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ABSTRACT

Serverless (or Function-as-a-Service) compute model enables
new applications with dynamic scaling. However, all cur-
rent Serverless systems are best-e↵ort, and as we prove this
means they cannot guarantee hard real-time deadlines, ren-
dering them unsuitable for such real-time applications.

We analyze a proposed extension of the Serverless model
that adds a guaranteed invocation rate to the serverless
model called Real-time Serverless. This approach aims to
meet real-time deadlines with dynamically allocated func-
tion invocations. We first prove that the Serverless model
does not support real-time guarantees. Next, we analyze
Real-time Serverless, showing it can guarantee application
real-time deadlines for rate-monotonic real-time workloads.
Further, we derive bounds on the required invocation rate
to meet any set of workload runtimes and periods. Subse-
quently, we explore an application technique, pre-invocation,
and show that it can reduce the required guaranteed invo-
cation rate. We derive bounds for the feasible rate guaran-
tee reduction, and corresponding overhead in wasted com-
pute resources. Finally, we apply the theoretical results to
improve the experience quality of a distributed virtual re-
ality/augmented reality application as well as simplify the
application design and resource management.
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1. INTRODUCTION

Serverless has seen a huge growth in usage [30] and re-
ceived much attention from the research community [3, 14].
The core technology behind serverless computation is state-
less functions written to perform specific tasks without
server deployment and management. Users associate func-
tions with events (e.g., image upload). When such an event
happens, the function logic starts execution in response (e.g.,
resize the image). Current serverless systems (e.g., AWS
Lambda [2], Google Cloud Functions [15], etc.) support si-
multaneous events enabling these functions to scale up to
thousands of parallel invocations.

The serverless compute model is appealing to many ap-
plications. First, serverless leverages dynamic scaling that
gives no resources to a serverless function until it is trig-
gered by an associated event. Once triggered, the function
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gets resources proportional to its invocation concurrency.
After these invocations finish, the allocated resources are
reclaimed, resulting in e�cient resource utilization. Sec-
ond, serverless decouples application logic from underlying
resource configuration. Once a serverless function deploys,
it can execute anywhere independent of the underlying re-
source configurations, without any additional actions from
the applications. This brings great flexibility allowing one
to implement complicated applications on serverless with
minimum e↵ort (e.g., [8]).

Inspired by these advantages, we seek to extend Server-
less to applications with hard real-time guarantees. To date,
real-time applications have been built on static resource al-
location (e.g., dedicated machines) that provide continuous,
static resource configuration (e.g., stable CPU speed, non-
sharing memory, etc.) required by real-time scheduling and
resource management to meet hard real-time deadlines. Re-
sources required by real-time scheduling and resource man-
agement depend on underlying resource configurations [19].
For example, allowing real-time tasks to be preemptible
makes scheduling decisions more flexible and therefore re-
quires fewer resources. Such dependency ties real-time ap-
plications to their execution environment so nontrivial ef-
forts are required when they need to expand or upgrade to
use di↵erent, heterogeneous, or distributed hardware.

With dynamic allocation and high portability, implement-
ing real-time applications over serverless can resolve the
above issues straightforwardly. However, due to the lack
of analytical study on implementing real-time applications
with dynamic allocation resource models such as serverless,
limited understandings of real-time performance, cost, and
scheduling are provided. This prevents us from e�ciently
exploiting serverless advantages for real-time applications.

In this paper, we develop a theoretical framework by ex-
tending the rate-monotonic real-time workload model to the
case of dynamic task execution atop serverless resource pro-
visioning. By utilizing the widely-studied, well-understood
foundation of the rate-monotonic framework [19], we per-
form execution analysis of real-time tasks and reveal that
current serverless systems have no ability to support hard
real-time applications despite the widespread marketing of
real-time capabilities on serverless cloud services as they are
largely best-e↵ort, online streaming services.1

The analysis shows that the unbounded latency of the
best-e↵ort serverless allocation is a key challenge for real-
time implementation. Real-time serverless [27] is one ap-
proach to resolve this issue by extending the serverless inter-

1For example, see [38].
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face with an invocation rate guarantee and shows empirically
its attractiveness for bursty, real-time applications. Benefits
include enabling applications to tune quality, response time,
and demonstration of e↵ective statistical multiplexing on the
servers. However, no rigorous proof of the application’s abil-
ity to achieve hard real-time deadline guarantees based on
the real-time serverless interface was given. Thus, we use
our analytical framework to formally analyze the real-time
serverless model to characterize its power to enable applica-
tion hard real-time guarantees and the resource costs asso-
ciated with such guarantees. First, we study the real-time
serverless, consider the e↵ect of its invocation rate guaran-
tees, and show the rate-guarantee can ensure hard real-time
deadlines and the required invocation rates. This is notable
because hard real-time guarantees can be achieved without
wasted application resources. Second, we consider an ap-
plication technique, pre-invocation, that trades some appli-
cation resource waste for a reduction in the required guar-
anteed invocation rate. Finally, we apply insights from the
analytical results to illustrate how applications can use real-
time serverless to satisfy hard real-time constraints through
a practical distributed virtual/augmented reality case study.

Given n rate-monotonic tasks, each has Ai as its guar-
anteed invocation rate, and pi, ri, si are the task period,
runtime, and slack (e.g., si = pi � ri), respectively. Specific
contributions of the paper include:

• Show that current Serverless system implementation
cannot provide hard real-time guarantees.

• Proof that the addition of an invocation rate guaran-
tee enables real-time serverless to guarantee hard real-
time performance for all rate-monotonic applications.

• Proof that assigning the inverse of the task slack (i.e.,
period - runtime) as the guaranteed invocation rate
for each task fulfills the real-time requirements for an
arbitrary multi-task rate monotonic application. Thus
(Ai = 1

si
= 1

pi�ri
) holds for each task.

• An approach to use pre-invocation by real-time server-
less applications that reduces the required guaran-
teed total invocation to Atotal �

Pn
i=1

1
pi

with the

pre-invocation overhead of at most 100% (wasted re-
sources).

• Demonstration of serving a demanding distributed
virtual/augmented reality application with real-time
serverless that validates the theoretical results and re-
veals their implications that open new capabilities to
simplify application design and resource management.

The remainder of the paper is organized as follows. In Sec-
tion 2, we give background on the serverless compute model
and the rate-monotonic real-time model. Subsequently, in
Sections 3 and 4 we frame the opportunity and describe the
analytical framework. Next, in Sections 5 and 6 we prove
key limitations and properties for Serverless and Real-time
Serverless models. Following that, Section 7 explores the
benefits and limits of pre-invocation. Next, in Section 8 we
show how the analytical insights can be applied in practice.
Finally, Sections 9 and 10 place our work in context and
suggest future directions.

Compute

Time

Load Serverless
Allocation

Unbounded 
Invocation
Latency

(a) Serverless (best-e↵ort)

Compute

Time
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Real-time 
Serverless
Allocation

Guaranteed 
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(b) Real-time Serverless

Figure 1: Best-e↵ort vs. Rate-guarantee Allocation [27]

2. BACKGROUND

2.1 Serverless Compute Model

Since the introduction of AWS Lambda [2], serverless
computing has experienced rapid growth in usage [13] and
was widely adopted by not only cloud services but also the
Edge [9, 16, 33, 37] and HPC [8, 36, 41]. The serverless com-
pute model lets applications be composed as a set of state-
less functions, each often consisting of a few lines of code,
running short tasks, and lasting from milliseconds to min-
utes. These functions are registered in a serverless system
(e.g. AWS Lambda [2], OpenFaaS [29], etc.), and triggered
by some events (e.g., data creation, executing a Web API,
etc.) defined by the function developers. There is no spe-
cific resource allocation tied to a serverless function until
an associated event triggers an invocation to start. At this
moment, the serverless system dynamically finds a set of
resources that satisfy the function requirement, uses these
resources to create an appropriate execution environment,
and starts the function logic.

State-of-the-art serverless systems demonstrate that dy-
namic allocation could support thousands of concurrent in-
vocations of a single function within a few seconds. This
makes serverless an intriguing match for short, periodic
tasks which are frequently found in real-time systems. How-
ever, all of the current serverless systems provide no per-
formance SLOs – even a single invocation can take an un-
bounded time to start, or can even be canceled. Thus, it
is impossible for serverless to provide guarantees of real-
time performance, as shown in Figure 1a (purple line). Un-
bounded invocation latency means that an application can-
not meet specified timing requirements as it cannot control
the timing of access to resources. This property holds for
all of the current serverless computing o↵erings [2, 15, 23].
If the invocation latencies lag the application requirement,
then real-time and quality requirements (SLO) will not be
achieved.

Real-time Serverless has been proposed as a modest ex-
tension of the Serverless interface [27], adding an interface
for applications to advertise a guaranteed invocation rate,
and a service-level objective (SLO) to deliver that rate as
follows. Each real-time serverless function is defined with
a finite guarantee invocation rate A. Given this rate, the
application is guaranteed that for any period of 1/A time
units, they will obtain at least one serverless invocation of
the function. For example, a function with a guaranteed
invocation rate of 5 invocations per second ensures that the
application will receive invocations at least once every 200
milliseconds. The guarantee ensures the minimum invoca-
tions delivered to the applications is a linear function of time
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Figure 2: Rate Monotonic Application formulation: each
task has a runtime, period/deadline, and slack.

whose slope is determined by the rate-guarantee as shown in
Figure 1b (green line). If the guaranteed invocation rate is
configured to match the load, then the application is ensured
to get su�cient invocations on time which makes it possi-
ble to cap the computation time, and thus ensuring hard
real-time deadlines. However, to date, no rigorous analy-
sis shows that a guaranteed invocation rate is su�cient to
support real-time guarantees, based on dynamic allocation.

2.2 Rate-monotonic Scheduling

Rate-monotonic scheduling is a well-studied formulation
of a set of real-time tasks, and deadlines [7,19]. The applica-
tion is a set of n tasks, each of which is periodic with period
pi, and runtime ri  pi. This situation is shown in Figure
2. In the simplest formulations, tasks are released at the
beginning of each period. Early work proved that for a set
of n tasks with unique periods, a feasible schedule that will
meet all of the deadlines exists if CPU utilization is below
the bound:

U =
nX

i=1

ri
pi

 n(21/n � 1) (1)

Extensive work has explored bounds under varied as-
sumptions and extensions of both workload, resource, and
scheduling models [7]. However, this classic formulation
frames a required CPU under-utilization of (1�U) to achieve
these real-time guarantees.

3. SERVERLESS AND REAL-TIME APPLI-

CATIONS

The core benefit of the serverless compute model is dy-
namic allocation representing an opportunity to implement
bursty, real-time systems without any wasted resources.
This di↵ers from most traditional real-time task scheduling
models that depend on fixed/static allocation of compute
resources. Furthermore, because the scaling is handled by
the serverless systems, development and deployment e↵orts
from the application end are minimized.

These advantages make implementing real-time applica-
tions using the serverless compute model an appealing ap-

proach. At the simplest implementation – executing each
real-time task by a single serverless invocation – the appli-
cation can e↵ortlessly minimize resource consumption. How-
ever, due to the lack of insights into serving real-time tasks
with a dynamically scaling compute model such as server-
less, there is no rigorous way that shows us whether doing so
can guarantee (or partly guarantee) the application’s real-
time deadlines. Even if the answer is yes, we still do not
know how to properly configure and use serverless functions
to meet real-time deadlines.

To fill this gap, we construct an analytical framework that
bridges real-time deadlines with serverless serving by map-
ping the execution of rate-monotonic workload onto server-
less dynamic allocation. Based on the mapping, we develop
theory and mathematical proofs around task execution anal-
ysis to characterize serverless real-time support and get in-
sights into how a guaranteed invocation rate could resolve
the situation.

4. ANALYTICAL FRAMEWORK

Our approach exploits the dynamic allocation in the
serverless model, and the guaranteed allocation rate of the
real-time serverless model. Our goal is to support peri-
odic real-time applications, such as those described in a
rate-monotonic workload, but with dynamic allocation, so
minimum compute resources are used.2 Consider a rate-
monotonic real-time workload [19] with n periodic real-time
tasks T1, ..., Tn each characterized by

• Period (pi): the task recurs every pi time units. For
simplicity, we assume tasks are released at the begin-
ning of the period, and have to finish by the end of the
period (i.e., the hard real-time deadline).

• Task runtime (ri): the time for task to run

• Task slack si = pi�ri: the time a task does not spend
on execution within a period.

We consider two ways of implementing a task Ti:

• Serverless: stateless functions invocations serve each
task at one invocation per task release.

• Real-time Serverless (RTS): similar to serverless,
except that for each function, invocation rates can be
guaranteed (Ai), ensuring that the number of invoca-
tions provided must be greater than 1 for any arbitrary
period of length 1

Ai
.

Due to implementation overhead (e.g., initialization, re-
source allocation latency, etc.), both serverless and real-time
serverless invocations have to wait for li time unit(s) (invoca-
tion latency) after being requested to start execution. With
real-time serverless, the guaranteed invocation rate promises
at least 1 invocation for any 1/Ai period, thus the invoca-
tion latency is bounded by li  1/Ai as long as Ai � 1

pi
(i.e., the rate of task release does not exceed the guaran-
teed invocation rate). Based on the guaranteed invocation
rate definition, serverless is equivalent to real-time serverless
with a guaranteed invocation rate of zero which means its
invocation latency is unbounded.
2we can also handle bursty versions of rate monotonic work-
loads where tasks conform to the rate monotonic structure
when they occur, but they often simply don’t appear in their
periods.
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Figure 3: Supporting periodic tasks dynamically on Serverless compute model.

Symbol Time Interval Note

pi Period pi � ri
ri Runtime ri > 0

si Slack for task i = pi � ri
li Invocation Latency for task Ti

⇢i Pre-invocation time for task Ti

Table 1: Rate Monotonic Notation for each task Ti

Figure 3 shows two examples of timing diagrams for sin-
gle periodic task execution. Normally, an invocation is re-
quested right at the time a task is released (Figure 3a), so
the response time for task Ti would be li+ri. To workaround
invocation latency, invocations can be requested in advance
to make it available at the time a task is released for imme-
diate execution. We call this technique pre-invocation and
use ⇢i to denote pre-invocation time as shown in 3b. Note
that pre-invocation shortens task response time at the cost
of unused resources (waste) when invocation gets ready be-
fore a task release (orange bar in Figure 3b). We summarize
the framework notations in Table 1.

5. LIMITS OF SERVERLESS

Based on the rate-monotonic workload model, we can eas-
ily prove that serverless alone is unable to guarantee that the
periodic tasks will meet their deadlines as follows.

Theorem 5.1. Serverless cloud functions cannot guaran-
tee that a single periodic task in a rate-monotonic workload
will meet its deadline.

Proof. Given a periodic task Ti, with invocation latency
li and runtime ri, the time to complete the task can be
written as

li + ri

Which, for the task to meet its deadline must be

li + ri  pi =) li  pi � ri

Let li = ⌧ for a serverless invocation and Prob(⌧ > x)
be the probability that ⌧ is greater than x. Because the
serverless invocations are best e↵ort, 0 < ⌧ < 1, and for
any given pi � ri, the

Prob(⌧ > pi � ri) > 0

This means that

Prob(li + ri > pi) > 0

that is the chance that the task misses its deadline is greater
than zero – its real-time performance is not guaranteed.

Figure 4: Google Cloud Functions invocation latency [35]

Figure 4 shows Prob(⌧ > x) estimated from invocation
latency statistics of Google Cloud Functions [15,35], a com-
mercial serverless platform. This is a long-tailed distribu-
tion. Invocation latency can exceed 30 seconds, more than
10-100x longer than the expected invocation latency [39].
This suggests that the unbounded invocation latency is a
practical issue, not purely theoretical. Also, the latency is
widely distributed leading to significant delays. This makes
realizing real-time applications on top of best-e↵ort server-
less very challenging if not impossible.

Serverless is insu�cient for even a single task, so we can
easily show that it is unable to support the entire rate-
monotonic workload of multiple periodic tasks.

Theorem 5.2. Serverless cloud functions cannot guaran-
tee that a set of periodic tasks in a rate-monotonic workload
will meet their deadlines.

Proof. Choose an arbitrary task Ti from the multiple
periodic tasks. Theorem 5.1 shows that serverless cannot
guarantee Ti will meet its deadline. Therefore, serverless
cannot guarantee that all of the tasks in the rate monotonic
workload meet their deadlines.

From the proofs above, it is clear that the unbounded in-
vocation latency is the main reason for serverless limitations
on guaranteeing real-time deadlines. Real-time serverless re-
solve the issue by their guaranteed invocation rate extension
as will be shown next.

6. REAL-TIME SERVERLESS ENABLES

REAL-TIME PERFORMANCE

The guaranteed invocation rate allows real-time serverless
functions to bound invocation latency. We first prove that
this bound can guarantee tasks meet their deadlines as long
as the tasks have non-zero slack. Later, we will show how
this requirement can be relaxed by using pre-invocation.
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Theorem 6.1. Real-time serverless can guarantee one
periodic task Ti meets its deadline, if it has slack of si =
(pi � ri) > 0.

Proof. For Ti to meet its deadline, we must have

li + ri  pi

or

li  (pi � ri)

Real-time serverless provides a guarantee of invocation
rate, such that there is at least one invocation in every period
of length 1/Ai, where Ai is the guaranteed invocation rate
chosen for real-time serverless. This means that as long as
Ai � 1

pi
, li can be bounded as follows:

li 
1
Ai

So to meet the deadline, we must ensure that

1
Ai

 (pi � ri)

Which we can assure for any slack si = (pi � ri) > 0, by
picking a su�ciently large Ai � 1

pi�ri
� 1

pi
and gives

li 
1
Ai

 (pi � ri)

Which is true because si > 0. So the deadline is met.

Now, let us generalize Theorem 6.1, considering a work-
load with multiple periodic tasks T1, ..., Tn.

Theorem 6.2. Real-time serverless can guarantee a set
of n periodic tasks T1, ..., Tn meet their deadlines, if each
has slack of (pi � ri) = si > 0.

Proof. Consider a task Ti, because it is served by a ded-
icated function, by Theorem 6.1, the invocation rate of

Ai =
1

pi � ri

is su�cient for Ti to guarantee meeting its deadline.
We assume each single task Ti uses a dedicated function

with a finite guaranteed invocation rate Ai. So from the
application point of view, there is no invocation contention
between the tasks. So, we can repeat the argument for each
of the other tasks, then the theorem is proved.

7. EFFICIENT REAL-TIME GUARANTEE

ON REAL-TIME SERVERLESS

Theorems presented in Section 6 prove real-time server-
less’ capability on ensuring real-time deadlines of rate mono-
tonic applications. The one restriction was that the rate-
monotonic tasks have non-zero slacks. Further, as in Theo-
rem 6.1, we can see that for small slack, the required guar-
anteed invocation rate can be high. For example, if a task
has a period of 15 seconds, and a slack of only 1 second,
the resulting required guaranteed invocation rate would be
1/second, or 15 times the task rate. While in many realistic
settings, many applications have non-zero, or better yet, a
large slack for each task, the properties proved in Theorem
6.2 can be su�cient. However, to go further, in this section,

Time

Compute

Runtime (𝑟𝑖)

Deadline

Slack (𝑠𝑖)

Figure 5: Tasks with short slack require high invocation rate
guarantees.

Time

Compute Deadline

Pre-invocation

Runtime (𝑟𝑖)Slack (𝑠𝑖)Potential overhead

Figure 6: Pre-invocation reduces invocation rate guarantee
requirement at a waste in resources.

we will relax this restriction, using pre-invocation, and fur-
ther show that pre-invocation can dramatically reduce the
rate requirements.

The idea of pre-invocation arises from the notion that real-
time serverless depends exclusively on the dynamic acquisi-
tion of resources from the underlying resource management
system (as does serverless). This means the delay in acquir-
ing such resources is critical in delivering real-time guaran-
tees. That connection is illustrated in Figure 5 for a single
rate monotonic task. The required guaranteed invocation
rate is determined by the slack, and is much greater than 1

pi
– though intuitively that rate matches the average needs of
the rate monotonic task.

Pre-invocation allocates resources early, anticipating the
arrival of a task as shown in Figure 6. Because the resources
are acquired before they are needed, it wastes resources. But
as we will see pre-invocation can be used to significantly
reduce the invocation rate guarantee requirement.

7.1 Efficient Real-time Guarantee for Single

Task

First, we explore pre-invocation for a single task.

Theorem 7.1. With a finite pre-invocation of ⇢i, an ap-
plication can use real-time serverless to guarantee deadlines
of one periodic task Ti with any zero or positive slack (i.e.,
si = pi � ri � 0). This loosens the requirement of Theorem
6.1.

Proof. Assume the task Ti employs pre-invocation of

⇢i = ri
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Then by serving Ti with real-time serverless of rate

Ai =
1
pi

Its invocation latency is bounded as

li 
1
Ai

= pi

There are two possible cases

• li  ⇢i meaning there is an invocation available at the
time the task releases, so it requires only ri to complete
and

ri  pi

so the deadline is met.

• ⇢i < li  pi meaning the task has to wait for its invo-
cation, so it waits (li � ⇢i), and completes in

(li � ⇢i) + ri

which is equal to li, and li  pi, so the deadline is met.

Thus, pre-invocation with real-time serverless can guarantee
a single periodic task meeting its deadline, even if the task
has no slack.

With Theorem 7.1, real-time serverless is su�cient for any
single periodic task to guarantee its deadlines. Now, let us
consider the cost of achieving real-time guarantees. The
cost has two components: pre-invocation (wasted computa-
tion) and guaranteed invocation rate (higher rate-guarantee
requires more implementation e↵ort and hence more costly
[27]). With our model, we study the interplay between these
costs. First, given Theorem 7.1 and a finite, but very small
pre-invocation, we will show that real-time guarantees can
be met with essentially no pre-invocation overhead and a
guaranteed invocation rate of Ai � 1

pi
as follows.

Theorem 7.2. A single periodic task Ti requires at least
an invocation rate

Ai �
1
pi

to meet its deadline.

Proof. We will prove by contradiction. That is, assum-
ing that Ti is guaranteed to meet its deadlines at invocation
rate of A0

i <
1
pi
. Now, let

✏ =
1
pi

�A0
i > 0

Consider an interval of length m = 1
✏ . Let Ii be the num-

ber of invocations needed to be completed by Ti within this
interval, then

Ii � bm
pi

c

while the number of invocations we are guaranteed to have
at the rate A0

i is

Ni = bm ·A0
ic

A necessary condition to guarantee that Ti does not miss
any deadline over m is

Ni � Ii

Figure 7: Required pre-invocation to guarantee real-time
deadlines of a single task Ti(pi = 10, ri = 7) varying
guaranteed invocation rate Ai. The colored area shows
(rate-guarantee, pre-invocation) combinations that ensure
the task’s real-time deadlines.

However, because

(
m
pi

)� (m ·A0
i) = m(

1
pi

�A0
i) =

1
✏
✏ = 1

Then

Ii �Ni � bm
pi

c � bm ·A0
ic = 1

This means, Ii > Ni so Ti is unable to guarantee its dead-
lines contradicting to the hypothesis. Thus, the invocation
rate must be at least 1

pi
. This proves the theorem.

More generally, let’s derive a precise expression for the
required pre-invocation, given a su�cient guaranteed invo-
cation rate:

Theorem 7.3. Given task guaranteed invocation rate of
Ai � 1

pi
, we can ensure task Ti meeting its deadline with a

pre-invocation time of

⇢i �
1
Ai

� (pi � ri)

Proof. Let us consider two possible cases

• Case 1. ⇢i � 1
Ai

, then

li 
1
Ai

 ⇢i

then there is always an available invocation before the
task releases meaning it only requires ri to complete
and

ri  pi

so the deadline is met.

• Case 2. 1
Ai

� (pi � ri)  ⇢i < 1
Ai

then li is no longer
bounded by ⇢i. The invocation may arrive before the
task releases then it falls back to Case 1, where Ti

meets the deadline. Otherwise, Ti has to wait for in-
vocation after releasing so it would take the task RTi
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time unit(s) to complete, where RTi is determined as

RTi = li � ⇢i + ri

 1
Ai

� ⇢i + ri

 1
Ai

� [
1
Ai

� (pi � ri)] + ri

= pi

Thus, Ti also meets its deadline.

Therefore, ⇢i � 1
Ai

� (pi � ri) ensures the task to guarantee
meeting its deadline.

Theorem 7.3 shows that given a su�cient guaranteed in-
vocation rate, we can choose the minimum pre-invocation
needed to enable a single task to ensure its real-time dead-
lines. This is the most e�cient (least resource waste), given
a su�cient guaranteed invocation rate.

The pre-invocation and guaranteed invocation rate rela-
tionship is shown in Figure 7. Realizing the lower invocation
rate bound Ai = 1

pi
(green line) requires a pre-invocation of

pi = ri (orange line). As Ai increases, the invocation la-
tency bound gets tighter, then the required pre-invocation
decreases proportionally. Finally, at Ai = 1

pi�ri
(red line),

the slack is large enough so no pre-invocation is needed.

7.2 Efficient Real-time Guarantee for Multi-

ple Tasks

Now, let us generalize the results above to the case of
multiple periodic tasks.

Theorem 7.4. Pre-invocation enables real-time server-
less to guarantee many periodic tasks T1, ..., Tn meeting
their deadlines without the positive slack requirement (i.e.,
si = pi � ri � 0).

Proof. Given a task Ti, let us request an invocation for
each of its releases in ⇢i time unit ahead, where

⇢i = ri

Now, by Theorem 7.3, this pre-invocation enables Ti to
achieve its real-time guarantee with a finite invocation rate

Ai =
1
pi

Applying the same argument for other tasks then all the
tasks are guaranteed to meet their deadlines. This proved
the theorem.

Similar to Theorem 7.1, Theorem 7.4 extends Theorem
6.2’s scope to tasks with no slack which finally, proves that
real-time serverless is su�cient for any combination of mul-
tiple periodic tasks to achieve real-time guarantee.

Now, we will generalize theorems on the bound of the cost
to multiple tasks. However, representing the cost by a set
of guaranteed invocation rates used by each task is compli-
cated, hard to analyze, and make comparisons. Hence, we
consider the invocation cost as the invocation rate for the
application as a whole. In particular, given multiple tasks
T1, ..., Tn served with invocation rates of A1, ..., An then the
invocation cost for these tasks would be the sum of the num-
ber of invocations created at rates A1, ..., An per time unit.

Theorem 7.5. A real-time serverless system can meet
the deadlines for rate-monotonic workload with periodic
tasks T1, ..., Tn given a guaranteed invocation defined as

Atotal �
nX

i=1

Ai =
nX

i=1

1
pi

Proof. Consider the time interval of length M :

M =
nY

j=1

pj

Clearly, M is a common multiple of p1, ..., pn so if we are
able to ensure T1, ..., Tn to meet their deadline within this
interval, they are guaranteed to meet deadlines in any inter-
val. Consider a task Ti, let Ni be the number of its releases
within the interval, then

Ni =
M
pi

=

Qn
j=1 pj

pi
=

Y

j 6=i

pj

Thus, the total number of task releases is

Ntotal =
nX

i=1

Ni =
nX

i=1

Y

j 6=i

pj

Clearly, there would be Ntotal invocation requests within
the interval so in order to ensure that no task misses its
deadline, the invocation rate must be fast enough to make
at least Ntotal invocations available. Therefore, the lower
bound for the shared guaranteed invocation rate is

Atotal �
Ntotal

M
=

nX

i=1

Q
j 6=i pj

M
=

nX

i=1

1
pi

=
nX

i=1

Ai

Thus, the theorem is proved.

Note that Atotal =
Pn

i=1 Ai is just a lower bound for in-
vocation rate, stating how fast the serverless system should
deliver their invocations, not when should they deliver invo-
cations. In fact, given Atotal , the serverless system can even
decompose it back to A1, ..., An where

Pn
i=1 Ai = Atotal to

serve T1, ..., Tn individually.

Theorem 7.6. Invocations delivered at rate Atotal can be
partitioned to form n di↵erent invocation rates A1, ..., An

where

Atotal =
nX

i=1

Ai

Proof. Consider an arbitrary interval of length T , the
number of invocations guaranteed to be available within T
at rate Ai is

Ni = bT ·Aic

while the number of invocations delivered by Atotal is

Ntotal = bT ·Atotalc = bT ·
nX

i=1

Aic �
nX

i=1

bT ·Aic =
nX

i=1

Ni

Thus, at any interval, invocations given at rate Atotal is al-
ways greater than or equal to the total number of invocations
needed by Ai, ..., An. Therefore, by temporally shifting invo-
cations created at rate Atotal within the interval, we can form
n guaranteed invocations. This proves the theorem.
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The theorem states that di↵erent real-time deadlines can
be ensured simultaneously with a single guaranteed invoca-
tion rate. Combined with Theorem 7.5, we provide impor-
tant results that allow us to ensure hard real-time deadlines
with great flexibility that can be essential to deal with dif-
ferent practical scenarios. For example, we can multiplex
di↵erent tasks into a single real-time serverless function to
simplify function management given a large number of pe-
riodic tasks. Or if the rate-guarantee of a function is too
high making its deployment impracticable, we can decom-
pose it into identical ones with smaller rates. Finally, we use
these theorems to realize the lower pre-invocation bound for
Atotal.

Theorem 7.7. The lower bound from Theorem 7.5 for
guaranteed invocation rate of

Atotal =
nX

i=1

Ai =
nX

i=1

1
pi

can be achieved with total pre-invocation overhead (wasted
compute) of

⇢total =
nX

i=1

⇢i =
nX

i=1

ri

Proof. By applying Theorem 7.6, we can decompose
Atotal into

Ai =
1
pi

By using Ai to serve Ti, Theorem 7.3 indicates that a pre-
invocation of

⇢i = ri

is needed to achieve its real-time guarantee. Applying the
argument for other tasks, then at the invocation rate of

Atotal =
nX

i=1

Ai =
nX

i=1

1
pi

the real-time guarantees are met only with total pre-
invocation of

⇢ =
nX

i=1

⇢i =
nX

i=1

ri

This makes the pre-invocation overhead (wasted compute)
bounded by

Pn
i=1 ri. Thus, the theorem is proven.

Theorem 7.7 generalizes the conclusions of Theorem 7.3,
showing that pre-invocation required to ensure no task
misses its deadlines will never exceed the real computation
cost. In other words, a pre-invocation overhead of 100% is
su�cient to reduce the guaranteed invocation rate require-
ments to their minimum, Atotal =

PN
i=1

1
pi
.

8. DEMONSTRATION

In this section, we will demonstrate the implications of
the above theoretical results by using real-time serverless
to serve a distributed real-time virtual/augmented reality
(VR/AR) application. We aim to demonstrate how the ap-
plication design and deployment can be enhanced by utiliz-
ing our theoretical findings, leading to improved user experi-
ence, simplified deployment, and streamlined management.

Task Period Runtime Slack

Stream (T1) p1 = 30 r1 = 15 s1 = 15 (50%)

Handle (T2) p2 = 50 r2 = 25 s2 = 25 (50%)

Sync (T3) p3 = 90 r3 = 50 s3 = 40 (44%)

Table 2: Rate monotonic tasks collected from VR/AR ap-
plications (milliseconds).

Virtual 
world state

Action
Synchronized

VR/AR
Service

…

Users

Service
Entry

Stream𝜆
Handle𝜆
Sync𝜆

Serverless Functions

Render
Info.

Action

Write

ReadRender 
Info.

Figure 8: The VR/AR service. Requests come from various
users creating corresponding serverless function invocations.

8.1 Setup

8.1.1 VR/AR Application and Workload
Distributed VR/AR has gained significant attention in

recent years due to the innovative user experience it o↵ers.
Quality of experience (QoE), measured by the smoothness
of user interaction, is one of its critical requirements. Main-
taining high QoE requires timely processing in many tasks
such as rendering, synchronizing multi-player actions, etc.
We will show that by specifying these tasks as hard real-
time and enforcing their real-time deadlines using real-time
serverless, we can unlock new, game-changing capabilities to
these applications. These capabilities not only allow them
to control QoE but also simplify their management in ever-
changing workloads and deployment environments.

Motivated by [28], we model a VR/AR application as
a cloud service that creates a virtual world serving as a
common place for hundreds or even thousands of users to
interact with each other simultaneously (Figure 8). The
virtual world state, including users’ locations, appearances,
and movements, etc., is maintained in global storage and
is continuously updated to match users’ actions (e.g., talk,
move, make a purchase, etc.). We select three representative
time-sensitive tasks that are frequently executed by VR/AR
applications and model them as a rate-monotonic workload
with parameters listed in Table 2:

• Stream: reads the virtual world state, generates render
information, and then sends it to the user’s end devices
for constructing the world from their point of view.
With 30 fps is a standard for video streaming, we set
the task period to 30ms and 15ms execution time.

• Handle: triggers when a user takes actions that require
an immediate reaction from the application (e.g., talk,
pick up an item, etc.). Based on in-game analysis [25],
there can be up to 17 clicks per second in aggressive
gaming situations, so we set the task period to 50ms
with 25ms runtime.

• Sync: Synchronizes the virtual world’s state, ensur-
ing its consistency across users. We assume the ap-
plication synchronizes the state once for every 3 video
frames, so the task period is 90ms.
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(a) Miss rate vs rate-guarantee (A1, normalized to
1
s1

).

Pre-invocation: ⇢1 = p1 � s1

(b) Compute resources normalized to useful ones (col-

ored area) vs. rate-guarantee (A1, normalized to
1
s1

)

Figure 9: Implementing event streaming (i.e., T1 – Stream) using Real-time Serverless ensuring the task’s real-time deadlines
at bounded resource cost.

(a) Miss rate vs rate-guarantee (A, normal-

ized to
P

i
1
si
). Pre-invocation: ⇢i = pi�si

(b) Compute resources normalized to use-

ful computation (colored area) vs. Rate-

guaranteed (A) normalized to
P

i
1
si

(c) Rate-guarantee and resources require-

ment (normalized to useful computation)

varying number of active users.

Figure 10: Serving combinations of multi-tasks with Real-time Serverless. Real-time Serverless ensures real-time guarantee
for any task combination with a finite rate-guarantee at a resource cost bounded by 2x of useful computation.

8.1.2 Approaches
We compare these task executions on regular serverless,

real-time serverless (RTS), and real-time serverless with
pre-invocation (RTS+PreInvocation) via simulation. Every
time a task releases, it needs an invocation for execution. In
the base case, the task requests a new invocation at the be-
ginning of its period. If pre-invocation is enabled, then the
task makes invocation requests earlier than the beginning
of its periods. If the task requests a regular serverless invo-
cation, the invocation latency is simulated based on Google
Cloud Functions cold start latency statistics [35] (Figure 4).
For real-time serverless invocations, we collect the invoca-
tion latency statistics from deploying and executing func-
tions with equivalent rate-guarantees on a real-time server-
less prototype [27]. Once a task gets an invocation, it starts
the execution with a constant runtime (ri, Table 2). If an
execution completes after the beginning of the next period,
we count it as missing the deadline. We report the percent-
age of executions missing the deadlines (i.e., miss rate) as
a QoE metric. The compute resource (or resource usage),
calculated by aggregating the invocation lifetime, including
the pre-invocation overhead , is a cost metric.

8.2 Results

8.2.1 Single Task
In Figure 9a, we plot the percentage of missed deadlines

for a single task “Stream” (T1) implemented by di↵erent
approaches mentioned above. The regular serverless leaves
invocation latency unbounded so many invocations fail to
start within the task’s slack – 15ms leading to more than
85% miss rate (the red star at the top-left corner). Real-time
serverless enables bounding the latency through the rate-
guarantee A1 so the higher the rate, the tighter the bound
and thus, the lower the miss rate. Once A1 = 1

s1
= 66.67

invocations per second, the task is guaranteed to meet its
deadlines, validating Theorem 6.1. With pre-invocation, the
task uses pre-invocation of ⇢1 = r1 = 15ms ahead, equal to
the upper bound for e�ciency. Doing so adds extra time
waiting for the new invocation, so T1 sees lower deadline
misses than real-time serverless alone (the orange line vs.
the blue line). Pre-invocation eliminates the deadline misses
at a much lower guaranteed invocation rate, 33.33 = 1/p1
invocations per second, confirming Theorem 7.2. By pre-
invocation, however, applications have to hold invocations
longer than usual if they arrive before the task released. This
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increases resource usage as shown in Figure 9b. Further, as
the invocation rate increases, invocation arrives faster and
thus, creates more overhead yet it never exceeds 100% of the
total runtime, as shown in Theorem 7.3.

8.2.2 Multiple Tasks
Next, we consider deploying all tasks in Table 2 simulta-

neously. The theorem 7.6 indicates that we do not need to
deploy each task with a separate real-time serverless func-
tion. Instead, only one real-time serverless function with a
rate-guarantee equal to the total per-task rate requirement is
su�cient. Figure 10a confirms this implication as at a guar-
anteed invocation rate of A =

P
i

1
si

⇡ 132 invocation/sec,
a single real-time serverless function reduces all three tasks’
aggregated miss rate to zero (blue curve) – ensuring all real-
time deadlines are met. Further, Theorem 7.7 implies that
we can even ensure real-time deadlines with an even lower
rate-guarantee through pre-invocation. Every time a task Ti

releases, we pre-invoke a new invocation ri seconds ahead.
As a result, resources become available for the task sooner,
reducing the miss rate (the orange curve). And as proved
in Theorem 7.7, A =

P
i

1
pi

⇡ 64 invocations per second is
already enough for guaranteeing real-time deadlines. Also
similar to the case of a single task, pre-invocation incurs
high resource use, but by Theorem 7.7, the overhead never
exceeds 100% of useful resources (light blue area) as shown
in Figure 10b.

8.2.3 Distributed Deployment
Finally, we consider the distributed deployment of the ap-

plication where there can be thousands of users simultane-
ously interacting at a time. Yet the number of active users
may vary widely, especially during special events, such as
launch time, anniversary, etc., applications expected to ob-
tain a burst load of 10x or more active users than the av-
erage [28]. In traditional deployments, this requires careful
preparation to make just enough room for the burst to en-
sure the desired QoE at a reasonable cost.

With real-time serverless, the solution is much simpler.
All the application has to do is simply reconfigure the server-
less guaranteed invocation rate to match the task release
rate at burst, as demonstrated in the previous experiments.
Figure 10c shows the guaranteed invocation rate required for
a single real-time serverless function to meet the real-time
deadlines of tasks released by di↵erent numbers of users,
ranging from 0 to more than 8,000. Since guaranteed in-
vocation rates are combinable, the required rate-guarantee
increases linearly with the number of active users demon-
strating good scalability. Further, with pre-invocation, we
can reduce the rate by half at the additional resource uses
of at most 100% of the available resources.

It’s worth noting that the rate-guarantee is not only com-
binable but can also be decomposed into smaller ones if
needed. For instance, to serve 8,000 users, the required rate-
guarantee is over 1 million invocations per second, which
may exceed the current capability of serverless technologies.
The application can decompose the serverless function into
others with lower rate-guarantees and distribute them across
di↵erent cloud regions (e.g., 1000 functions with 1000 invo-
cation/sec, each serving users from a specific area across the
globe). This approach not only works around current tech-
nology limitations but also leverages distributed resources
deployment (e.g., cloud+edge) to achieve better load bal-

ancing and cost e�ciency.

9. DISCUSSION AND RELATED WORK

To the best of our knowledge, there is currently no com-
pute model o↵ering resources with performance guarantee at
the cost scale to actual demand. Therefore, real-time sys-
tems must rely on Virtual Machines or dedicated hosts [5]
with indefinite runtime agreement and full resource manage-
ment control to deploy their real-time guarantee solutions.
Due to the long pricing period (hours) and high allocation
latency, real-time systems that pursue this approach often
have to trade o↵ resource waste for performance guaran-
tee [12, 19]. Still, many e↵orts trying to improve dynamic
scaling unbounded latency such as AWS provisioned concur-
rency [4], Serverless, and many dynamic allocation frame-
works (e.g., [17, 18, 20, 21, 42, 47]) but these works are more
about attempting fast react to demand changes rather than
performance guarantee.

There is a host of real-time scheduling studies that builds
on rate-monotonic scheduling or other approaches to achieve
real-time guarantees [12], mostly using fixed, stable perfor-
mance resources [7,19]. Although there are attempts seeking
for understanding of how real-time deadlines will be a↵ected
by dynamic execution [40] and its solutions (e.g., [22, 31]),
to our knowledge, no work that focuses on dynamically allo-
cated such as serverless, and seeks to achieve hard real-time
performance with no resource waste or with bounded re-
source waste.

Utilizing serverless compute model for real-time applica-
tions is attractive, but challenging due to performance limi-
tations and implementation issues, such as network latency,
data access, etc. [10,45] Many studies focus on these issues,
including virtualization and scheduling for more reliable ex-
ecution [1,6,11,43,44], real-time data access [24,32,34], and
deterministic networking [26,46].

10. SUMMARY AND FUTURE WORK

We have analyzed a proposed extension called real-time
serverless that adds a guaranteed invocation rate to the
serverless compute model with the goal of supporting hard
real-time applications. Using a rate-monotonic workload ex-
ample, our analysis shows that this new model can support
hard real-time guarantees, but if the slack for tasks is short,
the required invocation rates can be very high. However, be-
cause the serverless models support dynamic allocation, this
approach meets real-time deadlines with no resource waste.
Next, we showed that pre-invocation can reduce these re-
quired invocation guarantees; limiting them to 1

pi
for each

task, at an overhead in compute resource waste. Together,
these results provide a foundation for hard real-time appli-
cations on the real-time serverless platform.

There are a number of interesting directions for future
work, including studies of how to schedule rate-monotonic
tasks with dynamic runtimes for serverless systems as well
as how to best implement the real-time serverless guaran-
teed invocation rates given its current implementation is too
costly for bursty workloads [27]. Another interesting direc-
tion is to find the best way to utilize the guaranteed invoca-
tion rate to not only ensure applications’ real-time deadlines
but also to enable new capabilities for better application de-
sign and scalability.
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