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Abstract

Previous work demonstrates that the optimal

safe reinforcement learning policy in a noise-

free environment is vulnerable and could be un-

safe under observational attacks. While ad-

versarial training effectively improves robust-

ness and safety, collecting samples by attack-

ing the behavior agent online could be expen-

sive or prohibitively dangerous in many appli-

cations. We propose the robuSt vAriational

ofF-policy lEaRning (SAFER) approach, which

only requires benign training data without at-

tacking the agent. SAFER obtains an optimal

non-parametric variational policy distribution via

convex optimization and then uses it to improve

the parameterized policy robustly via supervised

learning. The two-stage policy optimization fa-

cilitates robust training, and extensive experi-

ments on multiple robot platforms show the ef-

ficiency of SAFER in learning a robust and safe

policy: achieving the same reward with much

fewer constraint violations during training than

on-policy baselines.

1. Introduction

Deep reinforcement learning (RL) has witnessed great suc-

cess in solving challenging problems (Mnih et al., 2013;

Liu et al., 2020a; Jumper et al., 2021). Meanwhile, the po-

tential risks of safety and robustness (Dulac-Arnold et al.,

2021; Moos et al., 2022) arise when deploying deep RL in

real-world applications. Safe RL has been gaining increas-

ing attention recently, which aims to tackle the safety is-

sue by learning a constraint-satisfaction policy (Garcıa and

FernÂandez, 2015). Safe RL approaches explicitly separate

the constraint violation signals and the rewards of task per-

formance, showing advantages to satisfy the safety require-

ment (Ray et al., 2019; Brunke et al., 2021; Gu et al., 2022).
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However, recent studies find that the learned safe RL poli-

cies are vulnerable to adversarial attacks: a small pertur-

bation in the observation space could induce dangerous be-

haviors of the agent and cause a dramatic drop in the safety

performance (Liu et al., 2022c). Therefore, even a well-

trained safe RL policy in the noise-free simulation environ-

ment may not be truly safe for real-world applications due

to the commonly existing sensing noises. Thus, improving

its robustness against observational perturbations is equally

important to learning a constraint satisfaction policy.

Adversarial training is a commonly-used technique in im-

proving policy robustness and task performance in standard

RL setting (Pinto et al., 2017; Gleave et al., 2019). Re-

cent work extends adversarial training to the safe RL do-

main and suggests that it can also greatly strengthen the

safety performance under properly selected attackers (Liu

et al., 2022c), where the proposed ADV-PPOL method col-

lects corrupted interaction data for model training in an

on-policy fashion. This type of method effectively eval-

uates the safety performance under strong adversarial at-

tacks to improve the robustness. However, it is expensive

to perform adversarial training and collect corrupted inter-

action data online in many applications since the danger-

ous behaviors induced by attacks could be dangerous or

prohibitively unethical (Ibarz et al., 2021). For example,

attacking a self-driving vehicle in the physical world by

corrupting the vision system can lead to catastrophic acci-

dents (Eykholt et al., 2018; Kong et al., 2020), while benign

datasets are much easier to obtain for training. Therefore,

investigating a more efficient and safer robust training algo-

rithm for safe RL is an important but challenging problem.

This paper aims to develop a robust safe RL directly from

benign data, i.e. the natural training samples without at-

tacks. Conversely, corrupted data is defined as the rollout

trajectories under attacks. Motivated by the Expectation-

Maximization (EM) style approaches in RL (Abdolmaleki

et al., 2018b; Levine, 2018; Liu et al., 2022b), we convert

the robust safe RL problem to a convex optimization phase

(E-step) and a supervised learning phase (M-step). Particu-

larly, we propose the robuSt vAriational ofF-policy lEaRn-

ing (SAFER) method to improve the robustness against ad-

versarial state perturbations. SAFER robustifies the pol-

icy in the M-step since it is a supervised learning problem,

and thus adversarial training techniques can be effectively
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Table 1: Training features and performance comparison.

Training features Final performance

No attack to the

behavior agent

Reuse off-policy

training data

Maintain safety

under attacks

Maintain reward

under attacks

SA-PPOL (Zhang et al., 2020a) ✓ ✗ ✗ ✓

ADV-PPOL (Liu et al., 2022c) ✗ ✗ ✓ ✓

CVPO (Liu et al., 2022b) ✓ ✓ ✗ ✗

SAFER (ours) ✓ ✓ ✓ ✓

applied. More importantly, it only requires benign and

off-policy interaction data, which greatly improves training

safety and efficiency. We highlight the difference between

SAFER and other related training approaches in Table 1.

We summarize our contributions as follows:

1. We study the problem of learning a robust and safe pol-

icy from benign and off-policy data, which is rarely dis-

cussed in the literature. We show that directly apply-

ing on-policy adversarial training techniques to the off-

policy setting can hardly work well.

2. We propose the SAFER approach from the variational

safe RL perspective, which converts the policy learning

step into an easy-to-optimize supervised learning prob-

lem. The key insight is that adversarial training in the

supervised learning phase can improve the robustness

and does not require attacking the behavior agent.

3. Our experiment results show that SAFER is effective in

learning a robust and safe policy, and it is also safer and

more efficient during the learning process than the on-

policy robust training baselines.

2. Related Work

Safe RL aims to learn a constraint-satisfaction policy by

interacting with the environment (Xu et al., 2022). Do-

main knowledge of the safety constraint could be applied

in an RL system to improve safety (Dalal et al., 2018; Al-

shiekh et al., 2018; Liu et al., 2020b; Luo and Ma, 2021;

Chen et al., 2021; Mguni et al., 2021; Liu et al., 2022a).

Another type of approach focuses on the constrained opti-

mization perspective (Sootla et al., 2022; Yang et al., 2021;

Flet-Berliac and Basu, 2022). The Lagrangian method is a

commonly used technique to adapt a standard RL method

to the safe RL setting (Bhatnagar and Lakshmanan, 2012;

Chow et al., 2017; Stooke et al., 2020; As et al., 2022).

Convex relaxation via low-order Taylor expansions is an-

other widely used approach to solve safe RL (Achiam et al.,

2017; Yu et al., 2019). (Zhang et al., 2020c) and (Yang

et al., 2020) further propose an additional projection step

to recover the updating policy to the safe set and improve

the safety performance, while (Liu et al., 2022b) propose a

variational inference method to overcome the degradation

of safety performance from the approximation error.

Robust RL is another important aspect for developing

trustworthy decision-making systems (Xu et al., 2022).

Unlike the supervised learning task, robustness in RL has

different definitions (Moos et al., 2022), including the ro-

bustness against action noises (Tessler et al., 2019), ad-

versarial reward (Wang et al., 2020; Lin et al., 2020; Ey-

senbach and Levine, 2021), domain shift (Muratore et al.,

2018; Huang et al., 2022), and dynamics uncertainty (Lim

et al., 2013; Pinto et al., 2017). We focus on the robustness

of a deep RL agent under state adversarial attacks (Zhang

et al., 2020b; Huang et al., 2017). Utilizing the critics

to guide the adversarial perturbation direction is shown

to be effective in reducing the agent’s performance (Kos

and Song, 2017; Lin et al., 2017; Pattanaik et al., 2017).

(Zhang et al., 2020a) propose a critic-free adversary by

maximizing the KL divergence of the original policy and

corrupted policy, which can achieve effective attacks in re-

ducing the agent’s reward. The most related work indicates

that trained safe RL policies can be easily attacked and thus

lead to constraint violations (Liu et al., 2022c).

3. Preliminary

3.1. CMDP and Safe RL

Safe RL is usually modeled under the Constrained Markov

Decision Process (CMDP) framework (Altman, 1998).

An infinite horizon CMDP M is defined by the tuple

(S,A,P, r, c, γ, µ0), where S is the state space, A is the

action space, P : S × A × S −→ [0, 1] is the transition

function, r : S × A × S −→ R is the reward function,

γ −→ [0, 1) is the discount factor, and µ0 : S −→ [0, 1] is

the initial state distribution. CMDP augments the MDP tu-

ple with an additional element c : S × A × S −→ [0, Cm]
to characterize the cost for violating the constraint, where

Cm is the maximum cost. A safe RL problem is denoted

as Mκ
Π := (S,A,P, r, c, γ, µ0,Π, κ), where Π is a lo-

cally Lipschitz continuous policy class, and κ −→ [0,+∞)
is a threshold for constraint violation cost. Let π(a|s) ∈
Π denote the policy and τ = {s0, a0, ..., } denote the

trajectory. We use shorthand ft = f(st, at, st+1), f ∈
{r, c} for simplicity. The value function is V π

f
(µ0) =

Eτ∼π,s0∼µ0
[
∑∞

t=0 γ
t
ft], f ∈ {r, c}, which is the expec-

tation of discounted return under the policy π and the

initial state distribution µ0. We overload the notation

V π
f
(s) = Eτ∼π,s0=s[

∑∞
t=0 γ

t
ft], f ∈ {r, c} to denote the

value with the initial state s0 = s, and denote Qπ
f
(s, a) =

Eτ∼π,s0=s,a0=a[
∑∞

t=0 γ
t
ft] as the state-action value func-

tion under the policy π. The objective ofMκ
Π is to find the

policy that maximizes the reward while limiting the cost

incurred from constraint violations to a threshold κ:

π∗ = argmax
π

V π
r (µ0), s.t. V π

c (µ0) ≤ κ. (1)

We denote the feasible policy class as the set of poli-

cies that satisfies the constraint with threshold κ: Πκ
M :=

{π(a|s) : V π
c (µ0) ≤ κ, π ∈ Π}; the optimal policy π∗

as the policy with the highest reward return in the feasible
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policy class: π∗ ∈ Πκ
M, ∀π ∈ Πκ

M, V π∗

r (µ0) ≥ V π
r (µ0);

the tempting policy class as the set of policies that have

a higher reward return than the optimal policy: ΠT
M :=

{π(a|s) : V π
r (µ0) > V π∗

r (µ0), π ∈ Π}. Note that a tempt-

ing policy is unsafe, and the existence of tempting policies

induces challenges in safe RL (Liu et al., 2022c).

3.2. State Adversarial Safe RL

We study the observational robustness of safe RL un-

der the state-adversarial safe RL framework (Zhang et al.,

2020a;b). A deterministic adversary ν(s) : S −→ S cor-

rupts the state observation of the agent, aiming to increase

the constraint violation rate. The corrupted state is de-

noted as s̃ := ν(s), and the corrupted policy is denoted as

π ◦ ν := π(a|s̃) = π(a|ν(s)), where the state is first con-

taminated by ν and then processed by the policy π. Note

that the adversary does not modify the true states in the

original CMDP, but only the agent’s input. We restrict the

perturbed observation to be within a pre-defined perturba-

tion set B(s): ∀s ∈ S, ν(s) ∈ B(s), such that the power of

the adversary is limited and maintaining attacking stealthi-

ness. Following convention (Madry et al., 2017), we define

the perturbation set Bϵ
p(s) as the ℓp-ball around the original

state: ∀s′ ∈ Bϵ
p(s), ∥s′ − s∥p ≤ ϵ, where ϵ is the ball size.

The observation adversary commonly exists in real-world

applications, such as sensing noise or perception errors (Hu

et al., 2022).

Different from standard RL, safe RL has to ensure con-

straint satisfaction, since the cost of violating constraints

in many safety-critical applications can be unaffordable.

Therefore, the primary goal for the adversary in safe RL

is to increase the constraint violation cost. There are two

strong adversarial attackers in prior work Liu et al. (2022c):

Maximum-Cost (MC) and Maximum-Reward (MR).

The MC attacker directly maximizes the cost return to ob-

tain the perturbation: νMC = argmaxν V
π◦ν
c (µ0), while

the MR attacker maximizes the reward return to make the

policy be tempting: νMR = argmaxν V
π◦ν
r (µ0). Both at-

tackers are shown to be effective in inducing unsafe be-

haviors of the safe RL agent, and the MR attacker is

also stealthy in maintaining the task reward such that the

agent can not be aware of attacks easily. Note that the

minimizing-reward adversaries in standard RL can hardly

work in decreasing safety performance.

4. Method

This section introduces the SAFER algorithm, which is

built upon variational inference-based RL methods (Abdol-

maleki et al., 2018b; Liu et al., 2022b), aiming to robus-

tify the policy under observational perturbations. We first

present how to formulate safe RL as a variational inference

problem, and then introduce how to optimize the policy to

improve its robustness against adversarial inputs.

4.1. Robust Safe RL as Inference

The classical view of safe RL aims to find the actions

that could maximize task rewards while satisfying the con-

straints, while the probabilistic inference perspective seeks

to answer ªgiven future success in maximizing task re-

wards, what are the feasible actions most likely to have

been taken?º. Following the RL as inference litera-

ture (Levine, 2018), we consider an infinite discounted re-

ward formulation and define the optimality variable of a

state-action pair as O, which represents the event of max-

imizing the reward by choosing an action at a state. Then

the likelihood of being optimal given a trajectory is pro-

portional to the exponential of the discounted cumulative

reward: p(O = 1 | τ) ∝ exp(
∑

t γ
trt/α), where α is a

temperature parameter. Denote the probability of a trajec-

tory τ under the policy π as pπ(τ) = p(s0)
∏

t≥0 p(st+1 |
st, at)π(at | st), then the lower bound of the log-likelihood

of optimality given the policy π is:

log pπ(O = 1) = logEτ∼q[
p(O = 1 | τ)pπ(τ)

q(τ)
]

≥ Eτ∼q log
p(O = 1 | τ)pπ(τ)

q(τ)

∝ Eτ∼q[
∞
∑

t=0

γtrt]− αDKL(q(τ)∥pπ(τ)) = J (q, π)

(2)

where the inequality follows Jensen’s inequality, q(τ) is an

auxiliary trajectory-wise variational distribution. J (q, π)
in equation (2) is the evidence lower bound (ELBO), which

is an important quantity in Expectation-Maximization

(EM). EM-based RL algorithms alternate to improve

J (q, π) in terms of q(τ) and pπ(τ) such that the like-

lihood objective of optimality is increased (Abdolmaleki

et al., 2018b;a). More specifically, the E-step optimizes

q(τ) to maximize the discounted return within the trust re-

gion of the old policy, while the M-step aims to minimize

the KL divergence between pπ(τ) and q(τ) by updating

the parametrized policy in a supervised learning fashion.

Off-policy deep RL techniques can be used during training,

making the EM updating steps scalable and data efficient.

By factorizing the variational distribution q(τ) the same

way as pπ(τ): q(τ) = p(s0)
∏

t≥0 p(st+1|st, at)q(at|st)
and cancelling the transitions, we have the following ELBO

over the state-conditioned action distribution q(a|s):

J (q, θ) =Eρq

[

∞
∑

t=0

γtrt − αDKL(q∥πθ)
]

+ log p(θ) (3)

where ρq(s) is the stationary state distribution induced by

q(·|s) and ρ0, θ denotes the parameters for policy π, and

p(θ) is a prior distribution over the parameters. Note we

overload q by using it both in q(a|s) and q(τ). In safe

RL, an additional constraint on the variational distribution

is required to ensure safety. It is done by limiting the
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choices of the variational distribution q(·|s) in a feasible

distribution family Πκ
Q with threshold κ: Πκ

Q := {q(a|s) :
Eτ∼q[

∑∞
t=0 γ

tct] ≤ κ, a ∈ A, s ∈ S}, which is a set of

all the state-conditioned action distributions that satisfy the

safety constraint. Optimizing the factorized lower bound

J (q, θ) w.r.t q within the feasible distribution family and

the policy parameter θ iteratively via EM yields the CVPO

safe RL method (Liu et al., 2022b). Note that our approach

is built upon CVPO framework with the same E-step but a

different M-step. We will introduce each step as follows.

4.2. Constrained E-step

The E-step step aims to find the optimal variational dis-

tribution q ∈ Πκ
Q that maximizes the reward return while

satisfying the safety constraint. At the i-th iteration, We

can write the ELBO objective w.r.t q as a constrained opti-

mization problem (see Appendix A.5 for details):

max
q

Eρq

[

Eq(·|s)

[

Q
πθi
r (s, a)

]

]

,

s.t. Eρq

[

Eq(·|s)

[

Q
πθi
c (s, a)

]

]

≤ κ;

Eρq

[

Eq(·|s)

[

DKL(q∥πθi)
]

]

≤ δ

(4)

where ρq(s) is the stationary state distribution in-

duced by q(a|s) and ρ0, which can be approxi-

mated by the replay buffer. We use Q
πθi

f
(s, a) =

Eτ∼πθi
,s0=s,a0=a

[

∑∞
t=0 γ

t
ft

]

, f ∈ {r, c} denote the re-

ward and cost state-action value function. The two con-

straints aim to ensure the optimized variational distribution

is within the feasible set Πκ
Q and the trust region of the old

policy, respectively.

Note that the objective function and the constraints are all

convex w.r.t the decision variable q, so we adopt a non-

parametric form of the variational distribution. Particularly,

we use K samples in the action space to represent q(·|s)
for continuous action space. Therefore, solving the E-step

could be viewed as a convex optimization problem with

finite decision variables. The choice of a nonparametric

form of q in the E-step formulation gives a good property:

we could obtain the optimal (and in most cases unique) so-

lution in an analytical form (5) after solving a convex dual

problem, as shown in Proposition 1 (Liu et al., 2022b):

Proposition 1. Suppose the problem (4) has a feasible so-

lution, then the optimal distribution q∗i (·|s) has the form:

q∗i (a|s) =
πθi(a|s)
Z(s)

exp

(

Qθi
r (s, a)− λ∗Qθi

c (s, a)

η∗

)

(5)

where Z(s) is a constant normalizer to ensure q∗ is a valid

distribution, and the dual variables η∗ and λ∗ are the solu-

tions to the following convex optimization problem:

min
λ≥0,η≥0

g(η, λ) = λκ+ ηδ+

ηEρq

[

logEπθi

[

exp

(

Qθi
r (s, a)− λQθi

c (s, a)

η

)

]

] (6)

The proof is in Appendix A.6. Eq. (5) indicates that the

optimal q is re-weighted based on the old policy πθi , where

the weights are controlled by Qθi
r (s, a), Qθi

c (s, a), η, λ.

Note that the Qθi
r (s, a) and Qθi

c (s, a) are constants since

they could be viewed as the evaluation of the state-action

pair (s, a). On the one hand, the action probability density

is high if it corresponds to a high task reward return and

a low safety cost return, where the weight between them

is balanced by λ. On the other hand, the dual variable η
serves as a temperature to prevent the action distribution

from collapsing to a sharp one, because a low-variance

policy distribution discourages the agent to explore new

actions. The solution of η is related to the KL-constraint

threshold δ, which makes sense since we limit the updating

policy within a trust region. One exciting property is that

the dual problem (6) is strongly convex with mild assump-

tions, which guarantees the optimality and uniqueness of

the solution and improves the optimization efficiency. The

details can be found in (Liu et al., 2022b).

In summary, during the E-step, we obtain the optimal vari-

ational distribution that 1) maximizes the task rewards, 2)

belongs to the feasible distribution family Πκ
Q, and 3) stays

within the trust region of the old policy. It has a closed-

form solution regarding two dual variables, which can be

efficiently solved by convex optimization.

4.3. Robust M-step

The optimal nonparametric distributions q in E-step cannot

cover the full state space, so we need a parametrized pol-

icy, such as a neural network, to fit q and then achieve gen-

eralization beyond the state-action samples used for train-

ing, which yields the vanilla M-step. This step improves

the ELBO w.r.t the policy parameter θi, where i is the

training iteration index. By removing the terms that are

irrelevant to θ in Eq. (3) and using the Gaussian prior

θ ∼ N (θi,
Fθi

αβ ), we obtain the following optimization

problem (Abdolmaleki et al., 2018a;b):

max
θ

Eρq

[

Eq∗
i
(·|s)

[

log πθ(a|s)
]

]

s.t. Eρq

[

DKL(πθi(a|s)∥πθ(a|s))
]

≤ ξ.
(7)

The detailed derivation is presented in Appendix A.7. Solv-

ing Eq. (7) is essentially a constrained supervised learning

problem, where the objective is a maximum likelihood es-

timation loss, and the constraint is the KL divergence be-

tween the updated policy and the old policy. Intuitively, the

4
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parametrized policy is optimized to approximate the opti-

mal nonparametric variational distribution, but the updat-

ing step is limited within the trust region of the old policy.

The KL constraint is necessary for regularizing the policy

improvement and improving the training stability, because

the value estimations could be inaccurate when the policy

is out of the trust region. This constraint is commonly used

in the standard RL literature (Schulman et al., 2015; 2017).

The vanilla M-step formulation doesn’t consider the policy

robustness against adversarial inputs, while previous works

suggest that neural networks are vulnerable to adversarial

attacks (Machado et al., 2021). The sensitivity of the ob-

servation space may lead the safe RL agent to perform dan-

gerous behaviors and violate safety constraints. Therefore,

we propose an additional adversarial training loss com-

bined with the vanilla loss in Eq. (7) to improve the policy

robustness by optimizing toward the worst-case perturba-

tions:

max
θ

Eρq

[

Eq∗
i
(·|s)

[

log πθ(a|ν(s))
]

]

s.t. Eρq

[

DKL(πθi(a|s)∥πθ(a|ν(s)))
]

≤ ξ̃,
(8)

where ν(s) is the corrupted state from the adversary. Opti-

mizing the objective function in Eq. (8) could be viewed as

training a model with an augmented adversarial dataset in

supervised learning literature (Volpi et al., 2018; Shorten

and Khoshgoftaar, 2019), while the constraint aims to

smooth the policy to improve the robustness (Madry et al.,

2018; Zhang et al., 2019; 2020a). Note that the robust M-

step in Eq. (8) is optimized together with the vanilla M-step

loss in Eq. (7), see Appendix Eq. (62) for details.

We could interpret this additional adversarial training loss

from two perspectives: 1) smoothing the policy by con-

straining the KL divergence between the corrupted state-

conditional action distribution and the benign one, and

2) the smoothing direction should be towards the opti-

mal variational distribution of the benign state. We pro-

pose to use the Maximum-Cost (MC) adversary νMC

since it directly outputs the worst-case perturbations that

can lead to the maximum future constraint violations, as

we introduced in Sec. 3.2. The MC adversary is of the

form νMC = argmaxν V
π◦ν
c (µ0), which could be solved

by the Q-value-based formulation in practice: νMC(s) =
argmaxs̃∈Bϵ

p(s)
Eã∼π(a|s̃) [Q

π
c (s, ã))] . With the strong ad-

versary in the robust M-step, SAFER enjoys many good

theoretical properties, as we introduce in the next section.

4.4. Theoretical Analysis

The vanilla M-step in Eq. (7) together with the adversar-

ial training in Eq. (8) yields the robust M-step. To bet-

ter understand how does the robust M-step improve safety

and robustness when compared to the vanilla M-step, we

derive their worst-case cost value bounds under observa-

tional perturbations, respectively. Denote Sc as the set of

unsafe states that have non-zero cost, ps as the maximum

probability of entering unsafe states from state s: ps =
maxa

∑

s′∈Sc
p(s′|s, a), and Aπ

c (s, a) = Qπ
c (s, a)−V π

c (s)
as the cost advantage function of π. For simplicity, we

use shorthand πi = πθi and use π
(V )
i+1, π

(R)
i+1 to denote up-

dated policies after vanilla M-step or robust M-step. Then

given any adversary ν(s) with an ℓp-ball Bϵ
p(s) perturba-

tion set, the constraint violation cost values for them are

upper bounded by the following theorems.

Theorem 1 (Cost bound of vanilla M-step under attacks).

Suppose the parameterized policy π is locally L-Lipschitz

continuous: DTV [π(·|s′)∥π(·|s)] ≤ L ∥s′ − s∥p, and the

policy πi is feasible (i.e., πi ∈ Πκ
M), then we have:

V
π
(V )
i+1◦ν

c (µ0) ≤ κ+ 2Cm

(

d
(V )
i+1 + Lϵ

1− γ
+

√
2ξγd

(V )
i+1 + 4γL2ϵ2

(1− γ)2

)

(

max
s

ps +
γ

1− γ

)

,

(9)

where d
(V )
i+1 = maxs DTV [π

(V )
i+1(·|s)∥πi(·|s)] denotes the

maximum TV distance between the policies before and after

vanilla M-step, and Cm is the maximum one-step cost.

Theorem 2 (Cost bound of robust M-step under attacks).

Suppose πi is feasible, then the safety performance of pol-

icy after robust M-step under attacks is bounded by:

V
π
(R)
i+1◦ν

c (µ0) ≤ κ+ 2Cm





d
(R)
i+1

1− γ
+

√

2ξ̃γd
(R)
i+1

(1− γ)2



 ·

(

max
s

ps +
γ

1− γ

)

,

(10)

where d
(R)
i+1 = maxs DTV [π

(R)
i+1(·|ν(s))∥πi(·|s)] denotes

the maximum TV distance between the corrupted policies

after robust M-step and benign policy before M-step, and

Cm is the maximum one-step cost.

The proofs are in Appendix A.1 & A.2. We can find

that the robust M-step provides a tighter upper bound than

the vanilla M-step in general, since the Lipschitz conti-

nuity L of πV after the vanilla M-step could be an un-

bounded value, while the robust M-step explicitly restricts

the smoothness of πR by the KL divergence threshold ξ̃,

which significantly improves safety under strong attacks.

Although Theorem 2 is mainly derived based on the adver-

sarial training step in Eq.(8), we argue that the vanilla M-

step in Eq. (7) is of equal importance in training, because

the corrupted policy π ◦ ν can correspond to multiple be-

nign policies π and thus lead to the convergence issue. We

define it formally as follows (proof is in Appendix A.3).

5
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Proposition 2. Given a fixed adversary ν, suppose there

exists s1, s2 ∈ S such that ν(s1) = ν(s2), then there exists

two natural policies π1, π2 ∈ Π such that π1 ◦ ν ≜ π2 ◦ ν.

The analysis is based on a fixed adversary hypothesis,

while in practice, we use stronger and policy-dependent

adversaries such as the MC attacker. We can still prove

that there are multiple policies sharing the same corrupted

policy under MC (or MR) attack under mild conditions.

The precise statement and proofs are in Appendix A.4.

Since the corrupted policy does not always correspond to

a unique benign policy, the adversarial training step in Eq.

(8) alone can hardly ensure the training convergence. Fur-

thermore, since we robustify the policy without attacking

the behavior agents, the additional adversarial training step

can contaminate the learning progress in noise-free envi-

ronments. Therefore, ensuring training stability with be-

nign data is necessary. Luckily, since our method is de-

rived from the EM-based algorithm, therefore, the training

robustness can be achieved by incorporating the vanilla M-

step in Eq. (7). More details regarding this property can be

found in Proposition 3 in (Liu et al., 2022b).

Figure 1: Figure illustration of SAFER.

4.5. Practical Implementation

Fig. 1 shows the training pipeline of SAFER. Different

from other adversarial training methods in the literature,

SAFER only requires benign data for training and could

be implemented in an off-policy fashion, which greatly im-

proves training safety and efficiency. Algo. 1 highlights the

key steps of training the policy. Practically, we approx-

imate the stationary state distribution ρq by the samples

from the replay buffer. More implementation details and

training tricks are available in Appendix B.1.

Algorithm 1 SAFER Algorithm at the i-th Iteration

1: Rollout benign trajectories by πθi

2: for each policy optimization iteration do

3: Sample N transitions from the replay buffer

4: Update Q
πθi
r , Q

πθi
c by the Bellman equation.

5: ▷ Constrained E-step begins

6: Compute dual variables η∗, λ∗ by solving (6)

7: Compute the variational distribution for each state

{q∗(·|sn);n = 1, ..., N} by Eq. (5)

8: ▷ Robust M-step begins

9: for each M-step iteration do

10: Get adversarial states {νMC(sn);n = 1, ..., N}
11: Optimize πθi one-step by solving (7) and (8)

12: end for

13: end for

5. Experiment

We consider two tasks (Run and Circle) and four robots

(Ball, Car, Drone, and Ant) which have been used in many

previous works as the testing ground (Achiam et al., 2017;

Chow et al., 2019). The simulation environments are from

a publicly available benchmark (Gronauer, 2022). For the

Run task, the agents are rewarded for running fast between

two boundaries and are given constraint violation cost if

they run across the boundaries or exceed an agent-specific

velocity threshold. For the Circle task, the agents are re-

warded for running in a circle but are constrained within a

safe region that is smaller than the radius of the target cir-

cle. We name the tasks as Ball-Circle, Car-Circle,

Drone-Run, and Ant-Run.

On-policy baselines. We use the adversarial training algo-

rithm ADV-PPOL proposed by (Liu et al., 2022c) as the

major on-policy baseline, which collects corrupted trajec-

tories by the MC attacker to train the base PPO-Lagrangian

(PPOL) agent. We use a robust training algorithm that

is effective in standard RL SA-PPOL as another base-

line (Zhang et al., 2020a). We also extend it by changing

the MAD attacker to a stronger MC attacker in the safe RL

setting, which yields the SA-PPOL(MC) baseline.

Off-policy baselines. Since SAFER is closely related to

the EM-based safe RL algorithm CVPO (Liu et al., 2022b),

we use it as a basic baseline and name it as CVPO-vanilla.

We adopt its variant CVPO-random that is trained under

random noise as another baseline. In addition, we directly

apply the same online adversarial training techniques with

the MC attacker in ADV-PPOL to the off-policy setting,

which yields the ADV-CVPO baseline.

Metrics. We compare the methods in terms of episodic

reward (the higher, the better) and episodic constraint vi-

olation cost (the lower, the better). We also compare the

sample efficiency of utilizing each constraint violation.

6
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Table 2: Evaluation results of natural performance (no attack) and under attacks. Each value is averaged over 50 episodes

and 5 seeds. We shadow two lowest-cost agents under each attacker column and break ties based on rewards, excluding

the failing agents, whose natural rewards are less than 10% of CVPO-vanilla’s and are marked with ⋆.

Natural MC MR Average
Env Method

Reward Cost Reward Cost Reward Cost Reward Cost

SA-PPOL 440.79 0.25 275.01 71.62 393.56 96.4 369.79 56.09

SA-PPOL(MC) 439.44 0.35 348.21 91.88 375.59 56.22 387.75 49.48On-policy

ADV-PPOL 300.0 0.0 338.79 0.28 281.64 0.47 306.81 0.25

CVPO-vanilla 297.2 0.38 244.4 57.21 287.4 38.75 276.33 32.11

CVPO-random 170.33 0.0 166.5 7.51 214.61 2.3 183.81 3.27

⋆ADV-CVPO 0.42 0.0 0.48 0.0 0.57 0.0 0.49 0.0

Car-Circle

ϵ = 0.05

Off-policy

SAFER 258.63 0.0 313.61 0.1 333.29 0.32 301.84 0.14

SA-PPOL 338.07 0.0 -72.72 59.27 258.35 69.97 174.57 43.08

SA-PPOL(MC) 183.9 0.0 206.77 5.1 214.32 5.25 201.66 3.45On-policy

ADV-PPOL 265.84 0.0 298.7 1.5 264.37 0.55 276.3 0.68

CVPO-vanilla 347.17 0.0 353.62 63.52 387.82 71.28 362.87 44.93

CVPO-random 284.98 0.0 300.0 40.63 337.03 72.32 307.33 37.65

ADV-CVPO 222.7 38.0 309.14 63.35 285.16 56.75 272.33 52.7

Drone-Run

ϵ = 0.025

Off-policy

SAFER 193.26 0.0 210.99 0.63 220.17 0.68 208.14 0.44

SA-PPOL 699.78 1.47 692.34 62.2 714.38 103.63 702.17 55.77

SA-PPOL(MC) 547.23 1.03 575.58 25.65 584.42 28.35 569.07 18.34On-Policy

ADV-PPOL 608.02 0.0 668.25 0.55 672.79 1.32 649.69 0.62

CVPO-vanilla 686.59 0.85 668.53 86.03 728.37 164.65 694.5 83.84

CVPO-random 682.28 1.17 672.27 100.5 747.65 173.45 700.73 91.71

ADV-CVPO 334.31 79.08 302.15 75.02 330.5 68.3 322.32 74.13

Ant-Run

ϵ = 0.025

Off-policy

SAFER 496.11 0.17 514.8 0.82 555.81 1.5 522.24 0.83

5.1. Main Results and Analysis

The evaluation results are shown in Table 2, where Natu-

ral represents the performance without noise. We shadow

the two safest agents with the lowest cost values except for

the failure agents (marked with ⋆) whose rewards are less

than 10% of the CVPO-vanilla method. The complete re-

sults with more attackers are deferred in Appendix B.4. We

summarize the findings as follows.

First, we can observe that the vanilla EM-based safe

RL method CVPO-vanilla and its variant CVPO-random

(adding random noises) are vulnerable to adversarial at-

tacks, although they can attain near zero natural cost in a

noise-free environment. The poor safety performance of

these approaches under attacks indicates the necessity

of studying their robustness, which is rarely discussed in

the safe RL literature. The on-policy robust training al-

gorithm SA-PPOL that works well in maintaining the re-

ward can hardly ensure safety under strong attacks, even if

it is trained with the MC attacker. The only baseline that

performs well in safety, robustness, and task performance

is the on-policy adversarial training method ADV-PPOL.

However, the successful on-policy adversarial training

techniques in ADV-PPOL do not work in the off-policy

setting, as the ADV-CVPO method is not safe under adver-

sarial attackers and even performs poorly in noise-free en-

vironments. We also conducted an ablation study by train-

ing the agents with corrupted data obtained by sampling be-

nign data from the reply buffer. However, the agents have

similar unsafe behavior as ADV-CVPO and are not robust

against adversarial attackers. More details of the results

and discussions about the failures are in Appendix B.4.

Second, we can clearly see that SAFER learns a safe and

robust policy under adversarial attacks, as it can achieve

comparable performance to the ADV-PPOL method and

consistently outperforms other baselines in safety and ro-

bustness with the lowest cost while maintaining the task re-

ward. However, ADV-PPOL requires on-policy corrupted

trajectories for training, while SAFER can robustify the

policy through benign and off-policy data that are much

easier to obtain in real-world applications.

Finally, SAFER is more sample efficient during learn-

ing. Fig. 2 demonstrates the efficacy of utilizing each cost,

i.e., how much task rewards the agent can obtain given a

budget of constraint violations. Since the off-policy base-

lines cannot provide a safe and robust policy, we only com-

pare SAFER with on-policy baselines. The x-axis is the cu-

mulative cost during the training, and the y-axis is the max-

imum episodic rewards achieved from the start of training.

The curve that is closer to the upper left is better because

fewer costs are required to achieve high rewards. Note

that the x-axis is of the log scale. We can clearly see that

SAFER outperforms on-policy baselines with a large mar-
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Figure 2: Reward versus cumulative cost (log-scale).

gin among all tasks: it uses fewer cumulative constraint

violations to achieve the same task reward. The results also

validate our hypothesis that using benign and off-policy

data to robustify the policy is safer and more efficient

during training than using on-policy corrupted sam-

ples. Therefore, we can conclude that the proposed SAFER

algorithm is capable of learning a robust and safe policy un-

der strong attacks, as well as improving training safety and

efficiency compared with existing baselines.

5.2. Ablation experiment

To study the influence of the vanilla M-step (VM) in Eq.

(7), the KL constraint and the maximum-likelihood (MLE)

style loss in the adversarial training step Eq. (8), we con-

duct an ablation study by removing each component from

the full SAFER algorithm. Table 3 shows the experiment

results, where we only present the average performance

due to the page limit. The detailed results are presented

in Appendix B.4. We can clearly see that the agent fails

to learn if we remove the vanilla M-step in training, which

is because the adversarial training alone can not ensure the

agent’s performance in the natural environment and thus

corrupt the learning process, as we introduced in Proposi-

tion 2. We can also observe significant safety performance

(cost) degradation if we remove the KL constraint and task

performance (reward) drop if we remove the MLE loss in

the adversarial training step. Therefore, both the vanilla

M-step and the adversarial training step are necessary

and important components for SAFER.

We also study the relationship between the safety perfor-

mance of SAFER w.r.t the constraint threshold ξ̃ in the

adversarial training step. The results are available in Ap-

pendix B.4. A summary is that the KL constraint threshold

ξ̃ directly affects the safety performance under strong at-

tacks: smaller thresholds can usually achieve better safety

performance, which validates the worst-case cost value

bound in Theorem 2. A downside is that improving safety

under attacks is usually at the cost of sacrificing reward in

natural environments, so we should carefully balance the

trade-off between robustness and task performance.

Table 3: Ablation study of removing the vanilla M-step (VM),
the KL constraint, and the MLE loss.

Ball-Circle Car-Circle Ant-Run

without VM
Reward 165.19 11.36 45.91

Cost 0.0 2.54 0.06

without KL
Reward 544.66 360.86 146.43

Cost 5.77 23.53 1.58

without MLE
Reward 535.98 283.73 179.0

Cost 1.23 1.99 0.52

Full SAFER
Reward 632.39 301.84 522.24

Cost 0.82 0.14 0.83

6. Conclusion

We propose the SAFER method that only requires benign

and off-policy data to train a robust and safe policy un-

der observational perturbations. We analyze the theoretical

properties of each component of the SAFER algorithm and

conduct comprehensive experiments and ablation studies to

validate our arguments and claims. The results show that

the SAFER agent effectively maintains safety under adver-

sarial attacks. More importantly, it is much safer and more

efficient during training than baseline robust training meth-

ods by using fewer costs to achieve the same reward.

One limitation of this work is that the decoupled E-step and

M-step require more computation and are thus with slower

training speed than policy-gradient-based approaches. In

addition, the SAFER algorithm is only evaluated with sim-

ple safe RL tasks due to the limitation of off-policy safe

RL algorithms: accurately estimating the Q value function

of sparse cost signals for long-horizon tasks is challenging.

Therefore, studying whether these off-policy methods can

still perform well in more difficult tasks such as SafetyGym

environments (Ray et al., 2019) leaves future work. The po-

tential negative societal impact includes the misuse of the

adversarial attacking method in real systems. However, we

hope our findings about the potential risks of deploying safe

RL methods can inspire more interdisciplinary research in

this direction, because both safety and robustness are non-

negligible factors in safety-critical applications.
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A. PROOFS AND DISCUSSIONS

A.1. Proof of Theorem 1 - Worst-case Cost Bound for Vanilla M-step Under Attacks

Remind that we denote Sc as the set of unsafe states that have non-zero cost: Sc := {s′ ∈ S : c(s, a, s′) > 0}, ps
as the maximum probability of entering unsafe states from state s, i.e., ps = maxa

∑

s′∈Sc
p(s′|s, a); and Aπ

c (s, a) =
Qπ

c (s, a)− V π
c (s) represents the cost advantage function of policy π. We first introduce two lemmas for following proofs.

Lemma 1 (Achiam et al. (2017) Corollary 2). For any policies π, π′, the following bound holds:

V π′

c (µ0)− V π
c (µ0) ≤

1

1− γ
Es∼dπ,a∼π′

[

Aπ
c (s, a) +

2γαπ′

c

1− γ
DTV [π

′(·|s)∥π(·|s)]
]

, (11)

where απ′

c = maxs |Ea∼π′Aπ
c (s, a)|.

Lemma 2. Given any policy π, π′, the advantage function of corrupted policy π ◦ ν is bounded by

Ea∼π′Aπ
c (s, a) ≤ 2DTV [π

′(·|s)∥π(·|s)] ·
[

c(s, a) + γmax
s′

V π
c (s′)

]

. (12)

Proof.

Ea∼π′Aπ
c (s, a, s

′) = Ea∼π′,s∼p(·|s,a)[c(s, a, s
′) + γV π

c (s′)− V π
c (s)] (13)

= Ea∼π′,s′∼p(·|s,a)[c(s, a, s
′) + γV π

c (s′)]− V π
c (s) (14)

= Ea∼π′,s∼p(·|s,a)[c(s, a, s
′) + γV π

c (s′)]− Ea∼π,s′∼p(·|s,a)[c(s, a, s
′) + γV π

c (s′)] (15)

=
∑

a

(π′(a|s)− π(a|s))Es′∼p(·|s,a)[c(s, a, s
′) + γV π

c (s′)] (16)

≤
∑

a

|π′(a|s)− π(a|s)| ·max
a,s′

[psc(s, a, s
′) + γV π

c (s′)] (17)

= 2DTV [π
′(·|s)∥π(·|s)] ·

[

max
a,s′

psc(s, a, s
′) + γmax

s′
V π
c (s′)

]

(18)

In practice, since the maximum one step cost max c(s, a, s′) = Cm, V π
c (s) ≤ Cm

1−γ , we further have

max
s
|Ea∼π′Aπ

c (s, a)| ≤ 2max
s

DTV [π
′(·|s)∥π(·|s)] ·

[

max
s

psCm + γ
Cm

1− γ

]

(19)

= 2max
s

DTV [π
′(·|s)∥π(·|s)] ·

(

max
s

ps +
γ

1− γ

)

Cm. (20)
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Now we first consider the cost bound of benign policy after vanilla M step V
π
(V )
i+1

c . By applying Lemma 1, we have

V
π
(V )
i+1

c (µ0) ≤ V πi
c (µ0) +

(

1

1− γ
+

2γ

(1− γ)2
Es∼dπ

DTV [π
(V )
i+1(·|s)∥πi(·|s)]

)

α
π
(V )
i+1

c (21)

≤ V πi
c (µ0) +

(

1

1− γ
+

2γ

(1− γ)2
Es∼dπ

√

1

2
DKL[π

(V )
i+1(·|s)∥πi(·|s)]

)

α
π
(V )
i+1

c , by DTV ≤
√

DKL

2
, (22)

≤ V πi
c (µ0) +

(

1

1− γ
+

2γ

(1− γ)2

√

1

2
Es∼dπ

DKL[π
(V )
i+1(·|s)∥πi(·|s)]

)

α
π
(V )
i+1

c , (23)

≤ V πi
c (µ0) +

(

1

1− γ
+

2γ

(1− γ)2

√

1

2
ξ

)

α
π
(V )
i+1

c , by constraint of vanilla M-step, (24)

= κ+

(

1

1− γ
+

√
2ξγ

(1− γ)2

)

α
π
(V )
i+1

c , πi is feasible, (25)

where α
π
(V )
i+1

c = maxs |Ea∼π
(V )
i+1

Aπi
c (s, a)|.

Then by Lemma 2, we have

V
π
(V )
i+1

c (µ0) ≤ κ+

(

2d
(V )
i+1

1− γ
+

2
√
2ξγd

(V )
i+1

(1− γ)2

)

(

max
s

ps +
γ

1− γ

)

Cm, (26)

where d
(V )
i+1 = maxs DTV [π

(V )
i+1(·|s)∥πi(·|s)] denotes the maximum TV distance between the policies before and after

M-step.

Second, we consider the cost bound of corrupted policy after vanilla M step V
π
(V )
i+1◦ν

c . Since we assume the L-Lipschitz

continuity of policy π and constrain perturbation within a ℓp-ball, apply the Theorem 3 in (Liu et al., 2022c) and we have

V
π
(V )
i+1◦ν

c (µ0)− V
π
(V )
i+1

c (µ0) ≤ 2LϵCm

(

1

1− γ
+

4γLϵ

(1− γ)2

)(

max
s

ps +
γ

1− γ

)

. (27)

Therefore, combine Eq.(26) & (27) and we have the cost bound of corrupted policy:

V
π
(V )
i+1◦ν

c (µ0) ≤ κ+ 2Cm

(

d
(V )
i+1 + Lϵ

1− γ
+

√
2ξγd

(V )
i+1 + 4γL2ϵ2

(1− γ)2

)

(

max
s

ps +
γ

1− γ

)

. (28)

A.2. Proof of Theorem 2 - Worst-case Cost Bound for Robust M-step Under Attacks

In robust M-step, we explicitly limit the discrepancy between corrupted policy π
(R)
i+1 ◦ ν and the last benign policy πi.

Therefore we can obtain safety performance under attacks by Lemma 1 & 2 directly:

V
π
(R)
i+1◦ν

c (µ0) ≤ κ+





2d
(R)
i+1

1− γ
+

2

√

2ξ̃γd
(R)
i+1

(1− γ)2





(

max
s

ps +
γ

1− γ

)

Cm, (29)

where d
(R)
i+1 = maxs DTV [π

(R)
i+1(·|ν(s))∥πi(·|s)] is the maximum TV distance between the corrupted policy after robust

M-step and benign policy before M-step.

We can find that the worse-case safety performance of the corrupted policy π
(R)
i+1 ◦ ν under the strongest attacks is similar

to the benign policy π
(V )
i+1 in the natural environment, which shows the advantage of the robust M-step update.
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A.3. Proof of Proposition 2 - Multi-mapping From Corrupted Policy to Benign Policy Given a Fixed Adversary

Recall that Proposition 2 said given a fixed adversary ν and suppose there exists s1, s2 ∈ S such that ν(s1) = ν(s2), then

there exists two natural policies π1, π2 ∈ Π such that π1 ◦ ν ≜ π2 ◦ ν. We provide the proof as follows.

Proof. We can construct two policies π1, π2 ∈ Π such that they are the same in all states except s1, s2. Formally, we have:

π1(·|s) ≜ π2(·|s), ∀s ∈ S \ {s1, s2}; π1(·|s1) ̸= π2(·|s1) or π1(·|s2) ̸= π2(·|s2). (30)

Then π1, π2 are two different benign policies. In addition, we can obtain:

π1(·|s) ◦ ν = π1(·|ν(s)) ≜ π2(·|ν(s)) = π2(·|s) ◦ ν, ∀s ∈ S \ {s1, s2}. (31)

Based on our assumption, ν(s1) = ν(s2), we have:

π1(·|s) ◦ ν ≜ π2(·|s) ◦ ν, ∀s ∈ {s1, s2}. (32)

Therefore, the two corrupted policies are identical for every state: π1(·|s) ◦ ν ≜ π2(·|s) ◦ ν, ∀s ∈ S .

A.4. Precise Statement and Proofs of Multi-mapping Under MC or MR Adversary

Proposition 2 considers the case with a fixed deterministic adversary. However, in practical training for SAFER, we adopt

a stronger MC adversary that is dependent on the policy π as well as its value function. Therefore, we aim to study whether

the multiple mapping phenomenon still holds for policy-dependent adversaries.

We denote Vϵ be the set of adversaries that distort all states to the corrupted states within ϵ-size ℓp-ball around original

states, i.e., Vϵ = {ν : S → S|∀s, ν(s) ∈ Bϵ
p(s)}, then we have following formal theorem.

Theorem 3. Let ν be the MC (or MR) adversary for policy π within Vϵ. Suppose for a given π, its MC (or MR) adversary

ν within Vϵ is also the MC (or MR) adversary within V(1+∆)ϵ for any ∆ > 0, then there exists at least one policy π̃ ̸= π
and its corresponding MC (or MR) adversary ν̃ within Vϵ, such that they share the same corrupted policy under MC (or

MR) attack, i.e., π(a|ν(s)) = π̃(a|ν̃(s)), ∀s, a.

Proof. We will take maximum-reward (MR) adversary as an example and all the proofs can be extended to minimum-cost

(MC) adversary as well.

According to the assumption, given the policy π, the MR adversary within Vϵ satisfies

νMR ∈ Vϵ, νMR = argmax
ν∈V(1+∆)ϵ

V π◦ν
r (µ0) (33)

Since ∆ > 0, then there exists a ξ s.t. ξp + ϵp < (1 + ∆)pϵp.

First, we will prove that for any perturbation functions µ1 ∈ Vξ, µ2 ∈ Vϵ, the composition function µ1◦µ2(s) = µ1(µ2(s))
satisfies that µ1◦µ2 ∈ V(1+∆)ϵ. For any state s, since µ1 ∈ Vξ, µ2 ∈ Vϵ, then we have ∥µ1(s)−s∥p ≤ ξ, ∥µ2(s)−s∥p ≤ ϵ.
Therefore,

∥µ1(µ2(s))−µ2(s)∥p ≤ ξ (34)

⇒ ∥µ1(µ2(s))− s∥p ≤
(

∥µ1(µ2(s))− µ2(s)∥pp + ∥µ2(s)− s∥pp
)1/p

(35)

≤ (ξp + ϵp)1/p < (1 + ∆)pϵp, (36)

and thus µ1 ◦ µ2 ∈ V(1+∆)ϵ. Furthermore, we can find that there exists at least one pair (µ∗
1, µ

∗
2) s.t. µ∗

1 ◦ µ∗
2 = νMR.

Second, let ν̃MR be the MR adversary for π̃ := π ◦ µ∗
1 within Vϵ and we will prove µ∗

2 = ν̃MR. According to the definition,

we have

V π◦µMR
r (µ0) = V

π◦µ∗

1◦µ
∗

2
r (µ0) ≤ max

µ2∈Vϵ
V

π◦µ∗

1◦µ2
r (µ0) = V

π◦µ∗

1◦ν̃MR
r (µ0). (37)
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Meanwhile, since µ1 ◦ µ2 ∈ V(1+∆)ϵ, we have

V
π◦µ∗

1◦ν̃MR
r (µ0) ≤ max

µ1∈Vξ,µ2∈Vϵ
V π◦µ1◦µ2
r (µ0) ≤ max

ν∈V(1+∆)ϵ
V π◦ν
r (µ0) = V π◦νMR

r (µ0). (38)

Therefore, combine the above two equations together and we can obtain

V π◦νMR
r (µ0) ≤ V

π◦µ∗

1◦ν̃MR
r (µ0) ≤ V π◦νMR

r (µ0). (39)

The equality holds if and only if ν̃MR = µ∗
2, i.e., νMR = µ∗

1 ◦ ν̃MR. Therefore, there exists a policy π̃ ̸= π s.t. they share the

same corrupted policy π ◦ νMR = π̃ ◦ ν̃MR under their corresponding MR attacks.

Theorem 3 together with Proposition 2 show the shrinkage from benign policy space to corrupted policy space, which

makes it difficult to restore the benign policy if we only consider updating corrupted policy in the robust M-step. Therefore,

it is significant to incorporate vanilla M-step to solve the optimal benign policy given its corrupted policy, which is also

validated by our experiments.

A.5. Derivation of Equation 4 - E-step Optimization Objective

The E-step at the i-th iteration aims to find the optimal variational distribution q ∈ Πκ
M that maximizes the ELBO while

satisfying the safety constraint, which can be formulated as:

max
q

Eρq

[

Eq(·|s)

[

Q
πθi
r (s, a)

]

− αDKL(q∥πθi)
]

+ log p(θ),

s.t. Eρq

[

Eq(·|s)

[

Q
πθi
c (s, a)

]

]

≤ κ
(40)

Solving the E-step (40) could be regarded as a KL-regularized constrained optimization problem. However, since the

expected reward return term Eq(·|s)

[

Q
πθi
r (s, a)

]

could be on an arbitrary scale, it is hard to choose a proper penalty

coefficient α of the KL regularizer for different CMDP settings. Therefore, we impose a hard constraint δ on the KL

divergence between the non-parametric distribution q(a|s) that to be optimized and the parametrized policy πθi(a|s):
Eρq

[

DKL(q(a|s)∥πθi)
]

≤ δ. In addition, the last term log p(θ) in the object function is a constant to q, which can be

omitted in the optimization process. Then the optimization problem (40) yields to (4).

A.6. Proof of Proposition 1 - Optimal Variational Distribution

Since q(a|s) is a distribution function, there indeed exists another constraint for q(a|s):
∫

q(a|s)da = 1, ∀s ∼ ρq . With

the definition of expectation, the objective in E-step can be re-written as:

max
q

∫

ρq(s)

∫

q(a|s)Qπθi
r (s, a)dads,

s.t.

∫

ρq(s)

∫

q(a|s)Qπθi
c (s, a)dads ≤ κ;

∫

ρq(s)

∫

q(a|s) log q(a|s)
πθi(a|s)

dads ≤ δ;

∫

q(a|s)da = 1, ∀s ∼ ρq,

(41)

where ρq(s) is the stationary state distribution induced by q(a|s) and ρ0. Then we prove the optimal variational distribution

analytical form and its dual function in Proposition 1.

Proof. Since the objective is linear and all constraints are convex (note that KL is convex) w.r.t q, this constrained opti-

mization problem is convex. Then we obtain the equivalent dual problem:

min
λ,η

max
q

L(q, λ, η), (42)
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where λ, η are the Lagrange multipliers for the constraints, and L is the equivalent Lagrangian function:

L(q, λ, η, γ) =

∫

ρq(s)

∫

q(a|s)Qπθi
r (s, a)dads (43)

+ λ

(

κ−
∫

ρq(s)

∫

q(a|s)Qπθi
c (s, a)dads

)

(44)

+ η

(

δ −
∫

ρq(s)

∫

q(a|s) log q(a|s)
πθi(a|s)

dads

)

(45)

+ γ

(

1−
∫

ρq(s)

∫

q(a|s)dads
)

(46)

Take the derivative of Lagrangian function w.r.t q:

∂L

∂q
= Q

πθi
r (s, a)− λQ

πθi
c (s, a)− η − γ − η log

q(a|s)
πθi(a|s)

. (47)

Let Eq. (47) be zero, we have the form of the optimal q distribution:

q∗(a|s) = πθi(a|s) exp
(

Q
πθi
r (s, a)− λQ

πθi
c (s, a)

η

)

exp

(

−η + γ

η

)

, (48)

where exp
(

−η+γ
η

)

could be viewed as a normalizer for q(a|s) since it is a constant that is independent of q. Thus, we

obtain the following form of the normalizer by integrating the optimal q:

exp

(

η + γ

η

)

=

∫

πθi(a|s) exp
(

Q
πθi
r (s, a)− λQ

πθi
c (s, a)

η

)

da, (49)

η + γ

η
= log

∫

πθi(a|s) exp
(

Q
πθi
r (s, a)− λQ

πθi
c (s, a)

η

)

da. (50)

Take the optimal q distribution in Equation (48) and η+γ
η in Equation (50) back to the Lagrangian function (46), we can

find that most of the terms are cancelled out, and obtain the dual function g(η, λ),

g(η, λ) = λκ+ ηδ + η

∫

ρq(s) log

∫

πθi(a|s) exp
(

Q
πθi
r (s, a)− λQ

πθi
c (s, a)

η

)

dads. (51)

The optimal dual variables are calculated by

η∗, λ∗ = argmin
η,λ

g(η, λ). (52)

Note that the dual function g is a convex function, and is strongly convex in many cases, see Appendix A.3 in (Liu et al.,

2022b) for details.

A.7. Derivation of Equation 7 - M-step Optimization Objective

As shown in section 4.3, given the optimal variational distribution q∗i from the E-step, the M-step objective is:

θi+1 = argmax
θ

Eρq

[

αEq∗
i
(·|s)

[

log πθ(a|s)
]

]

+ log p(θ) (53)

which is a Maximum A-Posteriori (MAP) problem (Abdolmaleki et al., 2018b;a). Consider a Gaussian prior around the

old policy parameter θi, we have

θ ∼ N (θi,
Fθi

αβ
) (54)
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where Fθi is the Fisher information matrix and β is a positive constant. With the Gaussian prior, the objective (53) becomes

θi+1 = argmax
θ

αEρq

[

Eq∗
i
(·|s)

[

log πθ(a|s)
]

]

− αβ(θ − θi)
TF−1

θi
(θ − θi)

= argmax
θ

Eρq

[

Eq∗
i
(·|s)

[

log πθ(a|s)
]

]

− β(θ − θi)
TF−1

θi
(θ − θi)

(55)

where we could observe that (θ− θi)
TF−1

θi
(θ− θi) is the second order Taylor expansion of Eρq

[

DKL(πθi(a|s)∥πθ(a|s))
]

.

Thus, we could generalize the above objective to the KL-regularized one:

max
θ

Eρq

[

Eq∗
i
(·|s)

[

log πθ(a|s)
]

− βDKL(πθi∥πθ)
]

. (56)

Similar to the E-step, we could convert the soft KL regularizer to a hard KL constraint:

max
θ

Eρq

[

Eq∗
i
(·|s)

[

log πθ(a|s)
]

]

s.t. Eρq

[

DKL(πθi(a|s)∥πθ(a|s))
]

≤ ξ.
(57)
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B. EXPERIMENT DETAILS AND MORE RESULTS

B.1. SAFER Implementation Details and Training Tricks

As introduced in the method section, SAFER consists of a constrained E-step and a robust M-step. The E-step step aims to

find the optimal variational distribution that maximizes the reward return while satisfying the safety constraint. This step

can be written as a constrained optimization problem, which has a closed-form solution and can be efficiently solved by

convex optimization. The robust M-step has two components: a vanilla M-step that aims to fit the variational distribution

obtained from the E-step using a parametrized policy, such as neural networks (NNs), and then generalize beyond the state-

action samples used for training; and an adversarial training step that aims to improve the policy robustness by optimizing

toward the worst-case perturbations. The complete data-flow of SAFER is shown in Figure. 1.

Due to the page limit, we omit the implementation details of SAFER in the main content. We will present the full algorithm

and some implementation tricks in this section. Without otherwise statements, the critics’ and policies’ parametrization is

assumed to be neural networks (NNs), while we believe other parametrization forms should also work in practice.

Critics update. Denote ϕr as the parameters for the task reward critic Qr, and ϕc as the parameters for the constraint

violation cost critic Qc. Similar to many other off-policy algorithms (Lillicrap et al., 2015), we use a target network for

each critic and the polyak smoothing trick to stabilize the training. Other off-policy critic’s training methods, such as

Re-trace (Munos et al., 2016), could also be easily incorporated with the SAFER training framework. Denote ϕ′
r as the

parameters for the target reward critic Q′
r, and ϕ′

c as the parameters for the target cost critic Q′
c. Define D as the replay

buffer and (s, a, s′, r, c) as the state, action, next state, reward, and cost respectively. The critics are updated by minimizing

the following mean-squared Bellman error (MSBE):

L(ϕr) = E(s,a,s′,r,c)∼D

[

(Qr(s, a)− (r + γEa′∼π[Q
′
r(s

′, a′)]))
2
]

(58)

L(ϕc) = E(s,a,s′,r,c)∼D

[

(Qc(s, a)− (c+ γEa′∼π[Q
′
c(s

′, a′)]))
2
]

. (59)

Denote αc as the critics’ learning rate, we have the following updating equations:

ϕr ←− ϕr − αc∇ϕr
L(ϕr), ϕc ←− ϕc − αc∇ϕc

L(ϕc). (60)

We use the polyak averaging trick to update the critics with a weight parameter ρ ∈ (0, 1):

ϕ′
r = ρϕ′

r + (1− ρ)ϕr ϕ′
c = ρϕ′

c + (1− ρ)ϕc. (61)

Robust M-step constrained supervised learning. Recall that the robust M-step has a vanilla M-step (Eq. (7)) and an

adversarial training step (Eq. (8)), which could be written as the Lagrangian function with the Lagrangian multipliers β, β̃:

L(θ, β, β̃) =Eρq

[

Eq∗
i
(·|s)

[

log πθ(a|s)
]

+ β
(

ξ −DKL

(

πθi(a|s)∥πθ(a|s)
)

)]

+Eρq

[

Eq∗
i
(·|s)

[

log πθ(a|ν(s))
]

+ β̃
(

ξ̃ −DKL

(

πθi(a|s)∥πθ(a|ν(s))
)

)]

.
(62)

In practical implementation, we can also replace the adversarial KL term w.r.t the corrupted data DKL

(

πθi(a|s)∥πθ(a|ν(s)
)

to DKL

(

πθ(a|s)∥πθ(a|ν(s)
)

, but stop the gradient from the benign data path πθ(a|s). Namely, we only compute the

gradient from the corrupted state path πθ(a|ν(s)) to pursue training stability.

By performing the gradient descend ascend algorithm over the dual variables β, β̃ and the policy parameters θ in Eq. (62)

iteratively yields the KL-constrained policy improvement in a constrained supervised learning fashion:
max

θ
min

β>0,β̃>0
L(θ, β, β̃). (63)

More specifically, denote αβ , αβ̃ , αθ as the learning rate for β, β̃, θ respectively, we have the following updating equations:

β ←− β − αβ
∂L(θ, β, β̃)

∂β
= β − αβ

(

ξ −DKL

(

πθi(a|s)∥πθ(a|s)
)

)

(64)

β̃ ←− β̃ − αβ̃

∂L(θ, β, β̃)

∂β̃
= β̃ − αβ̃

(

ξ̃ −DKL

(

πθi(a|s)∥πθ(a|ν(s))
)

)

(65)

θ ←− θ − αθ
∂L(θ, β, β̃)

∂θ
. (66)
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Perturbation set Bϵ
p range schedule. We gradually increase the perturbation range size from 0 to ϵ during training to

make the training more stable (Zhang et al., 2020a). Suppose the adversarial training starting epoch is Ts the increasing

epoch is Ti, then the perturbation range at epoch t is:

ϵt = min{ϵ, ϵ× max{0, t− Ts}
Ti

}. (67)

Constraint threshold transform in the off-policy setting. Note that for off-policy methods, we need to convert the

episodic-wise constraint violation threshold to a state-wise threshold for the Qc functions. Denote H as the episode length,

the target cost limit for one episode is κH . Denote the discounting factor as γ. Then, if we assume that at each time step we

have an equal probability to violate the constraint, the target constraint value κ for safety critic Qπθ
c could be approximated

by (Ray et al., 2019):
κ = κH ×

1− γH

H(1− γ)

The converted threshold κ will be used as one of the constraint thresholds in the E-step:
∫

π(a|s)Qπθi
c (s, a) ≤ κ, ∀s, a

With all the implementation tricks mentioned above, we present the full SAFER algorithm:

Algorithm 2 SAFER Algorithm

Input: rollouts number B, robust M-step iteration number M , batch size B, particle size K, discount factor γ, polyak weight ρ, critics

learning rate αc, policy learning rate αθ , dual variables’ learning rates αβ , αβ̃ , thresholds ξ, ξ̃
Output: policy πθ

1: Initialize policy parameters θ, θ′, critics parameters ϕr, ϕ
′

r, ϕc, ϕ
′

c and replay buffer D = {}
2: for each training iteration t = 1, ..., T do
3: Rollout B trajectories by πθ from the environment D = D ∪ {(s, a, s′, r, c)}
4: Sample N transitions {(sn, an, sn+1, rn, cn)n=1,...,N} from the replay buffer D
5: Update the perturbation range ϵt by Eq. (67).
6: ▷ Constrained E-step begins
7: Update reward critic by Eq. (58): ϕr ←− ϕr − αc∇ϕrL(ϕr)
8: Update cost critic by Eq. (59): ϕc ←− ϕc − αc∇ϕcL(ϕc)
9: for n = 1, ..., N do

10: Sample K actions {a1, ..., aK} for sn
11: Compute {Qθi

r (sn, ak), Q
θi
c (sn, ak); k = 1, ...,K}

12: end for
13: Compute optimal dual variables η∗, λ∗ by solving the convex optimization problem (6)
14: Compute the optimal variational distribution for each state {q∗(·|sn);n = 1, ..., N} by Eq. (5)
15: Normalize the variational distribution {q∗(·|sn);n = 1, ..., N} for each state
16: ▷ Robust M-step begins
17: Compute the corrupted states {νMC(s1), ..., νMC(sN )} with the perturbation range size ϵt.
18: for Robust M-step iterations m = 1, ...,M do

19: Perform one gradient step for β via Eq. (64) and for β̃ via Eq. (65)

20: Perform one gradient step for policy parameters via Eq. (66): θ ←− θ − αθ
∂L(θ,β,β̃)

∂θ

21: end for
22: Polyak averaging target networks by Eq. (61), and update the target policy network πθi ←− πθ .
23: end for

B.2. Baseline Implementation Details

In this section, we first recap the observational adversarial attacker algorithms and then introduce the on-policy baselines

and off-policy baselines, respectively.

B.2.1. OBSERVATIONAL ADVERSARIAL ATTACKERS

In Safe RL settings, observational perturbations weaken the robustness for the safety constraint violations. To introduce

the adversary attackers, we first recall the setting of Safe RL under observational perturbations, and then show the attacker

methods.

Safe RL under observational perturbations: In realistic scenarios, observational perturbations for safe RL agents

could be the noise from the sensing system or the errors from the upstream perception system, which harms the safety. To
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improve the robustness with respect to safety constraint satisfaction under such circumstance, a deterministic observational

adversary ν(s) : S −→ S which corrupts the state observation of the agent is implemented during the training process. We

denote the corrupted state as s̃ := ν(s) and the corrupted policy as π ◦ ν := π(a|s̃) = π(a|ν(s)), as the state is first

contaminated by ν and then used by the operator π. Note that the adversary does not modify the original CMDP and true

states in the environment, but only the input of the agent.

MC and MR Attacker: In the experiments, MC (Maximum Cost) and MR (Maximum reward) are selected to be the

attacker. The MC attacker directly maximizes the cost return to obtain the perturbation: νMC = argmaxν V
π◦ν
c (µ0), while

the MR attacker maximizes the reward return to make the policy be tempting: νMR = argmaxν V
π◦ν
r (µ0). The details are

shown as follows. We use the gradient of the state-action value function Q(s, a) to provide the direction to update states

adversarially in K steps (Q = Qπ
c for MC, and Q = Qπ

r for MR):

sk+1 = Proj[sk − η∇skQ(s0, π(sk))], k = 0, . . . ,K − 1 (68)

where Proj[·] is a projection to Bϵ
p(s

0) (the perturbation set, i.e., the ℓp-ball around the original state), η is the learning

rate, and s0 is the state under attack. Note that we use the gradient of Q(s0, π(sk)) rather than Q(sk, π(sk)) to make the

optimization more stable, since the Q function may not generalize well to unseen states in practice. The implementation

of MC and MR attacker is shown in algorithm 3.

Algorithm 3 MC and MR attacker

Input: A policy π under attack, corresponding Q networks, initial state s0, attack steps K, attacker learning rate η,

perturbation range ϵ, two thresholds ϵQ and ϵs for early stopping

Output: An adversarial state s̃

1: for k = 1 to K do

2: gk = ∇sk−1Q(s0, π(s
k−1))

3: sk ← Proj[sk−1 − ηgk]
4: Compute δQ = |Q(s0, π(s

k))−Q(s0, π(s
k−1))| and δs = |sk − sk−1|

5: if δQ < ϵQ and δs < ϵs then

6: break for early stopping

7: end if

8: end for

B.2.2. ON-POLICY BASELINES

PPO-Lagrangian algorithm. The objective of PPO (clipped) has the form (Schulman et al., 2017):

ℓppo = min(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip(
πθ(a|s)
πθk(a|s)

, 1− ϵclip, 1 + ϵclip)A
πθk (s, a)) (69)

We use PID Lagrangian (Stooke et al., 2020) that addresses the oscillation and overshoot problem in Lagrangian methods.

The loss of the PPO-Lagrangian has the form:

ℓppol =
1

1 + λ
(ℓppo − λA

πθk
c (s, a)) (70)

The Lagrangian multiplier λ is computed by applying feedback control to V π
c and is determined by KP , KI , and KD that

need to be fine-tuned.

SA-PPOL. The SA-PPO-Lagrangian algorithm uses the KL robustness regularizer to robustify the training policy. Choos-

ing different adversaries ν yields different baseline algorithms. The original SA-PPOL method adopts the MAD attacker

as shown in Algo.4. We replace it with the MC attacker, which yields the SA-PPOL(MC) baseline.
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Algorithm 4 SA-PPO-Lagrangian Algorithm

Input: rollouts T , policy optimization steps M , PPO-Lag loss function ℓppo(s, πθ, r, c), adversary function ν(s)
Output: policy πθ

1: Initialize policy parameters and critics parameters

2: for each training iteration do

3: Rollout T trajectories by πθ from the environment {(s, a, s′, r, c)}N
4: Compute adversary states s̃ = ν(s) for the sampled trajectories

5: ▷ Update actors

6: for Optimization steps m = 1, ...,M do

7: Compute KL robustness regularizer L̃KL = DKL(π(s)∥πθ(s̃)), no gradient from π(s)
8: Compute PPO-Lag loss ℓppol(s, πθ, r, c) by

9: Combine them together with a weight β: ℓ = ℓppol(s, πθ, r, c) + βℓ̃KL

10: Update actor θ ←− θ − α∇θℓ
11: end for

12: ▷ Update critics

13: Update value function based on samples {(s, a, s′, r, c)}N
14: end for

ADV-PPOL. The ADV-PPOL (Liu et al., 2022c) uses an on-policy adversarial training technique and does not use the KL

robustness regularizer. This type of method effectively evaluates the safety performance under strong adversarial attacks to

improve the robustness and we adopt this algorithm trained with MC attacker as an on-policy baseline. The full algorithm

is shonw in Algo.5 and the diagram is shown in Figure. 3a.

Algorithm 5 ADV-PPOL Algorithm

Input: rollouts T , policy optimization steps M , PPO-Lag loss function ℓppol(s, πθ, r, c), adversary function ν(s), policy

parameter θ, critic parameter ϕr and ϕc, target critic parameter ϕ′
r and ϕ′

c

Output: policy πθ

1: Initialize policy parameters and critics parameters

2: for each training iteration do

3: Rollout T trajectories by πθ ◦ ν from the environment {(ν(s), ν(a), ν(s′), r, c)}N
4: ▷ Update learner

5: for Optimization steps m = 1, ...,M do

6: ▷ No KL regularizer!

7: Compute PPO-Lag loss ℓppol(s̃, πθ, r, c) by Eq. (70)

8: Update actor θ ←− θ − α∇θℓppo
9: end for

10: Update value function and action value functions based on samples {(s, a, s′, r, c)}N
11: end for

B.2.3. OFF-POLICY BASELINES

CVPO-vanilla. Since SAFER is closely related to the EM-based safe RL algorithm CVPO (Liu et al., 2022b), we use it

as a basic baseline and name it as CVPO-vanilla, which is shown in Algo.6.

CVPO-random. We adopt its variant CVPO-random which is trained under random noise as another baseline. More

specifically, we simply add random noise when collecting the data.

ADV-CVPO. To investigate the performance of directly applying the same online adversarial training techniques with the

MC attacker in ADV-PPOL to the off-policy setting, we adopt the ADV-CVPO baseline, where the line 3 of Algo.6 is

changed to D = D∪{(ν(s), a, s′, r, c)} where ν is the MC attacker and a ∼ πθi(·|ν(s)). The algorithm diagram is shown

in Fig. 3b.

ADV-EM-CVPO. We consider another intuitive and simple adversarial training method by attacking the sampled data

from the replay buffer, which we name it as the ADV-EM-CVPO baseline, where the line 5 of Algo.6 is changed to

{(ν(sn), an, sn+1, rn, cn)n=1,...,N} where ν is the MC attacker. The data-flow diagram is shown in Fig. 3c. Due to the
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Algorithm 6 CVPO Algorithm

1: Initialize the policy πθ, reward value Qπθ
r , cost value Qπθ

c , and replay buffer D = {}
2: for the i-th training epoch do

3: Rollout trajectories by πθi from the environment D = D ∪ {(s, a, s′, r, c)}
4: for each policy optimization iteration do

5: Sample N transitions from the replay buffer D: {(sn, an, sn+1, rn, cn)n=1,...,N}
6: Update Q

πθi
r , Q

πθi
c by the Bellman equation.

7: ▷ Constrained E-step begins

8: Compute dual variables η∗, λ∗ by solving the convex optimization problem (6)

9: Compute the variational distribution for each state {q∗(·|sn);n = 1, ..., N} by Eq. (5)

10: ▷ M-step begins

11: for each M-step iteration do

12: Update policy by solving Eq.(7)

13: end for

14: end for

15: end for

page limit, we omit the experiment results in the main content and leave them in B.4.

(a) ADV-PPOL (b) ADV-CVPO (c) ADV-EM-CVPO

Figure 3: Figure illustration of ADV-PPOL, ADV-CVPO, and ADV-EM-CVPO baselines.

B.3. Experiment Setting and Hyper-parameters

B.3.1. EXPERIMENT DESCRIPTIONS

We use the Bullet safety gym (Gronauer, 2022) environments for this set of experiments. In the Run tasks, agents are

rewarded for running fast between two safety boundaries and are given costs for violation constraints if they run across the

boundaries or exceed an agent-specific velocity threshold. The reward and cost functions are defined as:

r(st) = ||xt−1 − g||2 − ||xt − g||2 + rrobot(st)

c(st) = 1(|y| > ylim) + 1(||vt||2 > vlim)

where vlim is the speed limit, ylim specifies the safety region, vt = [vx, vy] is the velocity of the agent at timestamp t,
g = [gx, gy] is the position of a fictitious target, xt = [xt, yt] is the position of the agent at timestamp t, and rrobot(st)
is the specific reward for different robot. For example, an ant robot will gain reward if its feet do not collide with each

other. In the Circle tasks, the agents are rewarded for running in a circle in a clockwise direction but are constrained to stay
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within a safe region that is smaller than the radius of the target circle. The reward and cost functions are defined as:

r(st) =
−ytvx + xtvy
1 + |||xt||2 − r| + rrobot(st)

c(st) = 1(|x| > xlim)

where r is the radius of the circle, and xlim specifies the range of the safety region.

B.3.2. HYPER-PARAMETERS

For the on-policy baselines, we use Gaussian policies with mean vectors given as the outputs of neural networks, and with

variances that are separate learnable parameters. The policy networks and Q networks for all experiments have two hidden

layers of sizes (256, 256) with ReLU activation functions. We use a discount factor of γ = 0.995, a GAE-λ for estimating

the regular advantages of λGAE = 0.97, a KL-divergence step size of δKL = 0.01, a clipping coefficient of 0.02. The PID

parameters for the Lagrange multiplier are: Kp = 0.1, KI = 0.003, and KD = 0.001. The learning rate of the adversarial

attackers: MC and MR is 0.2. The optimization steps of MC and MR is 200. We choose larger perturbation range for

the Car and Ball robots because they are simpler and easier to train. We use the same minibatch size, rollout length, cost

limit, perturbation ϵ, and hyperparameters of the attackers for the off-policy baselines for fair comparison. The complete

hyperparameters used in the experiments are shown in Table 4.

Table 4: Hyperparameters for on-policy baselines (left) and off-policy baselines (right).

Parameter Ball-Circle Car-Circle Dron-Run Ant-Run Parameter Ball-Circle Car-Circle Drone-Run Ant-Run

training epoch 300 500 250 250 training epoch 900 700 700 600

batch size 45000 45000 60000 60000 batch size 50000 80000 20000 80000

minibatch size 300 300 300 300 particle size 32 32 32 64

rollout length 200 300 100 200 M-step iterations 6 15 6 8

cost limit 5 5 5 5 E-step KL threshold δ 0.05 0.1 0.01 0.1

perturbation ϵ 0.05 0.05 0.025 0.025 VM-step KL threshold ξ 0.02 0.01 0.0008 0.05

actor optimization step 80 80 80 160 KL threshold ξ̃ in Eq.(8) 0.05 0.012 0.06 0.06

actor learning rate 0.0005 0.0003 0.0003 0.0005 actor learning rate 0.002 0.002 0.001 0.001

critic learning rate 0.001 0.001 0.001 0.001 critic learning rate 0.001 0.001 0.001 0.001

B.4. Additional Experiment Results

Table 5: Evaluation results of natural performance (no attack), under MC and MR attackers, and the average of them. Each value is
reported as: mean ± standard deviation for 50 episodes and 5 seeds. We shadow two lowest-cost agents under each attacker column and
break ties based on rewards, excluding the failing agents (natural rewards are less than 10% of CVPO-vanilla’s) that are marked with ⋆.

Natural MC MR Average
Env Method

Reward Cost Reward Cost Reward Cost Reward Cost

SA-PPOL 705.52±71.79 2.82±3.98 688.24±30.12 48.48±12.14 760.64±51.59 55.83±6.14 718.13±46.74 35.71±4.58

SA-PPOL(MC) 681.98±76.43 3.07±2.03 659.13±28.9 42.53±7.52 726.58±81.7 46.38±9.28 689.23±50.48 30.66±3.97On-policy

ADV-PPOL 467.54±38.23 0.0±0.0 666.74±28.22 2.1±2.27 447.53±100.62 1.38±2.58 527.27±37.94 1.16±1.41

CVPO-vanilla 622.47±103.38 0.0±0.0 556.08±102.2 20.91±13.31 709.5±65.01 44.82±13.69 629.35±85.73 21.91±8.37

CVPO-random 548.16±46.93 0.0±0.0 546.75±22.05 7.06±6.3 647.34±52.21 29.99±16.05 580.75±34.29 12.35±5.88

⋆ADV-CVPO 4.35±6.14 0.0±0.0 14.39±16.6 0.0±0.0 13.94±23.12 0.11±0.65 10.89±11.32 0.04±0.22

Ball-Circle

ϵ = 0.05

Off-policy

SAFER 610.03±29.19 0.0±0.0 625.93±26.26 0.47±1.37 661.22±38.52 1.99±3.51 632.39±27.19 0.82±1.41

SA-PPOL 440.79±9.81 0.25±1.1 275.01±95.31 71.62±55.24 393.56±65.58 96.4±27.27 369.79±45.12 56.09±19.62

SA-PPOL(MC) 439.44±9.51 0.35±1.72 348.21±18.73 91.88±32.03 375.59±66.86 56.22±27.31 387.75±25.92 49.48±17.36On-policy

ADV-PPOL 300.0±11.82 0.0±0.0 338.79±20.22 0.28±2.05 281.64±18.84 0.47±2.56 306.81±9.93 0.25±1.08

CVPO-vanilla 297.2±118.44 0.38±1.21 244.4±87.79 57.21±27.06 287.4±80.68 38.75±24.44 276.33±80.76 32.11±12.54

CVPO-random 170.33±15.11 0.0±0.0 166.5±64.51 7.51±12.6 214.61±57.07 2.3±6.23 183.81±40.2 3.27±4.9

⋆ADV-CVPO 0.42±2.32 0.0±0.0 0.48±2.16 0.0±0.0 0.57±2.05 0.0±0.0 0.49±1.37 0.0±0.0

Car-Circle

ϵ = 0.05

Off-policy

SAFER 258.63±18.72 0.0±0.0 313.61±14.81 0.1±0.89 333.29±13.21 0.32±2.13 301.84±12.13 0.14±0.76

SA-PPOL 338.07±3.49 0.0±0.0 -72.72±332.0 59.27±17.83 258.35±260.66 69.97±12.01 174.57±147.34 43.08±7.84

SA-PPOL(MC) 183.9±12.3 0.0±0.0 206.77±6.84 5.1±0.44 214.32±10.04 5.25±0.54 201.66±6.53 3.45±0.26On-policy

ADV-PPOL 265.84±7.13 0.0±0.0 298.7±19.23 1.5±2.31 264.37±35.82 0.55±1.15 276.3±17.89 0.68±1.05

CVPO-vanilla 347.17±2.54 0.0±0.0 353.62±82.7 63.52±24.04 387.82±18.34 71.28±9.24 362.87±27.57 44.93±7.7

CVPO-random 284.98±28.65 0.0±0.0 300.0±36.45 40.63±21.91 337.03±24.67 72.32±6.11 307.33±26.91 37.65±7.71

ADV-CVPO 222.7±0.92 38.0±0.0 309.14±29.98 63.35±2.8 285.16±37.74 56.75±2.19 272.33±16.63 52.7±1.18

Drone-Run

ϵ = 0.025

Off-policy

SAFER 193.26±24.43 0.0±0.0 210.99±28.92 0.63±2.38 220.17±20.29 0.68±2.56 208.14±21.3 0.44±1.33

SA-PPOL 699.78±7.11 1.47±1.23 692.34±8.51 62.2±13.2 714.38±11.66 103.63±14.42 702.17±3.89 55.77±7.29

SA-PPOL(MC) 547.23±86.96 1.03±1.63 575.58±101.39 25.65±16.33 584.42±88.15 28.35±19.83 569.07±91.35 18.34±11.7On-Policy

ADV-PPOL 608.02±5.89 0.0±0.0 668.25±5.23 0.55±0.59 672.79±9.95 1.32±1.19 649.69±6.4 0.62±0.45

CVPO-vanilla 686.59±15.04 0.85±1.05 668.53±31.97 86.03±16.86 728.37±77.04 164.65±24.01 694.5±28.86 83.84±9.5

CVPO-random 682.28±15.78 1.17±1.11 672.27±71.41 100.5±26.87 747.65±22.68 173.45±12.65 700.73±25.92 91.71±9.02

ADV-CVPO 334.31±136.22 79.08±60.5 302.15±160.75 75.02±60.35 330.5±106.58 68.3±54.03 322.32±112.81 74.13±52.35

Ant-Run

ϵ = 0.025

Off-policy

SAFER 496.11±60.67 0.17±0.45 514.8±59.42 0.82±1.19 555.81±15.01 1.5±1.72 522.24±32.35 0.83±0.67
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Complete evaluation results. The experiment results of trained safe RL policies in all tasks are shown in Table 5. The

natural column is the same one in Table 2. Video demos can be found in our website: https://sites.google.com/view/safer-

rl/home.

The performance of applying on-policy adversarial training tricks in the off-policy setting. The performance of

ADV-CVPO demonstrates that the successful on-policy adversarial training techniques in ADV-PPOL do not work in the

off-policy setting. We adopt an additional baseline ADV-EM-CVPO as introduced in Appendix B.2.3 and Fig. 3c for a

complete comparison. We first collect benign data (s, a, s′, r, c) and store them in the data buffer. After they are sampled

from the data buffer we use MC attacker to obtain (ν(s), a, s′, r, c), which are used to train the agents. From Table 6,

we can observe that the agents have poor task and safety performance, which means that simply applying the on-policy

adversarial training techniques to the benign data from the reply buffer also does not work in the off-policy setting.

Table 6: Ablation study of ADV-EM-CVPO: training CVPO-vanilla by attacking the benign data from replay buffer. Each value is
reported as: mean ± standard deviation for 50 episodes. The last row is the average performance of SAFER (the same as Table 2).

Ball-Circle Car-Circle Drone-Run Ant-Run

Natural
Reward 296.18±83.46 19.06±17.77 259.56±14.98 503.31±43.58

Cost 17.41±12.23 17.3±53.58 22.15±1.65 13.35±21.69

MC
Reward 307.12±107.76 19.85±19.45 299.59±14.4 500.01±60.62

Cost 28.6±20.39 7.74±31.04 52.3±9.25 26.83±37.32

MR
Reward 353.38±85.67 22.75±21.5 306.4±13.72 541.88±51.4

Cost 33.02±20.43 17.01±51.36 47.25±5.64 8.45±14.51

Average
Reward 318.89±86.73 20.55±13.79 288.51±9.65 515.07±43.77

Cost 26.35±16.08 14.02±26.97 40.57±3.57 16.21±22.53

SAFER
Average

Reward 632.39±27.19 301.84±12.13 193.26±24.43 522.24±32.35
Cost 0.82±1.41 0.14±0.76 0.0±0.0 0.83±0.67

The role of KL constraint threshold in the adversarial training step. Table 7 shows the agents’ performance under

different KL constraint threshold ξ̃ in Eq.( 8). The worst case cost is the maximum cost under MC and MR attackers and

the worst case reward is the corresponding reward to the worst case cost. We can observe that as the KL constraint threshold

increases, the cost also increases, which validates Theorem 2 about the cost bound of robust M-step under attacks.

Table 7: Ablation study of KL regularizer in robust M-step. Evaluation results of the worst-case cost and reward under MC and MR
attacker. Each value is reported as: mean ± standard deviation for 50 episodes and 5 seeds.

Ball-Circle

ϵ = 0.05

ξ̃ 0.03 0.05 0.07 0.09 0.11

Reward 537.27±23.78 552.51±113.15 638.43±90.95 567.85±69.97 695.89±5.44

Cost 1.7±2.77 1.72±2.55 2.53±2.36 3.82±5.82 5.35±1.53

Car-Circle

ϵ = 0.05

ξ̃ 0.01 0.02 0.03 0.05 0.09

Reward 244.77±44.51 379.82±16.64 357.11±20.29 328.98±13.46 332.82±12.3

Cost 0.0±0.0 0.65±2.52 2.9±6.69 4.97±5.52 5.76±11.5

Ant-Run

ϵ = 0.025

ξ̃ 0.05 0.07 0.09 0.11 0.12

Reward 563.61±4.1 572.12±18.55 584.53±18.29 531.37±45.7 585.7±26.67

Cost 0.15±0.36 4.0±3.83 6.42±2.5 7.63±5.16 12.02±10.36

The influence of each component in the robust M-step. Recall that the robust M-step consists of a vanilla M-step and

an adversarial training step whose objective is the Maximum Likelihood Estimation (MLE) loss, and the constraint is the

KL divergence. We investigate their effect by removing each component from the full SAFER algorithm. The complete

results are shown in Table 8. We can clearly see that the agent fails to learn if we remove the vanilla M-step in training,

which is because the adversarial training alone can not ensure the agent’s performance in the natural environment and

thus corrupt the learning process, as we introduced in Proposition 2. We can also observe significant safety performance

(cost) degradation if we remove the KL constraint and task performance (reward) drop if we remove the MLE loss in the

adversarial training step. We can conclude that the vanilla M-step is the most important part of the robust M-step, with KL

being more important regarding safety performance and KLE being more important when it comes to task performance.

Therefore, each component in the robust M-step is necessary for SAFER, and ignoring any one of them has a negative

effect on the overall performance.
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Table 8: Ablation study of removing the vanilla M-step (VM), the KL constraint, and the MLE loss. Evaluation results of natural
performance (no attack), under MC and MR attackers, and the average of them. Each value is reported as: mean ± standard deviation
for 50 episodes and 5 seeds. We mark the failing agents whose naturla rewards are less than 10% of CVPO-vanilla with ⋆.

Env Method
Natural MC MR Average

Reward Cost Reward Cost Reward Cost Reward Cost

Ball-Circle

ϵ = 0.05

without VM 136.91±99.81 0.0±0.0 160.28±112.68 0.0±0.0 198.37±93.17 0.0±0.0 165.19±88.9 0.0±0.0

without KL 507.61±76.75 3.13±24.07 524.19±98.64 7.45±33.6 602.17±64.48 6.73±8.32 544.66±45.96 5.77±14.59

without MLE 488.13±67.06 0.0±0.0 536.5±34.62 0.55±1.2 583.31±43.64 3.15±3.79 535.98±44.05 1.23±1.31

Full SAFER 610.03±29.19 0.0±0.0 625.93±26.26 0.47±1.37 661.22±38.52 1.99±3.51 632.39±27.19 0.82±1.41

Car-Circle

ϵ = 0.05

⋆without VM 9.06±11.57 0.0±0.0 10.98±12.27 5.37±30.37 14.06±15.15 2.25±10.93 11.36±10.75 2.54±10.63

without KL 373.56±42.94 0.0±0.0 313.82±31.71 48.43±40.51 395.2±35.62 22.15±22.76 360.86±31.67 23.53±19.9

without MLE 244.5±27.6 0.0±0.0 283.61±19.49 3.0±6.32 323.07±19.23 2.97±4.48 283.73±17.94 1.99±2.41

Full SAFER 258.63±18.72 0.0±0.0 313.61±14.81 0.1±0.89 333.29±13.21 0.32±2.13 301.84±12.13 0.14±0.76

Drone-Run

ϵ = 0.025

⋆without VM 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

without KL 75.96±54.96 0.0±0.0 98.85±70.89 0.0±0.0 100.19±71.58 0.0±0.0 91.67±65.57 0.0±0.0

without MLE 157.96±27.7 0.0±0.0 178.41±32.07 0.52±1.55 180.33±29.99 1.02±3.22 172.24±27.76 0.51±1.19

Full SAFER 193.26±24.43 0.0±0.0 210.99±28.92 0.63±2.38 220.17±20.29 0.68±2.56 208.14±21.3 0.44±1.33

Ant-Run

ϵ = 0.025

⋆without VM 37.64±23.5 0.0±0.0 48.12±21.47 0.18±0.63 51.98±22.32 0.0±0.0 45.91±18.71 0.06±0.21

without KL 107.44±186.98 1.78±7.86 173.11±127.05 0.63±2.66 158.74±156.49 2.32±6.69 146.43±107.16 1.58±3.53

without MLE 175.11±50.11 0.42±0.86 178.46±49.64 0.38±0.83 183.44±48.68 0.75±1.39 179.0±45.3 0.52±0.7

Full SAFER 496.11±60.67 0.17±0.45 514.8±59.42 0.82±1.19 555.81±15.01 1.5±1.72 522.24±32.35 0.83±0.67
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