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Abstract
Nonconvex optimization is central in solving
many machine learning problems, in which block-
wise structure is commonly encountered. In this
work, we propose cyclic block coordinate meth-
ods for nonconvex optimization problems with
non-asymptotic gradient norm guarantees. Our
convergence analysis is based on a gradient Lip-
schitz condition with respect to a Mahalanobis
norm, inspired by a recent progress on cyclic
block coordinate methods. In deterministic set-
tings, our convergence guarantee matches the
guarantee of (full-gradient) gradient descent, but
with the gradient Lipschitz constant being defined
w.r.t. a Mahalanobis norm. In stochastic settings,
we use recursive variance reduction to decrease
the per-iteration cost and match the arithmetic
operation complexity of current optimal stochas-
tic full-gradient methods, with a unified analysis
for both finite-sum and infinite-sum cases. We
prove a faster linear convergence result when a
Polyak-Łojasiewicz (PŁ) condition holds. To our
knowledge, this work is the first to provide non-
asymptotic convergence guarantees — variance-
reduced or not — for a cyclic block coordinate
method in general composite (smooth + nons-
mooth) nonconvex settings. Our experimental
results demonstrate the efficacy of the proposed
cyclic scheme in training deep neural nets.

1. Introduction
Exploiting structural information in machine learning (ML)
problems is key to enabling optimization at extreme scale.
Important examples of such structure are block separability,
giving rise to block coordinate methods, and finite/infinite
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sum structure, giving rise to stochastic, possibly variance-
reduced optimization methods. In this work, we explore
both these types of structure to develop novel optimization
methods with fast convergence.

We focus on nonconvex optimization problems of the form

min
x∈Rd

F (x) = f(x) + r(x), (1)

where x ∈ Rd can be partitioned intom disjoint blocks x =
(x1, . . . ,xm) with xj ∈ Rdj for j ∈ [m] and

∑m
j=1 dj = d;

f(x) is a smooth nonconvex function; r(x) =
∑m
j=1 r

j(xj)
is block separable, extended-valued, closed convex function
such that each rj(·) (and thus the separable sum r) admits
an efficiently computable proximal operator. We consider
in particular the finite-sum variant of (1):

min
x∈Rd

F (x) = f(x) + r(x) =
1

n

n∑
i=1

fi(x) + r(x), (2)

in which f(x) is nonconvex and smooth and n is usually
very large. Without loss of generality, due to the central limit
theorem, we use n = +∞ in (2) to refer to the following
stochastic (infinite-sum) optimization setting:

min
x∈Rd

F (x) = Eξ∼D[f(x; ξ)] + r(x), (3)

where ξ is a random variable from an unknown distribution
D. Problems of the form (2) and (3) commonly arise in
machine learning, especially in (regularized, empirical, or
population) risk minimization.

1.1. Motivation and Related Work

Both block coordinate and variance-reduced stochastic gra-
dient methods are prevalent in machine learning, due to
their effectiveness in handling large problem instances; see
e.g., Gorbunov et al. (2020); Wright (2015); Allen-Zhu
et al. (2016); Nesterov (2012); Allen-Zhu (2017); Johnson
& Zhang (2013); Diakonikolas & Orecchia (2018); Naka-
mura et al. (2021); Li et al. (2021); Beck & Tetruashvili
(2013); Hong et al. (2017); Xu & Yin (2015); Chen & Gu
(2016) and references therein.

Block coordinate methods can be classified into three main
categories according to the order in which blocks of coor-
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dinates are selected: (i) greedy, or Gauss-Southwell meth-
ods (Nutini et al., 2015), which in each iteration selects the
block of coordinates that lead to the highest progress in min-
imizing the objective function; (ii) randomized block coordi-
nate methods, which select blocks of coordinates at random
(with replacement), according to some pre-defined proba-
bility distribution (Nesterov, 2012); and (iii) cyclic block
coordinate methods, which update the coordinate blocks in
a cyclic order (Beck & Tetruashvili, 2013). (A combination
of (ii) and (iii) known as random-permutations methods
uses a cyclic approach but randomly reshuffles the order
in which the blocks are updated at the start of each cycle.)
Greedy methods can be quite effective in practice when their
selection rule can be implemented efficiently, but they are
applicable only to very specialized problems. Thus, most of
the focus has been on randomized and cyclic methods.

From a theoretical standpoint, randomized methods have
received much more attention than cyclic methods. The
reason is that the randomly selected block of gradient co-
ordinates can be related to the full gradient by taking the
expectation, which allows their analysis to be reduced to
the analysis of standard first-order methods; see Nesterov
(2012); Nesterov & Stich (2017); Allen-Zhu et al. (2016);
Diakonikolas & Orecchia (2018). By contrast, cyclic meth-
ods are much more challenging to analyze, as it is unclear
how to relate the partial gradient to the full one. Obtaining
non-asymptotic convergence guarantees for such methods
was initially considered nearly impossible (Nesterov, 2012).
Despite much of the progress on the theoretical front (Beck
& Tetruashvili, 2013; Saha & Tewari, 2013; Gurbuzbalaban
et al., 2017; Lee & Wright, 2019; Wright & Lee, 2020; Li
et al., 2017; Sun & Ye, 2021), most of the literature ad-
dressing cyclic methods deals with convex (often quadratic)
objective functions and provides convergence guarantees
that are typically worse by a factor polynomial in the di-
mension d than the equivalent guarantees for randomized
methods. For nonconvex objectives, there are few existing
guarantees, and these require additional assumptions such as
multiconvexity (i.e., that the function is convex over a coor-
dinate block when other blocks of coordinates remain fixed)
and the Kurdyka-Łojasiewicz (KŁ) property, or else provide
convergence guarantees that are only asymptotic (Xu & Yin,
2013; 2015; 2017; Zeng et al., 2014). On the other hand, the
recent work by Song & Diakonikolas (2021) avoids the ex-
plicit dependence on the dimension by introducing a novel
Lipschitz condition that holds w.r.t. a Mahalanobis norm.
This condition is the inspiration for the methods proposed
in our work, but the techniques in Song & Diakonikolas
(2021) cannot be applied directly to the current context of
composite nonconvex problems, as they address monotone
variational inequalities. An entirely separate analysis frame-
work is required, and is presented here.

From the implementation viewpoint, randomized methods

require generating pseudo-random numbers from a pre-
defined probability distribution to determine which coor-
dinate block should be selected in each iteration. This op-
eration may dominate the arithmetic cost when the coordi-
nate update is cheap. Cyclic methods are simple, intuitive,
and more efficient for implementation, and often demon-
strate better empirical performance than the randomized
methods (Beck & Tetruashvili, 2013; Chow et al., 2017;
Sun & Ye, 2021). They are thus the default algorithms
for many software packages such as SparseNet (Mazumder
et al., 2011) and GLMNet (Friedman et al., 2010) in high-
dimensional computational statistics and have found wide
applications in areas such as variational inference (Blei et al.,
2017; Plummer et al., 2020), non-negative matrix factoriza-
tion (Vandaele et al., 2016), k-means clustering (Nie et al.,
2021), and phase retrieval (Zeng & So, 2020).

More recent literature has also sought to combine the favor-
able properties of stochastic optimization methods (such as
SGD) with block coordinate updates; see, e.g., Xu & Yin
(2015); Nakamura et al. (2021); Fu et al. (2020); Chen & Gu
(2016); Lei & Shanbhag (2020); Wang et al. (2016)), which
address nonconvex problems of the form (2) and (3). Com-
pared with traditional stochastic gradient methods, which si-
multaneously update all variables using Gauss-Jacobi-style
iterations, block-coordinate variants of stochastic gradient
update the variables sequentially with Gauss-Seidel-style
iterations, thus usually taking fewer iterations to converge
(see e.g., Xu & Yin (2015)). One common approach to fur-
ther improve sample complexity in stochastic optimization
is to use variance reduction, which for block coordinate
methods in nonconvex settings has been done in Chen &
Gu (2016); Chauhan et al. (2017); Lei & Shanbhag (2020).
However, to the best of our knowledge, non-asymptotic con-
vergence results have only been established for randomized
methods with variance reduction (Chen & Gu, 2016; Lei
& Shanbhag, 2020). We are not aware of work that incor-
porates variance reduction techniques with cyclic methods
in nonconvex settings. Even in the convex setting, the only
work we are aware of that combines variance reduction
with a cyclic method is Song & Diakonikolas (2021), but
this paper utilizes SVRG-style variance reduction, whose
applicability in nonconvex settings is unclear.

1.2. Contributions

Our main contributions can be summarized as follows.

Proximal Cyclic Block Coordinate Descent (P-CCD).
We provide a non-asymptotic convergence analysis for the
standard P-CCD method in deterministic nonconvex set-
tings, based on a Lipschitz condition w.r.t. a Mahalanobis
norm, inspired by the recent work by Song & Diakonikolas
(2021). However, the techniques are completely disjoint
and their results (for monotone variational inequalities) nei-
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ther imply ours (for nonconvex minimization), nor the other
way around. Our Lipschitz condition, which implies block
(coordinate) smoothness, is more general. The compari-
son between the new Lipschitz condition and the standard
(Euclidean-norm) Lipschitz condition is discussed in Sec-
tion 2. We show that P-CCD has the same sublinear con-
vergence rate as full gradient methods, and achieves linear
convergence under a PŁ condition. To the best of our knowl-
edge, these are the first such results for a cyclic method in
the composite nonconvex setting (1), where standard tools
such as monotonicity (convex inequalities) used in the ear-
lier paper cannot be used to establish convergence.

Variance-Reduced P-CCD. We propose a stochastic gra-
dient variant of P-CCD with recursive variance reduction for
solving nonconvex problems of the form (2) and (3). The re-
cursive variance reduction technique of Li et al. (2021) was
used prior to our work only in the full-gradient setting, and
the extension to the cyclic block coordinate setting requires
addressing nontrivial technical obstacles such as establish-
ing a new potential function and controlling additional error
terms arisen from the cyclic update rule. We prove its non-
asymptotic convergence using an analysis that unifies the
finite-sum and infinite-sum settings, which also matches
the arithmetic operation complexity of optimal stochastic
full-gradient methods for nonconvex minimization. A faster,
linear convergence rate is attained under a PŁ condition. To
our knowledge, our work is the first to incorporate variance
reduction into cyclic methods in nonconvex settings while
providing non-asymptotic convergence guarantees.

Numerical Experiments. We apply our proposed cyclic
algorithms to train LeNet on the CIFAR-10 dataset, and
compare them with SGD and the PAGE algorithm (Li et al.,
2021). Our preliminary results demonstrate that the cyclic
methods converge faster with better generalization than full
gradient methods when using large batch sizes, thus shed-
ding light on the possibility of remedying the drawbacks of
large-batch methods (Keskar et al., 2017).

1.3. Further Related Work

Both block coordinate methods and variance reduction tech-
niques in stochastic optimization have been subjects of much
research. For conciseness, we review only the additional
literature that is most closely related to our work.

Block Coordinate Descent. Block coordinate methods
have been widely used in both convex and nonconvex appli-
cations such as feature selection in high-dimensional compu-
tational statistics (Wu & Lange, 2008; Friedman et al., 2010;
Mazumder et al., 2011) and empirical risk minimization in
machine learning (Nesterov, 2012; Lin et al., 2015; Allen-
Zhu et al., 2016; Alacaoglu et al., 2017; Diakonikolas &
Orecchia, 2018; Xu & Yin, 2015). The convergence of block
coordinate methods has been extensively studied for vari-

ous settings, see e.g., Grippof & Sciandrone (1999); Tseng
(2001); Razaviyayn et al. (2013); Xu & Yin (2015); Song &
Diakonikolas (2021) and references therein. In nonconvex
settings, asymptotic convergence of block coordinate meth-
ods was established in Chen et al. (2021); Xu & Yin (2017).
In terms of non-asymptotic convergence guarantees, Chen &
Gu (2016) provides such a result for a randomized method
under a sparsity constraint and restricted strong convexity,
while Xu & Yin (2017; 2013) provides results for cyclic
methods under the KŁ property. For a stochastic gradient
variant of a cyclic method, asymptotic convergence was
analyzed by Xu & Yin (2015).

Variance Reduction. To address the issue of the constant
variance of the (minibatch) gradient estimator, several vari-
ance reduction methods have been proposed. SAG (Schmidt
et al., 2017) was the first stochastic gradient method with a
linear convergence rate for strongly convex finite-sum prob-
lems, and was based on a biased gradient estimator. John-
son & Zhang (2013) and Defazio et al. (2014) improved
SAG by proposing unbiased estimators of SVRG-type and
SAGA-type, respectively. These estimators were further en-
hanced with Nesterov acceleration (Allen-Zhu, 2017; Song
et al., 2020) and applied to nonconvex finite-sum/infinite-
sum problems (Reddi et al., 2016; Lei et al., 2017). For
nonconvex stochastic (infinite-sum) problems, the recursive
variance reduction estimators SARAH (Nguyen et al., 2017)
and SPIDER (Fang et al., 2018; Zhou et al., 2018a;b) were
proposed to attain the optimal oracle complexity ofO(1/ε3)
for finding an ε-approximate stationary point. PAGE (Li
et al., 2021) and STORM (Cutkosky & Orabona, 2019)
further simplified SARAH and SPIDER by reducing the
number of loops and avoiding large minibatches.

2. Preliminaries
We consider a real d-dimensional Euclidean space (Rd, ‖·‖),
where ‖ · ‖ =

√
〈·, ·〉 is induced by the (standard) in-

ner product associated with the space and d is finite. For
any given positive integer m, we use [m] to denote the
set {1, 2, . . . ,m}. We assume that we are given a posi-
tive integer m ≤ d and a partition of the coordinates [d]
into nonempty sets S1,S2, . . . ,Sm. We let xj denote the
subvector of x indexed by the coordinates contained in
Sj and let dj := |Sj | denote the size of the set Sj , for
j ∈ [m]. To simplify the notation, we assume that the par-
tition into sets S1,S2, . . . ,Sm is ordered, in the sense that
for 1 ≤ j < j′ ≤ m, maxi∈Sj i < mini′∈Sj′ i′. This as-
sumption is without loss of generality, as our results are
invariant to permutations of the coordinates. Given a matrix
A, we let ‖A‖ := sup{Ax : x ∈ Rd, ‖x‖ ≤ 1} denote the
standard operator norm. For a positive definite symmetric
matrix A, ‖ · ‖A denotes the Mahalanobis norm defined
by ‖x‖A =

√
〈Ax,x〉. We use Id to denote the identity
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matrix of size d× d; when the context is clear, we omit the
subscript. For a sequence of positive semidefinite d × d
matrices {Qj}mj=1, we define Q̂j by

(Q̂j)t,k =

{
(Qj)t,k, if min{t, k} >

∑j−1
`=1 d

`,

0, otherwise,

which corresponds to the matrix Qj with first j − 1 blocks
of rows and columns set to zero. Similarly, we define Q̃j by

(Q̃j)t,k =

{
(Qj)t,k, if max{t, k} ≤

∑j−1
`=1 d

`,

0, otherwise.

In other words, Q̃j corresponds to Qj with all but its first
j − 1 blocks of rows and columns set to zero.

We use ∇jf(x) to denote the subvector of the gradient
∇f(x) indexed by the elements of Sj . For a block-
separable convex function r(x) =

∑m
j=1 r

j(xj), we use
r′(x) and rj,

′
(xj) to denote the elements in the subdiffer-

ential sets ∂r(x) and ∂rj(xj) for j ∈ [m], respectively.

Throughout the paper, we make use of the following as-
sumptions. The first assumption is standard and rules out
degenerate problem instances.

Assumption 2.1. F (x) is bounded below and x∗ is a global
minimum of F.

The following two assumptions are the gradient Lipschitz
conditions used in the analysis of our algorithms. These
conditions are not standard, due to the choice of weighted
norms ‖ · ‖Λj

, ‖ · ‖Λ−1
j
, and ‖ · ‖Qj . Assumption 2.3 is

inspired by a similar Lipschitz condition introduced by Song
& Diakonikolas (2021), the main difference with that paper
being to use a more general norm ‖ · ‖Λ−1

j
for the gradients.

Assumption 2.2. For all x and y that differ only in the jth

block, where j ∈ [m], f(·) satisfies the following:

‖∇jf(x)−∇jf(y)‖Λ−1
j
≤ ‖xj − yj‖Λj

, (4)

where Λj ∈ Rdj×dj is a positive definite diagonal matrix.

Observe that when Λj = LjIdj , Assumption 2.2 becomes
the standard block Lipschitz condition (Nesterov, 2012).

Assumption 2.3. There exist symmetric positive semidefi-
nite d× d matrices Qj , 1 ≤ j ≤ m, such that each ∇jf(·)
is 1-Lipschitz continuous w.r.t. the seminorm ‖ · ‖Qj . That
is, ∀x,y ∈ Rd, we have

‖∇jf(x)−∇jf(y)‖2
Λ−1

j

≤ ‖x− y‖2Qj . (5)

We remark that matrices Qj do not need to be known to the
algorithm. Observe that if f is L-smooth w.r.t. the Euclidean

norm, i.e., if ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖, then Assump-
tion 2.3 can be satisfied with Λj = LIdj and Qj = LId
for j ∈ [m]. Indeed, in this case we have, ∀x,y ∈ Rd,
‖∇jf(x) − ∇jf(y)‖2

Λ−1
j

≤ 1
L‖∇f(x) − ∇f(y)‖2 ≤

L‖x− y‖2 = ‖x− y‖2Qj . However, the more general ma-
trices Λj and Qj in Assumptions 2.2 and 2.3 provide more
flexibility in exploiting the problem geometry, as shown
and tested in our numerical experiments in Section 5. For
further discussion and comparison to Euclidean Lipschitz
constants, see Song & Diakonikolas (2021).

In the following, we let Λ be the diagonal matrix composed
of positive diagonal blocks Λj for j ∈ [m], i.e., Λ =
diag(Λ1,Λ2, . . . ,Λm). We further provide the appropriate
assumption about the PŁ-condition (Polyak, 1963; Kurdyka,
1998) w.r.t. the norm ‖ · ‖Λ as follows, which is standard in
nonconvex optimization (Attouch et al., 2010; Bolte et al.,
2014; Frankel et al., 2015; Karimi et al., 2016; Li et al.,
2021). This assumption is used only when proving linear
convergence of our algorithms, not throughout the paper.
The constant in this assumption need not be known.

Assumption 2.4. We say that F satisfies the PŁ condition
w.r.t. ‖ · ‖Λ with parameter µ > 0, if for all x ∈ Rd,

dist2(∂F (x),0) ≥ 2µ
(
F (x)− F (x∗)

)
, (6)

with dist2(∂F (x),0) := inf
r′(x)∈∂r(x)

‖∇f(x) + r′(x)‖2Λ−1 .

Stochastic Settings. In the stochastic setting of our prob-
lem, we consider the finite sum nonconvex optimization
problem described by (2). Our analysis also handles the
case of stochastic optimization problems of the form (3) by
taking n→∞. To avoid using separate notation for the two
settings (finite and infinite sum), we state the assumptions
and the results for problems (2) and treat (3) as the limiting
case of (2) when n→∞.

Assumption 2.5. For any x ∈ Rd,

Ei
[
‖∇fi(x)−∇f(x)

∥∥2

Λ−1

]
≤ σ2, (7)

where i is drawn uniformly at random from [n].

In the following, we assume a “two-point” oracle in which
one can query the stochastic gradient at two points with the
same random seed i ∈ [n]. Such an oracle assumption has
been used extensively in prior work on variance reduction;
see e.g., Fang et al. (2018); Zhou et al. (2018b); Wang et al.
(2019); Cutkosky & Orabona (2019); Li et al. (2021).

Assumption 2.6. For all x and y that only differ in the jth

block for j ∈ [m],

Ei
[
‖∇jfi(x)−∇jfi(y)‖Λ−1

j

]
≤ ‖xj − yj‖Λj , (8)

where i is drawn uniformly at random from [n] and Λj ∈
Rdj×dj is a positive definite diagonal matrix.
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Assumption 2.6 implies Assumption 2.2, due to the finite-
sum assumption and uniform sampling. For simplicity, we
use the same matrix Λj for both smoothness conditions.

Assumption 2.7. There exist positive semidefinite matrices
Qj , 1 ≤ j ≤ m such that each∇jf is expected 1-Lipschitz
continuous w.r.t. the seminorm ‖ · ‖Qj , i.e., ∀x,y ∈ Rd,

Ei
[
‖∇jfi(x)−∇jfi(y)‖2

Λ−1
j

]
≤ ‖x− y‖2Qj , (9)

where i is drawn uniformly at random from [n].

Similarly, Assumption 2.7 implies Assumption 2.3, so we
use the same matrix Qj for both cases. Finally, we introduce
a useful result on variance bound from Zheng & Kwok
(2016) for our later convergence analysis, with the proof
provided in Appendix A for completeness.

Lemma 2.8. Let B be the set of |B| = b samples from [n],
drawn without replacement and uniformly at random. Then,
∀x ∈ Rd and j ∈ [m],

EB
[∥∥1

b

∑
i∈B
∇jfi(x)−∇jf(x)

∥∥2
]

=
n− b
b(n− 1)

Ei
[
‖∇jfi(x)−∇jf(x)‖2

]
.

(10)

3. P-CCD
As a warmup, in this section we provide a novel analysis of
the standard Proximal Cyclic Block Coordinate Descent (P-
CCD) algorithm (Algorithm 1) for the deterministic setting,
adapted to our choice of block norms ‖ · ‖Λj

. P-CCD cycles
through the m blocks of variables, updating one block at
a time. When m = 1, P-CCD is the standard proximal
gradient method, while when m = d, P-CCD is a proximal
version of cyclic coordinate descent.

Algorithm 1 Proximal Cyclic Block Coordinate Descent
(P-CCD)

1: Input: m,K,x0,Λ1,Λ2, . . . ,Λm

2: for k = 1 to K do
3: for j = 1 to m do
4: xk−1,j = (x1

k, . . . ,x
j−1
k ,xjk−1, . . . ,x

m
k−1)

5: xjk = arg minxj∈Rdj

{
〈∇jf(xk−1,j),x

j〉 +

1
2‖x

j − xjk−1‖2Λj
+ rj(xj)

}
6: end for
7: end for
8: return arg minxk

‖xk − xk−1‖Λ (k ∈ [K])

To analyze the convergence of Algorithm 1, we first define

L̂ :=
∥∥∥Λ−1/2

( m∑
j=1

Q̂j
)
Λ−1/2

∥∥∥,

to simplify the notation. This constant appears in the analy-
sis but is not used by the algorithm.

The analysis is built on two key lemmas. Lemma 3.1 bounds
the norm of the gradient by the distance between successive
iterates, using the generalized Lipschitz condition w.r.t. a
Mahalanobis norm, as stated in Assumption 2.3. Lemma 3.2
then bounds the sum of successive squared distances be-
tween iterates by the initial optimality gap, similar to a
result that is typically proved for the (full-gradient) proxi-
mal method. Jointly, these two lemmas lead to a guarantee
of a proximal method, but with the generalized Lipschitz
constant L̂ replacing the traditional full-gradient Lipschitz
constant encountered in full-gradient methods.

Lemma 3.1. Under Assumption 2.3, the iterates {xk} gen-
erated by Algorithm 1 satisfy

dist2(∂F (xk),0) ≤ 2(L̂+ 1)‖xk − xk−1‖2Λ.

To bound ‖xk − xk−1‖2Λ, we prove the following descent
lemma induced by the block-wise smoothness in Assump-
tion 2.2 and by telescoping cyclically over the blocks.

Lemma 3.2. Under Assumptions 2.2 and 2.3, the iterates
{xk} generated by Algorithm 1 satisfy

k∑
i=1

‖xi − xi−1‖2Λ ≤ 2(F (x0)− F (x∗)). (11)

Proofs of Lemmas 3.1 and 3.2 are deferred to Appendix B.
The next result describes the convergence of Algorithm 1.

Theorem 3.3. Under Assumptions 2.2 and 2.3, let x∗ be a
global minimizer of (1) and {xk} be the iterates generated
by Algorithm 1. Then after K (outer-loop) iterations, we
have

min
k∈[K]

dist2(∂F (xk),0) ≤ 4(L̂+ 1)(F (x0)− F (x∗))

K
.

Proof. By combining Lemmas 3.1 and 3.2, we have

K∑
k=1

dist2(∂F (x),0) ≤ 2(L̂+ 1)
K∑
k=1

‖xk − xk−1‖2Λ

≤ 4(L̂+ 1)(F (x0)− F (x∗)).

It remains to use that for all k ∈ [K], we have
dist2(∂F (xk),0) ≥ mink′∈[K] dist2(∂F (xk′),0).

In comparison with guarantees with respect to Eu-
clidean Lipschitz constants, this guarantee is never worse
than by a factor m. In the case in which f is L-
smooth Λ = Qj = LId (the worst case), we have
infr′(x)∈∂r(x)‖∇f(x) + r′(x)‖2 = Ldist2(∂F (x),0) and
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L̂ = 1
L‖
∑m
j=1 Q̂

j‖ ≤ 1
L‖
∑m
j=1 Q

j‖ ≤ m, while in prac-
tice possibly ‖

∑m
j=1 Q̂

j‖ � ‖
∑m
j=1 Q

j‖ and L̂ � m
(see discussions in e.g., Song & Diakonikolas (2021)). The
same points hold for guarantees in Section 4 as well. Note
that the linear dependence on m cannot be improved in the
worst case for standard P-CCD, even on smooth convex
problems (Sun & Ye, 2021; Kamri et al., 2022).

If F further satisfies the PŁ condition of Assumption 2.4,
Algorithm 1 can achieve a faster, linear convergence rate.
We summarize this result in Corollary 3.4 below, deferring
the proof to Appendix B.

Corollary 3.4. Suppose that the conditions of Theorem 3.3
hold and that F further satisfies Assumption 2.4. Then we
have after K iterations of Algorithm 1 that

F (xK)− F (x∗) ≤
( 2(L̂+ 1)

2(L̂+ 1) + µ

)K
(F (x0)− F (x∗)).

The main bottleneck in implementing P-CCD is in finding
appropriate matrices Λj that satisfy Assumption 2.2. The
simplest approach is to use Λj = LjIdj and estimate Lj
adaptively using the standard backtracking line search. This
procedure can be implemented efficiently, as the analysis
requires Assumption 2.2 to hold only between successive
iterates. The use of more general diagonal matrices Λj is a
form of block preconditioning, which is frequently used to
heuristically improve the performance of full-gradient meth-
ods. In our neural net training experiments, for example, we
use spectral normalization (see Section 5 for more details).

4. Variance Reduced P-CCD
We now consider nonconvex optimization problems of the
form (2). When n is finite, (2) is a finite-sum problem and
we can compute the full gradient of F (x) with O(nd) cost.
Without loss of generality, we use n = +∞ to denote the
general stochastic optimization setting as in (3), where the
full gradient can no longer be computed in finite time. For
both settings, Algorithm 2 describes VR-CCD, the Variance-
Reduced Cyclic block Coordinate Descent algorithm, which
combines Algorithm 1 with recursive variance reduction of
PAGE type (Li et al., 2021) to reduce the per-iteration cost
and improve the overall complexity.

Instead of computing the block-wise gradient at each in-
ner iteration as P-CCD (Algorithm 1), VR-CCD main-
tains and updates a recursive gradient estimator gjk−1 of
PAGE type for each block gradient j at outer iteration
k (i.e., gjk−1 estimates ∇jf(xk−1,j)). By the defini-
tion of gjk−1 in Line 6 of Algorithm 2, it uses a mini-
batch estimate 1

b

∑
i∈B∇jfi(xk−1,j) with probability p,

where |B| = b. With probability 1 − p, the estimate
gjk−2 + 1

b′

∑
i∈B′(∇jfi(xk−1,j) − ∇jfi(xk−2,j)) reuses

the previous jth block gradient estimator gjk−2, and forms
an approximation of the gradient difference∇jf(xk−1,j)−
∇jf(xk−2,j) based on the minibatch B′ where |B′| = b′.
When p = 1, the PAGE estimator reduces to vanilla mini-
batch SGD. To lower the computational cost, it is common
to take b′ � b and p � 1. The estimator gjk−1 is then
incorporated into the Lipschitz gradient surrogate function
in Line 7 to compute the new iterate xjk. The variance of
PAGE estimator w.r.t. block coordinates can be bounded
recursively as in Lemma 4.1 below, using the minibatch
variance bound results in Lemma 2.8. The proof appears in
Appendix C.

To simplify the notation, we use the following definitions in
the statements and proofs for this section, for k ≥ 0:

L̃ :=
∥∥Λ−1/2

( m∑
j=1

Q̃j
)
Λ−1/2

∥∥,
uk :=

m∑
j=1

‖gjk−1 −∇
jf(xk−1,j)‖2Λ−1

j

,

vk := ‖xk − xk−1‖2Λ,
sk := dist2(∂F (xk),0).

Lemma 4.1. Suppose Assumptions 2.5–2.7 hold, then the
variance E[uk] of the gradient estimators {gjk−1}mj=1 at
iteration k of Algorithm 2 is bounded by:

E[uk] ≤ 2p(n− b)σ2

b(n− 1)
+ 2
(p(n− b)
b(n− 1)

+
1− p
b′

)
L̃E[vk]

+ (1− p)E[uk−1] +
2(1− p)L̂

b′
E[vk−1].

The general strategy to analyze the convergence of VR-CCD
can be summarized as follows. Let

Φk = akE[F (xk)] + bkE[uk] + ckE[vk]

be a potential function, where {ak}k≥1, {bk}k≥1, {ck}k≥1

are non-negative sequences to be specified later in the anal-
ysis. Our goal is to show that

E[sk] ≤ Φk−1 − Φk + Ek, (12)

where Ek are error terms arising from the noise of the esti-
mator. Then, by telescoping (12) and controlling the error
sequence Ek, we obtain the gradient norm guarantee of Algo-
rithm 2. First, we make use of the following descent lemma
that utilizes block-wise smoothness from Assumption 2.6.
Its proof is deferred to Appendix C.

Lemma 4.2. Let Assumption 2.6 hold and let rj,
′
(xjk) ∈

∂rj(xjk) be such that xjk = xjk−1−ηΛ
−1
j (gjk−1+rj,

′
(xjk)).

6
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Algorithm 2 Variance-Reduced Cyclic Block Coordinate Descent (VR-CCD)
1: Input: m, η, K, p, b, b′, Λ1,Λ2, . . . ,Λm, x0 = x−1 = x−1,1 = · · · = x−1,m+1.
2: g−1 = 1

b

∑
i∈B∇fi(x0).

3: for k = 1 to K do
4: for j = 1 to m do
5: xk−1,j = (x1

k, . . . ,x
j−1
k ,xjk−1, . . .x

m
k−1)

6: gjk−1 =

{
1
b

∑
i∈B∇jfi(xk−1,j), with probability p

gjk−2 + 1
b′

∑
i∈B′(∇jfi(xk−1,j)−∇jfi(xk−2,j)), with probability 1− p

7: xjk = arg minxj∈Rd

{
〈gjk−1,x

j〉+ rj(xj) + 1
2η‖x

j − xjk−1‖2Λj

}
8: end for
9: end for

10: return x̂K uniformly drawn from {xk}k∈[K]

Then the iterates of Algorithm 2 satisfy

F (xk) ≤ F (xk−1)− 1− η
2η

vk +
η

2
uk

− η

2

m∑
j=1

‖∇jf(xk−1,j) + rj,
′
(xjk)‖2

Λ−1
j

.
(13)

In the statement of Lemma 4.2, there must exist rj,
′
(xjk) ∈

∂rj(xjk) such that xjk = xjk−1 − ηΛ
−1
j (gjk−1 + rj,

′
(xjk)),

due to the first-order optimality condition of the minimiza-
tion problem that defines xjk.

We further bound the gradient norms of intermedi-
ate iterates within a cycle in Inequality (13), i.e.,∑m
j=1 ‖∇jf(xk−1,j) + rj,

′
(xjk)‖2

Λ−1
j

, using smoothness

from Assumption 2.7.

Lemma 4.3. Let Assumption 2.7 hold and let rj,
′
(xjk) ∈

∂rj(xjk) be such that xjk = xjk−1−ηΛ
−1
j (gjk−1+rj,

′
(xjk)).

Then for Algorithm 2 we have

sk ≤ 2L̂vk + 2
m∑
j=1

‖∇jf(xk−1,j) + rj,
′
(xk)‖2

Λ−1
j

. (14)

By combining Lemma 4.2 and 4.3 and using the recursive
variance bound of the estimator from Lemma 4.1, we are
ready to prove a bound on iteration complexity for VR-CCD
in Theorem 4.4. The proof is in Appendix C.

Theorem 4.4. Suppose that Assumptions 2.2–2.3 and 2.5–
2.7 hold. Let x∗ be a global minimizer of (1) and {xk} be
the iterates generated by Algorithm 2. Then, we have

E
[
dist2(∂F (x̂K),0)

]
≤ 4∆0

ηK
+

2(1− p)(n− b)σ2

pb(n− 1)K
+

4(n− b)σ2

b(n− 1)
,

(15)

where ∆0 = F (x0) − F (x∗), and 0 < η ≤ −1+
√

1+4c0
2c0

with c0 = 2(1−p)L̂
pb′ + L̂+ 2

(p(n−b)
b(n−1) + 1−p

b′

)
L̃
p .

Note that Theorem 4.4 is generic for both finite-sum and
infinite-sum cases. We summarize its implications for both
problems in the following corollaries, for specific parame-
ters of Algorithm 2. In the remaining results of this section,
we assume that the assumptions of Theorem 4.4 hold. The
proofs are provided in Appendix C for completeness.

Corollary 4.5 (Finite-sum). Choosing b = n, b′ =√
n, and p = b′

b+b′ , and setting K = 4∆0

ε2η , we have

E
[
dist2(∂F (x̂K),0)

]
≤ ε2 with O

(
nd +

∆0d
√
n(L̂+L̃)
ε2

)
arithmetic operations, where ∆0 = F (x0)− F (x∗).

Corollary 4.6 (Infinite-sum). Choosing b = d 12σ2

ε2 e, b
′ =√

b, and p = b′

b+b′ , and setting K = 12∆0

ε2η + 1
2p , we have

E
[
dist2(∂F (x̂K),0)

]
≤ ε2 with O

(
bd +

∆0d
√
b(L̂+L̃)
ε2

)
arithmetic operations, where ∆0 = F (x0)− F (x∗).

Under the PŁ condition, a faster convergence rate can be
proved for VR-CCD, as we show next.

Corollary 4.7. Suppose that F further satisfies Assump-
tion 2.4, then we have for Algorithm 2,

E[F (xK)− F (x∗)]

≤
(
1 +

ηµ

2

)−K(
∆0 +

σ2η(1− p)(n− b)
pb(n− 1)

)
+

4(n− b)σ2

bµ(n− 1)
,

where 0 < η ≤ min
{

p
µ(1−p) ,

−1+
√

1+4c0
2c0

}
with c0 = L̂ +

4L̂
pb′ + 4L̃

p

(p(n−b)
b(n−1) + 1−p

b′

)
, and ∆0 = F (x0)− F (x∗).

In the following, we further provide arithmetic operation
complexity results under PŁ condition with specifying the
parameters of the algorithm for both finite-sum and infinite-
sum problems.

Corollary 4.8 (Finite-sum). Choosing b = n, b′ =
√
n,

and p = b′

b+b′ , and setting K = (1 + 2
ηµ ) log(∆0

ε ), we

have E[F (xK) − F (x∗)] ≤ ε with O
(
nd +

(√n(L̂+L̃)
µ +

7
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(a) Train Loss (b) Test Accuracy (c) Train Loss (SN) (d) Test Accuracy (SN)

Figure 1. Comparison of SGD, SCCD, PAGE and VRO-CCD on training LeNet on CIFAR-10.

n
)
d log(∆0

ε )
)

arithmetic operations, where ∆0 = F (x0)−
F (x∗).

Corollary 4.9 (Infinite-sum). Choosing b = d 12σ2

µε e, b
′ =

√
b, and p = b′

b+b′ , and setting K = (1 + 2
ηµ ) log( 3∆0

ε ), we

have E[F (xK) − F (x∗)] ≤ ε with O
(
bd +

(√b(L̂+L̃)
µ +

b
)
d log(∆0

ε )
)

arithmetic operations, where ∆0 = F (x0)−
F (x∗).

A few remarks are in order here. In addition to requiring
matrices Λj , VR-CCD also requires constants L̂ and L̃ to
set the learning rate, but these constants are often not readily
available in practice. Instead, one can tune the value of the
learning rate η, as is frequently done in practice for other
optimization methods. Additionally, our methods require a
fresh sample for each block in the cyclic update — an un-
desirable feature, because the sample complexity increases
with the number of blocks. However, this requirement ap-
pears only to be an artifact of the analysis. In practice, we
can implement a variant of VR-CCD (VRO-CCD) which
re-uses the same sample for all the blocks. Interestingly,
this variant shows even better empirical performance than
VR-CCD (see Fig. 4 in Appendix D). Analysis of this vari-
ant is beyond the scope of this paper and is an interesting
direction for future research.

5. Numerical Experiments and Discussion
We now describe numerical experiments on training neu-
ral networks to evaluate the cyclic block coordinate up-
date scheme. In particular, we train LeNet (LeCun et al.,
1998) with weight decay for the image classification task
on CIFAR-10 (Krizhevsky et al., 2009) for our experiments.
Details of the architecture are provided in Appendix D.
We implement VRO-CCD and its special case SCCD (ob-
tained by setting p = 1), and compare them with SGD and
PAGE (Li et al., 2021). Note that VRO-CCD and PAGE,
SCCD and SGD differ only in whether the variables are
cyclically updated or not, so provide a fair comparison to
justify the efficacy of the cyclic scheme. We implement all

Table 1. Runtime (seconds) per iteration and per epoch.

ALGORITHM RUNTIME (ITER) RUNTIME (EPOCH)

SGD 0.172 16.9 ± 0.9
SCCD 0.185 18.1 ± 0.6
PAGE 0.017 20.7 ± 0.9
VRO-CCD 0.041 49.5 ± 2.3

the algorithms using PyTorch (Paszke et al., 2019), and run
the experiments on Google Colab standard GPU backend.1

For all algorithms, we set the mini-batch size b to be 512
and the weight decay parameter to be 0.0005. We repeat
the experiments 3 times with 100 epochs and average the
results. For the learning rate, we use the cosine learning
rate scheduler (Loshchilov & Hutter, 2017), which is tuned
separately for each method via a grid search. For VRO-
CCD and PAGE methods, we set b′ =

√
b and p = b′

b+b′

according to the theoretical results. For VRO-CCD and
SCCD, we split the neural network parameters with each
layer as a block (m = 5), and estimate the Λj of fully
connected layers by spectral norms of the weights using
spectral normalization (SN) (Miyato et al., 2018). VRO-
CCD and SCCD are also compared with SGD and PAGE
with the same spectral normalization. We report and plot
the train loss and test accuracy against the epoch numbers
in Fig. 1, where one epoch corresponds to the number of
arithmetic operations in one data pass, in the order O(Nd)
where N is the size of the training set. We summarize the
runtime of each algorithm per iteration2 and per epoch in
Table 1, which is averaged by the results of 100 epochs.

From Fig. 1, we observe that (i) SCCD and VRO-CCD
with cyclic scheme exhibit faster convergence with better
generalization than SGD and PAGE, respectively, in Fig-
ures 1(a) and 1(b); (ii) The edge of cyclic scheme is still

1Our code is available at https://github.com/zephyr-cai/
NonconvexCCD.

2One iteration for cyclic methods refers to one cycle of block
coordinate updates. Since PAGE switches between large and small
batches, we only summarize the mean runtime per iteration here.
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noticeable comparing to SGD and PAGE with the same
spectral normalization in Figures 1(c) and 1(d). All of these
validate the efficacy of the cyclic update scheme. Note that
in this experiment SGD and SCCD can admit larger stepsize,
thus showing faster convergence (see Fig. 5 in Appendix D
for further numerical comparison with same stepsizes).

When using small batches, VRO-CCD is around 2.4 times
slower than PAGE as in Table 1, because the cyclic update
becomes the major computational bottleneck in each iter-
ation. However, for large batches, SCCD sacrifices only
a marginal 7.5% runtime per iteration in comparison with
SGD. SCCD also converges fastest in terms of wall-clock
time (see Fig. 3 in Appendix D, as one may worry about the
accumulation of marginal time increase over epochs). Our
conclusion is that the cyclic scheme can be an efficient and
effective alternative for large-batch methods.
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A. Omitted Proofs from Section 2
Lemma 2.8. Let B be the set of |B| = b samples from [n], drawn without replacement and uniformly at random. Then,
∀x ∈ Rd and j ∈ [m],

EB
[∥∥1

b

∑
i∈B
∇jfi(x)−∇jf(x)

∥∥2
]

=
n− b
b(n− 1)

Ei
[
‖∇jfi(x)−∇jf(x)‖2

]
.

(10)

Proof. Observe first by expanding the square that

EB
[∥∥1

b

∑
i∈B
∇jfi(x)−∇jf(x)

∥∥2
]

=
1

b2
EB
[ ∑
i,i′∈B

〈
∇jfi(x)−∇jf(x),∇jfi′(x)−∇jf(x)

〉 ]
=

1

b2
EB
[ ∑
i,i′∈B,i 6=i′

〈
∇jfi(x)−∇jf(x),∇jfi′(x)−∇jf(x)

〉 ]
+

1

b
Ei
[
‖∇jfi(x)−∇jf(x)‖2

]
.

Since the batch B is drawn independently and uniformly from [n], we know the probability that each pair (i, i′) with i 6= i′

belongs to B can be given as b(b−1)
n(n−1) . Further, by the linearity of expectation, we have

EB
[ ∑
i,i′∈B,i 6=i′

〈
∇jfi(x)−∇jf(x),∇jfi′(x)−∇jf(x)

〉 ]
= EB

[ ∑
i,i′∈[n],i 6=i′

1i,i′∈B
〈
∇jfi(x)−∇jf(x),∇jfi′(x)−∇jf(x)

〉 ]
=

∑
i,i′∈[n],i 6=i′

EB
[
1i,i′∈B

〈
∇jfi(x)−∇jf(x),∇jfi′(x)−∇jf(x)

〉 ]
=

b(b− 1)

n(n− 1)

∑
i,i′∈[n],i 6=i′

〈
∇jfi(x)−∇jf(x),∇jfi′(x)−∇jf(x)

〉
,

where 1 is the indicator function with 1i,i′∈B = 1 if both i, i′ ∈ B otherwise 0. Then we obtain

EB
[∥∥1

b

∑
i∈B
∇jfi(x)−∇jf(x)

∥∥2
]

=
b− 1

bn(n− 1)

∑
i,i′∈[n],i6=i′

〈
∇jfi(x)−∇jf(x),∇jfi′(x)−∇jf(x)

〉
+

1

b
Ei
[
‖∇jfi(x)−∇jf(x)‖2

]
=

b− 1

bn(n− 1)

∑
i,i′∈[n]

〈
∇jfi(x)−∇jf(x),∇jfi′(x)−∇jf(x)

〉
+
(1

b
− b− 1

b(n− 1)

)
Ei
[
‖∇jfi(x)−∇jf(x)‖2

]
(i)
=

n− b
b(n− 1)

Ei
[
‖∇jfi(x)−∇jf(x)‖2

]
,

where (i) is due to the finite-sum structure of f , i.e. f = 1
n

∑n
i=1 fi.

Remark A.1. The proof for Lemma 2.8 does not involve the specification of the norm, thus applying to ‖ · ‖Λ−1
j

in the paper.

B. Omitted Proofs from Section 3
Lemma 3.1. Under Assumption 2.3, the iterates {xk} generated by Algorithm 1 satisfy

dist2(∂F (xk),0) ≤ 2(L̂+ 1)‖xk − xk−1‖2Λ.

12
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Proof. By the definition of xjk (Step 5 in Algorithm 1), for each j ∈ [m], we have that there exists rj,
′
(xjk) ∈ ∂rj(xjk) such

that xjk = xjk−1 −Λ−1
j (∇jf(xk−1, j) + rj,

′
(xjk)). Observe that, due to the block separability of r, the vector r′ obtained

by concatenating such vectors rj,
′
, j ∈ [m], is a subgradient vector for r. Hence, using block separability of r and the

definitions of the matrix Λ and the norm ‖ · ‖Λ, we have

‖∇f(xk) + r′(xk)‖2Λ−1 =
m∑
j=1

‖∇jf(xk) + rj,
′
(xjk)‖2

Λ−1
j

≤ 2
m∑
j=1

(
‖∇jf(xk)−∇jf(xk−1,j)‖2Λ−1

j

+ ‖∇jf(xk−1,j) + rj,
′
(xjk)‖2

Λ−1
j

)
= 2

m∑
j=1

(
‖∇jf(xk)−∇jf(xk−1,j)‖2Λ−1

j

+ ‖Λj(x
j
k − xjk−1)‖2

Λ−1
j

)
, (16)

where the inequality comes from adding and subtracting ∇jf(xk−1,j) inside the norm terms and using Young’s inequality,
while the last equality is by xjk = xjk−1 −Λ−1

j (∇jf(xk−1, j) + rj,
′
(xjk)).

By Assumption 2.3, we have

‖∇jf(xk)−∇jf(xk−1,j)‖2Λ−1
j

≤ (xk − xk−1,j)
TQj(xk − xk−1,j), (17)

while using the definition of the norm ‖ · ‖Λ−1
j

, we have

‖Λj(x
j
k − xjk−1)‖2

Λ−1
j

= ‖xjk − xjk−1‖
2
Λj
. (18)

Observe further that xk−1,j has the same elements as xk in the first j − 1 coordinates. Meanwhile, for t ≥ j, let
(xk−1,j)t, (xk−1)t denote the tth blocks of xk−1,j and xk−1 respectively. Then we have (xk−1,j)t = (xk−1)t, thus
(xk−1,j)t − (xk)t = (xk−1)t − (xk)t. Thus, based on the definition of Q̂j , we have

(xk − xk−1,j)
TQj(xk − xk−1,j) = (xk − xk−1)T Q̂j(xk − xk−1). (19)

As a result, combining (16)–(19), we have

‖∇f(xk) + r′(xk)‖2Λ−1

≤ 2

m∑
j=1

(
(xk − xk−1)T Q̂j(xk − xk−1) + ‖xjk − xjk−1‖

2
Λj

)
= 2(Λ1/2(xk − xk−1))TΛ−1/2

( m∑
j=1

Q̂j
)
Λ−1/2(Λ1/2(xk − xk−1)) + 2‖xk − xk−1‖2Λ

≤ 2
∥∥∥Λ−1/2

( m∑
j=1

Q̂j
)
Λ−1/2

∥∥∥‖xk − xk−1‖2Λ + 2‖xk − xk−1‖2Λ

= 2
(∥∥∥Λ−1/2

( m∑
j=1

Q̂j
)
Λ−1/2

∥∥∥+ 1
)
‖xk − xk−1‖2Λ.

To complete the proof, it remains to note that, by definition, L̂ =
∥∥∥Λ−1/2

(∑m
j=1 Q̂

j
)
Λ−1/2

∥∥∥ and observe that

dist2(∂F (xk),0) ≤ ‖∇f(xk) + r′(xk)‖Λ−1 , for any r′(xk) ∈ ∂r(xk).

Lemma 3.2. Under Assumptions 2.2 and 2.3, the iterates {xk} generated by Algorithm 1 satisfy

k∑
i=1

‖xi − xi−1‖2Λ ≤ 2(F (x0)− F (x∗)). (11)

13
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Proof. Let rj,
′
(xjk) ∈ ∂rj(xjk) be such that xjk = xjk−1 −Λ−1

j (∇jf(xk−1, j) + rj,
′
(xjk)). By Assumption 2.2 and the

definition of xk−1,j+1, we have

F (xk−1,j+1) = f(xk−1,j+1) + r(xk−1,j+1)

≤ f(xk−1,j) + 〈∇jf(xk−1,j),x
j
k − xjk−1〉+

1

2
‖xjk − xjk−1‖

2
Λj

+

j−1∑
i=1

ri(xik) + rj(xjk) +
m∑

i=j+1

ri(xik−1)

≤ f(xk−1,j) + r(xk−1,j) + 〈∇jf(xk−1,j) + rj,
′
(xjk),xjk − xjk−1〉+

1

2
‖xjk − xjk−1‖

2
Λj

= F (xk−1,j)−
1

2
‖xjk − xjk−1‖

2
Λj
, (20)

where the second inequality is by the definition of a subgradient and last equality is by xjk = xjk−1 −Λ−1
j (∇jf(xk−1, j) +

rj,
′
(xjk)). Applying (20) recursively over j = 1, 2, . . . ,m, we have

F (xk) = F (xk−1,m+1) ≤ F (xk−1,1)−
m∑
j=1

1

2
‖xjk − xjk−1‖

2
Λj

= F (xk−1)− 1

2
‖xk − xk−1‖2Λ. (21)

where the last equality is by xk−1,1 = xk−1 and the definition of Λ.

Telescoping (21) from i = 1 to k, we have

F (xk) ≤ F (x0)−
k∑
i=1

1

2
‖xi − xi−1‖2Λ. (22)

It remains to use that F (xk) ≥ F (x∗), by the definition of x∗.

Corollary 3.4. Suppose that the conditions of Theorem 3.3 hold and that F further satisfies Assumption 2.4. Then we have
after K iterations of Algorithm 1 that

F (xK)− F (x∗) ≤
( 2(L̂+ 1)

2(L̂+ 1) + µ

)K
(F (x0)− F (x∗)).

Proof. Combining Lemma 3.1 and Inequality (21), we have

dist2(∂F (xk),0) ≤ 2(L̂+ 1)‖xk − xk−1‖2Λ
≤ 4(L̂+ 1)(F (xk−1)− F (xk)).

Using Assumption 2.4 and the last inequality, we have

2µ(F (xk)− F (x∗)) ≤ 4(L̂+ 1)(F (xk−1)− F (xk)),

which leads to

F (xk)− F (x∗) ≤ 2(L̂+ 1)

2(L̂+ 1) + µ
(F (xk−1)− F (x∗)).

Applying the last inequality recursively from K down to 1, we obtain

F (xK)− F (x∗) ≤
( 2(L̂+ 1)

2(L̂+ 1) + µ

)K
(F (x0)− F (x∗)),

which completes the proof.
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C. Omitted Proofs from Section 4
To prove Theorem 4.4, we first prove the following auxiliary lemma.

Lemma 4.1. Suppose Assumptions 2.5–2.7 hold, then the variance E[uk] of the gradient estimators {gjk−1}mj=1 at iteration
k of Algorithm 2 is bounded by:

E[uk] ≤ 2p(n− b)σ2

b(n− 1)
+ 2
(p(n− b)
b(n− 1)

+
1− p
b′

)
L̃E[vk]

+ (1− p)E[uk−1] +
2(1− p)L̂

b′
E[vk−1].

Proof. Let Fk,j−1 denote the natural filtration, containing all algorithm randomness up to and including outer iteration k
and inner iteration j − 1. By the definition of gjk−1, we have

E[‖gjk−1 −∇
jf(xk−1,j)‖2Λ−1

j

|Fk,j−1]

= pE
[∥∥1

b

b∑
i=1

∇jfi(xk−1,j)−∇jf(xk−1,j)
∥∥2

Λ−1
j

|Fk,j−1

]

+ (1− p)E
[∥∥gjk−2 +

1

b′

b′∑
i=1

(∇jfi(xk−1,j)−∇jfi(xk−2,j))−∇jf(xk−1,j)
∥∥2

Λ−1
j

|Fk,j−1

]
= pE

[∥∥1

b

b∑
i=1

∇jfi(xk−1,j)−∇jf(xk−1,j)
∥∥2

Λ−1
j

|Fk,j−1

]
+ (1− p)‖gjk−2 −∇

jf(xk−2,j)‖2Λ−1
j

+ (1− p)E
[∥∥ 1

b′

b′∑
i=1

(∇jfi(xk−1,j)−∇jfi(xk−2,j))−∇jf(xk−1,j) +∇jf(xk−2,j)‖2Λ−1
j

|Fk,j−1

]
,

where the last equality uses that gjk−2 − ∇jf(xk−2,j) is measurable w.r.t. Fk,j−1 and E[ 1
b′

∑b′

i=1(∇jfi(xk−1,j) −
∇jfi(xk−2,j))−∇jf(xk−1,j) +∇jf(xk−2,j)|Fk,j−1] = 0. Using that for any random variable X, E[(X − E[X])2] ≤
E[X2] and proceeding as in Lemma 2.8 with respect to ‖ · ‖Λ−1

j
, we further have

E[‖gjk−1 −∇
jf(xk−1,j)‖2Λ−1

j

|Fk,j−1]

≤ pE
[∥∥1

b

b∑
i=1

∇jfi(xk−1,j)−∇jf(xk−1,j)
∥∥2

Λ−1
j

|Fk,j−1

]
+ (1− p)‖gjk−2 −∇

jf(xk−2,j)‖2Λ−1
j

+ (1− p)E
[∥∥ 1

b′

b′∑
i=1

(∇jfi(xk−1,j)−∇jfi(xk−2,j))‖2Λ−1
j

|Fk,j−1

]
≤ p(n− b)
b(n− 1)

Ei
[
‖∇jfi(xk−1,j)−∇jf(xk−1,j)

∥∥2

Λ−1
j

]
+ (1− p)

∥∥gjk−2 −∇
jf(xk−2,j)‖2Λ−1

j

+
1− p
b′

Ei[‖∇jfi(xk−1,j)−∇jfi(xk−2,j)‖2Λ−1
j

]. (23)

We now proceed to simplify Eq. (23), by simplifying the first and the last term appearing in it. For the last term, we have,
using our smoothness assumption,

Ei
[∥∥∇jfi(xk−1,j)−∇jfi(xk−2,j)

∥∥2

Λ−1
j

]
≤ 2Ei

[∥∥∇jfi(xk−1,j)−∇jfi(xk−1)
∥∥2

Λ−1
j

]
+ 2Ei

[∥∥∇jfi(xk−1)−∇jfi(xk−2,j)
∥∥2

Λ−1
j

]
≤ 2(xk−1,j − xk−1)TQj(xk−1,j − xk−1) + 2(xk−1 − xk−2,j)

TQj(xk−1 − xk−2,j)

= 2(xk − xk−1)T Q̃j(xk − xk−1) + 2(xk−1 − xk−2)T Q̂j(xk−1 − xk−2), (24)
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where the first inequality comes from adding and subtracting∇jfi(xk−1) and using Young’s inequality, the second inequality
is by Assumption 2.7, and the last equality is by the definitions of xk−1,j and matrices Q̂j and Q̃j . Summing Eq. (24) from
j = 1 to m, it follows that

m∑
j=1

Ei
[∥∥∇jfi(xk−1,j)−∇jfi(xk−2,j)

∥∥2

Λ−1
j

]
≤ 2(xk − xk−1)T

( m∑
j=1

Q̃j
)

(xk − xk−1) + 2(xk−1 − xk−2)T
( m∑
j=1

Q̂j
)

(xk−1 − xk−2)

≤ 2
∥∥∥Λ−1/2

( m∑
j=1

Q̃j
)
Λ−1/2

∥∥∥‖xk − xk−1‖2Λ + 2
∥∥∥Λ−1/2

( m∑
j=1

Q̂j
)
Λ−1/2

∥∥∥‖xk−1 − xk−2‖2Λ

= 2L̃‖xk − xk−1‖2Λ + 2L̂‖xk−1 − xk−2‖2Λ.

Taking expectation with all the randomness in the algorithm on both sides and applying the tower property of expectation,
we have

E
[ m∑
j=1

∥∥∇jfi(xk−1,j)−∇jfi(xk−2,j)
∥∥2

Λ−1
j

]
≤ 2L̃E‖xk − xk−1‖2Λ + 2L̂E‖xk−1 − xk−2‖2Λ. (25)

On the other hand, to simplify the first term, we add and subtract∇jfi(xk−1) +∇jf(xk−1) and apply Young’s inequality
to get

Ei
[∥∥∇jfi(xk−1,j)−∇jf(xk−1,j)

∥∥2

Λ−1
j

]
= Ei

[
‖∇jfi(xk−1,j)−∇jfi(xk−1) +∇jf(xk−1)−∇jf(xk−1,j) +∇jfi(xk−1)−∇jf(xk−1)‖2

Λ−1
j

]
≤ 2Ei

[
‖∇jfi(xk−1,j)−∇jfi(xk−1)−

(
∇jf(xk−1,j)−∇jf(xk−1)

)
‖2
Λ−1

j

+ ‖∇jfi(xk−1)−∇jf(xk−1)‖2
Λ−1

j

]
.

Similarly as before, using that the variance of any random variable is bounded by its second moment, and summing from
j = 1 to m, we further have

m∑
j=1

Ei
[∥∥∇jfi(xk−1,j)−∇jf(xk−1,j)

∥∥2

Λ−1
j

]
≤ 2

m∑
j=1

Ei
[
‖∇jfi(xk−1,j)−∇jfi(xk−1)‖2

Λ−1
j

+ ‖∇jfi(xk−1)−∇jf(xk−1)‖2
Λ−1

j

]
= 2

m∑
j=1

Ei
[
‖∇jfi(xk−1,j)−∇jfi(xk−1)‖2

Λ−1
j

]
+ 2Ei

[
‖∇fi(xk−1)−∇f(xk−1)‖2Λ−1

]
≤ 2L̃‖xk − xk−1‖2Λ + 2σ2,

where in the last inequality we used the arguments as in deriving (24) and (25), and Assumption 2.5. Further, taking
expectation with all the randomness in the algorithm on both sides and using the tower property of expectation, we have

E
[ m∑
j=1

∥∥∇jfi(xk−1,j)−∇jf(xk−1,j)
∥∥2

Λ−1
j

]
≤ 2L̃E‖xk − xk−1‖2Λ + 2σ2. (26)

Summing Eq. (23) from j = 1 to m, taking the expectation w.r.t. all the randomness in the algorithm on both sides, and
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applying linearity and the tower property of expectation E[E[·|Fk,j−1]] = E[·] for each j ∈ [m], we have

E
[ m∑
j=1

‖gjk−1 −∇
jf(xk−1,j)‖2Λ−1

j

]
≤ p(n− b)
b(n− 1)

E
[ m∑
j=1

‖∇jfi(xk−1,j)−∇jf(xk−1,j)
∥∥∥2

Λ−1
j

]
+ (1− p)E

[ m∑
j=1

‖gjk−2 −∇
jf(xk−2,j)‖2Λ−1

j

]
+

1− p
b′

E
[ m∑
j=1

‖∇jfi(xk−1,j)−∇jfi(xk−2,j)‖2Λ−1
j

]
(27)

To complete the proof, it remains to plug Inequalities (25)–(26) into Inequality (27) and do some rearrangements.

Lemma 4.2. Let Assumption 2.6 hold and let rj,
′
(xjk) ∈ ∂rj(xjk) be such that xjk = xjk−1 − ηΛ

−1
j (gjk−1 + rj,

′
(xjk)).

Then the iterates of Algorithm 2 satisfy

F (xk) ≤ F (xk−1)− 1− η
2η

vk +
η

2
uk

− η

2

m∑
j=1

‖∇jf(xk−1,j) + rj,
′
(xjk)‖2

Λ−1
j

.
(13)

Proof. By Assumption 2.2 and the definitions of xk−1,j+1 and xk−1,j , we have

F (xk−1,j+1) = f(xk−1,j+1) + r(xk−1,j+1)

≤ f(xk−1,j) + 〈∇jf(xk−1,j),x
j
k − xjk−1〉+

1

2
‖xjk − xjk−1‖

2
Λj

+

j−1∑
i=1

ri(xik) + rj(xjk) +
m∑

i=j+1

ri(xik−1)

≤ f(xk−1,j) + r(xk−1,j) + 〈∇jf(xk−1,j) + rj,
′
(xjk),xjk − xjk−1〉+

1

2
‖xjk − xjk−1‖

2
Λj

= F (xk−1,j) + 〈gjk−1 + rj,
′
(xjk),xjk − xjk−1〉+

1

2
‖xjk − xjk−1‖

2
Λj

+ 〈∇jf(xk−1,j)− gjk−1,x
j
k − xjk−1〉.

Since, by assumption, rj,
′
(xjk) ∈ ∂rj(xjk) is such that xjk = xjk−1 − ηΛ

−1
j (gjk−1 + rj,

′
(xjk)), we further have

F (xk−1,j+1) ≤ F (xk−1,j)−
(1

η
− 1

2

)
‖xjk − xjk−1‖

2
Λj

+
〈
∇jf(xk−1,j)− gjk−1,−ηΛ

−1
j (gjk−1 + rj,

′
(xjk))

〉
. (28)

To simplify (28), we now further simplify the last term appearing in it, as follows:〈
∇jf(xk−1,j)− gjk−1,−ηΛ

−1
j (gjk−1 + rj,

′
(xjk))

〉
= η‖∇jf(xk−1,j)− gjk−1‖

2
Λ−1

j

− η〈∇jf(xk−1,j)− gjk−1,Λ
−1
j

(
∇jf(xk−1,j) + rj,

′
(xjk)

)
〉

= η‖∇jf(xk−1,j)− gjk−1‖
2
Λ−1

j

− η

2

(
‖∇jf(xk−1,j)− gjk−1‖

2
Λ−1

j

+ ‖∇jf(xk−1,j) + rj,
′
(xjk)‖2

Λ−1
j

− ‖gjk−1 + rj,
′
(xjk)‖2

Λ−1
j

)
=
η

2
‖∇jf(xk−1,j)− gjk−1‖

2
Λ−1

j

− η

2
‖∇jf(xk−1,j) + rj,

′
(xjk)‖2

Λ−1
j

+
η

2
‖gjk−1 + rj,

′
(xjk)‖2

Λ−1
j

=
η

2
‖∇jf(xk−1,j)− gjk−1‖

2
Λ−1

j

− η

2
‖∇jf(xk−1,j) + rj,

′
(xjk)‖2

Λ−1
j

+
1

2η
‖xjk − xjk−1‖

2
Λj
. (29)

Thus, combining (28) and (29), we have

F (xk−1,j+1) ≤ F (xk−1,j)−
1

2

(1

η
− 1
)
‖xjk − xjk−1‖

2
Λj

+
η

2
‖∇jf(xk−1,j)− gjk−1‖

2
Λ−1

j

− η

2
‖∇jf(xk−1,j) + rj,

′
(xjk)‖2

Λ−1
j

. (30)
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Summing (30) from j = 1 to m,

F (xk−1,m+1) ≤ F (xk−1,1)− 1

2

(1

η
− 1
)
‖xk − xk−1‖2Λ +

η

2

m∑
j=1

‖∇jf(xk−1,j)− gjk−1‖
2
Λ−1

j

− η

2

m∑
j=1

‖∇jf(xk−1,j) + rj,
′
(xjk)‖2

Λ−1
j

. (31)

To complete the proof, it remains to observe that xk = xk−1,m+1 and xk−1 = xk−1,1.

Lemma 4.3. Let Assumption 2.7 hold and let rj,
′
(xjk) ∈ ∂rj(xjk) be such that xjk = xjk−1 − ηΛ

−1
j (gjk−1 + rj,

′
(xjk)).

Then for Algorithm 2 we have

sk ≤ 2L̂vk + 2
m∑
j=1

‖∇jf(xk−1,j) + rj,
′
(xk)‖2

Λ−1
j

. (14)

Proof. Observe first that

sk ≤ ‖∇f(xk) + r′(xk)‖2Λ−1

=
m∑
j=1

‖∇jf(xk) + rj,
′
(xk)‖2

Λ−1
j

≤
m∑
j=1

2
(
‖∇jf(xk)−∇jf(xk−1,j)‖2Λ−1

j

+ ‖∇jf(xk−1,j) + rj,
′
(xk)‖2

Λ−1
j

)
, (32)

where we have used Young’s inequality. On the other hand, by Assumption 2.7 and the definitions of xk−1,j and Q̂j , we
have

m∑
j=1

‖∇jf(xk)−∇jf(xk−1,j)‖2Λ−1
j

≤
m∑
j=1

(xk − xk−1,j)
TQj(xk − xk−1,j)

=

m∑
j=1

(xk − xk−1)T Q̂j(xk − xk−1)

≤
∥∥∥Λ−1/2

m∑
j=1

Q̂jΛ−1/2
∥∥∥‖xk − xk−1‖2Λ

= L̂‖xk − xk−1‖2Λ. (33)

Combining (32) and (33) completes the proof.

Theorem 4.4. Suppose that Assumptions 2.2–2.3 and 2.5–2.7 hold. Let x∗ be a global minimizer of (1) and {xk} be the
iterates generated by Algorithm 2. Then, we have

E
[
dist2(∂F (x̂K),0)

]
≤ 4∆0

ηK
+

2(1− p)(n− b)σ2

pb(n− 1)K
+

4(n− b)σ2

b(n− 1)
,

(15)

where ∆0 = F (x0)− F (x∗), and 0 < η ≤ −1+
√

1+4c0
2c0

with c0 = 2(1−p)L̂
pb′ + L̂+ 2

(p(n−b)
b(n−1) + 1−p

b′

)
L̃
p .

Proof. Combining Lemmas 4.2 and 4.3, we have

F (xk) ≤ F (xk−1)− 1

2

(1

η
− 1− L̂η

)
vk +

η

2
uk −

η

4
sk. (34)

18
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For notational convenience, denote rk = F (xk); then Eq. (34) is equivalent to

rk ≤ rk−1 −
1

2

(1

η
− 1− L̂η

)
vk +

η

2
uk −

η

4
sk. (35)

Taking expectation on both sides of Eq. (35) with respect to all randomness of the algorithm, and adding η
2p × (12) to (35),

we have

E[rk] +
(1− p)η

2p
E[uk] ≤ E[rk−1] +

(1− p)η
2p

E[uk−1] +
(n− b)σ2η

b(n− 1)
− η

4
E[sk]

− 1

2

(
1

η
− 1− L̂η − 4

(p(n− b)
b(n− 1)

+
1− p
b′

) L̃η
2p

)
E[vk] +

(1− p)L̂η
pb′

E[vk−1].

Observe that in the last inequality, the terms corresponding to E[rk] and E[uk] telescope. To further simplify this inequality,
we now make a choice of η that ensures that the terms that correspond to E[vk] telescope as well. In particular, for the terms
corresponding to E[vk] and E[vk−1] to be telescoping, we need

1

η
− 1− L̂η − 4

(p(n− b)
b(n− 1)

+
1− p
b′

) L̃η
2p
≥ 2(1− p)L̂η

pb′
. (36)

To simplify (36), denote by c0 = 2(1−p)L̂
pb′ + L̂ + 2

(
p(n−b)
b(n−1) + 1−p

b′

)
L̃
p the coefficient multiplying η. Then, solving (36),

which is a quadratic inequality in η, we get that it suffices to have

0 < η ≤ −1 +
√

1 + 4c0
2c0

,

as required by the theorem assumptions. Thus, we obtain

η

4
E[sk] + E[rk] +

(1− p)η
2p

E[uk] +
(1− p)L̂η

pb′
E[vk]

≤ E[rk−1] +
(1− p)η

2p
E[uk−1] +

(1− p)L̂η
pb′

E[vk−1] +
(n− b)σ2η

b(n− 1)
. (37)

Telescoping Eq. (37) from 1 to k, we have
k∑
i=1

η

4
E[si] + E[rk] +

(1− p)η
2p

E[uk] +
(1− p)L̂η

pb′
E[vk]

≤ E[r0] +
(1− p)η

2p
E[u0] +

(1− p)L̂η
pb′

E[v0] +
(n− b)σ2ηk

b(n− 1)
. (38)

With the fact that rk = F (xk) ≥ F (x∗), uk ≥ 0, vk ≥ 0, E[u0] = E
[∑m

j=1 ‖∇jf(x−1,j) − gj−1‖2Λ−1
j

]
≤ (n−b)σ2

b(n−1) (by

Lemma 2.8 adapted to Λj norms), v0 = ‖x0 − x−1‖2Λ = 0 and the definition of sk, we have
k∑
i=1

η

4
E
[
dist2(∂F (xi),0)

]
≤ F (x0)− F (x∗) +

(1− p)(n− b)ησ2

2pb(n− 1)
+

(n− b)σ2ηk

b(n− 1)
. (39)

Further, taking x̂K to be uniformly at random chosen from {xk}k∈[K], we have

EK
[
dist2(∂F (x̂K),0)

]
=

1

K

K∑
i=1

dist2(∂F (xi),0).

Taking expectation w.r.t. all the randomness up to iteration K on both sides and using Inequality (39), then we have

E
[
dist2(∂F (x̂K),0)

]
=

1

K

K∑
i=1

E
[
dist2(∂F (xi),0)

]
≤ 4∆0

ηK
+

2(1− p)(n− b)σ2

pb(n− 1)K
+

4(n− b)σ2

b(n− 1)
,

where ∆0 = F (x0)− F (x∗), thus completing the proof.
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Corollary 4.5 (Finite-sum). Choosing b = n, b′ =
√
n, and p = b′

b+b′ , and setting K = 4∆0

ε2η , we have

E
[
dist2(∂F (x̂K),0)

]
≤ ε2 with O

(
nd+

∆0d
√
n(L̂+L̃)
ε2

)
arithmetic operations, where ∆0 = F (x0)− F (x∗).

Proof. By the chosen parameters and Inequality (15), we have

E
[
dist2(∂F (x̂K),0)

]
≤ 4(F (x0)− F (x∗))

ηK
+

2(1− p)(n− b)σ2

pb(n− 1)K
+

4(n− b)σ2

b(n− 1)
≤ ε2.

Further, since 0 < η ≤ −1+
√

1+4c0
2c0

, we have K = 4(F (x0)−F (x∗))
ε2η = 8c0(F (x0)−F (x∗))

ε2(−1+
√

1+4c0)
. Let Fk,j−1 denote the natural

filtration, containing all algorithm randomness up to and including outer iteration k and inner iteration j − 1. Denote mj
k to

be the number of arithmetic operations to update the j-th block at k-th iteration, then we have for k ≥ 1

E[mj
k|Fk,j−1] = O

(
(pb+ (1− p)b′)dj

)
.

Taking expectation w.r.t to all randomness on both sides, we obtain E[mj
k] = O

(
(pb+ (1− p)b′)dj

)
. Let mk be the number

of arithmetic operations in the k-the iteration, then we have for k ≥ 1

E[mk] = E
[ m∑
j=1

mj
k

]
= O

(
(pb+ (1− p)b′)

m∑
j=1

dj
)

= O
(

(pb+ (1− p)b′)d
)
.

Hence, the total number of arithmetic operations M in K iterations to obtain ε-accurate solution is

E[M ] = E
[ K∑
k=0

mk

]
= O(bd) + E

[ K∑
k=1

mk

]
= O

(
bd+K(pb+ (1− p)b′)d

)
.

Since b = n, b′ =
√
b and p = b′

b+b′ , then we have

K(pb+ (1− p)b′) =
8c0(F (x0)− F (x∗))

ε2(−1 +
√

1 + 4c0)

2bb′

b+ b′
≤ 2(

√
1 + 4c0 + 1)(F (x0)− F (x∗))

ε2
2b′.

Note that

c0 =
2(1− p)L̂

pb′
+ L̂+ 2

(p(n− b)
b(n− 1)

+
1− p
b′

) L̃
p

= L̂+
1− p
pb′

(2L̂+ 2L̃) = L̂+
b

b′2
(2L̂+ 2L̃) = 3L̂+ 2L̃ = O(L̂+ L̃),

so we obtain

K(pb+ (1− p)b′) ≤ 2(
√

1 + 4c0 + 1)(F (x0)− F (x∗))

ε2
2b′ = O

( (F (x0)− F (x∗))

√
n(L̂+ L̃)

ε2

)
,

thus completing the proof.

Corollary 4.6 (Infinite-sum). Choosing b = d 12σ2

ε2 e, b
′ =
√
b, and p = b′

b+b′ , and setting K = 12∆0

ε2η + 1
2p , we have

E
[
dist2(∂F (x̂K),0)

]
≤ ε2 with O

(
bd+

∆0d
√
b(L̂+L̃)
ε2

)
arithmetic operations, where ∆0 = F (x0)− F (x∗).

Proof. By the chosen parameters and Inequality (15), we have

E
[
dist2(∂F (x̂K),0)

]
≤ 4(F (x0)− F (x∗))

ηK
+

2(1− p)(n− b)σ2

pb(n− 1)K
+

4(n− b)σ2

b(n− 1)
≤ ε2

3
+

4σ2

b
+

4σ2

b
≤ ε2.

Further, same as in the proof of Corollary 4.5, we have that the total number of arithmetic operations M in K iterations to
obtain an ε-accurate solution is

E[M ] = E
[ K∑
k=0

mk

]
= O(bd) + E

[ K∑
k=1

mk

]
= O

(
bd+K(pb+ (1− p)b′)d

)
.
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Since 0 < η ≤ −1+
√

1+4c0
2c0

, we have

K =
12(F (x0)− F (x∗))

ε2η
+

1

2p
=

24c0(F (x0)− F (x∗))

ε2(−1 +
√

1 + 4c0)
+
b+ b′

2b′
=

6(
√

4c0 + 1 + 1)(F (x0)− F (x∗))

ε2
+
b+ b′

2b′
,

which leads to

K(pb+(1−p)b′) =
(6(
√

4c0 + 1 + 1)(F (x0)− F (x∗))

ε2
+
b+ b′

2b′

) 2bb′

b+ b′
≤ b+ 12b′(

√
1 + 4c0 + 1)(F (x0)− F (x∗))

ε2
.

Since p(n−b)
b(n−1) ≤

p
b = b′

b(b+b′) ≤
b

b′(b+b′) = 1−p
b′ with b′ =

√
b and p = b′

b+b′ , we have

c0 =
2(1− p)L̂

pb′
+ L̂+ 2

(p(n− b)
b(n− 1)

+
1− p
b′

) L̃
p
≤ L̂+

1− p
pb′

(2L̂+ 4L̃) ≤ L̂+
b

b′2
(2L̂+ 4L̃) = 3L̂+ 4L̃ = O(L̂+ L̃).

Hence, we obtain

K(pb+ (1− p)b′) ≤ b+
12b′(

√
1 + 4c0 + 1)(F (x0)− F (x∗))

ε2
= O

(
b+

(F (x0)− F (x∗))

√
b(L̂+ L̃)

ε2

)
,

thus completing the proof.

Corollary 4.7. Suppose that F further satisfies Assumption 2.4, then we have for Algorithm 2,

E[F (xK)− F (x∗)]

≤
(
1 +

ηµ

2

)−K(
∆0 +

σ2η(1− p)(n− b)
pb(n− 1)

)
+

4(n− b)σ2

bµ(n− 1)
,

where 0 < η ≤ min
{

p
µ(1−p) ,

−1+
√

1+4c0
2c0

}
with c0 = L̂+ 4L̂

pb′ + 4L̃
p

(p(n−b)
b(n−1) + 1−p

b′

)
, and ∆0 = F (x0)− F (x∗).

Proof. By Lemma 4.3 and Lemma 4.2, we have

F (xk) ≤ F (xk−1)− 1

2

(1

η
− 1− L̂η

)
vk +

η

2
uk −

η

4
sk.

By the PŁ condition,
sk ≥ 2µ(F (x)− F (x∗)),

we obtain (
1 +

ηµ

2

)
(F (xk)− F (x∗)) ≤ F (xk−1)− F (x∗)− 1

2

(1

η
− 1− L̂η

)
vk +

η

2
uk.

Denoting rk = F (xk)−F (x∗) and taking expectation with respect to all randomness on both sides, and adding η
p× (12) in

Lemma 4.1, we obtain(
1 +

ηµ

2

)
E[rk] +

η(2− p)
2p

E[uk] ≤ E[rk−1]−
[1

2

(1

η
− 1− L̂η

)
− 2ηL̃

p

(p(n− b)
b(n− 1)

+
1− p
b′

)]
E[vk]

+
η(1− p)

p
E[uk−1] +

2ηL̂(1− p)
pb′

E[vk−1] +
2η(n− b)σ2

b(n− 1)
.

Note that when 0 < η ≤ p
µ(1−p) , we have η(2−p)

2p ≥
(
1 + ηµ

2

)η(1−p)
p and 1 + ηµ

2 ≤
1

1−p . On the other hand, denote

c0 = L̂+
4L̂

pb′
+

4L̃

p

(p(n− b)
b(n− 1)

+
1− p
b′

)
for simplicity, then if η ≤ −1+

√
1+4c0

2c0
, we have

(
1 +

ηµ

2

)2ηL̂(1− p)
pb′

≤ 2ηL̂

pb′
≤ 1

2

(1

η
− 1− L̂η

)
− 2ηL̃

p

(p(n− b)
b(n− 1)

+
1− p
b′

)
.
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Hence, when choosing the stepsize η such that

0 < η ≤ min
{ p

µ(1− p)
,
−1 +

√
1 + 4c0

2c0

}
,

we have (
1 +

ηµ

2

)[
E[rk] +

η(1− p)
p

E[uk] +
2ηL̂(1− p)

pb′
E[vk]

]
≤
(
1 +

ηµ

2

)
E[rk] +

η(2− p)
2p

E[uk] +
[1

2

(1

η
− 1− L̂η

)
− 2ηL̃

p

(p(n− b)
b(n− 1)

+
1− p
b′

)]
E[vk]

≤ E[rk−1] +
η(1− p)

p
E[uk−1] +

2ηL̂(1− p)
pb′

E[vk−1] +
2η(n− b)σ2

b(n− 1)
.

Let Φk = rk + η(1−p)
p uk + 2ηL̂(1−p)

pb′ vk, then we obtain

E[Φk] ≤
(
1 +

ηµ

2

)−1E[Φk−1] +
(
1 +

ηµ

2

)−1 2η(n− b)σ2

b(n− 1)
.

Telescoping from 1 to K, we have

E[ΦK ] ≤
(
1 +

ηµ

2

)−KE[Φ0] +
4(n− b)σ2

bµ(n− 1)
.

As uK ≥ 0, vK ≥ 0, E[u0] = E
[∑m

j=1 ‖∇jf(x−1,j)− gj−1‖2Λ−1
j

]
≤ σ2(n−b)

b(n−1) and v0 = ‖x0 − x−1‖2Λ = 0, we have

E[F (xK)− F (x∗)] ≤
(
1 +

ηµ

2

)−K
(F (x0)− F (x∗)) +

(
1 +

ηµ

2

)−K σ2η(1− p)(n− b)
pb(n− 1)

+
4(n− b)σ2

bµ(n− 1)
, (40)

thus completing the proof.

Corollary 4.8 (Finite-sum). Choosing b = n, b′ =
√
n, and p = b′

b+b′ , and setting K = (1 + 2
ηµ ) log(∆0

ε ), we have

E[F (xK)− F (x∗)] ≤ ε with O
(
nd+

(√n(L̂+L̃)
µ + n

)
d log(∆0

ε )
)

arithmetic operations, where ∆0 = F (x0)− F (x∗).

Proof. By the chosen parameters and Inequality (40), we have

E[F (xK)− F (x∗)] ≤
(
1 +

ηµ

2

)−K
(F (x0)− F (x∗)) +

(
1 +

ηµ

2

)−K σ2η(1− p)(n− b)
pb(n− 1)

+
4(n− b)σ2

bµ(n− 1)

≤ exp
(
− nµ

2 + ηµ
K
)

(F (x0)− F (x∗))

≤ ε.

Proceeding same as in the proof for Corollary 4.5, we have the total number of arithmetic operations M in K iterations to
obtain an ε-accurate solution is

E[M ] = E
[ K∑
k=0

mk

]
= O(bd) + E

[ K∑
k=1

mk

]
= O

(
bd+K(pb+ (1− p)b′)d

)
.

Since 0 < η ≤ min
{

p
µ(1−p) ,

−1+
√

1+4c0
2c0

}
, we can bound K by

K =
(

1 +
2

ηµ

)
log
(F (x0)− F (x∗)

ε

)
≤
(

1 +

√
4c0 + 1 + 1

µ
+

2(1− p)
p

)
log
(F (x0)− F (x∗)

ε

)
,
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which leads to

K(pb+ (1− p)b′) ≤
(

1 +

√
4c0 + 1 + 1

µ
+

2(1− p)
p

)
log
(F (x0)− F (x∗)

ε

) 2bb′

b+ b′

≤
(

2b′ + 2b′
√

4c0 + 1 + 1

µ
+ 4b

)
log
(F (x0)− F (x∗)

ε

)
.

Notice that

c0 = L̂+
4L̂

pb′
+

4L̃

p

(p(n− b)
b(n− 1)

+
1− p
b′

)
≤ L̂+

4

pb′
(L̂+ L̃) = L̂+

4(b+ b′)

b′2
(L̂+ L̃) ≤ L̂+ 8(L̂+ L̃) = O(L̂+ L̃),

so we obtain

K(pb+(1−p)b′) ≤
(

2b′+2b′
√

4c0 + 1 + 1

µ
+4b

)
log
(F (x0)− F (x∗)

ε

)
= O

((√n(L̂+ L̃)

µ
+n
)

log
(F (x0)− F (x∗)

ε

))
,

thus completing the proof.

Corollary 4.9 (Infinite-sum). Choosing b = d 12σ2

µε e, b
′ =
√
b, and p = b′

b+b′ , and setting K = (1 + 2
ηµ ) log( 3∆0

ε ), we have

E[F (xK)− F (x∗)] ≤ ε with O
(
bd+

(√b(L̂+L̃)
µ + b

)
d log(∆0

ε )
)

arithmetic operations, where ∆0 = F (x0)− F (x∗).

Proof. By the chosen parameters and Inequality (40), we have

E[F (xK)− F (x∗)] ≤
(
1 +

ηµ

2

)−K
(F (x0)− F (x∗)) +

(
1 +

ηµ

2

)−K σ2η(1− p)(n− b)
pb(n− 1)

+
4(n− b)σ2

bµ(n− 1)

≤ exp
(
− nµ

2 + ηµ
K
)

(F (x0)− F (x∗)) + exp
(
− nµ

2 + ηµ
K
)σ2η(1− p)(n− b)

pb(n− 1)
+

4(n− b)σ2

bµ(n− 1)

(i)

≤ ε

3
+
ε

3
+
ε

3
= ε,

where for (i) we use η ≤ p
µ(1−p) , thus

exp
(
− nµ

2 + ηµ
K
)σ2η(1− p)(n− b)

pb(n− 1)
≤ σ2η(1− p)(n− b)

pb(n− 1)
≤ η(1− p)µε

12p
≤ ε

12
.

With the same process as in the proof for Corollary 4.5, we have the total number of arithmetic operations M in K iterations
to obtain an ε-accurate solution is

E[M ] = E
[ K∑
k=0

mk

]
= O(bd) + E

[ K∑
k=1

mk

]
= O

(
bd+K(pb+ (1− p)b′)d

)
.

Since 0 < η ≤ min
{

p
µ(1−p) ,

−1+
√

1+4c0
2c0

}
, we can bound K by

K =
(

1 +
2

ηµ

)
log
(3(F (x0)− F (x∗))

ε

)
≤
(

1 +

√
4c0 + 1 + 1

µ
+

2(1− p)
p

)
log
(3(F (x0)− F (x∗))

ε

)
,

which leads to

K(pb+ (1− p)b′) ≤
(

1 +

√
4c0 + 1 + 1

µ
+

2(1− p)
p

)
log
(3(F (x0)− F (x∗))

ε

) 2bb′

b+ b′

≤
(

2b′ + 2b′
√

4c0 + 1 + 1

µ
+ 4b

)
log
(3(F (x0)− F (x∗))

ε

)
.
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Notice that p(n−b)b(n−1) ≤
p
b = b′

b(b+b′) ≤
b

b′(b+b′) = 1−p
b′ , and thus

c0 = L̂+
4L̂

pb′
+

4L̃

p

(p(n− b)
b(n− 1)

+
1− p
b′

)
≤ L̂+

4

pb′
(L̂+ 2L̃) = L̂+

4(b+ b′)

b′2
(L̂+ 2L̃) = L̂+ 8(L̂+ 2L̃) = O(L̂+ L̃).

Hence, we obtain

K(pb+ (1− p)b′) ≤
(

2b′ + 2b′
√

4c0 + 1 + 1

µ
+ 4b

)
log
(3(F (x0)− F (x∗))

ε

)
= O

((√b(L̂+ L̃)

µ
+ b
)

log
(∆0

ε

))
,

thus completing the proof.

D. Additional Experiments and Discussion
We first present the LeNet architectures used in our experiments for MNIST and CIFAR-10 datasets as in Fig. 2.

Figure 2. LeNet architectures used for MNIST and CIFAR-10 datasets.

We then re-plot the train loss and test accuracy in Fig. 1 against wall-clock time based on the average runtime per epoch of
each algorithm in Table 1, as is shown in Fig. 3 below. We observe that (i) SCCD still converges faster to solutions with
better generalization, in comparison with SGD and PAGE (whether spectral normalized or not); (ii) VRO-CCD converges
slower in terms of wall-clock time, which is due to that cyclic updates become major computation bottleneck using small
batch size. Some other causes can be sampling p and additional batch operations to form B and B′ in each iteration for
PAGE estimator.
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(a) Train Loss (b) Test Accuracy

(c) Train Loss (SN) (d) Test Accuracy (SN)

Figure 3. Comparison of SGD, SCCD, PAGE and VRO-CCD in wall-clock time on training LeNet on CIFAR-10.

We also compare the empirical performance of VR-CCD and VRO-CCD on the MNIST and CIFAR-10 datasets in Fig. 4,
in one run and without spectral normalization. We set batch size b = 64 for the MNIST dataset and b = 256 for the
CIFAR-10 dataset, and run for 200 epochs. We still use the cosine learning rate scheduler, which is tuned for VR-CCD and
VRO-CCD separately. We can see that (i) VR-CCD and VRO-CCD exhibits similar performance on the MNIST dataset; (ii)
the empirical convergence of VR-CCD is slower than VRO-CCD’s on the CIFAR-10 dataset, due to the smaller learning rate
used for VR-CCD. We remark that separate sampling for each block may lead to numerical instability of the algorithm, thus
requiring smaller learning rate for more complicated problems. Also, separate sampling for each block increases the sample
complexity and introduces additional computational cost.

Finally, we provide a further comparison between SCCD, VRO-CCD, SGD and PAGE algorithms with the same learning
rate to illustrate the efficacy of variance reduction methods, motivated by the experimental setup in Li et al. (2021). We use
the initial learning rate ηini = 0.01 in cosine scheduler for all the algorithms except PAGE without spectral normalization
which only admits ηini = 0.005 most. We can see that SCCD and VRO-CCD demonstrate better performance than SGD and
PAGE do, respectively. Here SCCD stagnates earlier than SGD, because the learning rate with cosine scheduler is too small
for each block in SCCD to make progress.
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(a) Train Loss (MNIST) (b) Test Accuracy (MNIST)

(c) Train Loss (CIFAR-10) (d) Test Accuracy (CIFAR-10)

Figure 4. Comparison of VR-CCD and VRO-CCD on training LeNet on MNIST and CIFAR-10.

(a) Train Loss (b) Test Accuracy

(c) Train Loss (SN) (d) Test Accuracy (SN)

Figure 5. Comparison of SGD, SCCD, PAGE and VRO-CCD with same learning rate on training LeNet on CIFAR-10.
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