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Abstract
We study the problem of learning a single neu-
ron with respect to the L2

2-loss in the presence
of adversarial label noise. We give an efficient
algorithm that, for a broad family of activations
including ReLUs, approximates the optimal L2

2-
error within a constant factor. Notably, our algo-
rithm succeeds under much milder distributional
assumptions compared to prior work. The key in-
gredient enabling our results is a novel connection
to local error bounds from optimization theory.

1. Introduction
We study the following learning task: Given labeled ex-
amples (x, y) ∈ Rd × R from an unknown distribution D,
output the best-fitting ReLU (or other nonlinear function)
with respect to square loss. This is a fundamental problem
in machine learning that has been extensively studied in a
number of interrelated contexts over the past two decades,
including learning GLMs and neural networks. More specif-
ically, letting σ : R 7→ R denote a nonlinear activation, e.g.,
σ(t) = ReLU(t) = max{0, t}, the (population) square loss
of a vector w is defined as the L2

2 loss of the hypothesis
σ(w ·x), i.e., LD,σ

2 (w) ≜ E(x,y)∼D[(σ(w ·x)− y)2]. Our
learning problem is then formally defined as follows.

Problem 1.1 (Robustly Learning a Single Neuron). Fix
ϵ > 0,W > 0, and a class of distributions G on Rd.
Let σ : R 7→ R be an activation and D a distribution
on labeled examples (x, y) ∈ Rd × R such that its x-
marginal Dx belongs to G. For some C ≥ 1, a C-
approximate proper learner is given ϵ,W and i.i.d. samples
from D and outputs ŵ ∈ Rd such that with high proba-
bility it holds LD,σ

2 (ŵ) ≤ C OPT + ϵ, where OPT ≜
min∥w∥2≤W LD,σ

2 (w) is the minimum attainable square
loss. We use W∗ ≜ argmin∥w∥2≤W L

D,σ
2 (w) to denote

the set of square loss minimizers.
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Problem 1.1 does not make realizability assumptions on
the distribution D. The labels are allowed to be arbitrary
and we are interested in the best-fit function with respect to
the L2

2 error. This corresponds to the (distribution-specific)
agnostic PAC learning model (Haussler, 1992; Kearns et al.,
1994). In this paper, we focus on developing constant factor
approximate learners, corresponding to the case that C is a
universal constant greater than one.

The special case of Problem 1.1 where the labels are consis-
tent with a function inH = {σ(w · x) : ∥w∥2 ≤W} was
studied in early work (Kalai & Sastry, 2009; Kakade et al.,
2011). These papers gave efficient methods that succeed
for any distribution on the unit ball and any monotone Lips-
chitz activation1. More recently, (Yehudai & Shamir, 2020)
showed that gradient descent on the nonconvex L2

2 loss suc-
ceeds under a natural class of distributions (again in the
realizable case) but fails in general. In other related work,
(Soltanolkotabi, 2017) analyzed the case of ReLUs in the re-
alizable setting under the Gaussian distribution and showed
that gradient descent efficiently achieves exact recovery.

The agnostic setting is computationally challenging. First,
even for the case that the marginal distribution on the ex-
amples is Gaussian, there is strong evidence that any algo-
rithm achieving error OPT + ϵ (corresponding to C = 1
in Problem 1.1) requires dpoly(1/ϵ) time (Goel et al., 2019;
Diakonikolas et al., 2020b; Goel et al., 2020; Diakonikolas
et al., 2021). Second, even if we relax our goal to constant
factor approximations, some distributional assumptions are
required: known NP-hardness results rule out proper learn-
ers achieving any constant factor (Sı́ma, 2002; Manurangsi
& Reichman, 2018). More recent work (Diakonikolas et al.,
2022a) has shown that no polynomial time constant factor
improper learner exists (under cryptographic assumptions),
even if the distribution is bounded. These intractability re-
sults motivate the design of constant factor approximate
learners — corresponding to C > 1 and C = O(1) — that
succeed under as mild distributional assumptions as possi-
ble.

Prior algorithmic work in the robust setting can be classi-
fied in two categories: A line of work (Frei et al., 2020;
Diakonikolas et al., 2022b; Awasthi et al., 2022) analyzes

1The results in these works can tolerate zero mean random
noise, but do not apply to the adversarial noise setting.
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gradient descent-based algorithms on the natural nonconvex
L2
2 objective (possibly with regularization). These works

show that under certain distributional assumptions gradient
descent avoids poor local minima and converges to a good
solution. Specifically, (Diakonikolas et al., 2022b) estab-
lished that gradient descent efficiently converges to a con-
stant factor approximation for a family of well-behaved con-
tinuous distributions (including logconcave distributions).
The second line of work (Diakonikolas et al., 2020a) pro-
ceeds by convexifying the problem, namely constructing
a convex surrogate whose optimal solution gives a good
solution to the initial nonconvex problem. This convex sur-
rogate was analyzed in (Diakonikolas et al., 2020a) for the
case of ReLUs and showed that it yields a constant factor
approximation for logconcave distributions.

The starting point of our investigation is the observation
that all previous algorithmic works for Problem 1.1 impose
fairly stringent distributional assumptions. These works
require all of the following properties from the marginal
distribution on examples: (i) anti-concentration, (ii) con-
centration, and (iii) anti-anti-concentration. Assumption (i)
posits that that every one-dimensional (or, in some cases,
constant-dimensional) projection of the points should not
put too much mass in any interval (or “rectangle”). Property
(ii) means that every one-dimensional projection should be
strongly concentrated around its mean; specifically, prior
work required at least exponential concentration. Finally,
(iii) requires that the density of every low-dimensional pro-
jection is bounded below by a positive constant.

While some concentration appears necessary, prior work
required sub-exponential concentration, which rules out the
important case of heavy-tailed data. The anticoncentration
assumption (i) from prior work rules out possibly lower-
dimensional data, while the anti-anti-concentration rules out
discrete distributions, which naturally occur in practice.

The preceding discussion raises the following question:

Under what distributional assumptions can we obtain
efficient constant factor learners for Problem 1.1?

In this paper, we give such an algorithm that succeeds under
minimal distributional assumptions. Roughly speaking, our
novel assumptions require anti-concentration only in the
direction of the optimal solution (aka a margin assumption)
and allow for heavy-tailed data. Moreover, by removing as-
sumption (iii) altogether, we obtain the first positive results
for structured discrete distributions (including, e.g., discrete
Gaussians and the uniform distribution over the cube).

In addition to its generality, our algorithm is simple — a
mini-batch SGD — and achieves significantly better sample
complexity for distributions covered in prior work.

1.1. Overview of Results

We provide a simplified version of our distributional assump-
tions followed by our main result for ReLU activations.

Distributional Assumptions. We make only the following
two distributional assumptions.

Margin-like Condition: There exists w∗ ∈ W∗ and
constants γ, λ > 0 such that

E
x∼Dx

[
xx⊤1 {w∗ · x ≥ γ∥w∗∥2}

]
⪰ λI . (1)

Concentration: There exists non-increasing h : R+ →
R+ satisfying h(r) = O(r−5) such that for any unit vec-
tor u and any r ≥ 1, it holds Prx∼Dx [|u ·x| ≥ r] ≤ h(r).

Before we state our algorithmic result, some comments are
in order. Condition (1) is an anti-concentration condition,
reminiscent of the classical margin condition for halfspaces.
In comparison with prior work, our condition requires anti-
concentration only in the direction of an optimal solution —
as opposed to every direction. Our second condition requires
that every univariate projection exhibits some concentration.
Our concentration function h can even be inverse polyno-
mial, allowing for heavy-tailed data. In contrast, prior work
only considered sub-exponential tails. As we will see, the
function h affects the sample complexity of our algorithm.

As we show in Section E of the supplementary material,
our distributional assumptions subsume all previous such
assumptions considered in the literature and additionally
include a range of distributions (including heavy-tailed and
discrete distributions) not handled in prior work.

A simplified version of our main result for the special case
of ReLU activations is as follows (see Theorem 3.3 for a
detailed more general statement):
Theorem 1.2 (Main Algorithmic Result, Informal). Let
W = O(1), G be a class of marginal distributions satisfying
the above distributinal assumptions, and σ be the ReLU
activation. There exists a sample-efficient and sample-linear
time algorithm that outputs a hypothesis ŵ such that, with
high probability, LD,σ

2 (ŵ) = O(OPT) + ϵ. In particular,
if the tail function h is subexponential, namely h(r) =
e−Ω(r), then the algorithm has sample complexity n =
Õ(d polylog(1/ϵ)). For heavy-tailed distributions, namely
for h(r) = O(r−k) for some k > 4, the algorithm has
sample complexity n = Õ(d (1/ϵ)2/(k−4)). The algorithm’s
runtime is always O(nd).

Our algorithm is extremely simple: it amounts to mini-batch
SGD on a natural convex surrogate of the problem. As we
will explain subsequently, this convex surrogate has been
studied before in closely related — yet more restricted —
contexts. Our main technical contribution lies in the analy-
sis, which hinges on a new connection to local error bounds
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from the theory of optimization. This connection is crucial
for us in two ways: First, we leverage it to obtain the first
constant-factor approximate learners under much weaker
distributional assumptions. Second, even for distributions
covered by prior work, the connection allows us to obtain
significantly more efficient algorithms.

Finally, we note that our algorithmic result applies to a broad
family of monotone activations (Definition 2.1 and Assump-
tion 2.2), and can be adapted to handle non-monotone ac-
tivations — including GeLU (Hendrycks & Gimpel, 2016)
and Swish (Ramachandran et al., 2017) — see Appendix F.

1.2. Technical Contributions

The main algorithmic difficulty in solving Problem 1.1 is
its non-convexity. Indeed, the L2

2 loss is non-convex for
nonlinear activations, even without noise. Of course, the
presence of adversarial label noise only makes the problem
even more challenging. At a high-level, our approach is
to convexify the problem via an appropriate convex surro-
gate function (see, e.g., (Bartlett et al., 2006)). In more
detail, given a distribution D on labeled examples (x, y)
and an activation σ, the surrogate LD,σ

sur (w) is defined by
LD,σ
sur (w) = E(x,y)∼D

[∫w·x
0

(σ(r)− y) dr
]
.

This function is not new. It was first defined in (Auer et al.,
1995) and subsequently (implicitly) used in (Kalai & Sastry,
2009; Kakade et al., 2011) for learning GLMs with zero
mean noise. More recently, (Diakonikolas et al., 2020a) used
this convex surrogate for robustly learning ReLUs under
logconcave distributions. Roughly speaking, they showed
that – under the logconcavity assumption – a near-optimal
solution to the (convex) optimization problem of minimizing
LD,σ
sur (w) yields a constant factor approximate learner for

Problem 1.1 (for the special case of ReLU activations).

Very roughly speaking, our high-level approach is similar to
that of (Diakonikolas et al., 2020a). The main novelty of our
contributions lies in two aspects: (1) The generality of the
distributional assumptions under which we obtain a constant-
factor approximation, and (2) the sample and computational
complexities of the associated algorithm. Specifically, our
analysis yields a constant-factor approximate learner under
a vastly more general class of distributions2 as compared to
prior work, and extends to a much broader family of activa-
tions beyond ReLUs. Moreover, even if restrict ourselves to,
e.g., logconcave distributions, the complexity of our algo-
rithm is exponentially smaller as a function of ϵ — namely,
polylog(1/ϵ) as opposed to Ω(1/ϵ2). For a more detailed
comparison, see Appendix B.

The key technical ingredient enabling our results is the no-
tion of sharpness (local error bound) from optimization

2Recall that without distributional assumptions obtaining any
constant-factor approximate learner is NP-hard.

theory, which we prove holds for our stochastic surrogate
problem. Before explaining how this comes up in our setting,
we provide an overview from an optimization perspective.

Local Error Bounds and Sharpness. Broadly speaking,
given an optimization problem (P) and a “residual” function
r that is a measure of error of a candidate solution w to
(P), an error bound certifies that a small residual translates
into closeness between the candidate solution and the set of
“test” (typically optimal) solutionsW∗ to (P). In particular,
an error bound certifies an inequality of the form

r(w) ≥ (µ/ν) dist(w,W∗)ν

for some parameters µ, ν > 0, where dist(w,W∗) =
minw∗∈W∗ ∥w−w∗∥2 (see, e.g., the survey (Pang, 1997)).
When this bound holds only locally in some neighborhood
ofW∗, it is referred to as a local error bound.

Local error bounds are well-studied within optimization
theory, with the earliest result in this area being attributed
to (Hoffman, 1952), which provided local error bounds for
systems of linear inequalities. The work of (Hoffman, 1952)
was extended to many other optimization problems; see,
e.g., Chapter 6 in (Facchinei & Pang, 2003) for an overview
of classical results and (Bolte et al., 2017; Karimi et al.,
2016; Roulet & d’Aspremont, 2017; Liu et al., 2022) and
references therein for a more cotemporary overview. One of
the most surprising early results in this area states that for
minimizing a convex function f , an inequality of the form

f(w)−min
u

f(u) ≥ (µ/ν) dist(w,W∗)ν (2)

holds generically whenever f is a real analytic or subana-
lytic function (Łojasiewicz, 1963; 1993). The main down-
side of this result is that the parameters µ, ν are usually im-
possible to evaluate and, moreover, even when it is known
that, e.g., ν = 2, the parameter µ can be exponentially
small in the dimension. Furthermore, local error bounds
have primarily been studied in the context of deterministic
optimization problems, with results for stochastic problems
being very rare (Chen & Fukushima, 2005; Liu et al., 2018).

Perhaps the most surprising aspect of our results is that we
show that the (stochastic) convex surrogate minimization
problem not only satisfies a local error bound (a relaxation
of (2) and a much weaker property than strong convexity;
see Appendix A) with ν = 2, but we are also able to charac-
terize the parameter µ based on the assumptions about the
activation function and the probability distribution over the
data. More importantly, for standard activation functions
such as ReLU, Swish, and GeLU and for broad classes of
distributions (including heavy-tailed and discrete ones), we
prove that µ is an absolute constant. This is precisely what
leads to the error and complexity results achieved in our
work.
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Robustly Learning a Single Neuron via Sharpness. Our
technical approach can be broken down into the following
main ideas. As a surrogate for minimizing the square loss,
we first consider the noise-free convex surrogate, defined
by L̄D,σ

sur (w;w∗) = Ex∼Dx

[∫w·x
0

(σ(r)− σ(w∗ · x)) dr
]
,

where w∗ ∈ W∗ is a square-loss minimizer that satisfies our
margin assumption. We keep this w∗ fixed throughout the
analysis and simply write L̄D,σ

sur (w) instead of L̄D,σ
sur (w;w∗).

Compared to the convex surrogate LD,σ
sur (w) introduced

earlier in the introduction, the noise-free convex surrogate
L̄D,σ
sur (w;w∗) replaces the noisy labels y with σ(w∗ · x).

Clearly, L̄D,σ
sur (w;w∗) is a function that cannot be directly

optimized, as we lack the knowledge of w∗. On the other
hand, the noise-free surrogate relates more directly to the
square loss minimization: we prove (Lemma 2.5) that our
distributional assumptions suffice for the noise-free surro-
gate to be sharp on a ball of radius 2∥w∗∥2, B(2∥w∗∥2);
this structural result in turn leads to the conclusion that
w∗ is its unique minimizer. Hence, we can conclude that
minimizing the noise-free surrogate L̄D,σ

sur (w;w∗) leads to
minimizing the L2

2 loss. Of course, we cannot directly mini-
mize L̄D,σ

sur (w;w∗), as we do not know w∗.

Had there been no adversarial label noise, we could stop at
this conclusion, as there would be no difference between
LD,σ
sur (w) and L̄D,σ

sur (w;w∗) and we could minimize the
L2
2 error to any desired accuracy by minimizing LD,σ

sur (w).
This difference between LD,σ

sur (w) and L̄D,σ
sur (w;w∗) is pre-

cisely what causes the L2
2 error to only be brought down

to O(OPT) + ϵ, where the constant in the big-Oh notation
depends on the sharpness parameter µ. On the technical
side, we prove (Proposition 3.2) that LD,σ

sur (w) is also sharp
w.r.t. the same w∗ as L̄D,σ

sur (w;w∗) and with the sharpness
parameter µ of the same order, but only on a nonconvex sub-
set of the ball B(2∥w∗∥2), which excludes a neighborhood
of w∗. This turns out to be sufficient to relate minimizing
LD,σ
sur (w) to minimizing the L2

2 loss (Theorem 3.1).

What we argued so far is sufficient for ensuring that min-
imizing the surrogate loss LD,σ

sur (w) leads to the claimed
bound on the L2

2 loss. However, it is not sufficient for
obtaining the claimed sample and computational complex-
ities, and there are additional technical hurdles that can
only be handled using the specific structural properties of
our resulting optimization problem. In particular, using
solely smoothness and sharpness of the objective (even if
the sharpness held on the entire region over which we are
optimizing), would only lead to complexities scaling with
1
ϵ , using standard results from stochastic convex optimiza-
tion. However, the complexity that we get is exponentially
better, scaling with polylog( 1ϵ ). This is enabled by the re-
fined variance bound for the stochastic gradient estimate
(see Corollary D.11), which, unlike in standard stochastic
optimization settings (where we get a fixed upper bound),

scales with OPT+ ∥w −w∗∥22.3 This property enables us
to construct high-accuracy gradient estimates using mini-
batching, which further leads to the improved linear rates
within the (nonconvex) region where the surrogate loss is
sharp. To complete the argument, we further show that the
excluded region on which the sharpness does not hold does
not negatively impact the overall complexity, as within it
the target approximation guarantee for the L2

2 loss holds.

1.3. Notation

For n ∈ Z+, we denote by [n] the set {1, . . . , n}. We use
lowercase boldface letters for vectors and uppercase bold
letters for matrices. For x ∈ Rd and i ∈ [d], xi denotes the
ith coordinate of x, and ∥x∥2 := (

∑d
i=1 xi

2)1/2 denotes
the ℓ2-norm of x. We use x ·y for the standard inner product
of x,y ∈ Rd and θ(x,y) for the angle between x,y. We
use 1E for the characteristic function of the set/event E , i.e.,
1E(x) = 1 if x ∈ E and 1E(x) = 0 if x /∈ E . We denote
by B(r) = {u : ∥u∥2 ≤ r} the ℓ2-ball of radius r. We
use the standard asymptotic notation Õ(·) and Ω̃(·) to omit
polylogarithmic factors in the argument. We write E ≳ F
for two nonnegative expressions E and F to denote that
there exists some universal constant c > 0 (independent
of the variables or parameters on which E and F depend)
such that E ≥ c F . We use EX∼D[X] for the expectation
of random variable X according to the distribution D and
Pr [E ] for the probability of event E . For simplicity of
exposition, we may omit the distribution when it is clear
from the context. For (x, y) distributed according to D, we
denote by Dx the marginal distribution of x.

2. Landscape of Noise-Free Surrogate
We start by defining the class of activations and the distri-
butional assumptions under which our results apply. We
then establish our first structural result, showing that these
conditions suffice for sharpness of the noise-free surrogate.

2.1. Activations and Distributional Assumptions

The main assumptions used throughout this paper to prove
sharpness results are summarized below.

Definition 2.1 (Monotonic Unbounded Activations, (Di-
akonikolas et al., 2022b)). Let σ : R 7→ R be non-
decreasing and let α, β > 0. We say that σ is (monotonic)
(α, β)-unbounded if (i) σ is α-Lipschitz; and (ii) σ′(t) ≥ β

3Similar variance bound assumptions have been made in the
more recent literature on stochastic optimization; see, e.g., As-
sumption 4.3(c) in (Bottou et al., 2018). We note, however, that
our guarantees hold with high probability (compared to the more
common expectation guarantees) and that the bulk of of our tech-
nical contribution lies in proving that such a variance bound holds,
rather than in analyzing SGD under such an assumpton.
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for all t > 0.

The above class contains a range of popular activations,
including the ReLU (which is (1, 1)-unbounded), and the
Leaky ReLU with parameter 0 ≤ λ ≤ 1

2 , i.e., σ(t) =
max{λt, (1− λ)t} (which is is (1− λ, 1− λ)-unbounded).

Our results apply for the following class of activations.

Assumption 2.2 (Controlled Activation). The activation
function σ : R→ R is (α, β)-unbounded, for some positive
parameters α ≥ 1, β ∈ (0, 1), and it holds that σ(0) = 0.

The assumption on the activation is important both for the
convergence analysis of our algorithm and for proving the
sharpness property of the surrogate loss.

We can now state our distributional assumptions.

Assumption 2.3 (Margin). There exists w∗ ∈
W∗ and parameters γ, λ ∈ (0, 1] such that
Ex∼Dx

[
xx⊤1 {w∗ · x ≥ γ∥w∗∥2}

]
⪰ λI.

We note that in order to obtain a constant-factor approximate
learner, the parameters γ and λ in Assumption 2.3 should
be dimension-independent constants.

Assumption 2.4 (Concentration). There exists a non-
increasing h : R+ → R+ satisfying h(r) ≤ Br−(4+ρ) for
some parameters B ≥ 1 and 1 ≥ ρ > 0, such that for any
u ∈ B(1) and any r ≥ 1, it holds Pr[|u · x| ≥ r] ≤ h(r).

The concentration property enables us to control the mo-
ments of |u · x|, playing an important role when we bound
the variance of the gradient of the empirical surrogate loss.

2.2. Key Assumptions Suffice for Sharpness

We now prove that Assumptions 2.2–2.4 suffice to guar-
antee that the noise-free surrogate loss is sharp. We pro-
vide a proof sketch under the simplifying assumption that
∥w∗∥2 = 1. The full proof can be found in Appendix C.1.

Lemma 2.5. Suppose that Assumptions 2.2–2.4 hold. Then
the noise-free surrogate loss L̄D,σ

sur is Ω(λ2γβρ/B)-sharp
in the ball B(2∥w∗∥2), i.e., ∀w ∈ B(2∥w∗∥2),

∇L̄D,σ
sur (w) · (w −w∗) ≳ λ2γβρ/B∥w −w∗∥22 .

Proof Sketch of Lemma 2.5. Observe that ∇L̄D,σ
sur (w) =

Ex∼Dx [(σ(w · x)− σ(w∗ · x))x]. Using the fact that σ
is non-decreasing, it holds that ∇L̄D,σ

sur (w) · (w −w∗) =
Ex∼Dx [|σ(w · x) − σ(w∗ · x)||w · x − w∗ · x|]. Denote
Em = {w∗ · x ≥ γ}. Using the fact that every term in-
side the expectation is nonnegative, we can further bound
∇L̄D,σ

sur (w) · (w −w∗) from below by

∇L̄D,σ
sur (w) · (w −w∗) ≥

E
x∼Dx

[|σ(w · x)− σ(w∗ · x)||w · x−w∗ · x|1Em
(x)] .

Since σ is (α, β)-unbounded, we have that σ′(t) ≥ β for
all t ∈ (0,∞). By the mean value theorem, we can show
that for t2 ≥ t1 ≥ 0, we have |σ(t1)− σ(t2)| ≥ β|t1 − t2|.
Additionally, if t1 ≥ 0 and t2 ≤ 0, then |σ(t1)− σ(t2)| ≥
βt1. Therefore, by combining the above, and denoting the
event {x : w · x ≤ 0, w∗ · x ≥ γ} as E0, we get

∇L̄D,σ
sur (w) · (w −w∗)

≥ β E
x∼Dx

[(w · x−w∗ · x)21{w · x > 0, Em(x)}]

+ β E
x∼Dx

[|w∗ · x||w · x−w∗ · x|1E0
(x)]︸ ︷︷ ︸

(Q)

.
(3)

We show that the term (Q) can be bounded
below by a quantity that is proportional to
Ex∼Dx

[
(w · x−w∗ · x)21E0

(x)
]
. To this end, we

establish the following claim.

Claim 2.6. For r0 ≥ 1, define the event E1 = E1(r0) =
{x : −2r0 < w · x ≤ 0, Em(x)}. It holds (Q) ≥
(γ/(3r0))Ex∼Dx

[
(w · x−w∗ · x)21E1(x)

]
.

Proof of Claim 2.6. Since E1 ⊆ E0, it holds that (Q) ≥
Ex∼Dx [|w∗ · x||w · x−w∗ · x|1E1

(x)]. Restricting x on
the event E1, it holds that |w · x| ≤ 2(r0/γ)|w∗ · x|. Thus,

w∗ ·x−w ·x = |w∗ ·x|+ |w ·x| ≤ (1+ 2r0/γ)|w∗ ·x|.

By Assumption 2.3 we have that γ ∈ (0, 1], therefore we
get that |w∗ · x| ≥ γ/(γ + 2r0) ≥ γ/(3r0), since r0 ≥ 1.
Taking the expectation of |w∗ · x||w · x −w∗ · x| with x
restricted on event E1, we obtain

(Q) ≥ E
x∼Dx

[|w∗ · x||w · x−w∗ · x|1E1(x)]

≥ γ/(3r0) E
x∼Dx

[
(w · x−w∗ · x)21E1

(x)
]
,

as desired.

Combining Equation (3) and Claim 2.6, we get that

∇L̄D,σ
sur (w) · (w −w∗) ≥

βγ

3r0
E

x∼Dx

[(w · x−w∗ · x)21{w · x > −2r0, Em(x)}],

(4)

where in the last inequality we used the fact that 1 ≥
γ/(3r0) (since γ ∈ (0, 1] and r0 ≥ 1). To complete the
proof, we need to show that, for an appropriate choice of r0,
the probability of the event {x : w ·x > −2r0, w∗ ·x > γ}
is close to the probability of the event {x : w∗ · x ≥ γ}.
Given such a statement, the lemma follows from Assump-
tion 2.3. Formally, we show the following claim.
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Claim 2.7. Let r0 ≥ 1 such that h(r0) ≤ λ2ρ/(20B).
Then, for all w ∈ B(2∥w∗∥2), we have that

E
x∼Dx

[(w · x−w∗ · x)21{w · x > −2r0, Em(x)}]

≥ (λ/2)∥w∗ −w∥22 .

Since h(r) ≤ B/r4+ρ and h(r) is decreasing, such an r0
exists and we can always take r0 ≥ 1.

Combining Equation (4) and Claim 2.7, we get:

∇L̄D,σ
sur (w) · (w −w∗) ≳

γλβ

r0
∥w −w∗∥22.

To complete the proof of Lemma 2.5, it remains to choose
r0 appropriately. By Claim 2.7, we need to select r0 to
be sufficiently large so that h(r0) ≤ λ2ρ/(20B). By As-
sumption 2.4, we have that h(r) ≤ B/r4+ρ. Thus, we can
choose r0 = 5B/(λρ), by our assumptions.

3. Efficient Constant-Factor Approximation
We now outline our main technical approach, including the
algorithm, its analysis, connections between the L2

2 loss
and the two (noisy and noise-free) surrogates, and the role
of sharpness. For space constraints, this section contains
simplified proofs and proof sketches, while the full technical
details are deferred to Appendix C.

3.1. The Landscape of Surrogate Loss

We start this section by showing that the landscape of surro-
gate loss connects with the error of the true loss.

Theorem 3.1. Let D be a distribution supported on Rd×R
and let σ : R 7→ R be an (α, β)-unbounded activation.
Fix w∗ ∈ W∗ and suppose that Dx satisfies Assump-
tions 2.3 and 2.4 with respect to w∗. Furthermore, let
C > 0 be a sufficiently small absolute constant and let µ̄ =
Cλ2γβρ/B. Then, for any ϵ > 0 and ŵ ∈ B(2∥w∗∥2),
so that LD,σ

sur (ŵ)− infw∈B(2∥w∗∥2) LD,σ
sur (w) ≤ ϵ, it holds

LD,σ
2 (ŵ) ≤ O((αB/(ρµ̄))2)(LD,σ

2 (w∗) + αϵ).

Proof. For this proof, we assume for ease of presentation
that Ex∼Dx

[
xx⊤] ⪯ I and B, ρ, α = 1. Denote K as

the set of ŵ such that ŵ ∈ B(2∥w∗∥2) and LD,σ
sur (ŵ) −

infw∈B(2∥w∗∥2) LD,σ
sur (w) ≤ ϵ.

Next observe that the set of minimizers of the loss LD,σ
sur

inside the ball B(2∥w∗∥2) is convex. Furthermore, the
set B(2∥w∗∥2) is compact. Thus, for any point w′ ∈
B(2∥w∗∥2) that minimizes LD,σ

sur it will either hold that
∥∇LD,σ

sur (w
′)∥2 = 0 or w′ ∈ ∂B(2∥w∗∥2). Let W∗

sur be
the set of minimizers of LD,σ

sur .

We first show that if there exists a minimizer w′ ∈ W∗
sur

such that w′ ∈ ∂B(2∥w∗∥2), then any point w inside the set

B(2∥w∗∥2) gets error proportional to LD,σ
2 (w∗). Observe

for such point w′, by the necessary condition of optimality,

∇LD,σ
sur (w

′) · (w′ −w) ≤ 0 , (5)

for any w ∈ B(2∥w∗∥2). Using Proposition 3.2, we get
that either ∇LD,σ

sur (w
′) · (w′ −w∗) ≥ (µ̄/2)∥w′ −w∗∥22

or w′ ∈ {w : ∥w − w∗∥22 ≤ (20/µ̄2)LD,σ
2 (w∗)}. But

Equation (5) contradicts with ∇LD,σ
sur (w

′) · (w′ −w∗) ≥
(µ̄/2)∥w′−w∗∥22 > 0, since w′ ∈ ∂B(2∥w∗∥2), ∥w′∥2 =
2∥w∗∥2; hence w′ ̸= w∗. So it must be the case that w′ ∈
{w : ∥w −w∗∥22 ≤ (20/µ̄2)LD,σ

2 (w∗)}. Again, we have
that w′ ∈ ∂B(2∥w∗∥2), therefore ∥w′ −w∗∥2 ≥ ∥w∗∥2.
Hence, (20/µ̄2)LD,σ

2 (w∗) ≥ ∥w∗∥22. Therefore, for any
w ∈ B(2∥w∗∥2), we have

LD,σ
2 (w) = E

(x,y)∼D

[
(σ(w · x)− y)2

]
≤ 2LD,σ

2 (w∗) + ∥w −w∗∥22 = O(1/µ̄2)LD,σ
2 (w∗) ,

where we used the fact that Ex∼Dx

[
xx⊤] ⪯ I and that

σ is 1-Lipschitz. Since the inequality above holds for
any w ∈ B(2∥w∗∥2), it will also be true for ŵ ∈ K ⊆
B(2∥w∗∥2). It remains to consider the case where the min-
imizersW∗

sur are strictly inside the B(2∥w∗∥2). Note that
LD,σ
sur (w) is 1-smooth. Therefore, for any ŵ ∈ K it holds
∥∇LD,σ

sur (ŵ)∥22 ≤ 2ϵ. By Proposition 3.2 (stated and proved
below), we get that either ∥ŵ −w∗∥22 ≤ (1/µ̄2)LD,σ

2 (w∗)
or that

√
2ϵ ≥ (µ̄/2)∥ŵ−w∗∥2. Therefore, we obtain that

∥ŵ −w∗∥22 ≤ (1/µ̄2)(LD,σ
2 (w∗) + ϵ).

The proof of Theorem 3.1 required the following proposition
which shows that if the current vector w is sufficiently far
away from the true vector w∗, then the gradient of the
surrogate loss has a large component in the direction of
w −w∗; in other words, the surrogate loss is sharp.

Proposition 3.2. LetD be a distribution supported on Rd×
R and let σ : R 7→ R be an (α, β)-unbounded activation.
Suppose that Dx satisfies Assumptions 2.3 and 2.4 and let
C > 0 be a sufficiently small absolute constant and let
µ̄ = Cλ2γβρ/B. Fix w∗ ∈ W∗ and let S = B(2∥w∗∥2)−
{w : ∥w − w∗∥22 ≤ (20B/(ρµ̄2))LD,σ

2 (w∗)}. Then, the
surrogate loss LD,σ

sur is (µ̄/2)-sharp in S, i.e.,

∇LD,σ
sur (w) · (w −w∗) ≥ (µ̄/2)∥w −w∗∥22, ∀w ∈ S.

Proof. For this proof, we assume for ease of presentation
that Ex∼Dx

[
xx⊤] ⪯ I and κ,B, ρ, α = 1. We show that

∇LD,σ
sur (w) · (w − w∗) is bounded away from zero. We

decompose the gradient into two parts, i.e., ∇LD,σ
sur (w) =

(∇LD,σ
sur (w)−∇LD,σ

sur (w
∗))+∇LD,σ

sur (w
∗). First, we bound

∇LD,σ
sur (w

∗) in the direction w −w∗, which yields

∇LD,σ
sur (w

∗) · (w −w∗) ≥ −
√
LD,σ
2 (w∗)∥w −w∗∥2 ,

6



Robustly Learning a Single Neuron via Sharpness

Algorithm 1 Stochastic Gradient Descent on Surrogate Loss

Input: Iterations: T , sample access from D, batch size
N , step size η, bound M . Initialize: w(0) ← 0.
for t = 1 to T do

Draw N samples {(x(j), y(j))}Nj=1 ∼ D.
For each j ∈ [N ], y(j)← sign(y(j))min(|y(j)|,M).
g(t) ← 1

N

∑N
j=1(σ(w

(t) · x(j))− y(j))x(j).

w(t+1) ← w(t) − ηg(t).
end for
Output: The weight vector w(T ).

where we used the Cauchy-Schwarz inequality and that
Ex∼Dx [xx

⊤] ⪯ I. It remains to bound the remaining
term. Note that (∇LD,σ

sur (w)−∇LD,σ
sur (w

∗)) = ∇L̄D,σ
sur (w).

Using the fact that L̄D,σ
sur (w) is µ̄-sharp for any w ∈ S

from Lemma 2.5, it holds that ∇L̄D,σ
sur (w) · (w − w∗) ≥

µ̄∥w −w∗∥22 . Combining everything together, we get the
claimed result.

3.2. Fast Rates for L2
2 Loss Minimization

In this section, we proceed to show that when the surro-
gate loss is sharp, applying batch Stochastic Gradient De-
scent (SGD) on the empirical surrogate loss obtains a C-
approximate parameter ŵ of the L2

2 loss in linear time. To
be specific, consider the following iteration update

w(t+1) = argmin
w∈B(W )

{
w ·g(t)+(1/(2η))∥w−w(t)∥22

}
, (6)

where η is the step size and g(t) is the empirical gradient of
the surrogate loss, i.e., g(t) = 1

N

∑N
j=1(σ(w

(t) · x(j)) −
y(j))x(j). The algorithm is summarized in Algorithm 1.

We define the helper functions H2 and H4 as follows:
H2(r) ≜ maxu∈B(1) Ex∼Dx

[
(u · x)21{|u · x| ≥ r}

]
and

H4(r) ≜ maxu∈B(1) Ex∼Dx

[
(u · x)41{|u · x| ≥ r}

]
.

Now we state our main theorem.
Theorem 3.3 (Main Algorithmic Result). Fix ϵ,W > 0
and suppose Assumptions 2.2 to 2.4 hold. Let µ :=
µ(λ, γ, β, ρ,B) be a sufficiently small constant multiple
of λ2γβρ/B, and let M = αWH−1

2 (ϵ/(4α2W 2)). Fur-
ther, choose parameter rϵ large enough so that H4(rϵ) is
a sufficiently small constant multiple of ϵ. Then after T =
Θ̃
(
(B2α2/(ρ2µ2)) log (W/ϵ)

)
iterations with batch size

N = Ω(dT (r2ϵ +α2M2)), Algorithm 1 converges to a point
w(T ) such thatLD,σ

2 (w(T )) = O
(
(B2α2/(ρ2µ2))

)
OPT+

ϵ , with probability at least 2/3.

As shown in Theorem 3.1, when we find a vector ŵ that
minimizes the surrogate loss, then this ŵ is itself a C-
approximate solution of Problem 1.1. However, minimizing
the surrogate loss can be expensive in sample and computa-
tional complexity. Proposition 3.2 says that we can achieve

strong-convexity-like rates, as long as we are far away from
a minimizer of the L2

2 loss. Roughly speaking, we show that
at each iteration t, it holds ∥w(t+1) −w∗∥22 ≤ C∥w(t) −
w∗∥22 +OPT, where 0 < C < 1 is some constant depend-
ing on the parameters α, β, µ, ρ, and B. Then ∥w(t)−w∗∥2
contracts fast as long as ∥w(t)−w∗∥22 > (1/(1−C))OPT.
When this condition fails, we have converged to a point that
achieves O(OPT) L2

2 error.

The following lemma states that we can truncate the labels
y to y′ ≤ M , where M is a parameter depending on Dx.
The proof can be found in Appendix D.2.

Lemma 3.4. Let M = αWH−1
2 (ϵ/(4α2W 2)) and

y′ = sign(y)min(|y|,M). Then we have that
E(x,y)∼D

[
(σ(w∗ · x)− y′)2

]
= OPT+ ϵ .

Lemma 3.4 allows us to assume that |y| ≤M .
Proof Sketch of Theorem 3.3. For this sketch, we will as-
sume for ease of notation that B, ρ, α = 1 and that
Ex∼Dx

[
xx⊤] ⪯ I. The blueprint of the proof is to

show that Algorithm 1 minimizes ∥w − w∗∥2 efficiently,
in terms of both the sample complexity and the iteration
complexity. To be specific, we show that at each iteration,
∥w(t+1)−w∗∥22 ≤ (1−C)∥w(t)−w∗∥22+(small error),
where 0 < C < 1. The key technique is to exploit the
sharpness property of the surrogate loss, which we have
already proved in Proposition 3.2.

To this aim, we study the difference of ∥w(t+1)−w∗∥22 and
∥w(t) −w∗∥22. We remind the reader that for convenience
of notation, we denote the empirical gradients as the fol-
lowing g(t) = 1

N

∑N
j=1(σ(w

(t) · x(j))− y(j))x(j),g∗ =
1
N

∑N
j=1(σ(w

∗ · x(j))− y(j))x(j). Moreover, we denote
the noise-free empirical gradient by ḡ(t), i.e., ḡ(t) = g(t) −
g∗. Plugging in the iteration scheme w(t+1) = w(t)−ηg(t)

while expanding the squared norm, we get

∥w(t+1) −w∗∥22
= ∥w(t) −w∗∥22 − 2η∇LD,σ

sur (w
(t)) · (w(t) −w∗)︸ ︷︷ ︸

Q1

−2η(g(t) −∇LD,σ
sur (w

(t))) · (w(t) −w∗) + η2∥g(t)∥22︸ ︷︷ ︸
Q2

.

Observe that we decomposed the right hand side into two
parts, the true contribution of the gradient (Q1) and the
estimation error (Q2). In order to utilize the sharpness
property of surrogate loss at the point w(t), the conditions

w(t) ∈ B(2∥w∗∥2) and

w(t) ∈ {w : ∥w(t) −w∗∥22 ≥ 20/µ̄2OPT} (7)

need to be satisfied. For the first condition, recall that
we initialized w(0) = 0; hence, Equation (7) is valid for
t = 0. By induction, it suffices to show that assuming

7
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w(t) ∈ B(2∥w∗∥2) holds, we have ∥w(t+1) − w∗∥2 ≤
(1−C)∥w(t) −w∗∥2 for some constant 0 < C < 1. Thus,
we assume temporarily that Equation (7) is true at itera-
tion t, and we will show in the remainder of the proof that
∥w(t+1) −w∗∥2 ≤ (1−C)∥w(t) −w∗∥2 until we arrived
at some final iteration T . Then, by induction, the first part of
Equation (7) is satisfied at each step t ≤ T . For the second
condition, note that if it is violated at some iteration T , then
∥w(T ) − w∗∥22 = O(OPT) implying that this would be
the solution we are looking for and the algorithm could be
terminated at T . Therefore, whenever ∥w(t) −w∗∥22 is far
away from OPT, the prerequisites of Proposition 3.2 are
satisfied and LD,σ

sur is sharp.

For the first term (Q1), using that ∇LD,σ
sur (w

(t)) is µ-sharp
by Proposition 3.2, we immediately get a sufficient decrease
at each iteration, i.e., ∥w(t+1) −w∗∥22 ≤ (1− C)∥w(t) −
w∗∥22. Namely, applying Proposition 3.2, we get

(Q1) = ∥w(t) −w∗∥22 − 2η∇LD,σ
sur (w

(t)) · (w(t) −w∗)

≤ (1− 2ηµ)∥w(t) −w∗∥22 ,

where µ = Cλ2γβ for some sufficiently small constant C.

Now it suffices to show that (Q2) can be bounded above by
C ′∥w(t) −w∗∥22, where C ′ is a parameter depending on η
and µ that can be made comparatively small. Formally, we
show the following claim.

Claim 3.5. Suppose η ≤ 1. Fix rϵ ≥ 1 such that H4(rϵ) is
a sufficiently small constant multiple of ϵ. Choosing N to
be a sufficiently large constant multiple of (d/δ)(r2ϵ +M2),
then we have with probability at least 1− δ

(Q2) ≤ ((3/2)ηµ+8η2)∥w(t)−w∗∥22+(8η/µ)(OPT+ϵ) .

Proof. Observe that by the inequality x · y ≤ (µ/2)∥x∥22 +
(1/(2µ))∥y∥22 applied to the inner product (g(t) −
∇LD,σ

sur (w
(t))) · (w(t) −w∗), we get

(Q2) ≤
η

µ
∥g(t) −∇LD,σ

sur (w
(t))∥22 + ηµ∥w(t) −w∗∥22

+ 2η2∥ḡ(t)∥22 + 2η2∥g∗∥22 ,

where µ is the sharpness parameter and we used the defini-
tion that ḡ(t) = g(t) − g∗ in the first inequality.

Note that ∥g(t) − ∇LD,σ
sur (w

(t))∥22 ≤ 2∥ḡ(t) −
∇L̄D,σ

sur (w
(t))∥22 + 2∥g∗ − ∇LD,σ

sur (w
∗)∥22, since we have

L̄D,σ
sur (w

(t)) = LD,σ
sur (w

(t))− LD,σ
sur (w

∗). Thus, it holds

(Q2) ≤ ηµ∥w(t) −w∗∥22 + 2η2∥ḡ(t)∥22 + 2η2∥g∗∥22+

(2η/µ)
(
∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥22 + ∥g∗ −∇LD,σ

sur (w
∗)∥22

)
.

(8)

Furthermore, using standard concentration tools, it can be
shown that when N ≥ Cd(r2ϵ +M2)/δ where C is a suf-
ficiently large absolute constant, with probability at least

1− δ, it holds

∥ḡ(t) −∇L̄D,σ
sur (w

(t))∥22 ≤ (µ2/4)∥w(t) −w∗∥22,
∥ḡ(t)∥22 ≤ 4∥w(t) −w∗∥22,

and ∥g∗−∇LD,σ
sur (w

∗)∥22 ≤ OPT+ϵ, ∥g∗∥22 ≤ 2OPT+ϵ.
It remains to plug these bounds back into Equation (8).

Combining the upper bounds on (Q1) and (Q2) and choos-
ing η = µ/32, we have:

∥w(t+1) −w∗∥22 ≤
(
1− µ2/128

)
∥w(t) −w∗∥22

+ (1/4)
(
OPT+ ϵ

)
.

(9)

When ∥w(t)−w∗∥22 ≥ (64/µ2)(OPT+ ϵ), in other words
when w(t) is still away from the minimizer w∗, it further
holds with probability 1− δ:

∥w(t+1) −w∗∥22 ≤ (1− µ2/256)∥w(t) −w∗∥22, (10)

which proves the sufficient decrease of ∥w(t) −w∗∥22 that
we proposed at the beginning.

Let T be the first iteration such that w(T ) satisfies ∥w(T ) −
w∗∥22 ≤ (64/µ2)(OPT + ϵ). Recall that we need Equa-
tion (7) for every t ≤ T to be satisfied to implement
sharpness. The first condition is satisfied naturally for
∥w(t+1) − w∗∥22 ≤ ∥w∗∥22 as a consequence of Equa-
tion (10) (recall that w(0) = 0). For the second con-
dition, when t + 1 ≤ T , we have ∥w(t+1) − w∗∥22 ≥
(64/µ2)(OPT + ϵ), hence the second condition also holds.

When t ≤ T , the contraction of ∥w(t)−w∗∥22 indicates a lin-
ear convergence of SGD. Since w(0) = 0, ∥w∗∥2 ≤W , it
holds ∥w(t) − w∗∥22 ≤ (1 − µ2/256)t∥w(0) − w∗∥22 ≤
exp(−tµ2/256)W 2. Thus, to generate w(T ) such that
∥w(T ) −w∗∥22 ≤ (64/µ2)(OPT+ ϵ), it suffices to run Al-
gorithm 1 for T = Θ̃((1/µ2) log (W/ϵ)

)
iterations. Recall

that at each step t the contraction ∥w(t+1) −w∗∥22 ≤ (1−
µ2/256)∥w(t)−w∗∥22 holds with probability 1−δ, thus the
union bound implies ∥w(T ) −w∗∥22 ≤ (64/µ2)(OPT+ ϵ)

holds with probability 1−Tδ. Moreover, as LD,σ
2 (w(T )) ≲

∥w(T )−w∗∥22, if ∥w(T )−w∗∥22 ≤ (64/µ2)(OPT+ϵ), then
LD,σ
2 (w(T )) = O(1/µ2)(OPT + ϵ). Letting δ = 1/(3T )

completes the proof.

4. Conclusion
We provided an efficient constant-factor approximate learner
for the problem of agnostically learning a single neuron over
structured classes of distributions. Notably, our algorithmic
result applies under much milder distributional assumptions
as compared to prior work. Our results are obtained by
leveraging a sharpness property (a local error bound) from
optimization theory that we prove holds for the considered
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problems. This property is crucial both to establishing a
constant factor approximation and to obtaining improved
sample complexity and runtime. An interesting direction for
future work is to explore whether sharpness can be leveraged
to obtain positive results for other related learning problems.
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Jérôme Bolte for a useful discussion on local error bounds.

References
Auer, P., Herbster, M., and Warmuth, M. K. Exponentially

many local minima for single neurons. In Advances in
Neural Information Processing Systems 8, NIPS, pp. 316–
322. MIT Press, 1995.

Awasthi, P., Tang, A., and Vijayaraghavan, A. Agnostic
learning of general relu activation using gradient descent.
CoRR, abs/2208.02711, 2022.

Bartlett, P., Jordan, M., and McAuliffe, J. Convexity, clas-
sification, and risk bounds. Journal of the American
Statistical Association, 101(473):138–156, 2006.

Bolte, J., Nguyen, T. P., Peypouquet, J., and Suter, B. W.
From error bounds to the complexity of first-order descent
methods for convex functions. Mathematical Program-
ming, 165(2):471–507, 2017.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

Chen, X. and Fukushima, M. Expected residual minimiza-
tion method for stochastic linear complementarity prob-
lems. Mathematics of Operations Research, 30(4):1022–
1038, 2005.

De, A., Diakonikolas, I., Feldman, V., and Servedio, R. A.
Nearly optimal solutions for the chow parameters prob-
lem and low-weight approximation of halfspaces. J. ACM,
61(2):11:1–11:36, 2014.

De, A., Diakonikolas, I., and Servedio, R. A. The inverse
shapley value problem. Games Econ. Behav., 105:122–
147, 2017.

Diakonikolas, I., Goel, S., Karmalkar, S., Klivans, A. R., and
Soltanolkotabi, M. Approximation schemes for ReLU
regression. In Conference on Learning Theory, COLT,
volume 125 of Proceedings of Machine Learning Re-
search, pp. 1452–1485. PMLR, 2020a.

Diakonikolas, I., Kane, D. M., and Zarifis, N. Near-optimal
SQ lower bounds for agnostically learning halfspaces and
ReLUs under Gaussian marginals. In Advances in Neural
Information Processing Systems, NeurIPS, 2020b.

Diakonikolas, I., Kane, D. M., Pittas, T., and Zarifis, N. The
optimality of polynomial regression for agnostic learning
under gaussian marginals in the sq model. In Proceedings
of The 34th Conference on Learning Theory, COLT, 2021.

Diakonikolas, I., Kane, D., Manurangsi, P., and Ren, L.
Hardness of learning a single neuron with adversarial
label noise. In Proceedings of the 25th International Con-
ference on Artificial Intelligence and Statistics (AISTATS),
2022a.

Diakonikolas, I., Kontonis, V., Tzamos, C., and Zarifis, N.
Learning a Single Neuron with Adversarial Label Noise
via Gradient Descent. In Conference on Learning Theory
(COLT), pp. 4313–4361, 2022b.

Diakonikolas, I., Pavlou, C., Peebles, J., and Stewart, A.
Efficient approximation algorithms for the inverse semi-
value problem. In 21st International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2022,
pp. 354–362. International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS), 2022c.

Facchinei, F. and Pang, J.-S. Finite-dimensional variational
inequalities and complementarity problems. Springer,
2003.

Frei, S., Cao, Y., and Gu, Q. Agnostic learning of a single
neuron with gradient descent. In Advances in Neural
Information Processing Systems, NeurIPS, 2020.

Goel, S., Karmalkar, S., and Klivans, A. R. Time/accuracy
tradeoffs for learning a relu with respect to gaussian
marginals. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 2019.

Goel, S., Gollakota, A., and Klivans, A. R. Statistical-query
lower bounds via functional gradients. In Advances in
Neural Information Processing Systems, NeurIPS, 2020.

Haussler, D. Decision theoretic generalizations of the PAC
model for neural net and other learning applications. In-
formation and Computation, 100:78–150, 1992.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

9



Robustly Learning a Single Neuron via Sharpness

Hoffman, A. J. On approximate solutions of systems of
linear inequalities. Journal of Research of the National
Bureau of Standards, 49:263–265, 1952.

Kakade, S., Kanade, V., Shamir, O., and Kalai, A. Efficient
learning of generalized linear and single index models
with isotonic regression. Advances in Neural Information
Processing Systems, 24, 2011.

Kalai, A. T. and Sastry, R. The isotron algorithm: High-
dimensional isotonic regression. In COLT 2009 - The
22nd Conference on Learning Theory, 2009.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the Polyak-łojasiewicz condition. In Joint European con-
ference on machine learning and knowledge discovery in
databases, pp. 795–811, 2016.

Karmakar, S. and Mukherjee, A. Provable training of a
ReLU gate with an iterative non-gradient algorithm. Neu-
ral Networks, 151:264–275, 2022.

Kearns, M., Schapire, R., and Sellie, L. Toward Efficient
Agnostic Learning. Machine Learning, 17(2/3):115–141,
1994.

Liu, J., Cui, Y., and Pang, J.-S. Solving nonsmooth and non-
convex compound stochastic programs with applications
to risk measure minimization. Mathematics of Operations
Research, 2022.

Liu, M., Zhang, X., Zhang, L., Jin, R., and Yang, T. Fast
rates of erm and stochastic approximation: Adaptive to
error bound conditions. Advances in Neural Information
Processing Systems, 31, 2018.

Łojasiewicz, S. Une propriété topologique des sous-
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Supplementary Material
Organization The supplementary material is organized as follows: In Appendix A, we provide some remarks on the
sharpness property we have been using throughout the paper. In Appendix B, we provide additional detailed comparison
with prior work. In Appendix C and Appendix D, we present the full contents of Section 2 and Section 3 respectively,
providing supplementary lemmas and completing the omitted proofs in the main body. Appendix E shows that there are
many natural distributions satisfying Assumption 2.3 and Assumption 2.4. Finally, in Appendix F, we show that our results
extend to certain non-monotonic distributions, including GeLUs (Hendrycks & Gimpel, 2016) and Swish (Ramachandran
et al., 2017).

Additional Notation Some additional notation we use here is listed below. Given a distribution D on Rd × R, we use
{(x(j), y(j))}Nj=1 to denote N i.i.d. samples from D. We slightly abuse the notation and denote by ei the ith standard
basis vector in Rd. The notation [·]+ is used for the positive part of the argument, i.e., [·]+ = max{·, 0}. For a vector
x = (x1, · · · ,xn), [·]+ is applied element-wise: [x]+ := ([x1]+, · · · , [xn]+). For nonnegative expressions E,F we write
E ≫ F to denote E ≥ C F , where C > 0 is a sufficiently large universal constant (independent of the parameters of E and
F ). The notation≪ is defined similarly.

A. Remarks about Sharpness
We recall the formal definition of sharpness, already mentioned in the introduction.

Definition A.1 (Sharpness). Given a function f : C 7→ R where C ⊆ Rd, suppose the set of its minimizers Z∗ =
argminz∈C f(z) is closed and not empty. Let f∗ = minz∈C f(z). We say that f is µ-sharp, for some µ > 0, if the following
inequality holds:

f(z)− f∗ ≥ µ

2
dist(z,Z∗)2, ∀z ∈ Rd,

where dist(z,Z∗) = minz∗∈Z∗ ∥z− z∗∥2.

Remark A.2. We will slightly abuse the name of sharpness to refer to sharpness-like properties. For example, if a function
satisfies

∇f(z) · (z− z∗) ≥ µ∥z− z∗∥22, (11)

for some z∗ ∈ Z∗, then we say f is µ-sharp. This is due to the fact that when f is a convex function, it holds f(z)− f∗ ≤
∇f(z) · (z− z∗), hence Definition A.1 implies Equation (11). Thus, Equation (11) can be viewed as a milder property of
sharpness.

Compared to strong convexity, sharpness is a milder condition. Indeed, for any µ-strongly-convex function f , if z∗ ∈
argminz∈Rd f(z) then f(z)− f∗ ≥ ∇f(z∗) · (z− z∗)+ µ

2 ∥z− z∗∥22 ≥
µ
2 ∥z− z∗∥22; therefore, f is µ-sharp. However, the

opposite does not hold in general. For example, consider f : R 7→ R defined by f(z) = z2 if z ≥ 0 and f(z) = 0 otherwise,
whose set of minimizers on R is Z∗ = (−∞, 0] and f∗ = 0. Thus, if z ≥ 0, then f(z)− f∗ ≥ dist(z,Z∗)2 = z2 and if
z < 0, we have f(z)− f∗ = 0 = dist(z,Z∗)2. Therefore, f is 2-sharp but it is not strongly convex.

B. Additional Comparison to Prior Work
Here we summarize and provide additional technical comparison to prior work that did not appear in the main body, due to
space limitations.

Comparison with Frei et al. (2020). The work of Frei et al. (2020) studies the problem of learning ReLU (and other
nonlinear) activations and shows that gradient descent on the L2

2 loss converges to a point achieving error K
√
OPT. The

parameter K depends on the maximum norm of the points x, and can depend on the dimension d. Specifically, even
for the basic case that the marginal distribution on examples is the standard normal distribution, the parameter K scales
(polynomially) with d. That is, Frei et al. (2020) does not provide constant factor approximate learners in this setting.

Comparison with Diakonikolas et al. (2020a). The work of Diakonikolas et al. (2020a) studies the problem of learning
ReLU activations using the same surrogate loss we consider in this work. Our work differs from Diakonikolas et al. (2020a)
in two key aspects. The first aspect concerns the generality and strengh of results; the second aspect concerns the techniques.
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In terms of the results themselves, the algorithm given in Diakonikolas et al. (2020a) is restricted to the case of ReLUs (while
we handle a broader family of activations). More importantly, the distributional assumptions of Diakonikolas et al. (2020a)
are much stricter than ours, — focusing on logconcave distributions — whereas we handle broader classes of distributions,
including heavy tailed and discrete distributions, not covered by any prior work (see also Appendix E). Informally, what
allows us to handle broader classes of distributions is our focus on proving the sharpness property (as opposed to strong
convexity), which is a much milder property. Further, we show that it suffices for this property to hold only in a small region
(ball of radius 2∥w∗∥2) and for the (impossible to evaluate) noise-free surrogate loss. Another remark is that Diakonikolas
et al. (2020a) assume that the (corrupted) labels are bounded, not fully capturing the agnostic setting. By contrast, our
analysis can handle unbounded labels, i.e., we do not make further assumptions about the noise. Finally, even if we restrict
our focus to the class of logconcave distributions, our algorithm has sample complexity scaling with polylog(1/ϵ), as
opposed to 1/ϵ2 in Diakonikolas et al. (2020a).

The second and more important difference lies in the techniques that are used in each work. Diakonikolas et al. (2020a)
optimizes the surrogate loss directly and shows that finding a point with a small gradient of the surrogate loss leads to
the small L2

2 error. More specifically, the requirement in Diakonikolas et al. (2020a) is that the gradient is sufficiently
small so that the optimality gap of the surrogate loss is of the order ϵ. This statement is similar to the result we show in
Theorem 3.1. Crucially, while we utilize the gradients of the surrogate loss in the algorithm and in the analysis, we never
impose a requirement that the optimality gap of the surrogate loss is of the order ϵ. Instead, we show that as long as the
gradient is larger than order-

√
OPT+ ϵ, sharpness holds and linear convergence rate applies. On the other hand, when the

gradient is of the order
√
OPT+ ϵ or smaller, we argue that the candidate solution that the algorithm maintains is already

an (O(OPT) + ϵ)-approximate solution in terms of the L2
2 error. This approach further enables us to be agnostic in the

value of OPT. Notably, if ϵ≪ OPT and we were to require that the algorithm finds a solution with either the gradient of
the order

√
ϵ or the optimality gap ϵ, we would need to optimize the surrogate loss within a region where the sharpness does

not necessarily hold. Without sharpness, only sublinear rates of convergence apply, and the number of iterations increases
to order- 1ϵ . Thus, leveraging the structural properties that we prove in this work is crucial to obtaining the exponential
improvements in sample and computational complexities.

Finally, Diakonikolas et al. (2020a) requires the surrogate loss to be strongly convex to connect the small gradient condition
with the small L2

2 error. This makes the argument rather straightforward, compared with what is used in our work. For the
sake of discussion, assume that LD,σ

sur is 1- strongly convex and the distribution is isotropic. Furthermore, denote by w∗

the minimizer of the L2
2 loss and by w′ the minimizer of LD,σ

sur . The property that LD,σ
sur is strongly convex implies that

∥∇LD,σ
sur (w

∗)−∇LD,σ
sur (w

′)∥22 ≥ ∥w∗−w′∥22; furthermore, it can be shown that ∥∇LD,σ
sur (w

∗)∥22 ≤ L
D,σ
2 (w∗). Therefore,

because∇LD,σ
sur (w

′) = 0, it immediately follows that LD,σ
2 (w′) ≲ LD,σ

2 (w∗). Our work leverages a much weaker property
than strong convexity — sharpness — as summarized in Proposition 3.2. This weaker property turns out to be sufficient to
ensure that the noise cannot make the gradient field guide us far away from the optimal solution.

Comparison with Diakonikolas et al. (2022b). The work of Diakonikolas et al. (2022b) studies the problem of ReLU
(and other unbounded activations) regression with agnostic noise. They show that for a class of well-behaved distributions
(see Definition E.1) gradient descent on the L2

2 loss converges to a point achieving O(OPT)+ ϵ error. Moreover, the sample
and computational complexities of their algorithm are similar to those achieved in our work (for the class of well-behaved
distributions). On the other hand, the distributional assumptions used in Diakonikolas et al. (2022b) are quite strong.
Specifically, the “well-behaved” assumption requires that the marginal distribution have sub-exponential concentration
and anti-anti-concentration in every lower dimensional subspace; that is, the probability density function is lower bounded
by a positive constant at every point. The latter assumption does not allow for several discrete distributions, like discrete
Gaussians or uniform on the cube, that is handled in our work. Moreover, our work can additionally handle distributions
with much weaker concentration properties.

Comparison with Karmakar & Mukherjee (2022). In a weaker noise model, the work of Karmakar & Mukherjee (2022)
considered a similar-looking — though crucially different — condition for robust ReLU regression, namely that:

λmin

(
E

x∼Dx

[
xx⊤1{w∗ · x ≥ 2θ∗}

])
= λ1 > 0, (12)

where θ∗ is the largest possible absolute value of the noise; in other words, θ∗ = sup(x,y)∼D |y − σ(w∗ · x)|. It is worth
noting that Equation (12) cannot be easily satisfied, as the noise in the agnostic model is not bounded. But even if the
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noise was bounded, this condition would give slack for a small number of distributions. For instance in the uniform on the
hypercube, if θ∗ > 1/2, then the minimum eigenvalue is zero. Furthermore, the algorithm in that work converges to a point
that achieves O(θ∗) error, instead of O(OPT) error. In contrast, we make no assumptions about the boundedness of the
noise, and obtain near-optimal error in more general settings.

Additional Related Work As mentioned in the introduction, the convex surrogate we leverage was first defined in (Auer
et al., 1995) and then implicitly used in (Kalai & Sastry, 2009; Kakade et al., 2011) for learning GLMs. In addition to these
and the aforementioned works, it is worth mentioning that the same convex surrogate has been useful in the context of
learning linear separators from limited information (De et al., 2014) and in related game-theoretic settings (De et al., 2017;
Diakonikolas et al., 2022c).

C. Full Version of Section 2
Discussion about the Parameters in Assumptions 2.2 to 2.4 If an activation σ is (α′, β′)-bounded, then it is also
(α, β)-bounded for α ≥ α′ and β ≤ β′. This justifies the convention α ≥ 1 and β ≤ 1 in Assumption 2.2. If σ(0) ̸= 0, we
can generate new labels y′ by subtracting σ(0) from y and consider the activation σ0(t) = σ(t)− σ(0). Similar reasoning
justifies the conventions λ, γ ∈ (0, 1] in Assumption 2.3 and B ≥ 1, ρ ≤ 1 in Assumption 2.4.

C.1. Proof of Lemma 2.5

For convenience, we restate the lemma followed by its detailed proof.

Lemma C.1. Suppose that Assumptions 2.2–2.4 hold. Then the noise-free surrogate loss L̄D,σ
sur is Ω(λ2γβρ/B)-sharp in

the ball B(2∥w∗∥2), i.e., ∀w ∈ B(2∥w∗∥2) we have

∇L̄D,σ
sur (w) · (w −w∗) ≳ λ2γβρ/B∥w −w∗∥22 .

Proof. By definition, we can write ∇L̄D,σ
sur (w) = Ex∼Dx [(σ(w · x)− σ(w∗ · x))x]. Therefore, the inner product

∇L̄D,σ
sur (w) · (w −w∗) can be written as

∇L̄D,σ
sur (w) · (w −w∗)

= E
x∼Dx

[(σ(w · x)− σ(w∗ · x))(w · x−w∗ · x)]

= E
x∼Dx

[|σ(w · x)− σ(w∗ · x)||w · x−w∗ · x|]

≥ E
x∼Dx

[|σ(w · x)− σ(w∗ · x)||w · x−w∗ · x|1{w∗ · x ≥ γ∥w∗∥2}] ,

where the second equality is due to the non-decreasing property of σ, and the inequality is due to the fact that every term
inside the expectation is nonnegative. Since σ is (α, β)-unbounded, we have that σ′(t) ≥ β for all t ∈ [0,∞). By the
mean value theorem, for t2 ≥ t1 ≥ 0, we have σ(t1)− σ(t2) = σ′(ξ)(t1 − t2) for some ξ ∈ (t1, t2). Thus, we obtain that
|σ(t1)− σ(t2)| ≥ β|t1− t2|. Additionally, if t1 ≥ 0 and t2 ≤ 0, then |σ(t1)− σ(t2)| = |σ(t1)− σ(0)|+ |σ(0)− σ(t2)| ≥
|σ(t1)− σ(0)| ≥ βt1. Therefore, by combining the above, we get

∇L̄D,σ
sur (w) · (w −w∗) ≥ β E

x∼Dx

[
(w · x−w∗ · x)21{w · x > 0, w∗ · x > γ∥w∗∥2}

]
+ β E

x∼Dx

[|w∗ · x||w · x−w∗ · x|1{w · x ≤ 0, w∗ · x ≥ γ∥w∗∥2}]︸ ︷︷ ︸
(Q)

. (13)

Denote E0 = {x : w · x ≤ 0, w∗ · x ≥ γ∥w∗∥2}. We show that the term (Q) can be bounded below by a quantity that
is proportional to Ex∼Dx

[
(w · x−w∗ · x)21{w · x ≤ 0, w∗ · x > γ∥w∗∥2}

]
. To this end, we establish the following

claim.

Claim C.2. For r0 ≥ 1, define the event E1 = E1(r0) = {x : −2r0∥w∗∥2 < w · x ≤ 0,w∗ · x ≥ γ∥w∗∥2}. It holds
(Q) ≥ (γ/(3r0))Ex∼Dx

[
(w · x−w∗ · x)21E1(x)

]
.
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Proof of Claim C.2. Since E1 ⊆ E0, it holds that (Q) ≥ Ex∼Dx [|w∗ · x||w · x−w∗ · x|1E1
(x)]. Restricting x on the

event E1, it holds that |w · x| ≤ 2(r0/γ)|w∗ · x|. Therefore, we get

w∗ · x−w · x = |w∗ · x|+ |w · x| ≤ (1 + 2r0/γ)|w∗ · x|.

By Assumption 2.3 we have that γ ∈ (0, 1], therefore we get that |w∗ · x| ≥ γ/(γ + 2r0) ≥ γ/(3r0), since r0 ≥ 1. Taking
the expectation of |w∗ · x||w · x−w∗ · x| with x restricted on event E1, we obtain

(Q) ≥ E
x∼Dx

[|w∗ · x||w · x−w∗ · x|1E1(x)] ≥ γ/(3r0) E
x∼Dx

[
(w · x−w∗ · x)21E1(x)

]
,

as desired.

Combining Equation (13) and Claim C.2, we get that

∇L̄D,σ
sur (w) · (w −w∗)

≥ β E
x∼Dx

[
(w · x−w∗ · x)21{w · x > 0,w∗ · x ≥ γ∥w∗∥2}

]
+

βγ

3r0
E

x∼Dx

[
(w · x−w∗ · x)21{−2r0∥w∗∥2 < w · x ≤ 0, w∗ · x ≥ γ∥w∗∥2}

]
≥ βγ

3r0
E

x∼Dx

[
(w · x−w∗ · x)21{w · x > −2r0∥w∗∥2, w∗ · x > γ∥w∗∥2}

]
, (14)

where in the last inequality we used the fact that 1 ≥ γ/(3r0) (since γ ∈ (0, 1] and r0 ≥ 1). To complete the proof, we need
to show that, for an appropriate choice of r0, the probability of the event {x : w · x > −2r0∥w∗∥2, w∗ · x > γ∥w∗∥2}
is close to the probability of the event {x : w∗ · x ≥ γ∥w∗∥2}. Given such a statement, the lemma follows from
Assumption 2.3.

Formally, we show the following claim.

Claim C.3. Let r0 ≥ 1 such that h(r0) ≤ λ2ρ/(20B). Then, for all w ∈ B(2∥w∗∥2), we have that

E
x∼Dx

[
(w · x−w∗ · x)21{w · x > −2r0∥w∗∥2, w∗ · x > γ∥w∗∥}

]
≥ λ

2
∥w∗ −w∥22 .

Since h(r) ≤ B/r4+ρ and h(r) is decreasing, such an r0 exists and we can always make r0 ≥ 1.

Proof of Claim C.3. By Assumption 2.3, we have that Ex∼Dx

[
(w∗ · x)21{w∗ · x ≥ γ∥w∗∥2}

]
≥ λ∥w∗∥22. Let E2 =

{w · x ≤ −2r0∥w∗∥2,w∗ · x ≥ γ∥w∗∥2}. We have that

E
x∼Dx

[
(w · x−w∗ · x)21{w · x > −2r0∥w∗∥2, w∗ · x > γ∥w∗∥}

]
= E

x∼Dx

[
(w · x−w∗ · x)21{w∗ · x ≥ γ∥w∗∥2}

]
− E

x∼Dx

[
(w · x−w∗ · x)21E2

(x)
]

≥ λ∥w∗ −w∥22 − E
x∼Dx

[
(w · x−w∗ · x)21E2

(x)
]
.

By the Cauchy-Schwarz inequality, we get

E
x∼Dx

[
(w · x−w∗ · x)21E2

(x)
]
≤ E

x∼Dx

[
(w · x−w∗ · x)21{w · x ≤ −2r0∥w∗∥2}

]
≤ ∥w −w∗∥22 max

u∈B(1)

√
E

x∼Dx

[(u · x)4]
√
Pr [w · x ≤ −2r0∥w∗∥2}]] .

Since w ∈ B(2∥w∗∥2), it holds that w/(2∥w∗∥2) ∈ B(1). Thus, from the concentration properties of Dx, it fol-
lows that Pr [w · x ≤ −2r0∥w∗∥2}] ≤ h(r0). It remains to bound maxu∈B(1) Ex∼Dx

[
(u · x)4

]
. It is not hard to see

that for distributions satisfying the concentration property of Assumption 2.4, maxu∈B(1) Ex∼Dx

[
(u · x)4

]
as well as

maxu∈B(1) Ex∼Dx

[
(u · x)2

]
are at most 5B/ρ. The proof of the following simple fact can be found in Appendix C.2.
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Fact C.4. Let Dx be a distribution satisfying Assumption 2.4. Then maxu∈B(1) Ex∼Dx

[
(u · x)i

]
≤ 5B/ρ for i = 2, 4.

Although only the bound on the 4th order moment is needed here, the upper bound on maxu∈B(1) Ex∼Dx

[
(u · x)2

]
will

also be used in later sections.

Therefor, by our choice of r0, we have h(r0) ≤ λ2ρ
20B , hence maxu∈B(1) Ex∼Dx

[
(u · x)4

]
h(r0) ≤ λ2/4. Therefore,

E
x∼Dx

[
(w · x−w∗ · x)21E2

(x)
]
≤ (λ/2)∥w −w∗∥22 ,

completing the proof of Claim C.3.

Combining Equation (14) and Claim C.3, we get:

∇L̄D,σ
sur (w) · (w −w∗) ≳

γλβ

r0
∥w −w∗∥22.

To complete the proof, it remains to choose r0 appropriately. By Claim C.3, we need to select r0 to be sufficiently large so
that h(r0) ≤ λ2ρ/(20B). By Assumption 2.4, we have that h(r) ≤ B/r4+ρ. Thus, we can choose r0 = 5B/(λρ), which is
at least 1 by our assumptions. This completes the proof of the lemma.

C.2. Proof of Fact C.4

We restate and prove the following fact.

Fact C.5. Let Dx be a distribution satisfying Assumption 2.4. Then maxu∈B(1) Ex∼Dx

[
(u · x)i

]
≤ 5B/ρ for i = 2, 4.

Proof. Let i = 2 or 4. By Assumption 2.4, for any unit vector u, we have

E
x∼Dx

[
(u · x)i

]
=

∫ ∞

0

Pr
[
(u · x)i ≥ t

]
dt

=

∫ ∞

0

isi−1Pr [|u · x| ≥ s] ds

≤
∫ ∞

0

isi−1 min{1, h(s)} ds.

By Assumption 2.4 we have h(s) ≤ B/s4+ρ for some 1 ≥ ρ > 0 and B ≥ 1, thus it further holds

E
x∼Dx

[
(u · x)i

]
≤
∫ 1

0

isi−1 ds+

∫ ∞

1

isi−1h(s) ds ≤ 1 +B

∫ ∞

1

isi−1 1

s4+ρ
ds ≤ 5B

ρ
.

D. Full Version of Section 3
D.1. The Landscape of Surrogate Loss

Theorem D.1 (Landscape of Surrogate Loss). Let µ̄ ∈ (0, 1] and α, κ ≥ 1. LetD be a distribution supported on Rd×R and
let σ : R 7→ R be an (α, β)-unbounded activation for some β > 0. Furthermore, assume that the maximum eigenvalue of
the matrix Ex∼Dx [xx

⊤] is κ. Further, fix w∗ ∈ W∗ and suppose L̄D,σ
sur is µ̄-sharp with respect to w∗ in a subset S1 ⊆ Rd.

Let S2 = {w : LD,σ
2 (w) ≥ (4ακ/µ̄)2LD,σ

2 (w∗)}. Then for any w ∈ S1 ∩ S2, we have

∥∇LD,σ
sur (w)∥2 ≤ α

√
κ∥w −w∗∥2 +

√
κLD,σ

2 (w∗) ,

and

∥∇LD,σ
sur (w)∥2 ≥

µ̄

4α
√
κ

√
LD,σ
2 (w) .
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If we can assume that the set S1 of Theorem D.1 is convex and that there is no local minima in the boundary of S1, then by
running any convex-optimization algorithm in the feasible set S1, we guarantee that we converge either to a local minimum
which has zero gradient or to a point inside the set (S2)

c where the true loss is sufficiently small. The next corollary shows
that this is indeed the case for a distribution that satisfies Assumptions 2.3 and 2.4.

Corollary D.2. Let D be a distribution supported on Rd × R and let σ : R 7→ R be an (α, β)-unbounded activation.
Fix w∗ ∈ W∗ and suppose that Dx satisfies Assumptions 2.3 and 2.4 with respect to w∗. Furthermore, let C > 0 be
a sufficiently small absolute constant and let µ̄ = Cλ2γβρ/B. Then, for any ϵ > 0 and ŵ ∈ B(2∥w∗∥2), so that
LD,σ
sur (ŵ)− infw∈B(2∥w∗∥2) LD,σ

sur (w) ≤ ϵ, it holds

LD,σ
2 (ŵ) ≤ O((αB/(ρµ̄))2)(LD,σ

2 (w∗) + αϵ) .

Proof of Corollary D.2. DenoteK as the set of ŵ such that ŵ ∈ B(2∥w∗∥2) and LD,σ
sur (ŵ)− infw∈B(2∥w∗∥2) LD,σ

sur (w) ≤ ϵ.
First, note that as claimed in Fact C.4, Ex∼Dx [xx

⊤] ⪯ (5B/ρ)I for any unit vector u when Assumption 2.4 holds.

Next, observe that the set of minimizers of the loss LD,σ
sur inside the ball B(2∥w∗∥2) is convex. Furthermore, the set

B(2∥w∗∥2) is compact. Thus, for any point w′ ∈ B(2∥w∗∥2) that minimizes LD,σ
sur it will either hold that ∥∇LD,σ

sur (w
′)∥2 =

0 or w′ ∈ ∂B(2∥w∗∥2). LetW∗
sur be the set of minimizers of LD,σ

sur .

We first show that if there exists a minimizer w′ ∈ W∗
sur such that w′ ∈ ∂B(2∥w∗∥2), then any point w inside the set

B(2∥w∗∥2) gets error proportional to LD,σ
2 (w∗). Observe for such point ŵ, by the necessary condition of optimality, it

should hold
∇LD,σ

sur (w
′) · (w′ −w) ≤ 0 , (15)

for any w ∈ B(2∥w∗∥2). Using Corollary D.4, we get that either ∇LD,σ
sur (w

′) · (w′ − w∗) ≥ (µ̄/2)∥w′ − w∗∥22 or
w′ ∈ {w : ∥w − w∗∥22 ≤ (20B/(µ̄2ρ))LD,σ

2 (w∗)}. But Equation (15) contradicts with ∇LD,σ
sur (w

′) · (w′ − w∗) ≥
(µ̄/2)∥w′ −w∗∥22 > 0 since w′ ∈ ∂B(2∥w∗∥2), ∥w′∥2 = 2∥w∗∥2 hence w′ ̸= w∗. So it must be the case that w′ ∈ {w :

∥w−w∗∥22 ≤ (20B/(µ̄2ρ))LD,σ
2 (w∗)}. Again, we have that w′ ∈ ∂B(2∥w∗∥2), therefore ∥w′−w∗∥2 ≥ ∥w∗∥2. Hence,

(20B/(µ̄2ρ))LD,σ
2 (w∗) ≥ ∥w∗∥22 ≥ (1/9)∥w −w∗∥22 for any w ∈ B(2∥w∗∥2). Therefore, for any w ∈ B(2∥w∗∥2), we

have

LD,σ
2 (w) = E

(x,y)∼D

[
(σ(w · x)− y)2

]
≤ 2LD,σ

2 (w∗) + 2 E
x∼Dx

[
(σ(w · x)− σ(w∗ · x))2

]
≤ 2LD,σ

2 (w∗) + 10Bα2/ρ∥w −w∗∥22 (16)

≤ O(B2α2/(µ̄2ρ2))LD,σ
2 (w∗) ,

where in the second inequality we used the fact that Ex∼Dx

[
xx⊤] ⪯ (5B/ρ)I and σ is α-Lipschitz. Since the inequality

above holds for any w ∈ B(2∥w∗∥2), it will also be true for ŵ ∈ K ⊆ B(2∥w∗∥2).

It remains to consider the case where the minimizers W∗
sur are strictly inside the B(2∥w∗∥2). Note that LD,σ

sur (w) is
α-smooth. Therefore, we get that for any ŵ ∈ K, it holds ∥∇LD,σ

sur (ŵ)∥22 ≤ 2αϵ. By applying Corollary D.4, we get that
either ∥ŵ −w∗∥22 ≤ (20B/(µ̄2ρ))LD,σ

2 (w∗) or that
√
2αϵ ≥ (µ̄/2)∥ŵ −w∗∥2. Therefore we get that, ∥ŵ −w∗∥22 ≤

(20B/(µ̄2ρ))(LD,σ
2 (w∗) + αϵ). Then the result follows from Equation (16).

To prove Theorem D.1, we need the following proposition which shows that if the current vector w is sufficiently far away
from the true vector w∗, then the gradient of the surrogate loss has a large component in the direction of w −w∗, in other
words, the surrogate loss is sharp.

Proposition D.3. Let D be a distribution supported on Rd × R and let σ : R 7→ R be an (α, β)-unbounded activation.
Furthermore, assume that the maximum eigenvalue of the matrix Ex∼Dx [xx

⊤] is κ > 0. Fix w∗ ∈ W∗ and suppose L̄D,σ
sur

is µ̄-sharp for some µ̄ > 0 with respect to w∗ in a nonempty subset S1 ⊆ Rd. Further, let S2 = {w : ∥w − w∗∥22 ≥
4(κ/µ̄2)LD,σ

2 (w∗)}. Then for any w ∈ S1 ∩ S2, we have

∇LD,σ
sur (w) · (w −w∗) ≥ (µ̄/2)∥w −w∗∥22 .

16
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Proof of Proposition D.3. We show that∇LD,σ
sur (w) · (w−w∗) is bounded sufficiently far away from zero. We decompose

the gradient into the noise-free part and the noisy, i.e., ∇LD,σ
sur (w) = ∇L̄D,σ

sur (w) +∇LD,σ
sur (w

∗). First, we bound the noisy
term in the direction w −w∗, which yields

∇LD,σ
sur (w

∗) · (w −w∗)

≥ −E(x,y)∼D[|σ(w∗ · x)− y||w · x−w∗ · x|]

≥ −
√
LD,σ
2 (w∗)∥w −w∗∥2

√
κ ,

where we used the Cauchy-Schwarz inequality and that Ex∼Dx [xx
⊤] ⪯ κI. Next, we bound the contribution of ∇L̄D,σ

sur (w)
in the direction w −w∗. Using the fact that L̄D,σ

sur (w) is µ̄-sharp for any w ∈ S1, it holds that

∇L̄D,σ
sur (w) · (w −w∗) ≥ µ̄∥w −w∗∥22 .

Combining everything together we have that

∇LD,σ
sur (w) · (w −w∗)

≥ µ̄∥w −w∗∥2
(
∥w −w∗∥2 − (

√
κ/µ̄)

√
LD,σ
2 (w∗)

)
.

The proof is completed by taking any w ∈ S1 ∩ S2, where ∥w −w∗∥2 ≥ (2
√
κ/µ̄)

√
LD,σ
2 (w∗), and therefore

∇LD,σ
sur (w) · (w −w∗) ≥ (µ̄/2)∥w −w∗∥22 .

Corollary D.4. LetD be a distribution supported on Rd×R and let σ : R 7→ R be an (α, β)-unbounded activation. Suppose
that Dx satisfies Assumptions 2.3 and 2.4 and let C > 0 be a sufficiently small absolute constant and let µ̄ = Cλ2γβρ/B.
Fix w∗ ∈ W∗ and let S = B(2∥w∗∥2)−{w : ∥w−w∗∥22 ≤ 20B

µ̄2ρL
D,σ
2 (w∗)}. Then, the surrogate loss LD,σ

sur is µ̄-sharp in
S, i.e.,

∇LD,σ
sur (w) · (w −w∗) ≥ (µ̄/2)∥w −w∗∥22, ∀w ∈ S.

Proof of Corollary D.4. Note that maxu∈B(1) Ex∼Dx

[
(u · x)2

]
= κ ≤ 5B/ρ as proven in Fact C.4. Then combining

Proposition D.3 and Lemma 2.5 we get the desired result.

Proof of Theorem D.1. Using Proposition D.3, we get that for any w ∈ S′ ∩ S1, where S′ = {w : ∥w − w∗∥22 ≥
4(κ/µ̄2)LD,σ

2 (w∗)}, we have that∇LD,σ
sur (w) · (w −w∗) ≥ (µ̄/2)∥w −w∗∥22. Note that

LD,σ
2 (w) = E

(x,y)∼D

[
(σ(w · x)− y)2

]
≤ 2 E

x∼Dx

[
(σ(w · x)− σ(w∗ · x))2

]
+ 2 E

(x,y)∼D

[
(σ(w∗ · x)− y)2

]
≤ 2α2κ∥w −w∗∥22 + 2LD,σ

2 (w∗) ≤ 2α2κ∥w −w∗∥22 + (1/2)LD,σ
2 (w) ,

where we used that LD,σ
2 (w) ≥ 4LD,σ

2 (w∗). Hence, it holds 4α2κ∥w −w∗∥22 ≥ L
D,σ
2 (w). Therefore, when w ∈ S2, it

holds that ∥w −w∗∥22 ≥ (4ακ/µ̄)2LD,σ
2 (w), hence S2 ⊆ S′.

Now observe that for any unit vector v ∈ Rd, it holds ∥∇LD,σ
sur (w)∥2 ≥ v · ∇LD,σ

sur (w). Therefore, for any w ∈ S1 ∩ S2 ⊆
S1 ∩ S′, we have

∥∇LD,σ
sur (w)∥2 ≥ ∇LD,σ

sur (w) ·
(

w −w∗

∥w −w∗∥2

)
≥ (µ̄/2)∥w −w∗∥2 ≥

µ̄

4α
√
κ

√
LD,σ
2 (w) .
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We now show that the gradient is also bounded from above. By definition, we have

∥∇LD,σ
sur (w)∥2 =

∥∥∥∥ E
(x,y)∼D

[(σ(w · x)− y)x]

∥∥∥∥
2

≤
∥∥∥∥ E

x∼Dx

[(σ(w · x)− σ(w∗ · x))x]
∥∥∥∥
2

+

∥∥∥∥ E
(x,y)∼D

[(σ(w∗ · x)− y)x]

∥∥∥∥
2

≤ max
∥u∥2≤1

E
x∼Dx

[|σ(w · x)− σ(w∗ · x)||u · x|] + max
∥v∥2≤1

E
(x,y)∼D

[|σ(w∗ · x)− y||v · x|]

Applying Cauchy-Schwarz to the inequality above, we further get

∥∇LD,σ
sur (w)∥2 ≤ max

∥u∥2≤1

√
E

x∼Dx

[|σ(w · x)− σ(w∗ · x)|2] E
x∼Dx

[|u · x|2]

+ max
∥v∥2≤1

√
E

(x,y)∼D
[|σ(w∗ · x)− y|2] E

x∼Dx

[|v · x|2]

≤ α
√
κ∥w −w∗∥2 +

√
κLD,σ

2 (w∗) ,

where in the last inequality we used the fact that σ is α-Lipschitz and that the maximum eigenvalue of Ex∼Dx [xx
⊤] is

κ.

D.2. Fast Rates for Surrogate Loss

In this section, we proceed to show that when the surrogate loss is sharp, then applying batch Stochastic Gradient Descent
(SGD) on the empirical surrogate loss obtains a C-approximate parameter ŵ of the L2

2 loss in linear time. To be specific,
consider the following iteration update

w(t+1) = argmin
w∈B(W )

{
w · g(t) +

1

2η
∥w −w(t)∥22

}
, (17)

where η is the step size and g(t) is the empirical gradient of the surrogate loss:

g(t) =
1

N

N∑
j=1

(σ(w(t) · x(j))− y(j))x(j). (18)

The algorithm is summarized in Algorithm 2.

Algorithm 2 Stochastic Gradient Descent on Surrogate Loss

Input: Iterations: T , sample access from D, batch size N , step size η, bound M .
Initialize w(0) ← 0.
for t = 1 to T do

Draw N samples {(x(j), y(j))}Nj=1 ∼ D.
For each j ∈ [N ], y(j)← sign(y(j))min(|y(j)|,M).
Calculate

g(t) ← 1

N

N∑
j=1

(σ(w(t) · x(j))− y(j))x(j).

w(t+1) ← w(t) − ηg(t).
end for
Output: The weight vector w(T ).

Further, for simplicity of notation, we use ḡ(t) to denote the empirical gradient of the noise-free surrogate loss:

ḡ(t) =
1

N

N∑
j=1

(σ(w(t) · x(j))− σ(w∗ · x(j)))x(j). (19)

18
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In addition, we define the following helper functions H2 and H4.

Definition D.5. Let Dx be a distribution on supported on Rd that satisfies Assumption 2.4 we define non-negative non-
increasing functions H2 and H4 as follows:

H2(r) ≜ max
u∈B(1)

E
x∼Dx

[
(u · x)21{|u · x| ≥ r}

]
,

H4(r) ≜ max
u∈B(1)

E
x∼Dx

[
(u · x)41{|u · x| ≥ r}

]
.

Remark D.6. In particular, when r = 0, H2(0) and H4(0) bounds from above the second and fourth moments. Recall that
in Fact C.4, it is proved that H2(0), H4(0) ≤ 5B/ρ.

Now we state our main theorem.

Theorem D.7 (Main Algorithmic Result). Fix ϵ > 0 and W > 0 and suppose Assumptions 2.2 to 2.4 hold. Let
µ := µ(λ, γ, β, ρ,B) be a sufficiently small constant multiple of λ2γβρ/B, and let M = αWH−1

2

(
ϵ

4α2W 2

)
. Further,

choose parameter rϵ large enough so that H4(rϵ) is a sufficiently small constant multiple of ϵ. Then after

T = Θ̃

(
B2α2

ρ2µ2
log

(
W

ϵ

))
iterations with batch size N = Ω(dT (r2ϵ + α2M2)), Algorithm 2 converges to a point w(T ) such that

LD,σ
2 (w(T )) = O

(
B2α2

ρ2µ2
OPT

)
+ ϵ ,

with probability at least 2/3.

We now provide a brief overview of the proof. As follows from Corollary D.2, when we find a vector ŵ that minimizes the
surrogate loss, then this ŵ is itself a C-approximate solution of Problem 1.1. However, minimizing the surrogate loss can
be expensive in computational and sample complexity. Corollary D.4 says that we can achieve strong-convexity-like rates
as long as we are far away from a minimizer of the L2

2 loss, i.e., when ∥w −w∗∥22 ≥ O(OPT). Roughly speaking, we
would like to show that at each iteration t, it holds ||w(t+1) −w∗||22 ≤ C||w(t) −w∗||22 where 0 < C < 1 is some constant
depending on the parameters α, β, µ, ρ and B. Then since the distance from w(t) to w∗ contracts fast, we are able to get
the linear convergence rate of the algorithm. To this end, we prove that under a sufficiently large batch size, the empirical
gradient of the surrogate loss g(t) approximates∇LD,σ

sur (w
(t)) with a small error. Thus, ||w(t+1) −w∗||22 can be written as

||w(t+1) −w∗||22 = ||w(t) −w∗||22 − 2η∇LD,σ
sur (w

(t)) · (w(t) −w∗) + (error).

We then apply the sharpness property of the surrogate (Proposition D.3) to the inner product ∇LD,σ
sur (w

(t)) · (w(t) −w∗),
which as a result leads to ||w(t+1) −w∗||22 ≤ (1− 2ηµ)||w(t) −w∗||22 + (error). By choosing the parameters η and the
batch size N carefully, one can show that

||w(t+1) −w∗||22 ≤ (1− C)||w(t) −w∗||22 + C ′(OPT + ϵ),

indicating a fast contraction ||w(t+1)−w∗||22 ≤ (1−C/2)||w(t)−w∗||22 whenever C ′(OPT+ ϵ) ≤ (C/2)||w(t)−w∗||22.

To prove the theorem, we provide some supplementary lemmata. The following lemma states that we can truncate the labels
y to y′ ≤M , where M is a parameter determined by distribution Dx.

Lemma D.8. Define y′ = sign(y)min(|y|,M) for M = αWH−1
2 ( ϵ

4α2W 2 ), then:

E
(x,y)∼D

[
(σ(w∗ · x)− y′)2

]
= OPT+ ϵ,

meaning that we can consider y′ instead of y and assume |y| ≤ M without loss of generality, where H2 was defined in
Definition D.5.
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Proof of Lemma D.8. Fix M > 0, and denote P : R → R the operator that projects the points of R onto the interval
[−M,M ], i.e., P (t) = sign(t)min(|t|,M). To prove the aforementioned claim, we split the expectation into two events:
the first event is when |w∗ · x| ≤ (M/α) and the second when the latter is not true. Observe that in the first case,
P (σ(w∗ · x)) = σ(w∗ · x), hence, using the fact that P is non-expansive, we get

E
(x,y)∼D

[
(σ(w∗ · x)− P (y))21{|w∗ · x| ≤ (M/α)}

]
= E

(x,y)∼D

[
(P (σ(w∗ · x))− P (y))21{|w∗ · x| ≤ (M/α)}

]
≤ E

(x,y)∼D

[
(σ(w∗ · x− y)21{|w∗ · x| ≤ (M/α)}

]
≤ OPT .

It remains to bound the error in the event that |w∗ · x| > (M/α). In this event α|w∗ · x| ≥ |P (y)|, and so we have

E
(x,y)∼D

[
(σ(w∗ · x)− P (y))21{|w∗ · x| > (M/α)}

]
≤ 4α2

E
(x,y)∼D

[
(w∗ · x)21{|w∗ · x| > (M/α)}

]
≤ 4α2∥w∗∥22H2(M/(αW )) ≤ ϵ ,

where in the first inequality we used the standard inequality (a + b)2 ≤ 2(a2 + b2) and that σ is α-Lipschitz hence
|σ(w∗ · x)| = |σ(w∗ · x)− σ(0)| ≤ α|w∗ · x|.

Next, we show that the difference between the empirical gradients and the population gradients of the surrogate loss can be
made small by choosing a large batch size N . Specifically, we have:

Lemma D.9. Suppose N samples {(x(j), y(j))}Nj=1 are drawn from D independently and suppose Assumptions 2.2 to 2.4
hold. Let g∗ be the empirical gradient of LD,σ

sur at w∗ and let ḡt be the empirical gradient of L̄D,σ
sur (w

t), i.e.,

g∗ =
1

N

N∑
j=1

(σ(w∗ · x(j))− y(j))x(j),

ḡ(t) =
1

N

N∑
j=1

(σ(w(t) · x(j))− σ(w∗ · x(j)))x(j).

Moreover, let H4(r) be defined as in Definition D.5. Then for a fixed positive real number rϵ satisfying H4(rϵ) ≲ ϵ and
rϵ ≥ 1, we have the following bounds holds with probability at least 1− δ:

∥g∗ −∇LD,σ
sur (w

∗)∥2 ≲

√
d(r2ϵOPT+ α2M2ϵ)

δN
, (20)

and similarly:

∥ḡ(t) −∇L̄D,σ
sur (w

(t))∥2 ≲

√
α2dB

δρN
∥w(t) −w∗∥2. (21)

Proof of Lemma D.9. The proof follows from a direct application of Markov’s inequality and a careful bound on the variance
term using the tail-bound assumptions. To be specific, by Markov’s Inequality, for any ξ > 0 it holds:

Pr
[
∥g∗ −∇LD,σ

sur (w
∗)∥2 ≥ ξ

]
= Pr

[
∥g∗ −∇LD,σ

sur (w
∗)∥22 ≥ ξ2

]
≤ 1

ξ2
E

(x,y)∼D

[
∥g∗ −∇LD,σ

sur (w
∗)∥22

]
.

Now for the variance term E(x,y)∼D
[
||g∗ −∇LD,σ

sur (w
∗)||22

]
, recall that each sample x(j) and y(j) are i.i.d., therefore, we
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can bound it in the following way

E
(x,y)∼D

[
∥g∗ −∇LD,σ

sur (w
∗)∥22

]
= E

(x,y)∼D

[
1

N2

∥∥∥∥ N∑
j=1

(
(σ(w∗ · x(j))− y(j))x(j)− E

(x,y)∼D

[
(σ(w∗ · x(j))− y(j))x(j)

])∥∥∥∥2
2

]

=
1

N
E

(x,y)∼D

[∥∥(σ(w∗ · x)− y)x− E
(x,y)∼D

[(σ(w∗ · x)− y)x]
∥∥2
2

]
≤ 1

N
E

(x,y)∼D

[
∥(σ(w∗ · x)− y)x∥22

]
, (22)

where in the second equation we used that for any mean-zero independent random variables zj , we have E[||
∑

j zj ||22] =∑
j E[∥zj∥22], and in the final inequality we used that for any random variable X , it holds E[∥X −E[X]∥22] ≤ E[∥X∥22].

Next, we show that Ex∼Dx

[
∥(σ(w∗ · x)− y)x∥22

]
can be bounded above in terms of H2 and H4.

Claim D.10. E(x,y)∼D
[
∥(σ(w∗ · x)− y)x∥22

]
≲ d(r2ϵOPT+ α2M2H4(rϵ)).

Proof of Claim D.10. To prove the claim, note that ∥x∥22 =
∑d

i=1 |xi|2, therefore by linearity of expectation it holds

E
(x,y)∼D

[
∥(σ(w∗ · x)− y)x∥22

]
=

d∑
i=1

E
(x,y)∼D

[
(σ(w∗ · x)− y)2x2

i

]
.

Thus, the goal is to bound E(x,y)∼D
[
(σ(w∗ · x)− y)2x2

i

]
effectively for each entry i. Deploying the intuition that the

probability of |xi| = |ei · x| being very large is tiny since we have Pr [|ei · x| > r] ≤ h(r) and h(r) ≤ Br−(4+ρ) by the
Assumption 2.4, we fix some large rϵ and bound the expectation by looking separately at the events that |xi| ≤ rϵ and
|xi| > rϵ, i.e.,

E
(x,y)∼D

[
(σ(w∗ · x)− y)2x2

i

]
= E

(x,y)∼D

[
(σ(w∗ · x)− y)2x2

i1{|xi| ≤ rϵ}
]

+ E
(x,y)∼D

[
(σ(w∗ · x)− y)2x2

i1{|xi| > rϵ}
]
.

(23)

Note when conditioned on the event |xi| ≤ rϵ the bound follows easily as:

E
(x,y)∼D

[
(σ(w∗ · x)− y)2x2

i1{|xi| ≤ rϵ}
]
≤ r2ϵ E

(x,y)∼D

[
(σ(w∗ · x)− y)2

]
= r2ϵOPT. (24)

When considering |xi| > rϵ, notice that σ is α-Lipschitz and that σ(0) = 0 , as well as that we assumed |y| ≤M due to
Lemma D.8, therefore, denoting uw∗ = w∗/∥w∗∥2, it holds:

E
(x,y)∼D

[
(σ(w∗ · x)− y)2x2

i1{|xi| > rϵ}
]
≤ 2 E

(x,y)∼D

[
((σ(w∗ · x))2 + y2)x2

i1{|xi| > rϵ}
]

≤ 2 E
x∼Dx

[
(α2(w∗ · x)2 +M2)x2

i1{|xi| > rϵ}
]

≤ 2α2∥w∗∥22 E
x∼Dx

[
(uw∗ · x)2x2

i1{|xi| > rϵ}
]
+ 2M2H2(rϵ) ,

where in the last inequality we used Definition D.5. For the first term above, note that uw∗ is also a unit vector, so by Assump-
tion 2.4 the probability mass of |uw∗ · x| > rϵ is also small, thus, we can show that Ex∼Dx

[
(uw∗ · x)2x2

i1{|xi| > rϵ}
]

is dominated by r2ϵ Ex∼Dx

[
x2
i1{|xi| > rϵ}

]
, which can then be bounded above by H2 and H4. In detail, we split the

expectation by conditioning on the events that |uw∗ ·x| > rϵ and |uw∗ ·x| ≤ rϵ, then noticing that 1{|xi| > rϵ, |uw∗ ·x| ≤
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rϵ} ≤ 1{|xi| ≥ rϵ}, we get:

E
x∼Dx

[
(uw∗ · x)2x2

i1{|xi| > rϵ}
]
≤ E

x∼Dx

[
r2ϵx

2
i1{|xi| > rϵ, |uw∗ · x| ≤ rϵ}

]
+ E

x∼Dx

[
(uw∗ · x)2x2

i1{|xi| > rϵ, |uw∗ · x| > rϵ}
]

≤ E
x∼Dx

[
r2ϵx

2
i1{|xi| > rϵ}

]
+
√

E
x∼Dx

[(uw∗ · x)41{|uw∗ · x| > rϵ}] E
x∼Dx

[x4
i1{|xi| > rϵ}]

≤ r2ϵH2(rϵ) +H4(rϵ), (25)

where the second inequality comes from Cauchy-Schwarz and in the last inequality we applied H4(rϵ) ≥
Ex∼Dx

[
(u · x)41{|u · x| ≥ rϵ}

]
for any u ∈ B(1) by Definition D.5. Now plugging Equation (25) to the bound we

get for E(x,y)∼D
[
σ(w∗ · x)− y)2x2

i1{|xi| ≥ rϵ}
]
, we have:

E
(x,y)∼D

[
(σ(w∗ · x)− y)2x2

i1{|xi| ≥ rϵ}
]
≤ 2α2∥w∗∥22(r2ϵH2(rϵ) +H4(rϵ)) + 2M2H2(rϵ).

Further recall that by definition:

H4(r) = max
u∈B(1)

E
x∼Dx

[
(u · x)41{|u · x| ≥ r}

]
≥ max

u∈B(1)
r2 E

x∼Dx

[
(u · x)21{|u · x| ≥ r}

]
= r2H2(r),

hence H4(r) ≥ H2(r) when r ≥ 1. Then applying these facts along with the fact that ∥w∗∥2 ≤M simplifies the inequality
above to the following:

E
(x,y)∼D

[
(σ(w∗ · x)− y)2x2

i1{|xi| ≥ rϵ}
]
≲ α2M2H4(rϵ). (26)

Combining Equation (26) and Equation (24) with Equation (23), we get:

E
(x,y)∼D

[
(σ(w∗ · x)− y)2∥x∥22

]
≲ d(r2ϵOPT+ α2M2H4(rϵ)),

proving the desired claim.

Plugging Claim D.10 above back to Equation (22), we immediately get:

E
(x,y)∼D

[
∥g∗ −∇LD,σ

sur (w
∗)∥22

]
≲

d

N
(r2ϵOPT+ α2M2ϵ),

given that H4(rϵ) ≲ ϵ. Then choosing ξ ≳
√

d
δN (r2ϵOPT+ α2M2ϵ), we get Equation (20):

Pr

[
∥g∗ −∇LD,σ

sur (w
∗)∥2 ≳

√
d

δN
(r2ϵ + α2M2)OPT

]
≤ δ.

For Equation (21), we repeat the steps when proving Equation (20). Using Markov inequality again, we have

Pr
[
∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥2 ≥ ζ

]
= Pr

[
∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥22 ≥ ζ2

]
≤ 1

ζ2
E

x∼Dx

[
∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥22

]
.

The goal is to bound the expectation of the squared norm. Notice that (x(j), y(j)) ∼ D are i.i.d. samples, therefore, it holds:

E
x∼Dx

[
∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥22

]
=

1

N2
E

x∼Dx

[∥∥∥∥ N∑
j=1

(
(σ(w(t) · x(j))− σ(w∗ · x(j)))x(j)− E

x∼Dx

[
(σ(w(t) · x(j))− σ(w∗ · x(j)))x(j)

])∥∥∥∥2
2

]

=
1

N
E

x∼Dx

[
∥(σ(w(t) · x)− σ(w∗ · x))x− E

x∼Dx

[
(σ(w(t) · x)− σ(w∗ · x))x

]
∥22
]
,
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because for any i.i.d. zero-mean random variables z(j) it holds E[||
∑

j z(j)||22] =
∑

j E[||z(j)||22]. Note that E[||z −
E[z]||22] ≤ E[||z||22], therefore, we can further bound the variance of ḡt −∇L̄D,σ

sur (w
t) as:

E
x∼Dx

[
∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥22

]
≤ 1

N
E

x∼Dx

[
(σ(w(t) · x)− σ(w∗ · x))2∥x∥22

]
=

1

N

d∑
i=1

E
x∼Dx

[
(σ(w(t) · x)− σ(w∗ · x))2x2

i

]
≤ α2

N

d∑
i=1

E
x∼Dx

[
(w(t) · x−w∗ · x)2x2

i

]
, (27)

where in the last inequality we used |σ(w(t) · x)− σ(w∗ · x)| ≤ α|w(t) · x−w∗ · x|, as σ is α-Lipschitz.

It remains to bound Ex∼Dx

[
(w(t) · x−w∗ · x)2x2

i

]
. Denote uw(t) = (w(t) −w∗)/∥w(t) −w∗∥, which is a unit vector.

Abstracting ∥wt −w∗∥2 from the expectation then applying Cauchy-Schwarz, we get:

E
x∼Dx

[
(w(t) · x−w∗ · x)2x2

i

]
= ∥w(t) −w∗∥22 E

x∼Dx

[
(uw(t) · x)2x2

i

]
≤ ∥w(t) −w∗∥22

√
E

x∼Dx

[(uw(t) · x)4] E
x∼Dx

[x4
i ]

≤ ∥w(t) −w∗∥22H4(0),

where the last inequality comes from H4(0) = maxu∈B(1) Ex∼Dx

[
(u · x)4

]
, which holds by definition. Further from

Fact C.4, H4(0) ≤ 5B/ρ, thus, we get

E
x∼Dx

[
(w(t) · x−w∗ · x)2x2

i

]
≤ 5B

ρ
∥w(t) −w∗∥22. (28)

To sum up, plugging Equation (28) back to Equation (27), we have:

E
x∼Dx

[
∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥22

]
≲

α2dB

ρN
∥w(t) −w∗∥22.

Finally, choosing ζ to be a sufficiently small multiple of
√

α2dB
δρN ∥w

(t) −w∗∥2, Equation (21) follows.

Corollary D.11. Suppose N samples {(x(j), y(j))}Nj=1 are drawn from D independently and suppose Assumptions 2.2
to 2.4 hold. Let g(t) be the empirical gradient of LD,σ

sur (w
(t)). Moreover, let H4(r) be defined as in Definition D.5. Then for

a fixed positive real number rϵ satisfying H4(rϵ) ≲ ϵ and rϵ ≥ 1, with probability at least 1− δ it holds

∥g(t) −∇LD,σ
sur (w

(t))∥2 ≲

√
dα2B

δρN

(
∥w(t) −w∗∥2 +

√
r2ϵOPT+M2ϵ

)
. (29)

Corollary D.12. Let D be a distribution in Rd × R and suppose Assumptions 2.2 to 2.4 hold. Moreover, let H4(r) be
defined as in Definition D.5. Fix a positive real number rϵ satisfying H4(rϵ) ≲ ϵ and rϵ ≥ 1. It holds that

Ex∼Dx

[
∥∇LD,σ

sur (w
(t))∥22

]
≲

dα2B

ρ

(
∥w(t) −w∗∥22 + r2ϵOPT+M2ϵ

)
. (30)

We further show that the norm of empirical gradients g∗ and ḡ(t) can be bounded with respect to OPT, ϵ and ∥w(t)−w∗∥2.

Corollary D.13. Suppose the conditions in Lemma D.9 are satisfied. Fix rϵ ≥ 1 such that H4(rϵ) is a sufficiently small
multiple of ϵ. Then with probability at least 1− δ, we have:

∥g∗∥2 ≲
√
(B/ρ)OPT +

√
d(r2ϵOPT+ α2M2ϵ)

δN
, (31)
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and

∥ḡ(t)∥2 ≲
αB

ρ

(
1 +

√
dρ

δBN

)
∥w(t) −w∗∥2. (32)

Proof. We first estimate the norm of ∇LD,σ
sur (w

∗) and ∇L̄D,σ
sur (w

(t)). For the former, applying the Cauchy-Schwarz
inequality, we get:

∥∇LD,σ
sur (w

∗)∥2 = ∥E[(σ(w∗ · x)− y)x]∥2
= max

∥u∥2=1
E[(σ(w∗ · x)− y)u · x]

≤ max
∥u∥2=1

√
E[(σ(w∗ · x)− y)2]E[(u · x)2]

≤

√
5B

ρ
OPT ,

where we used that H2(0) ≤ 5B/ρ from Fact C.4. In addition, by Lemma D.9, with probability at least 1− δ, we have:

∥g∗ −∇LD,σ
sur (w

∗)∥2 ≲

√
d

δN
(r2ϵOPT+ α2M2ϵ),

given that rϵ is chosen large enough so that H4(rϵ) ≲ ϵ. Then combining with the bound of ∥∇LD,σ
sur (w

∗)∥2 above, it holds:

∥g∗∥2 ≲

√
B

ρ
OPT+

√
d(r2ϵOPT+ α2M2ϵ)

δN
.

For the second claim, following the exact same approach and utilizing the fact that σ is α-Lipschitz continuous again, we
have:

∥∇L̄D,σ
sur (w

(t))∥2 = ∥ E
x∼Dx

[
(σ(w(t) · x)− σ(w∗ · x))x

]
∥2

= max
∥u∥2=1

E
x∼Dx

[
|σ(w(t) · x)− σ(w∗ · x)|u · x

]
≤ α max

∥u∥2=1
E

x∼Dx

[
|(w(t) −w∗) · x|u · x

]
.

Applying Cauchy-Schwarz inequality, we have

∥∇L̄D,σ
sur (w

(t))∥2 ≤ α max
∥u∥2=1

√
E

x∼Dx

[
((w(t) −w∗) · x)2

]
E

x∼Dx

[(u · x)2] ≤ 5αB

ρ
∥w(t) −w∗∥2.

Then combining with Equation (21), we get the desired claim:

∥ḡ(t)∥2 ≲
αB

ρ

(
1 +

√
dρ

δBN

)
∥w(t) −w∗∥2.

Finally, we can turn to the proof of Theorem D.7.

Proof of Theorem D.7. Recall that for a vector ŵ, we have

LD,σ
2 (ŵ) = E

(x,y)∼D

[
(σ(ŵ · x)− y)2

]
≤ 2LD,σ

2 (w∗) + 2 E
x∼Dx

[
(σ(ŵ · x)− σ(w∗ · x))2

]
≤ 2LD,σ

2 (w∗) + 10Bα2/ρ∥ŵ −w∗∥22,
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where in the last inequality we used the fact that σ is α-Lipschitz and Ex∼Dx [xx
⊤] ⪯ (5B/ρ)I according to Fact C.4. Thus

when the algorithm generates some ŵ such that ∥ŵ −w∗∥22 ≤ ϵ′, it holds

LD,σ
2 (w(T )) ≤ 2OPT + (10Bα2/ρ)ϵ′ (33)

yielding a C-approximate solution to the Problem 1.1. Therefore, our ultimate goal is to minimize ∥w −w∗∥2 efficiently.
To this aim, we study the difference of ∥w(t+1) −w∗∥22 and ∥w(t) −w∗∥22. We remind the reader that for convenience of
notation, we denote the empirical gradients as the following

g(t) =
1

N

N∑
j=1

(σ(w(t) · x(j))− y(j))x(j),

g∗ =
1

N

N∑
j=1

(σ(w∗ · x(j))− y(j))x(j).

Moreover, we denote the “noise-free” empirical gradient by ḡ(t), i.e.,

ḡ(t) = g(t) − g∗ =
1

N

N∑
j=1

(σ(w(t) · x(j))− σ(w∗ · x(j)))x(j).

Plugging in the iteration scheme w(t+1) = w(t) − ηg(t) while expanding the squared norm, we get

∥w(t+1) −w∗∥22 = ∥w(t) −w∗∥22 − 2ηg(t) · (w(t) −w∗) + η2∥g(t)∥22
≤ ∥w(t) −w∗∥22 − 2η∇LD,σ

sur (w
(t)) · (w(t) −w∗)︸ ︷︷ ︸

Q1

−2η(g(t) −∇LD,σ
sur (w

(t))) · (w(t) −w∗) + η2∥g(t)∥22︸ ︷︷ ︸
Q2

.

Observe that we decomposed the right-hand side into two parts, the true contribution of the gradient (Q1) and the estimation
error (Q2).

Note that in order to utilize the sharpness property of surrogate loss at the point w(t), the conditions

w(t) ∈ B(2||w∗||2) and

w(t) ∈ {w : ∥w(t) −w∗∥22 ≥ 20B/(µ̄2ρ)OPT} (34)

need to be satisfied. For the first condition, recall that we initialized w(0) = 0, hence Equation (34) is valid for t = 0. By
induction rule, it suffices to show that assuming w(t) ∈ B(2||w∗||2) holds, we have ||w(t+1)−w∗||2 ≤ (1−C)||w(t)−w∗||2
for some constant 0 < C < 1. Thus, we assume temporarily Equation (34) is true at iteration t, and we will show in the
remainder of the proof that ||w(t+1) −w∗||2 ≤ (1− C)||w(t) −w∗||2 until we arrived at some final iteration T . Then by
induction, the first part of Equation (34) is satisfied at each step t ≤ T . For the second condition, note that if it is violated
at some iteration T , then ∥w(T ) − w∗∥2 ≤ O(OPT) implying that this would be the solution we are looking for and
the algorithm could be terminated at T . Therefore, whenever ∥w(t) −w∗∥2 is far away from OPT, the prerequisites of
Proposition D.3 are satisfied and the sharpness property of LD,σ

sur is allowed to use.

Now for the first term (Q1), using the fact that LD,σ
sur (w

(t)) is µ(γ, λ, β, ρ,B)-sharp according to Corollary D.4, we
immediately get a sufficient decrease at each iteration: ||w(t+1) − w∗||22 ≤ (1 − C)||w(t) − w∗||22. Namely, denote
µ(γ, λ, β, ρ,B) as µ for simplicity, applying Corollary D.4 we have

(Q1) = ∥w(t) −w∗∥22 − 2η∇LD,σ
sur (w

(t)) · (w(t) −w∗) ≤ (1− 2ηµ)∥w(t) −w∗∥22 ,

where µ = 1/2µ̄, and µ̄ = Cλ2γβρ/B for some sufficiently small constant C.

Now it suffices to show that (Q2) can be bounded above by C ′||w(t) −w∗||22, where C ′ is a parameter depending on η and
µ that can be made comparatively small. Formally, we show the following claim.
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Claim D.14. Suppose η ≤ 1. Fix rϵ ≥ 1 such that H4(rϵ) is a sufficiently small multiple of ϵ. Choosing N to be a
sufficiently large constant multiple of d

δ (r
2
ϵ + α2M2), then we have with probability at least 1− δ

(Q2) ≤
(
3

2
ηµ+

8η2α2B2

ρ2

)
∥w(t) −w∗∥22 +

4η

µ

(
2B

ρ
OPT+ ϵ

)
.

Proof of Claim D.14. Observe that by applying the Arithmetic-Geometric Mean inequality and Cauchy-Schwarz inequality,
we get x · y ≤ (a/2)∥x∥22 + (1/2a)∥y∥22 for any vector x and y, thus applying this inequality to the inner product
(g(t) −∇LD,σ

sur (w
(t))) · (w(t) −w∗) with coefficient a = µ, we get

(Q2) = −2η(g(t) −∇LD,σ
sur (w

(t))) · (w(t) −w∗) + 2η2∥g(t)∥22
≤ −2η(g(t) −∇LD,σ

sur (w
(t))) · (w(t) −w∗) + 2η2∥ḡ(t)∥22 + 2η2∥g∗∥22

≤ η

µ
∥g(t) −∇LD,σ

sur (w
(t))∥22 + ηµ∥w(t) −w∗∥22 + 2η2∥ḡ(t)∥22 + 2η2∥g∗∥22 ,

where µ is the sharpness parameter and we used the definition that ḡ(t) = g(t) − g∗ in the first inequality. Note that

∥g(t) −∇LD,σ
sur (w

(t))∥22 = ∥g(t) − g∗ − (∇LD,σ
sur (w

(t))−∇LD,σ
sur (w

∗)) + g∗ −∇LD,σ
sur (w

∗)∥22
≤ 2∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥22 + 2∥g∗ −∇LD,σ

sur (w
∗)∥22,

since we have L̄D,σ
sur (w

(t)) = LD,σ
sur (w

(t))− LD,σ
sur (w

∗). Thus, it holds

(Q2) ≤
2η

µ
∥ḡ(t) −∇L̄D,σ

sur (w
(t))∥22 +

2η

µ
∥g∗ −∇LD,σ

sur (w
∗)∥22 + ηµ∥w(t) −w∗∥22

+ 2η2∥ḡ(t)∥22 + 2η2∥g∗∥22
(35)

Furthermore, recall that as shown in Lemma D.9 and Corollary D.13, ∥ḡ(t) −∇L̄D,σ
sur (w

(t))∥22, ∥∇L̄D,σ
sur (w

(t))∥22, ||g∗||22
and ∥ḡ(t)∥22 can be made small by increasing the batch size N . In particular, when rϵ satisfies H4(rϵ) ≲ ϵ, we have proved
that with probability at least 1− δ, it holds

∥ḡ(t) −∇L̄D,σ
sur (w

(t))∥22 ≲
α2dB

δρN
∥w(t) −w∗∥22, ∥ḡ(t)∥22 ≲

α2B2

ρ2

(
1 +

√
dρ

δBN

)2

∥w(t) −w∗∥22,

∥g∗ −∇LD,σ
sur (w

∗)∥22 ≲
d

δN
(r2ϵOPT+ α2M2ϵ),

and

∥g∗∥22 ≲

(√
(B/ρ)OPT +

√
d(r2ϵOPT+ α2M2ϵ)

δN

)2

≲
B

ρ

(
1 +

r2ϵd

δN

)
OPT+

α2M2d

δN
ϵ .

Therefore, choosing

N ≥ Cmax

{
dr2ϵ
δ

,
α2M2d

δ
,
Bα2d

ρµ2δ

}
, (36)

where C is a sufficiently large absolute constant, then with probability at least 1− δ, it holds

∥ḡ(t) −∇L̄D,σ
sur (w

(t))∥22 ≤
µ2

4
∥w(t) −w∗∥22, ∥ḡ(t)∥22 ≤

4α2B2

ρ2
∥w(t) −w∗∥22,

and
∥g∗ −∇LD,σ

sur (w
∗)∥22 ≤ OPT+ ϵ , ∥g∗∥22 ≤

2B

ρ
OPT+ ϵ.

Plugging these bounds back to Equation (35), we get

(Q2) ≤
(
3

2
ηµ+ 8

η2α2B2

ρ2

)
∥w(t) −w∗∥22 + 2η

(
η +

1

µ

)(
2B

ρ
OPT+ ϵ

)
≤
(
3

2
ηµ+ 8

η2α2B2

ρ2

)
∥w(t) −w∗∥22 +

4η

µ

(
2B

ρ
OPT+ ϵ

)
,

where in the last inequality we used the assumption that η ≤ 1 and µ ≤ 1. The proof is now complete.
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Now combining the upper bounds on (Q1) and (Q2) and choosing η = µρ2

32α2B2 , we have:

∥w(t+1) −w∗∥22 ≤
(
1− 1

2
ηµ+

8η2α2B2

ρ2

)
∥w(t) −w∗∥22 +

4η

µ

(
2B

ρ
OPT+ ϵ

)
≤
(
1− µ2ρ2

128α2B2

)
∥w(t) −w∗∥22 +

ρ

4α2B

(
OPT+ ϵ

)
. (37)

When ∥w(t) −w∗∥22 ≥ (64B/(ρµ2))(OPT + ϵ), in other words when w(t) is still away from the minimizer w∗, it further
holds with probability 1− δ:

∥w(t+1) −w∗∥22 ≤
(
1− µ2ρ2

256α2B2

)
∥w(t) −w∗∥22, (38)

which proves the sufficient decrease of ||w(t) −w∗||22 that we proposed at the beginning.

Let T be the first iteration such that w(T ) satisfies ∥w(T ) − w∗∥22 ≤ (64B/(ρµ2))(OPT + ϵ). Recall that we need
Equation (34) for every t ≤ T to be satisfied to implement sharpness. The first condition is satisfied naturally for
∥w(t+1) − w∗∥22 ≤ ∥w∗∥22 as a consequence of Equation (38) (recall that w(0) = 0). For the second condition, when
t+ 1 ≤ T , since µ = 1/2µ̄, we have

∥w(t+1) −w∗∥22 ≥
64B

ρµ2
(OPT + ϵ) ≥ 20B

ρµ̄2
OPT,

hence the second condition is also satisfied.

When t ≤ T , the contraction of ∥w(t) −w∗∥22 indicates a linear convergence rate of stochastic gradient descent. Since
w(0) = 0, ∥w∗∥2 ≤W , it holds ∥w(t)−w∗∥22 ≤ (1−µ2ρ2/(256α2B2))t∥w(0)−w∗∥22 ≤ exp(−tµ2ρ2/(256α2B2))W 2.
Thus, to generate a point w(T ) such that ∥w(T ) −w∗∥22 ≤ (64B/(ρµ2))(OPT + ϵ), it suffices to run Algorithm 2 for

T = Θ̃

(
B2α2

ρ2µ2
log

(
W

ϵ

))
(39)

iterations, where the logarithmic dependence on parameters α, B, ρ and µ are hidden in the Θ̃(·) notation. Further, recall
that at each step t the contraction ∥w(t+1) −w∗∥22 ≤ (1− µ2ρ2

256α2B2 )∥w(t) −w∗∥22 holds with probability 1− δ, thus the
union bound inequality implies ∥w(T ) −w∗∥22 ≤ (64B/(ρµ2))(OPT+ ϵ) holds with probability 1− Tδ. Let δ = 1/(3T ),
we get with probability at least 2/3, ∥w(T ) −w∗∥22 ≤ (64B/(ρµ2))(OPT + ϵ), and thus from Equation (33),

LD,σ
2 (w(T )) ≤ 2OPT +

640α2B2

ρ2µ2
(OPT + ϵ) = O

((
Bα

ρµ

)2

OPT

)
+ ϵ,

and the proof is now complete.

In the final part of this section we apply Theorem D.7 to sub-Exponential and k-Heavy tail distributions. Before we dig into
the details, some upper bounds on H2(r) and H4(r) are needed. We provide the following simple fact.

Fact D.15. Let H2(r) and H4(r) be as in Definition D.5. Then, we have the following bounds:

H2(r) ≤ r2 min{1, h(r)}+
∫ ∞

r

2smin{1, h(s)} ds,

H4(r) ≤ r4 min{1, h(r)}+
∫ ∞

r

4s3 min{1, h(s)} ds.

Moreover, if Dx is sub-exponential with h(r) = exp(−r/B) or k-heavy tailed with h(r) = B/rk, k > 4 + ρ, ρ > 0, and
r ≥ max{1, B−4−ρ} then

H2(r) ≲ r2h(r) and H4(r) ≲ r4h(r).
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Proof. To prove the fact, we bound the expectation Ex∼Dx

[
|u · x|i1{|u · x| ≥ r}

]
for any vector u ∈ B(1), where i = 2, 4.

To calculate the expectation, observe that when t < ri, it holds

Pr
[
|u · x|i1{|u · x| ≥ r} ≥ t

]
= Pr [|u · x| ≥ r] .

Thus, we have

E
x∼Dx

[
|u · x|i1{|u · x| ≥ r}

]
=

∫ ∞

0

Pr
[
|u · x|i1{|u · x| ≥ r} ≥ t

]
dt

= Pr [|u · x| ≥ r]

∫ ri

0

1 dt+

∫ ∞

ri
Pr
[
|u · x|i1{|u · x| ≥ r} ≥ t

]
dt

= riPr [|u · x| ≥ r] +

∫ ∞

r

iPr
[
|u · x|i1{|u · x| ≥ r} ≥ si

]
si−1 ds.

Since (by Assumption 2.4) Pr [|u · x| ≥ r] ≤ min{1, h(r)}, and further note that when s ≥ r it holds

Pr
[
|u · x|i1{|u · x| ≥ r} ≥ si

]
= Pr [|u · x|1{|u · x| ≥ r} ≥ s] = Pr [|u · x| ≥ s] ≤ min{1, h(s)},

then we get

E
x∼Dx

[
|u · x|i1{|u · x| ≥ r}

]
≤ ri min{1, h(r)}+

∫ ∞

r

isi−1 min{1, h(s)} ds,

which holds for any u ∈ B(1). Therefore, we proved the first part of the claim by taking the maximum over u ∈ B(1) on
both sides of the inequality.

Now, consider r ≥ max{1, B−4−ρ}. Then for sub-Exponential distributions, as h(s) = exp(− s
B ) ≤ 1 when s ≥ r, we

have: ∫ ∞

r

sh(s) ds =

∫ ∞

r

s exp(−s/B) ds = B(r −B) exp(−r/B) ≤ Br2h(r),

and ∫ ∞

r

s3h(s) ds =

∫ ∞

r

s3 exp(−s/B) ds = B4((r/B)3 + 3(r/B)2 + 6r/B + 6) exp(−r/B) ≤ 16B4r4h(r),

where we assumed without loss of generality that c ≤ 1. Hence H2(r) ≤ (1 + 2B)r2h(r) and H4(r) ≤ (1 + 64B4)r4h(r),
proving the desired claim.

Finally, for k-Heavy tail distributions with k > 4 + ρ, ρ > 0, h(r) = B/rk. Since h(r) ≤ 1 when r ≥ max{1, B−4−ρ},
we have:

H2(r) ≤ r2h(r) +

∫ ∞

r

2B

sk−1
ds ≤ (1 + 2B)r2h(r),

and in addition,

H4(r) ≤ r4h(r) +

∫ ∞

r

4B

sk−3
ds ≤

(
1 +

4B

ρ

)
r4h(r).

The claim is now complete.

Applying Theorem D.7 to sub-Exponential distributions yeilds an L2
2 error of order O(OPT) + ϵ with Θ̃(log(1/ϵ))

convergence rate, using Ω̃(polylog(1/ϵ)) samples. Formally, we have the following corollaries.

Corollary D.16 (Sub-Exponential Distributions). Fix ϵ > 0 and W > 0 and suppose Assumptions 2.2 and 2.3 hold.
Moreover, assume that Assumption 2.4 holds for h(r) = exp(−r/B) for some B ≥ 1. Let OPT denote the minimum value
of the L2

2, i.e., OPT = minw∈B(W ) E(x,y)∼D
[
(σ(w · x)− y)2

]
. Let µ := µ(λ, γ, β,B) be a sufficiently small multiple of

λ2γβ, and let M = O(αWB log
(
αW
ϵ

)
). Then after

T = Θ̃

(
B2α2

µ2
log

(
W

ϵ

))
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iterations with batch size

N = Ω̃

(
dB4α6W 2

µ2
polylog(1/ϵ)

)
,

Algorithm 2 converges to a point w(T ) such that LD,σ
2 (w(T )) = O

((
Bα
µ

)2
OPT

)
+ ϵ with probability at least 2/3.

Proof of Corollary D.16. Since by assumption it holds h(r) = exp(−r/B) ≤ B/r4+ρ for ρ = 1, we can set ρ = 1 in
Theorem D.7. Thus, a direct application of Theorem D.7 with parameter ρ = 1 gives the desired L2

2 error and the required
number of iterations. It remains to determine the batch size with respect to the sub-Exponential distributions. To this aim,
note that N = Ω(dT (r2ϵ + α2M2)), thus we need to find the truncation bound M , which is defined in Lemma D.8, and
calculate rϵ such that H4(rϵ) ≲ ϵ.

Denote κ = ϵ
4α2W 2 . Recall that M = αWH−1

2 (κ). To determine H−1
2 (κ), note that H2(r) is a non-increasing function,

therefore it suffices to find a rκ such that H2(rκ) ≤ κ, then it holds H−1
2 (κ) ≤ rκ. For sub-Exponential distributions where

h(r) = exp(−r/B), choosing rκ = B log(1/κ2) satisfies

r2κh(rκ) = 4B2 log2
(
1

κ

)
κ2 ≤ 4B2κ,

since log2(1/κ)κ ≤ 1 as κ = ϵ/(4α2W 2) ≤ 1. Further note that in Fact D.15 we showed H2(r) ≤ (1 + 2B)r2h(r), thus
H2(rκ) ≲ κ hence M = O(αWB log((αW )/ϵ)).

For rϵ, by the same idea one can show that for rϵ = B log(1/ϵ2), it holds

H4(rϵ) ≤
(
1 + 64B4

)
r4ϵ exp(−rϵ/B) =

(
1 + 64B4

)
16B4 log4(1/ϵ)ϵ2 ≤

(
1 + 64B4

)
80B4ϵ,

where the first inequality is due to Fact D.15 and in the last inequality we used the fact that log4(1/ϵ)ϵ ≤ 5 when ϵ ≤ 1.

Therefore, combining the bounds on M and rϵ, we get

N = Ω̃(dT (r2ϵ + α2M2)) = Ω̃

(
dB4α6W 2

ρ2µ2
log3

(
1

ϵ

))
.

Next, we apply Theorem D.7 to Heavy-Tail distributions.

Corollary D.17 (Heavy-Tail Distributions). Fix ϵ > 0 and W > 0 and suppose Assumptions 2.2 and 2.3 hold. Moreover,
assume that Assumption 2.4 holds for h(r) = B/rk for some k > 4 + ρ where ρ > 0 and B ≥ 1. Let OPT denote the
minimum value of the L2

2, i.e., OPT = minw∈B(W ) E(x,y)∼D
[
(σ(w · x)− y)2

]
. Let µ := µ(λ, γ, β, ρ,B) be a sufficiently

small multiple of λ2γβρ/B, and let M = Θ(αW
(
αWB

ϵ

)1/(k−2)
). Then after

T = Θ̃

(
B2α2

ρ2µ2
log

(
W

ϵ

))
iterations with batch size

N = Ω̃

(
dB2α6W 2

ρ2µ2

(
B

ϵ

) 2
k−4
)

,

Algorithm 2 converges to a point w(T ) such that LD,σ
2 (w(T )) = O

((
Bα
ρµ

)2
OPT

)
+ ϵ with probability at least 2/3.

Proof of Corollary D.17. Applying Theorem D.7 directly we get the desired convergence rate and L2
2 loss. Now for batch

size, we need to determine the truncation bound M = αWH−1
2 (ϵ/(4α2W 2)) (see Lemma D.8) as well as rϵ such that

H4(rϵ) ≲ ϵ.

First, denote κ = ϵ
4α2W 2 . Let rκ = ( 2Bκ )1/(k−2). By Fact D.15, H2(rκ) ≲ r2κh(rκ) = κ

2 . Since H2(r) is non-
increasing, we know H−1

2 (κ) ≲ rκ. Thus, M = O(αW (αWB
ϵ )1/(k−2)). Next, choose rϵ = (Bϵ )

1/(k−4), then it holds
H4(rϵ) ≲ r4ϵh(rϵ) = ϵ satisfying the condition.
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Combining the bounds on rϵ and M , we get the batch size

N = Ω(dT (r2ϵ + α2M2)) = Ω̃

(
dB2α2

ρ2µ2
log

(
W

ϵ

)((
B

ϵ

) 2
k−4

+ α4W 2

(
B

ϵ

) 2
k−2
))

= Ω̃

(
dB2α6W 2

ρ2µ2

(
B

ϵ

) 2
k−4
)
.

Thus, Algorithm 2 yields an L2
2 error of O(OPT) + ϵ in Θ̃(log(1/ϵ)) iterations with batch size Ω̃((1/ϵ)2/(k−4)) when

applied on k-Heavy Tailed distributions.

E. Distributions Satisfying Our Assumptions
In this section, we show that many natural distributions satisfy Assumptions 2.3 and 2.4

E.1. Well-Behaved Distributions from Diakonikolas et al. (2022b)

We first consider the class of distributions defined by Diakonikolas et al. (2022b) and termed “well-behaved”. This
distribution class contains many natural distributions like log-concave and s-concave distributions.

Definition E.1 (Well-Behaved Distributions). Let L,R > 0. An isotropic (i.e., zero mean and identity covariance)
distribution Dx on Rd is called (L,R)-well-behaved if for any projection (Dx)V of Dx onto a subspace V of dimension at
most two, the corresponding pdf ϕV on R2 satisfies the following:

• For all x ∈ V such that ∥x∥∞ ≤ R it holds ϕV (x) ≥ L (anti-anti-concentration).

• For all x ∈ V it holds that ϕV (x) ≤ (1/L)(e−L∥x∥2) (anti-concentration and concentration).

The distribution class that is (L,B)-well-behaved satisfies Assumption 2.4. Therefore, we need to show that the distributions
in this class satisfy Assumption 2.3.

Lemma E.2. Let Dx be a (L,B)-well-behaved distribution. Then, Dx satisfies Assumption 2.3, for γ = R/2 and
λ = LR4/16.

Proof. Let u,v ∈ Rd be any two orthonormal vectors and let V be the subspace spanned by u,v. We have that

Ex∼Dx

[
(u · x)21{v · x ≥ R/2}

]
≥ Ex∼Dx

[
(u · x)21{R ≥ u · x ≥ R/2, R ≥ v · x ≥ R/2}

]
≥ (R2/4)Ex∼Dx [1{R ≥ u · x ≥ R/2, R ≥ v · x ≥ R/2}]

= (R2/4)

∫ R

R/2

∫ R

R/2

ϕV (x)dx ≥ (R2/4)L

∫ R

R/2

∫ R

R/2

dx = LR4/16 .

Furthermore, similarly, we have that Ex∼Dx

[
(v · x)21{v · x ≥ R/2}

]
≥ LR4/16. Therefore,Dx satisfies Assumption 2.3

with γ = R/2 and λ = LR4/16.

E.2. Symmetric Product Distributions with Strong Concentration

E.2.1. k-HEAVY TAILED SYMMETRIC DISTRIBUTIONS, k ≥ 7

Here we show that symmetric product distributions with sufficiently large polynomial tails satisfy our assumptions.

Proposition E.3. Let Dx be a k-Heavy Tailed symmetric distribution with k ≥ 7 and i.i.d. coordinates, i.e., it satisfies
Pr [|u · x| ≥ r] ≤ B/rk for some absolute constant B ≥ 1. Let α = Ex∼Dx

[
x2
i

]
and β = Ex∼Dx

[
x4
i

]
. Suppose

β − α2 ≥ cα2, where c > 0 is an absolute constant and let C to be suffciently small absolute multiple of (k − 6)c2α4/B.
Then, Dx satisfies Assumptions 2.3 and 2.4 with γ = C

2 (
C3

16B )1/k and λ = C5

64 (
C3

16B )2/k.
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Proof of Proposition E.3. First, observe that by definition, Dx satisfies Assumption 2.4 with h(r) = B/rk. We show that
Dx satisfies Assumption 2.3 with some absolute constants γ and λ. Let u,v ∈ Rd be any two orthonormal vectors. We
have that

Ex∼Dx [|u · x|v · x] = 0 ,

since the distribution is symmetric. Therefore, we have that Ex∼Dx [|u · x||v · x|1{v · x ≥ 0}] = Ex∼Dx [|u · x||v · x|] /2.
Let V = |u · x||v · x|. We show that Ex∼Dx [V ] ≳ c2α4(k − 6)/B.

Claim E.4. Let V = |u · x||v · x|. Assume that x has i.i.d. zero mean coordinates and that x is k-Heavy tailed with
parameter k ≥ 7, B ≥ 1. Let α = Ex∼Dx

[
x2
i

]
and β = Ex∼Dx

[
x4
i

]
. If β − α2 ≥ cα2, where c > 0 is an absolute

constant then, Ex∼Dx [V ] ≳ c2α4(k − 6)/B.

Proof of Claim E.4. First, note that we can write V 2 as
√
V V 3/2, because V ≥ 0. Therefore, by applying the Cauchy-

Schwarz inequality, we have that

E
x∼Dx

[
V 2
]2 ≤ E

x∼Dx

[V ] E
x∼Dx

[
V 3
]
.

Therefore, we have that Ex∼Dx [V ] ≥ (Ex∼Dx

[
V 2
]
)2/Ex∼Dx

[
V 3
]
. We first bound Ex∼Dx

[
V 2
]

from below. Let
α = Ex∼Dx

[
x2
i

]
and β = Ex∼Dx

[
x4
i

]
. Observe that

E
x∼Dx

[
V 2
]
=

∑
i1,i2,i3,i4

E
x∼Dx

[ui1ui2vi3vi4xi1xi2xi3xi4 ]

=
∑

i1,i2,i1 ̸=i2

E
x∼Dx

[
u2
i1v

2
i2x

2
i1x

2
i2 + 2ui1vi1ui2vi2x

2
i1x

2
i2

]
+
∑
i

E
x∼Dx

[
u2
iv

2
ix

4
i

]
= α2

∑
i1,i2,i1 ̸=i2

u2
i1v

2
i2 + 2α2

∑
i1,i2,i1 ̸=i2

ui1vi1ui2vi2 + β
∑
i

u2
iv

2
i

= α2
∑

i1,i2,i1 ̸=i2

u2
i1v

2
i2 − 2α2

∑
i

u2
iv

2
i + β

∑
i

u2
iv

2
i

= α2
∑
i

u2
i (1− v2

i )− 2α2
∑
i

u2
iv

2
i + β

∑
i

u2
iv

2
i

= (β − 3α2)
∑
i

u2
iv

2
i + α2 ,

where we used that
∑d

i=1 viui = 0 and ∥u∥2 = ∥v∥2 = 1, because v,u are orthonormal. Next, we show that
∑

i u
2
iv

2
i is

less than 1/2.

Claim E.5. Let v,u be two orthonormal vectors. Then,
∑

i u
2
iv

2
i ≤ 1/2.

Proof of Claim E.5. Note that since
∑

i u
2
i =

∑
i v

2
i = 1 and

∑
i uivi = 0, it holds

1 =

(∑
i

u2
i

)(∑
i

v2
i

)
=
∑
i

u2
iv

2
i +

∑
1≤i<j≤d

(u2
iv

2
j + u2

jv
2
i ) ,

0 =

(∑
i

uivi

)2

=
∑
i

u2
iv

2
i + 2

∑
1≤i<j≤d

uiviujvj .

Thus, summing the equalities above, we get

1 = 2
∑
i

u2
iv

2
i +

∑
1≤i<j≤d

(uivj + ujvi)
2 ≥ 2

∑
i

u2
iv

2
i ,

therefore, we have
∑

i u
2
iv

2
i ≤ 1/2.
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Therefore, we have that if c ≥ 2 then β−3α2 ≥ 0 hence Ex∼Dx

[
V 2
]
≥ α2. If c ≤ 2, then it holds Ex∼Dx

[
V 2
]
≥ (c/2)α2.

In summary we have Ex∼Dx

[
V 2
]
≥ (c/2)α2 for any c > 0. Furthermore, we can bound Ex∼Dx

[
V 3
]

from above as the
following. Using Cauchy-Schwarz, we have that Ex∼Dx

[
V 3
]
≤ maxu∈B(1) Ex∼Dx

[
(u · x)6

]
. Recall that x is a k-Heavy

Tailed random variable with k ≥ 7, hence Ex∼Dx

[
(u · x)6

]
≤ 1 + 6B/(k − 6). Therefore, we have that

E
x∼Dx

[V ] = E
x∼Dx

[|u · x||v · x|] ≥ c2α4

4 + 24B
k−6

. (40)

This completes the proof of Claim E.4.

Lemma E.6. Let Z = |u · x||v · x|1{v · x ≥ 0}. Assume that, there exists a constant 1 > C > 0, so that Ex∼Dx [Z] ≥ C
and Ex∼Dx

[
Z2
]
≤ 1/C. Then it holds

E
x∼Dx

[
(u · x)21

{
v · x ≥ C

2

(
C3

16B

)1/k}]
≥ C5

64

(
C3

16B

)2/k

,

and

E
x∼Dx

[
(v · x)21

{
v · x ≥ C

2

(
C3

16B

)1/k}]
≥ C5

64

(
C3

16B

)2/k

.

Proof of Lemma E.6. Using Paley-Zigmund inequality, we have that

Pr

[
Z ≥ ζ E

x∼Dx

[Z]

]
≥ (1− ζ)2

Ex∼Dx [Z]
2

Ex∼Dx [Z
2]

.

Therefore, we have that Pr [Z ≥ C/2] ≥ C3/4, where Z = |u · x||v · x|1{v · x ≥ 0}. For simplicity of notation, let’s
denote |u · x| and |v · x|1{v · x ≥ 0} as a and b respectively. Then fixing some t > 0, it holds:

C3

4
≤ Pr

[
ab ≥ C

2

]
= Pr

[
ab ≥ C

2
, a ≥ t

√
C

2
, b ≤ t

√
C

2

]
+Pr

[
ab ≥ C

2
, a ≤ t

√
C

2
, b ≥ t

√
C

2

]

+Pr

[
ab ≥ C

2
, a ≥ t

√
C

2
, b ≥ t

√
C

2

]
+Pr

[
ab ≥ C

2
,
1

t

√
C

2
≤ a ≤ t

√
C

2
,
1

t

√
C

2
≤ b ≤ t

√
C

2

]
.

Note that Dx is k-Heavy Tailed, thus, when t ≥
√

2
C

(
16B
C3

)1/k
, it holds

Pr
[
a ≥ t

√
C/2

]
= Pr

[
|u · x| ≥ t

√
C/2

]
≤ B

(t
√

C/2)k
≤ C3

16
.

Similarly, for b = |v · x|1{v · x ≥ 0} ≤ |v · x| it holds Pr
[
b ≥ t/

√
C/2

]
≤ C3/16. Therefore, Pr [ab ≥ C/2] can be

upper-bounded by

C3

4
≤ Pr

[
ab ≥ C

2

]
≤ 3C3

16
+Pr

[
ab ≥ C

2
,
1

t

√
C

2
≤ a ≤ t

√
C

2
,
1

t

√
C

2
≤ b ≤ t

√
C

2

]
.

Hence, we get

Pr

[
a ≥ 1

t

√
C

2
, b ≥ 1

t

√
C

2

]
≥ Pr

[
ab ≥ C

2
,
1

t

√
C

2
≤ a ≤ t

√
C

2
,
1

t

√
C

2
≤ b ≤ t

√
C

2

]
≥ C3

16
,
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where we choose t =
√

2
C

(
16B
C3

)1/k
. As a result,

E
x∼Dx

[
(u · x)21

{
v · x ≥ C

2

(
C3

16B

)1/k}]

≥ E
x∼Dx

[
(u · x)21

{
v · x ≥ C

2

(
C3

16B

)1/k

, |u · x| ≥ C

2

(
C3

16B

)1/k}]

≥ C5

64

(
C3

16B

)2/k

.

Similarly, we also have Ex∼Dx [(v · x)21{v · x ≥ C
2 (

C3

16B )1/k}] ≥ C5

64 (
C3

16B )2/k.

From Claim E.4 we know that E[Z] = Ex∼Dx [|u · x||v · x|1{v · x ≥ 0}] = 1
2 Ex∼Dx [|u · x||v · x|] ≳ (k − 6)c2α4/B.

In addition, using Cauchy-Schwarz we have E[Z2] ≤ maxu∈B(1) Ex∼Dx

[
(u · x)4

]
≤ 5B, where the last inequality comes

from Fact C.4 (note that ρ = 1 suffices in when Dx is k-Heavy Tailed, k ≥ 7). Thus, choosing C to be suffciently small
absolute multiple of (k − 6)c2α4/B, it holds E[Z] ≥ C and E[Z2] ≤ 1/C. Let v = w∗/∥w∗∥2 and let u be any vector
that is orthonormal to v. Then by the results of Lemma E.6, we know that choosing γ = C

2 (
C3

16B )1/k and λ = C5

64 (
C3

16B )2/k,
it holds Ex∼Dx

[
xx⊤1{w∗ · x ≥ γ∥w∗∥2}

]
⪰ λI.

E.2.2. DISCRETE GAUSSIANS

Here we show that our assumptions are satisfied for discrete multivariate Gaussians.

We will use the following standard definition of a discrete Gaussian.

Definition E.7 (Discrete Gaussian). We define the discrete standard Gaussian distribution as follows: Fix θ ∈ R+ with
θ > 0. Then, the pmf of the discrete Gaussian distribution is given by

p(z) =
1

Z
exp

(
−z2

2

)
1{z ∈ θZ} ,

where Z is a normalization constant. Similarly, we define the high dimensional analogous as follows, we say that a random
vector x ∈ Rd follows the d-dimensinal discrete Gaussian distribution if x is a vector of d independent random variables,
each of which follows the discrete Gaussian distribution.

Corollary E.8. Let θ ∈ (0, 1] and let Dx be a d-dimensional discrete Gaussian distribution with parameter θ. Then, there
exists an absolute constant C > 0, so that Dx satisfies Assumptions 2.3 and 2.4 with ρ = 1, B = e9, γ = C(C3/B)1/7 and
λ = C5(C3/B)2/7.

Proof of Corollary E.8. We first show that the discrete Gaussian distribution is subgaussian with an appropriate parameter.

Lemma E.9. Let θ ∈ (0, 1] then the discrete Gaussian distribution is subgaussian with parameter 2
√
2.

Proof of Lemma E.9. By definition, a random variable X is D-subgaussian if

Pr [|X| ≥ t] ≤ exp(−t2/D2) .

Let X ∼ Dx, where Dx is a discrete Gaussian distribution with parameter θ. Fix t ≥ θ, Then, we have that

Pr [|X| ≥ t] ≤ 1

Z

∑
z∈θZ,|z|≥t

exp

(
−z2

2

)
≤ 2

Z

∫ ∞

t/θ−1

exp

(
−z2θ2

2

)
dz

=
2

θZ

∫ ∞

t−θ

exp

(
−z2

2

)
dz ≤ 2

θZ

∫ ∞

t/2

exp

(
−x2

2

)
dx ,

where for the first inequality, we used the integral mean value theorem and the monotonicity, i.e.,
∫ k+1

k
f(t)dt = f(ξ) for ξ ∈

(k, k + 1) and that f(k + 1) ≤ f(ξ) ≤ f(k) because f is a decreasing function. Further note that 2
∫∞
t/2

exp(−x2/2) dx =
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√
2πerfc

(
t

2
√
2

)
≤
√
2π exp(−t2/8). It remains to show that θZ is lower-bouned. Note that exp(−x2/2) is a decreasing

function when x ≥ 0, therefore for any z ∈ Z+ it holds exp(−(θz)2/2) ≥
∫ z+1

z
exp(−(θx)2/2) dx. Thus, by definition,

θZ = θ + 2θ
∑
z∈Z+

exp((θz)2/2)

≥ θ

∫ 1

0

exp(−(θx)2/2) dx+ 2θ
∑
z∈Z+

∫ z+1

z

exp(−(θx)2/2) dx

≥
∫ ∞

0

exp(−t2/2) dt+
∫ ∞

1

exp(−t2/2) dt =
√

π

2
(2− erf(1/

√
2)) ≥

√
π

2
.

Thus, combining these results, we get Pr [|X| ≥ t] ≤ 4 exp(−t2/8), thus discrete Gaussian is sub-Gaussian with parameter
D = 2

√
2.

It remains to show that the discrete Gaussian distribution satisfies the requirements of Proposition E.3. To be specific, we
show that it holds

Claim E.10. Let X be a discrete Gaussian random variable. Denote E[X2] as α and E[X4] as β. Then it holds α ≤ 1 and
β ≥ 1.25.

Proof of Claim E.10. By Poisson summation formula, we know that it holds
∑

z∈Z f(z) =
∑

z∈Z f̂(z) where f̂(t) is the
fourier transform of f , i.e., f̂(z) =

∫ +∞
−∞ f(x)e−2πixtdx. It is easy to calculate that for f(z) = θ2z2 exp

(
− θ2z2

2

)
we have

f̂(t) =

√
2π

θ3
(θ2 − 4π2t2) exp

(
− 2π2t2

θ2

)
,

and for g(z) = exp
(
− θ2z2

2

)
, we have

ĝ(t) =

√
2π

θ
exp

(
− 2π2t2

θ2

)
.

Thus, by definition,

α = E[X2] =

∑
z∈Z f(z)∑
z∈Z g(z)

=

∑
z∈Z f̂(z)∑
z∈Z ĝ(z)

= 1−
∑

z∈Z
4π2z2

θ2 exp
(
− 2π2z2

θ2

)∑
z∈Z exp

(
− 2π2z2

θ2

) ≤ 1.

For E[X4], note that t4 exp(−t2/2) is an increasing function when t ∈ (0, 2) and is decreasing when t ∈ (2,∞). Thus,
denote ∆z = 1, then by the property of integral, it holds

E
x∼Dx

[
X4
]
=

1

θZ

∑
z∈Z

(θz)4 exp(−(θz)2/2)θ(∆z)

≥ 2

θZ

(∫ 2−θ

0

t4 exp(−t2/2) dt+
∫ ∞

2

t4 exp(−t2/2) dt
)

≥ 2

θZ

(∫ 1

0

t4 exp(−t2/2) dt+ 2.06

)
≥ 4.4

θZ
,

where the second inequality is due to the fact that
∫∞
2

t4 exp(−t2/2) dt ≥ 2.06 and θ ∈ (0, 1]. Further, in the last inequality
we used the fact that

∫ 1

0
t4 exp(−t2/2) dt ≥ 0.14.

Now, note that for θZ, it holds

θZ = θ + 2
∑
z∈Z+

exp(−(θz)2/2)θ(∆z) ≤ θ + 2

∫ ∞

0

exp

(
− t2

2

)
dt ≤ 1 +

√
2π.

Therefore, combining with upper-bound on θZ, it holds E[X4] ≥ 4.4/(1 +
√
2π) ≥ 1.25.
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Now since α ≤ 1, β ≥ 1.25α2 and discrete Gaussian is 2
√
2-sub-Gaussian as proved in Lemma E.9, we have

Pr [|u · x| ≤ r] ≤ exp(−r2/8) ≤ e9/r7. Thus, the conditions in Proposition E.3 are satisfied with parameters
B = e9, c = 0.25, k = 7. Thus, choosing C to be a small multiple of c2α4/B, then since according to Claim E.4,
Ex∼Dx [Z] ≳ c2α4/B ≥ C and Ex∼Dx

[
Z2
]
≤ 5B ≤ 1/C, thus, by Proposition E.3, we know that Assumption 2.3 is

satisfied with parameters γ = C
2 (

C3

16B )1/7 and λ = C5

64 (
C3

16B )2/7 .

E.2.3. UNIFORM DISCRETE DISTRIBUTION ON {−1, 0, 1}d

Finally, we show that the uniform distribution on a hyper-grid satisfies our assumptions.
Corollary E.11. Let Dx be a d-dimensional uniform distribution over the {−1, 0, 1}d. Then, there exists an absolute
constant C > 0, so thatDx satisfies Assumptions 2.3 and 2.4 with B = 1, ρ = 1, γ = C(C3/B)1/7 and λ = C5(C3/B)2/7.

Proof of Corollary E.11. Note that the distribution is 1-sub-Gaussian. Now since β = Ex∼Dx

[
x4
i

]
= 2/3 and α =

Ex∼Dx

[
x2
i

]
= 2/3, therefore, β = 1.5α2. Thus, the conditions in Proposition E.3 are satisfied with parameters B = 1,

α = 2/3, c = 0.5, k = 7. Now choosing C to be a small multiple of c2α4/B, then since according to Claim E.4,
Ex∼Dx [Z] ≳ c2α4/B ≥ C and Ex∼Dx

[
Z2
]
≤ 5B ≤ 1/C, thus, by Proposition E.3, we know that Assumption 2.3 is

satisfied with parameters γ = C
2 (

C3

16B )1/7 and λ = C5

64 (
C3

16B )2/7.

F. Extension to Certain Non-Monotone Activations
In this section, we extend our algorithmic results to certain cases where the activation function is not monotone. Specifically,
we will consider activations like GeLU (Hendrycks & Gimpel, 2016): σGeLU (t) = tΦ(t), where Φ(t) is the cdf. of the
standard normal random variable N (0, 1) and Swish (Ramachandran et al., 2017) defined by σSwish(t) =

t
1+exp(−t) .

Definition F.1 (Non-Monotonic (α, β)-Unbounded Activations). Let σ : R 7→ R be an activation function and let α, β > 0.
We say that σ is non-monotonic (α, β)-unbounded if it satisfies the following assumptions:

1. σ(t2) ≥ 0 ≥ σ(t1) for any t2 ≥ 0 ≥ t1;

2. σ is α-Lipschitz; and

3. σ′(t) ≥ β for all t ∈ (0,∞).

As mentioned above, Definition F.1 contains GeLU and Swish. Indeed, one can show that σGeLU (t) is actually non-
monotonic (1.1, 1/2)-unbounded, and σSwish(t) is non-monotonic (1.2, 0.4)-unbounded. We include the following Figure 1
of these activations to provide the readers with a better geometric intuition.

Figure 1: Non-Monotonic (α, β)-Unbounded Activation Examples: GeLU and Swish

Now, we show that truncating a non-monotonic (α, β)-unbounded activation σ to σ̂(t) = [σ(t)]+ and cutting off the negative
part of y induces only a small L2

2 error at point w∗, i.e., E(x,y)∼D
[
(σ̂(w∗ · x)− y1{y ≥ 0})2

]
≤ OPT, implying that we

can consider running an algorithm similar to Algorithm 1 on σ̂(t) and truncated y.
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Lemma F.2. Let w∗ = argminw∈B(W ) E(x,y)∼D
[
(σ(w · x)− y)2

]
= argminw∈B(W ) L

D,σ
2 (w) and denote LD,σ

2 (w∗)
as OPT. Define ŷ = [y]+ and σ̂(t) = [σ(t)]+. Then:

E
(x,y)∼D

[
(σ̂(w∗ · x)− ŷ)2

]
≤ OPT .

Proof. The proof follows similar ideas in Lemma D.8. Since [t]+ is a non-expansive projection from R to R+, we have
|[t1]+ − [t2]+| ≤ |t1 − t2| for any t1, t2 ∈ R. Thus, we get

E
(x,y)∼D

[
(σ̂(w∗ · x)− y′)2

]
= E

(x,y)∼D

[
([σ(w∗ · x)]+ − [y]+)

2
]
≤ E

(x,y)∼D

[
(σ(w∗ · x)− y)2

]
= OPT.

The truncated activation function is a monotonic (α, β)-unbounded since σ̂(t) is increasing when t ≥ 0 and σ̂(t) = 0 when
t ≤ 0. Thus, when Assumptions 2.3 and 2.4 hold with respect to distribution Dx and σ̂, we can use a slightly modified
algorithm Algorithm 3 that works as efficiently as Algorithm 1 since Lemma 2.5 and Theorem 3.3 can be applied to
activation σ̂(t) with minor modifications. Formally, we have the following corollaries:
Corollary F.3. Let σ(t) be a non-monotonic (α, β)-unbounded activation function satisfying Definition F.1. Suppose that
Assumption 2.3 and Assumption 2.4 holds. Further denote σ̂(t) = σ(t)1{t ≥ 0}. Then the noise-free surrogate loss L̄D,σ̂

sur

with respect to activation function σ̂(t) is Ω(λ2γβρ/B)-sharp in the ball B(2∥w∗∥2), i.e.,

∇L̄D,σ̂
sur (w) · (w −w∗) ≳ λ2γβρ/B∥w −w∗∥22, ∀w ∈ B(2∥w∗∥2).

Proof. Since σ̂ is monotonic (α, β)-unbounded, we have proven in Lemma 2.5 for monotonic (α, β)-unbounded activations
and distribution Dx satisfying Assumption 2.2 to Assumption 2.4, L̄D,σ̂

sur is µ̄ sharp with the parameter µ̄ = Ω(λ2γβρ/B).

Corollary F.4. Let σ(t) be a non-monotonic (α, β)-unbounded activation function, satisfying Definition F.1. Fix ϵ > 0 and
W > 0 and suppose Assumptions 2.3 and 2.4 hold. Let OPT denote the minimum value of the L2

2 loss i.e.,

OPT = min
w∈B(W )

E
(x,y)∼D

[
(σ(w · x)− y)2

]
.

Let µ := µ(λ, γ, β, ρ,B) be a sufficiently small multiple of λ2γβρ/B, and let M = αWH−1
2

(
ϵ

4α2W 2

)
. Further, choose

parameter rϵ large enough so that H4(rϵ) is a sufficiently small multiple of ϵ. Then after

T = Θ̃

(
B2α2

ρ2µ2
log

(
W

ϵ

))
iterations with batch size N = Ω̃(dT (r2ϵ + α2M2)), Algorithm 3 converges to a point w(T ) such that LD,σ

2 (w(T )) =

O
(

B2α2

ρ2µ2 OPT
)
+ ϵ with probability at least 2/3.

Proof. First observe that since the α-Lipschitz property remains for non-monotonic (α, β)-unbounded functions, the
following is still valid:

LD,σ
2 (w) = E

(x,y)∼D

[
(σ(w · x)− y)2

]
≤ 2 E

x∼Dx

[
(σ(w · x)− σ(w∗ · x))2

]
+ 2 E

(x,y)∼D

[
(σ(w∗ · x)− y)2

]
≤ 2α2

E
x∼Dx

[
((w −w∗) · x)2

]
+ 2OPT

≤ (10Bα2/ρ)∥w −w∗∥22 + 2OPT. (41)

Now denote ϵ̂ = E(x,y)∼D
[
(σ̂(w · x)− ŷ)2

]
. If one can show that after T = Θ̃

(
B2α2/(ρ2µ2) log (W/ϵ)

)
iterations with

a large enough batch size N = Ω̃(dT (r2ϵ + α2M2)), Algorithm 3 generates a point w(T ) such that it holds

∥w(T ) −w∗∥22 ≤
64B

ρµ2
ϵ̂+ ϵ, (42)
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Algorithm 3 Stochastic Gradient Descent on Surrogate Loss For Non-Monotonic (α, β)-Unbounded Activations

Input: Iterations: T , sample access from D, batch size N , step size η, bound M .
Initialize w(0) ← 0.
for t = 1 to T do

Draw N samples {(x(j), y(j))}Nj=1 ∼ D.
for each j ∈ [N ], y(j)← min([y(j)]+,M)
Let σ̂(t) = [σ(t)]+, calculate

g(t) ← 1

N

N∑
j=1

(σ̂(w(t) · x(j))− y(j))x(j),

w(t+1) ← w(t) − ηg(t).
end for
Output: The weight vector w(T ).

then, since we showed in Lemma F.2 that ϵ̂ ≤ OPT, combining with Equation (41) we immediately get

LD,σ
2 (w) ≤

(
2 +

640B2α2

ρ2µ2

)
OPT+ (10Bα2/ρ)ϵ,

thus completing the corollary.

In order to prove the claim above and Equation (42), one only needs to observe that σ̂(t) is monotonic (α, β)-unobounded,
and Assumption 2.2 to Assumption 2.4 holds for σ̂(t) and the distribution Dx. Therefore, the exact same techniques for
proving Theorem 3.3 (see Appendix D.2) can be applied. Results similar to Lemma D.8 and Lemma D.9 still hold for
activation function σ̂(t) and data points (x, ŷ), with the only difference being that we have E(x,y)∼D

[
(σ̂(w∗ · x)− ŷ)2

]
= ϵ̂

instead of OPT. Moreover, it has proven in Corollary F.3 that L̄D,σ̂
sur is µ̄ sharp, therefore by Proposition 3.2 we know

LD,σ
sur is µ̄/2 sharp. Thus, Equation (42) follows from the same steps and the same choice of parameters as in the proof of

Theorem 3.3 (see Appendix D.2).

37


