the parameters affecting the steady grain size contradicts our experimental results,
which show pressure-independent minimum grain size. This also excludes the argument that
the pressure independent minimum grain size is caused by some specific deformation
mechanisms (like dislocations, twinning, or grain boundary sliding) or transition from laminar
to turbulent flow [32-34], because all of them are reflected in the experimental pressure
dependent yield strength.

Finally, collecting all terms in Eq. (S38) and pressure dependence of T,, G, y, and b,
we obtain the combined effect of the pressure on the grain size:

Apin = A5 (1 4+ 0.0037p), (S62)

which is 4.4 times smaller than can be detected in our experiments. It is clear from Eq. (S54)
for g=0.5 that the SFE does not contribute to Eq. (S62), i.e., the term with y can be eliminated

from Eq. (S38). An increase in the grain size with p, while negligible, is counterintuitive. It
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comes mostly from the term (G /0)?°, which is not well-defined in [53, 54] because o is
quite arbitrary. If we eliminate this term, then we obtain:

Appin = A5, (1 —0.0128p), (S63)
which looks more realistic but is still, according to Eq. (S43), undetectable in our experiment.
Thus, the known expressions for the grain size dependence of various material parameters

confirm our finding that the steady grain size is pressure independent.

Table S2. Stacking fault energy and pressure dependence parameter asy from [12]

Co Ni Cu Rh Pd Ag Ir Pt Au

¥°® (m]J/m?) 168.3 153 424 203.4 139.5 16.9 357.2 288.1 32.6

asr (GPa™™) | 0.0077 | 0.0078 0.0165 0.0113 | 0.0186 | 0.0710 0.0076 | 0.0111 | 0.0245

3. Relationship between the yield surface and surface of perfect plasticity

Our results provide the first quantitative proof of the fixed isotropic pressure-
dependent surface of perfect plasticity independent of &, and sgath, which is far beyond the
observation and description in terms of the 'steady hardness'. However, it is well-known that
severely deformed materials exhibit plastic strain-induced texture and anisotropy, including
the Bauschinger effect described by back stresses. Thus, the traditional yield surface is
evolving, anisotropic, and depends on &, and sgath (Figure 2). To resolve this seeming

contradiction, we use two different surfaces in “5D” space of deviatoric stresses s at fixed p:

path

traditional evolving anisotropic yield surface f (s, &y, &,

) = 0,(p) and fixed isotropic
surface of perfect plasticity ¢(s) = o, (p). After some critical plastic strain, the yield surface
reaches ¢ (s) = g, (p), and at further monotonous loading, it moves with the deviatoric stress
vector s along the fixed isotropic surface ¢(s) = g, (p). Thus, the material deforms like

perfectly plastic, isotropic with the fixed surface of perfect plasticity. However, during sharp
change in loading direction or unloading and reloading in a different direction in the stress
space, flow occurs in accordance with actual evolving anisotropic yield surface

f(s, &, ezath) = 0,,(p). Due to limited measurement capabilities and strongly heterogeneous

fields, and the complexity of equation f (s, &, egath) = 0, (p), it is impossible to determine it

experimentally. However, finding the surface of perfect plasticity ¢(s) = g, (p) is very
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important because it fully characterizes material's behavior after some critical level of severe
plastic deformation and for monotonous loading. Note that the isotropy of the surface of

perfect plasticity ¢(s) = g, (p) follows not only from experiments but from the theory.
Indeed, since initially polycrystalline material with stochastic grain orientation without texture

P . . . . . ath . ..
1S 1sotropic, 1ts anisotropy durlng deformation can come from & and 85 only, 1.€., 1t 18

path

strain-induced. Since ¢ (s) = g, (p) is independent of &, and &,

, the only source for

anisotropy disappears. Note that the steady state in the yield strength does not correspond to
the steady state in torque in high-pressure torsion [62], mostly due to the complexity of the
friction condition. Also, in [63], steady yield strength and dislocation density independent of
the changes in strain rate path were obtained in molecular dynamics simulations for a single
crystal Ta. These results were called “a tantalizing general hypothesis that merits further

scrutiny.”

4. Notes on the importance of in-situ studies of severe plastic deformations under high

pressure

As mentioned in the main text, the effects of severe plastic deformations under high pressure
on phase transformations and microstructure evolution are mostly studied with HPT with
metallic or ceramic anvils. However, all these results were obtained postmortem after pressure
release and further treatment during sample preparation for mechanical and structural studies.
The only paper [13] studies the dislocation density and crystallite size in Ni during HPT in a
single peripheral region in situ. However, the beam passes also through a significant
protrusion part of a sample, which underwent relatively small plastic strain under compression
and had lower and very heterogeneous stresses. This brings essential inaccuracy, which varies
during the torsion. Also, since data are collected from a single region and for material without
phase transformation, the existence of the steady dislocation density and crystallite size can be
concluded only. Their independence from pressure and straining path and other our
conclusions cannot be drawn from [13]. Note that importance of in-situ molecular dynamics
analysis versus ex-situ experiments was stressed in [63].

While we obtained complete phase transformation to ®-Zr in some regions under
compression at 3 GPa at the center (Fig. 3) and in the entire sample at 6 GPa, in [12] retaining
a-Zr was observed at HPT even after 20 turns. It is written in [12]: “Although this suggests
that the complete transformation does not occur, there can be a possibility that a reverse

transformation from the ® phase to the o phase might have occurred during mechanical
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polishing for the preparation of the XRD specimens as reported in an earlier experiment that
the reverse transformation occurred during cold machining. A complete transformation in
our in-situ experiments confirms the reverse transformation during cold machining and further
underlines the importance of in-situ studies. Note that preparing a sample for TEM/SEM may
lead to additional changes in the phase fraction, dislocation density, and grain size.

While our results are consistent with known results [1-8, 11] on the existence of the
stationary states after severe plastic straining in terms of hardness, grain size, and dislocation
density, and independence of these states of pressure, they mean much more. Our results are
obtained directly under pressure versus local pressure at each sample point. Previous results
were obtained at the normal pressure and versus averaged pressure over the sample during
HPT. Since pressure is distributed very heterogeneously, using an averaged pressure contains
a significant error. As an example, independence of the hardness HV=30'3(,) and, consequently,
the yield strength of pressure at HPT is obtained for Zr for p<4 GPa and 6<p<40 GPa [12], Ti
for p<4 GPa and 20<p<40 GPa [28], for p<4 GPa and 6<p<40 GPa, V [30], Ni, Hf, Pt, Ag,
Au, Al, Cu, and Cu-30%Zn [11]. However, it does not imply that the yield strength is
independent of the pressure since we obtained explicit pressure dependence for Zr. Similarly,
the independence of dislocation density and grain size measured at the ambient pressure of the
pressure during HPT does not imply that our in-situ measurements should give independence
of dislocation density and grain size of the actual pressure. That is why such independence
that we found is a new result. Also, since pressure is distributed very heterogeneously,

utilization of an averaged pressure contains a significant error.
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Supplementary Figures
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Figure S1. Distributions of components of Lagrangian plastic strains in a quarter of a sample for three
loadings characterized by the maximum pressure in a sample. Very heterogeneous and nontrivial distributions
are observed, caused by heterogeneous contact friction. At the symmetry axis (left side of a sample) and symmetry
plane (bottom of a sample), shear strains E?, are zero. At the contact surface with a diamond (top of a sample),
shear strains and particle rotations reach their maximum due to large contact friction. During compression, each
material particle flows radially in the region with larger shear and different proportions of the normal strain, i.e.,
is subjected to complex nonproportional straining, very different from other particles. Thus, numerous plastic

strain tensors and straining paths are realized. Adopted with changes from [26] with permissions.

18



References

1. Edalati K, Bachmaier A, Beloshenko VA, et al. Nanomaterials by severe plastic deformation:
review of historical developments and recent advances. Mater. Res. Lett. 2022; 10(4):163-256.

2. Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals
and applications. Prog. Mater. Sci. 2008; 53:893-979.

3. Pippan R, Scheriau S, Taylor A, et al. Saturation of fragmentation during severe plastic
deformation. Annu. Rev. Mater. Res. 2010; 40:319-343.

4. Cao Y, Ni S, Liao X, et al. Structural evolutions of metallic materials processed by severe
plastic deformation. Mater. Sci. Eng. R Rep. 2018; 133:1-59.

5. Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe
plastic deformation. JOM 2006; 58:33-39.

6. Ovid'’Ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of
metallic nanomaterials. Prog. Mater. Sci. 2018; 94:462-540.

7. Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe
plastic deformation: ten years later. JOM 2016; 68:1216-1226.

8. Zhu YT, Langdon TG. The fundamentals of nanostructured materials processed by severe
plastic deformation. JOM 2004; 56(10):58-63.

9. Girard J, Amulele G, Farla R, et al. Shear deformation of bridgmanite and magnesiowiistite
aggregates at lower mantle conditions. Science 2016; 351(6269):144-147.

10. Levitas VI. Resolving puzzles of the phase-transformation-based mechanism of the strong
deep-focus earthquake. Nat. Commun. 2022; 13(1):6291.

11. Edalati K, Horita Z. Universal plot for hardness variation in pure metals processed by high-
pressure torsion. Mater. Trans. 2010; 51:1051-1054.

12. Edalati K, Horita Z, Yagi S, et al. Allotropic phase transformation of pure zirconium by
high-pressure torsion. Mater. Sci. Eng. A 2009; 523:277-281.

13. Kerber MB, Spieckermann F, Schuster R, et al. In Situ Synchrotron X-Ray Diffraction
during High-Pressure Torsion Deformation of Ni and NiTi. Adv. Eng. Mater. 2021;
23:2100159.

14. Pandey KK, Levitas VI, Park C. Effect of the initial microstructure on the pressure-induced
phase transition in Zr and microstructure evolution. 2023. 25 p. Located at:
https://arxiv.org/abs/2301.10475

15. Lin F, Hilairet N, Raterron P, et al. Elasto-viscoplastic self consistent modeling of the
ambient temperature plastic behavior of periclase deformed up to 5.4 GPa. J. Appl. Phys. 2017;
122:205902.

16. Meade C, Jeanloz R. The strength of mantle silicates at high pressures and room temperature:
implications for the viscosity of the mantle. Nature 1990; 348:533-535.

17. Meade C, Jeanloz R. Effect of a coordination change on the strength of amorphous
Si0». Science 1988; 241(4869):1072-1074.

18. Levitas VI. Large Deformation of Materials with Complex Rheological Properties at
19


https://www.tandfonline.com/doi/abs/10.1080/21663831.2022.2029779
https://www.tandfonline.com/doi/abs/10.1080/21663831.2022.2029779
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=bVm3LDoAAAAJ&citation_for_view=bVm3LDoAAAAJ:_Re3VWB3Y0AC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=bVm3LDoAAAAJ&citation_for_view=bVm3LDoAAAAJ:_Re3VWB3Y0AC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=bVm3LDoAAAAJ&citation_for_view=bVm3LDoAAAAJ:KR6TXPE-FHQC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=bVm3LDoAAAAJ&citation_for_view=bVm3LDoAAAAJ:KR6TXPE-FHQC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=bVm3LDoAAAAJ&cstart=20&pagesize=80&citation_for_view=bVm3LDoAAAAJ:2l5NCbZemmgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=bVm3LDoAAAAJ&cstart=20&pagesize=80&citation_for_view=bVm3LDoAAAAJ:2l5NCbZemmgC
https://arxiv.org/abs/2301.10475

Normal and High Pressure. New York (NY): Nova Science; 1996.

19. Pandey KK, Levitas VI. In situ quantitative study of plastic strain-induced phase
transformations under high pressure: Example for ultra-pure Zr. Acta Mater. 2020; 196:338-
346.

20. Levitas VI, Kamrani M, Feng B. Tensorial stress-strain fields and large elastoplasticity as
well as friction in diamond anvil cell up to 400 GPa. Npj Comput. Mater. 2019; 5(1):94.

21. Hammersley AP. FIT2D: an introduction and overview. European synchrotron radiation
facility internal report ESRFO7THAO02T 1997; 68:58.

22. Lutterotti L, Matthies S, Wenk HR, et al. Combined texture and structure analysis of
deformed limestone from time-of-flight neutron diffraction spectra.J. Appl. Phys. 1997;
81(2):594-600.

23. Williamson GK, Smallman RE. III. Dislocation densities in some annealed and cold-worked

metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1956; 1(1):34-
46.

24. Pérez-Prado MT, Zhilyaev AP. First experimental observation of shear induced hcp to becc
transformation in pure Zr. Phys. Rev. Lett. 2009; 102(17):175504.

25. Levitas VI, Zarechnyy OM. Modeling and simulation of strain-induced phase
transformations under compression in a diamond anvil cell. Phys. Rev. B 2010; 82(17):174123.

26. Levitas VI, Dhar A, Pandey KK. Tensorial stress-plastic strain fields in a-w Zr mixture,

transformation Kkinetics, and friction in diamond anvil cell. 2023. 32 p. Located at:
https://doi.org/10.48550/arXiv.2212.13000

27. Voyiadjis GZ, Yaghoobi M. Size effects in plasticity: from macro to nano. Academic Press,
Cambridge: Academic Press; 2019.

28. Edalati K, Matsubara E, Horita Z. Processing pure Ti by high-pressure torsion in wide
ranges of pressures and strain. Metall. Mater. Trans. A 2009,;40:2079-2086.

29. Zhilyaev AP, Nurislamova GV, Kim BK, et al. Experimental parameters influencing grain
refinement and microstructural evolution during high-pressure torsion. Acta Mater. 2003;
51:753-765.

30. Lee S, Edalati K, Horita Z. Microstructures and mechanical properties of pure V and Mo
processed by high-pressure torsion. Mater. Trans. 2010; 51:1072-1079.

31. Razumov, IK, Yermakov AY, Gornostyrev YN, et al. Nonequilibrium phase transformations
in alloys under severe plastic deformation. Phys.-Usp. 2020; 63(8):733.

32. Cao Y, Kawasaki M, Wang YB, et al. Unusual macroscopic shearing patterns observed in
metals processed by high-pressure torsion. J. Mater. Sci. 2010; 45:4545-4553.

33. Cao Y, Wang YB, Figueiredo RB, et al. Three-dimensional shear-strain patterns induced by
high-pressure torsion and their impact on hardness evolution. Acta Mater. 2011; 59:3903-3914.

34. Beygelzimer Y, Filippov A, Estrin Y. ‘Turbulent’shear flow of solids under high-pressure
torsion. Philos Mag. 2023; 1-12.

35. Feng B, Levitas VI. Plastic flows and strain-induced alpha to omega phase transformation
in zirconium during compression in a diamond anvil cell: finite element simulations. Mater. Sci.
Eng. A 2017; 680:130-140.

36. Ji C, Levitas VI, Zhu H, et al. Shear-induced phase transition of nanocrystalline hexagonal
boron nitride to wurtzitic structure at room temperature and lower pressure. Proc. Natl. Acad.

20


https://doi.org/10.48550/arXiv.2212.13000

Sci. U. S. A. 2012; 109(47):19108-19112

37.Gao Y, MaY, An Q, et al. Shear driven formation of nano-diamonds at sub-gigapascals and
300 K. Carbon 2019; 146:364-368.

38. Levitas VI. High-pressure phase transformations under severe plastic deformation by
torsion in rotational anvils. Mater. Trans. 2019; 60(7):1294-1301.

39. Jenei Z, O’Bannon EF, Weir ST, et al. Single crystal toroidal diamond anvils for high
pressure experiments beyond 5 megabar. Nat. Commun. 2018; 9(1):3563.

40. Levitas VI, Shvedov LK. Low-pressure phase transformation from rhombohedral to cubic
BN: experiment and theory. Phys. Rev. B 2002; 65(10):104109.

41. Levitas VI. High-pressure mechanochemistry: conceptual multiscale theory and
interpretation of experiments. Phys. Rev. B 2004; 70(18), 184118.

42. Singh AK, Balasingh C, Mao HK, et al. Analysis of lattice strains measured under
nonhydrostatic pressure. J. Appl. Phys. 1998; 83(12):7567-7575.

43. Handy MR. Flow laws for rocks containing two non-linear viscous phases: a
phenomenological approach. J. Struct. Geol. 1994; 16(3):287-301.

44. Lin F, Giannetta M, Jugle M, et al. Texture development and stress—strain partitioning in
periclase+ halite aggregates. Minerals 2019; 9(11):679.

45. Hill R. The Mathematical Theory of Plasticity. Oxford: Clarendon Press; 1998.

46. Liu W, Li B, Wang L, et al. Elasticity of w-phase zirconium. Phys. Rev. B 2007;
76(14):144107.

47. Capolungo L, Beyerlein 1J, Kaschner GC, et al. On the interaction between slip
dislocations and twins in HCP Zr. Mater. Sci. Eng., A 2009; 513:42-51.

48. Kaschner GC, Tomé CN, Beyerlein 1J, et al. Role of twinning in the hardening response of
zirconium during temperature reloads. Acta Mater. 2006; 54(11):2887-2896.

49. Tomé CN, Maudlin PJ, Lebensohn RA, et al. Mechanical response of zirconium—I.
Derivation of a polycrystal constitutive law and finite element analysis. Acta Mater. 2001;
49(15):3085-3096.

50. Knezevic M, Beyerlein 1J, Nizolek T, et al. Anomalous basal slip activity in zirconium
under high-strain deformation. Mater. Res. Lett. 2013; 1(3):133-140.

51. Wenk HR, Kaercher P, Kanitpanyacharoen W, et al. Orientation relations during the a-®
phase transition of zirconium: In situ texture observations at high pressure and

temperature. Phys. Rev. Lett. 2013; 111(19):195701.

52. Lee DJ, Yoon EY, Ahn DH, et al. Dislocation density-based finite element analysis of
large strain deformation behavior of copper under high-pressure torsion. Acta Mater. 2014;
76:281-293.

53. Mohamed F A. A dislocation model for the minimum grain size obtainable by milling.

Acta Mater. 2003; 51(14):4107-4119.

21



54. Mohamed F A, Dheda S S. On the minimum grain size obtainable by high-pressure
torsion. Mater. Sci. Eng. A. 2012; 558:59-63.

55.Lu S, Hu Q M, Delczeg-Czirjak E K, et al. Determining the minimum grain size in severe
plastic deformation process via first-principles calculations. Acta Mater. 2012; 60(11):4506-
4513.

56. Pigott JS, Velisavljevic N, Moss EK, et al. Experimental melting curve of zirconium metal
to 37 GPa. J. Phys. Condens. Matter 2020; 32(35):355402.

57. Meyers M A, Vohringer O, Lubarda V A. The onset of twinning in metals: a constitutive
description. Acta Mater. 2001; 49(19):4025-4039.

58. Kumar A, Kumar M A, Beyerlein I J. First-principles study of crystallographic slip modes
in o-Zr. Sci. Rep. 2017; 7(1):8932.

59. Linda A, Tripathi PK, Nagar S, et al. Effect of pressure on stacking fault energy and
deformation behavior of face-centered cubic metals. Materialia 2022; 26:101598.

60. Yan JX, Zhang ZJ, Yu H, et al. Effects of pressure on the generalized stacking fault
energy and twinning propensity of face-centered cubic metals. J. Alloys Compd. 2021;
866:158869.

61. Edalati K, Horita Z. High-pressure torsion of pure metals: Influence of atomic bond
parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater.
2011; 59(17):6831-6836.

62. Kamrani M, Levitas VI, Feng B. FEM simulation of large deformation of copper in the
quasi-constrain high-pressure-torsion setup. Mat. Sci. Eng. A 2017; 705:219-230.

63. Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, et al. Probing the limits of metal plasticity
with molecular dynamics simulations. Nature 2017; 550(7677):492-495.

22



