
Proceedings of Machine Learning Research vol 195:1–29, 2023 36th Annual Conference on Learning Theory

Information-Computation Tradeoffs for Learning Margin
Halfspaces with Random Classification Noise

Ilias Diakonikolas ilias@cs.wisc.edu
University of Wisconsin-Madison
Jelena Diakonikolas jelena@cs.wisc.edu
University of Wisconsin-Madison
Daniel Kane dakane@ucsd.edu
University California, San Diego
Puqian Wang pwang333@wisc.edu
University of Wisconsin-Madison

Nikos Zarifis zarifis@wisc.edu
University of Wisconsin-Madison

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
We study the problem of PAC learning γ-margin halfspaces with Random Classification
Noise. We establish an information-computation tradeoff suggesting an inherent gap be-
tween the sample complexity of the problem and the sample complexity of computationally
efficient algorithms. Concretely, the sample complexity of the problem is Θ̃(1/(γ2ϵ)). We
start by giving a simple efficient algorithm with sample complexity Õ(1/(γ2ϵ2)). Our main
result is a lower bound for Statistical Query (SQ) algorithms and low-degree polynomial
tests suggesting that the quadratic dependence on 1/ϵ in the sample complexity is inherent
for computationally efficient algorithms. Specifically, our results imply a lower bound of
Ω̃(1/(γ1/2ϵ2)) on the sample complexity of any efficient SQ learner or low-degree test.
Keywords: PAC Learning, Halfspaces, Margin, Random Classification Noise, SQ Model

1. Introduction

This work studies the efficient learnability of halfspaces with a margin in the presence of
random label noise. Before we present our contributions, we provide the necessary back-
ground. A halfspace or Linear Threshold Function (LTF) is any Boolean-valued function
h : Rd → {±1} of the form h(x) = sign (w · x − θ), where w ∈ Rd is the weight vector
and θ ∈ R is the threshold. The function sign : R → {±1} is defined as sign(t) = 1 if
t ≥ 0 and sign(t) = −1 otherwise. The problem of learning halfspaces with a margin — i.e.,
under the assumption that no example lies too close to the separating hyperplane — is a
textbook problem in machine learning, whose history goes back to the Perceptron algorithm
of Rosenblatt (1958). Here we study the problem of PAC learning margin halfspaces in the
presence of Random Classification Noise (RCN) (Angluin and Laird, 1988).

Before we describe the noisy setting (the focus of this work), we recall the basics in the
realizable PAC model (Valiant, 1984) (i.e., when the labels are consistent with the target
concept). We will henceforth assume that the threshold is θ = 0, which is well-known to be
no loss of generality. The setup is as follows: there is an unknown distribution (x, y) ∼ D
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on Sd−1 × {±1}, where Sd−1 is the unit sphere on Rd, such that y = sign(w∗ · x) for some
w∗ ∈ Rd with ∥w∗∥2 = 1. The margin assumption means that the marginal distribution
of D on the examples x, denoted by Dx, puts no probability mass on points with distance
less than γ ∈ (0, 1) from the separating hyperplane w∗ · x = 0; that is, we have that
Prx∼Dx [|w∗ · x| < γ] = 0. The parameter γ is called the margin of the target halfspace.

In this context, the learning algorithm is given as input a desired accuracy ϵ > 0 and a
training set S = {(x(i), y(i))}m

i=1 of i.i.d. samples from D. The goal is to output a hypothesis
h : Rd → {±1} whose misclassification error errD

0−1(h) := Pr(x,y)∼D[h(x) ̸= y] is at most ϵ
with high probability1. The aforementioned setting is well-understood. First, it is known
that the sample complexity of the learning problem, ignoring computational considerations,
is Θ(1/(γ2ϵ)); see, e.g., Shalev-Shwartz and Ben-David (2014)2. Moreover, the Perceptron
algorithm is a computationally efficient PAC learner achieving this sample complexity. (This
follows, e.g., by combining the mistake bound of O(1/γ2) of the online Perceptron with
the online-to-PAC conversion in Littlestone (1989).) That is, in the realizable setting, there
exists a computationally efficient learner for margin halfspaces achieving the optimal sample
complexity (within constant factors).

The high-level question that serves as the motivation for this work is the following:

Can we develop “similarly efficient” algorithms in the presence of label noise, and
specifically in the (most) basic model of Random Classification Noise?

By the term “similarly efficient” above, we mean that we would like a polynomial-time
algorithm with near-optimal sample complexity (up to logarithmic factors).

This problem appears innocuous and our initial efforts focused towards obtaining such
an algorithm. After several failed attempts, we established an information-computation
tradeoff strongly suggesting that such an algorithm does not exist. We next describe our
setting in more detail.
Learning Margin Halfspaces with RCN The RCN model (Angluin and Laird, 1988)
is the most basic model of random label noise. In this model, the label of each example is
independently flipped with probability exactly η, where 0 < η < 1/2 is a noise parameter.
Since its introduction, RCN has been studied extensively in learning theory from both an
information-theoretic and an algorithmic standpoint. One of the early fundamental results
in this field was given by Kearns (1998), who showed that any Statistical Query (SQ)
algorithm can be transformed into a PAC learning algorithm that is tolerant to RCN. This
transformation preserves statistical and computational efficiency within polynomial factors.

We return to our problem of PAC learning margin halfspaces with RCN. The setup is
very similar to the one above. The only difference is that the labels are now perturbed
by RCN with noise rate η (see Definition 1). As a result, the optimal misclassification
error is equal to η, and the goal is to find a hypothesis that with high probability satisfies
errD

0−1(h) ≤ η + ϵ. A closely related objective would be to approximate the target halfspace,
i.e., the function sign(w∗ · x), within any desired accuracy ϵ′ > 0. It is well-known (and
easy to derive) that the two goals are essentially equivalent, up to rescaling the parameter

1. Throughout this introduction, we will take the failure probability to be a small constant, say 1/10.
2. We are implicitly assuming that d = Ω(1/γ2); otherwise, a sample complexity bound of Õ(d/ϵ) follows

from standard VC-dimension arguments.
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ϵ by a factor of (1 − 2η). In this paper, we phrase our results for the misclassification error
with respect to the observed labels.

In this context, the sample complexity of PAC learning margin halfspaces with RCN is
equal to Θ̃(1/((1 − 2η)γ2ϵ)). This bound can be derived, e.g., from the work of Massart
and Nedelec (2006). (That is, the sample complexity of the RCN learning problem is es-
sentially the same as in the realizable case — assuming η is bounded from 1/2 — within
logarithmic factors.) On the algorithmic side, a number of works, starting with Bylander
(1994), developed polynomial sample and time algorithms for this learning task. Specifi-
cally, Bylander (1994) developed a careful adaptation of the Perceptron algorithm for this
purpose. Subsequently, Blum et al. (1997) pointed out that an SQ version of the Perceptron
algorithm coupled with Kearns’ reduction immediately implies the existence of an efficient
RCN learner (see also Cohen (1997) for a closely related work). More recently, in a related
context, Diakonikolas et al. (2019) pointed out that a simple convex surrogate loss can be
used for this purpose (see also Diakonikolas et al. (2020) for a related setting).

The preceding paragraph might suggest that the RCN version of the problem is fully
resolved. The catch is that all known algorithms for the problem require sample complexities
that are polynomially worse than the information-theoretic minimum. Specifically, for all
known polynomial-time algorithms, the dependence of the sample complexity on the inverse
of the accuracy parameter ϵ is at least quadratic — while the information-theoretic minimum
scales near-linearly with 1/ϵ. It is thus natural to ask whether a computationally efficient
algorithm with (near-)optimal sample complexity exists. This leads us to the following
question:

Is the existing gap between the sample complexity of known efficient algorithms
and the information-theoretic sample complexity inherent?

In this paper, we resolve the above question in the affirmative for a broad class of algorithms
— specifically, for all Statistical Query algorithms and low-degree polynomial tests.

1.1. Our Results

The following definition summarizes our setting.

Definition 1 (PAC Learning Margin Halfspaces with RCN) Let D be a distribu-
tion over Sd−1 × {±1}, where Sd−1 is the unit sphere in Rd, and let w∗ ∈ Sd−1. Let
γ ∈ (0, 1) and η ∈ (0, 1

2). For each sample (x, y) ∼ D, the following assumptions both hold:

(A1) The unit vector w∗ satisfies the γ-margin condition, i.e., Pr(x,y)∼D [|w∗ · x| < γ] = 0.

(A2) For each point x ∈ Sd−1, the corresponding label y satisfies: with probability 1 − η,
y = sign(w∗ · x); otherwise, y = −sign(w∗ · x).

Given i.i.d. samples from D, the goal of the learner is to output a hypothesis h that with
high probability satisfies errD

0−1(h) := Pr(x,y)∼D[h(x) ̸= y] ≤ η + ϵ.

While our definition applies to homogeneous halfspaces, the case of general halfspaces, i.e.,
functions of the form y = sign(w∗ ·x− t), can easily be reduced to the homogeneous case by
increasing the dimension by one, i.e., writing y = sign((w∗, −t) · (x, 1)). By rescaling these
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vectors and letting w′ := (w∗, t)/
√

1 + t2, and x′ := (x, 1)/
√

2, we have a homogeneous
halfspace y = sign(w′ · x′) in d + 1 dimensions with margin γ/

√
2(1 + t2) ≥ γ/2 equivalent

to our original problem. By the homogeneity assumption, it follows that the assumption
that the examples lie on the unit sphere is also generic (up to scaling). We also recall
that it can be assumed without loss of generality that the noise rate η is known to the
algorithm (Angluin and Laird, 1988).

To the best of our knowledge, prior to our work, the best known sample-complexity upper
bound of an efficient algorithm for our problem was Õ(1/(γ4ϵ2)) (Diakonikolas et al., 2019).
Our first result is a computationally efficient learner with sample complexity Õ(1/(γ2ϵ2)).

Theorem 2 (Algorithmic Result) There exists an algorithm that draws N = Õ(1/(γ2ϵ2))
samples, runs in time poly(N, d) and learns γ-margin halfspaces up to misclassification error
η + ϵ with probability at least 9/10.

See Theorem 9 for a more detailed formal statement. While the above sample bound
does not improve on the ϵ-dependence over prior algorithmic results, it does improve the
dependence on the margin parameter γ quadratically — nearly matching the information-
theoretic lower bound (within logarithmic factors). An independent and contemporaneous
work by Kontonis et al. (2023) obtained a similar Oη(1/(γ2ϵ2)) sample complexity result
for learning γ-margin halfspaces with RCN in polynomial time, using a different algorithm
and techniques.

Our second and main result is an information-computation tradeoff suggesting that
the quadratic dependence in 1/ϵ is inherent for polynomial-time algorithms. Formally, we
establish such a tradeoff in the Statistical Query model and (via a known reduction) for
low-degree polynomial tests.

Statistical Query (SQ) Model Before we state our main result, we recall the basics of
the SQ model (Kearns, 1998). Instead of drawing samples from the input distribution, SQ
algorithms are given query access to the distribution via the following oracle:

Definition 3 (STAT Oracle) Let D be a distribution on Rd. A statistical query is a
bounded function f : Rd → [−1, 1]. For tolerance τ > 0 of the statistical query, the STAT(τ)
oracle responds to the query f with a value v such that |v − Ex∼D[f(x)]| ≤ τ .

We note that other oracles have been considered in the literature, in particular VSTAT
(Definition 10); our lower bound also holds with respect to these oracles.

An SQ lower bound for a learning problem Π is typically of the following form: any SQ
algorithm for Π must either make at least q queries or it makes at least one query with small
tolerance τ . When simulating a statistical query in the standard PAC model (by averaging
i.i.d. samples to approximate expectations), the number of samples needed for a τ -accurate
query can be as high as Ω(1/τ2). Thus, we can intuitively interpret an SQ lower bound as
a tradeoff between runtime of Ω(q) and a sample complexity of Ω(1/τ2).

We are now ready to state our SQ lower bound:

Theorem 4 (SQ Lower Bound) For any constant c > 0, any SQ algorithm that learns
γ-margin halfspaces on the unit sphere in the presence of RCN with η = 1/3 to error η + ϵ

requires at least 2(1/γ)Ω(c) queries or makes at least one query with tolerance O(ϵγ1/4−c).
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The reader is referred to Theorem 11 for a more detailed formal statement. The intuitive
interpretation of our result is that any (sample simulation of an) SQ algorithm for the
class of γ-margin halfspaces with RCN either draws at least Ω(1/(γ1/2−cϵ2)) samples or
requires at least 2(1/γ)Ω(c) time. That is, for sufficiently small ϵ (namely, ϵ ≤ γ3/2+c), the
computational sample complexity of the problem (in the SQ model) is polynomially higher
than its information-theoretic sample complexity. See Theorem 43 for the implications to
low-degree polynomial tests.

Finally, we note that SQ lower bounds have been previously obtained for the (more
challenging) problem of learning halfspaces with bounded (Massart) noise in a variety of
regimes (Diakonikolas and Kane, 2022; Diakonikolas et al., 2022a; Nasser and Tiegel, 2022).
Importantly, all these previous results make essential use of the bounded noise model and
do not apply in the RCN setting.

1.2. Our Techniques

Upper Bound Our algorithmic approach is quite simple: we use projected subgradi-
ent descent applied to the leaky ReLU loss with parameter η, as was done in previous
work (Diakonikolas et al., 2019). However, our analysis never explicitly makes a connec-
tion to minimizing the leaky ReLU loss; for our arguments, this loss is irrelevant. Instead,
we make a novel connection between the (sub)gradient field of the leaky ReLU loss and
the disagreement between how the vector w at which the subgradient is evaluated and an
optimal vector w∗ would classify points. Through this connection, we leverage the regret
analysis of projected subgradient descent to obtain a novel regret bound on the disagree-
ment probability Pr[sign(wt · x) ̸= sign(w∗ · x)], where wt are the iterates of the algorithm.
The obtained bound decomposes into three terms: (i) the standard regret term, which is
bounded by choosing the algorithm iteration count to be sufficiently high, (ii) an error
term bounded by the subgradient norm of empirical leaky ReLU at w∗, and (iii) an er-
ror term that corresponds to the uniform convergence error of the disagreement function
1{sign(w · x) ̸= sign(w∗ · x)}. The latter two terms are then bounded choosing the sample
size to be sufficiently high, yet bounded by Õ(1/(ϵ2γ2)).

SQ Lower Bound To prove our SQ lower bound, we bound from below the SQ dimension
of the problem; using standard results (Feldman et al., 2017) this implies the desired lower
bound guarantees. Bounding the SQ dimension from below amounts to establishing the
existence of a large set of distributions whose pairwise correlations are small. Inspired by
the technique of Diakonikolas et al. (2017), we achieve this by selecting our distributions
to be random rotations of a single distribution, each behaving in a standard way in all but
one critical direction. To ensure the necessary margin property, we make the x-marginals
of our distribution uniform over the hypercube in d ≪ 1/γ dimensions — as opposed to
Gaussian-like (as in Diakonikolas et al. (2017)).

The distributions we consider are quite simple. We define fv(x) = sign(v · x − t), where
v is a randomly chosen Boolean-valued vector and the threshold t is chosen so that the
probability that v · x > t is of the order of ϵ. We then let x be the uniform distribution
over the hypercube and let y = fv(x) with probability 2/3 and −fv(x) otherwise. By
picking many different vectors v, we get many different LTFs. We claim that there exist
many of these LTFs whose pairwise correlations (with respect to the distribution where
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x is independent over the hypercube and y is independent of x) are small, as long as
the corresponding defining vectors v and v′ have small inner product (see Lemma 13 and
Lemma 14). Intuitively, this should hold because (i) both distributions are already ϵ-close
to the base distribution, and (ii) when u and v are nearly orthogonal, fv(x) and fu(x) are
nearly independent of each other.

To analyze this inner product, we use a Fourier analytic approach. First, we note that
the sizes of the individual Fourier coefficients of fu and fv can be computed using Kravchuk
polynomials (see Claim 18). This allows us to show that they do not have too much Fourier
mass in low degrees. Second, we note that when taking the inner product of the degree-k
parts of the Fourier transforms of fu and fv, we will have large amounts of cancellation of
terms, particularly when |u · v| is small or when k is large (see Claim 20 and Claim 21).
The size of the remaining term after the cancellation can be written in terms of another
Kravchuk polynomial, which we can bound. A careful analysis of all of the relevant terms
gives us the necessary correlation bounds which imply our main result.

1.3. Notation

For n ∈ Z+, we use [n] to denote the set {1, . . . , n}. We use small boldface characters for
vectors and capital bold characters for matrices. For x ∈ Rd, ∥x∥2 := (∑d

i=1 x2
i )1/2 denotes

the ℓ2-norm of x. We use x ·y for the inner product of x, y ∈ Rd and Bd = {x ∈ Rd : ∥x∥2 ≤
1} to denote the unit centered Euclidean ball in Rd; when the dimension is clear from the
context, we omit it from the subscript. We use 1{A} to denote the indicator function of A;
equal to one if A is a true statement, and equal to zero otherwise.

We use Ex∼D[x] for the expectation of the random variable x according to the distribu-
tion D and Pr[E ] for the probability of event E . For simplicity of notation, we may omit
the distribution when it is clear from the context. For (x, y) distributed according to D, we
denote by Dx the marginal distribution of x and by Dy the marginal distribution of y. We
denote by Ud the uniform distribution over {±1}d.

2. Computationally Efficient Learning Algorithm

In this section, we give the algorithm establishing Theorem 2. We start by providing some
intuition for our algorithm and its analysis. We then formally state the algorithm and
bound its sample complexity and runtime. Due to space constraints, some of the technical
details and proofs are deferred to Appendix A.

Leaky ReLU, its subgradient, and intuition. The Leaky ReLU loss function with
parameter η ∈ (0, 1/2) is defined by

LeakyReLUη(z) := (1 − η)z1{z ≥ 0} + ηz1{z < 0} . (1)

While the Leaky ReLU has been used as a convex surrogate for margin halfspace classifica-
tion problems, this is not the core of our approach: we never argue about minimizing the
expected leaky ReLU loss nor that its minimizer is a good classifier. Instead, we rely on
the following vector-valued function gη : Rd → Rd

gη(w; x, y) = 1
2
[
(1 − 2η)sign(w · x) − y

]
x . (2)
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When x and y are clear from the context, we omit them and instead simply write gη(w). The
connection between gη and LeakyReLU is that gη(w) is a subgradient of LeakyReLU(w);
see, e.g., Diakonikolas et al. (2019, Lemma 2.1). However, this connection is not important
for our analysis and we do not make any explicit use of the leaky ReLU function itself.
What we do rely on is the following key observation.

Proposition 5 For any w, w̄ ∈ Rd,

(gη(w) − gη(w̄)) · (w − w̄) = (1 − 2η)1{sign(w · x) ̸= sign(w̄ · x)}(|w · x| + |w̄ · x|).

Proof By a direct calculation,

(gη(w) − gη(w̄)) · (w − w̄) = 1 − 2η

2
(
(sign(w · x) − sign(w̄ · x))(w · x − w̄ · x)

)
= 1 − 2η

2
(
|w · x| + |w̄ · x|

− (w · x) sign(w̄ · x) − (w̄ · x) sign(w · x)
)
.

In the last expression, the term in the parentheses is zero when the signs of w · x and w̄ · x
agree; otherwise it is equal to 2(|w · x| + |w̄ · x|), leading to the claimed identity.

In particular, recalling that w∗ is the weight vector of the target halfspace (see Defini-
tion 1), Proposition 5 implies that

(gη(w) − gη(w∗)) · (w − w∗) = (1 − 2η)1{sign(w · x) ̸= sign(w∗ · x)}(|w · x| + |w∗ · x|). (3)

In other words, the inner product (gη(w)−gη(w∗)) ·(w−w∗) is proportional to the Boolean
function 1{sign(w ·x) ̸= sign(w∗ ·x)} that indicates disagreement between w and w∗ in how
they classify points x. In particular, if we argue that Ex∼Dx [1{sign(w ·x) ̸= sign(w∗ ·x)}] =
Pr[sign(w · x) ̸= sign(w∗ · x)] ≤ ϵ̄ for some w, then we can immediately conclude that the
misclassification error of w is η + (1 − 2η)ϵ̄, due to Definition 1, Item (A2). Thus, for
ϵ̄ = ϵ

1−2η , the misclassification error is η + ϵ. This is the approach that we take.
To carry out the analysis, given x(1), x(2), . . . x(N) drawn i.i.d. from Dx, we use

P̂rN (w) := (1/N)
N∑

i=1
1{sign(w · x(i)) ̸= sign(w∗ · x(i))} (4)

to denote the empirical probability of disagreement between w and w∗.

Projected subgradient descent and disagreement regret. Our Algorithm 1 is the
simple projected subgradient descent, applied to the subgradient of the empirical leaky
ReLU function, which given a sample {(x(i), y(i))}N

i=1 drawn i.i.d. from D is defined by

ĝN (w) := (1/N)
N∑

i=1
gη(w; x(i), y(i)). (5)

To utilize standard regret bounds for (projected) subgradient descent, we first observe
that gη is bounded for all w ∈ Rd. As a consequence, ĝN admits the same upper bound.
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Input: ϵ > 0, γ ∈ (0, 1), η ∈ (0, 1/2), i.i.d. sample {x(i), y(i)}N
i=1 from D, any w0 ∈ B

Let T =
⌈16(1−η)2

γ2ϵ2 − 1
⌉
, µ = 2

(1−η)
√

T +1 for t = 0 : T − 1 do
ĝN (wt) = 1

2N

∑N
i=1

(
(1 − 2η)sign(wt · x(i)) − y(i))x(i)

wt+1 = projB
(
wt − µĝN (wt)

)
, where B = {x ∈ Rd : ∥x∥2 ≤ 1}

end
return {w0, . . . , wT }

Algorithm 1: PAC Learner for Margin Halfspaces with RCN

Claim 6 Given any w ∈ Rd and any (x, y) ∈ Sd−1 × {−1, 1}, ∥gη(w; x, y)∥2 ≤ 1 − η. As a
consequence, given any set of points (x(i), y(i)) ∈ Sd−1 ×{−1, 1}, i ∈ [N ], ∥ĝN (w)∥2 ≤ 1−η.

Proof By the definition of gη from Equation (2), we have

∥gη(w; x, y)∥2 = (1/2)
∣∣(1 − 2η)sign(w · x) − y

∣∣∥x∥2 ≤ (1/2)
∣∣(1 − 2η) + 1

∣∣ = 1 − η,

where we have used that sign(·) ∈ {−1, 1}, y ∈ {−1, 1} and ∥x∥2 = 1. The bound on
∥ĝN (w)∥2 follows immediately from this bound, by its definition and Jensen’s inequality.

The following lemma provides what can be interpreted as a regret bound for the dis-
agreement probability Pr[sign(w · x) ̸= sign(w∗ · x)]. We refer to is as the “disagreement
regret” and bound it using the regret analysis of projected subgradient descent, combined
with Equation (3) and Definition 1, Item (A1). Its proof is provided in Appendix A.

Lemma 7 Consider Algorithm 1. There exists t ∈ {0, . . . T } such that

Pr[sign(wt · x) ̸= sign(w∗ · x)] ≤ E1 + E2 + E3,

where E1 = 2(1−η)
(1−2η)γ

√
T +1 , E2 = 2

(1−2η)γ ∥ĝN (w∗)∥2, and E3 = 1
T +1

∑T
t=0

[
Pr[sign(wt · x) ̸=

sign(w∗ · x)] − P̂rN (wt)
]
.

In Lemma 7, error E1 is simply the empirical regret, which can be bounded by choos-
ing the number of iterations T in Algorithm 1 to be sufficiently high. Errors E2 and E3
determine the sample complexity of our algorithm, and are dealt with in what follows.

Bounding the required number of samples. We now show that the errors E2 and
E3 can be controlled by choosing a sufficiently large sample size N . We then combine
everything we have shown so far to state our main result on upper bounds in Theorem 9.

Lemma 8 Let E2 and E3 be defined as in Lemma 7. For any ϵ̄ > 0, δ > 0, if N =
Ω
(

d
ϵ̄ + η

(1−2η)2ϵ̄2γ2 ) log(1
δ )
)
, then with probability at least 1 − δ we have E2 + E3 ≤ ϵ̄

2 .

We are now ready to state and prove our main upper bound result.

Theorem 9 Let D be a distribution on pairs (x, y) ∈ Sd−1×{±1} as in Definition 1. Then,
there is an algorithm (Algorithm 1) that for any given ϵ, δ ∈ (0, 1) uses N = O

(d(1−2η)
ϵ +

η
ϵ2γ2 ) log(1

δ )
)

samples, runs in time O( Nd
ϵ2γ2 ) and learns γ-margin halfspaces corrupted with

η-RCN up to error η + ϵ, with probability at least 1 − δ.
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Proof Applying Lemma 7 and Lemma 8, we have that for N = O
(d(1−2η)

ϵ + η
ϵ2γ2 ) log(1

δ )
)
,

with probability at least 1 − δ, there exists t ∈ {0, . . . , T } in Algorithm 1 such that

Pr[1{sign(wt · x) ̸= sign(w∗ · x)}] ≤ E1 + ϵ

2(1 − 2η) ,

where E1 = 2(1−η)
(1−2η)γ

√
T +1 . Hence, to ensure that Pr[sign(wt · x) ̸= sign(w∗ · x)] ≤ ϵ

1−2η ,

it suffices to choose T ≥ 16(1−η)2

γ2ϵ2 − 1, which is what Algorithm 1 does. The bound on
the runtime is then simply O(TNd), as the complexity of each iteration is dominated by
the computation of ĝN , which takes O(Nd) time. By Definition 1, Item (A2), such a wt

misclassifies points x drawn from D with probability η + ϵ.
What we have shown so far is that at least one of the vectors w0, . . . , wT output by

Algorithm 1 attains the target misclassification error η + ϵ, but we have not specified which
one. The appropriate vector can be determined by drawing a fresh sample {(x̃(i), ỹ(i))}N ′

i=1 of
size N ′ = O

(
log(T

ϵ ) log(1
δ )
)

= O
(

log( 1
ϵγ ) log(1

δ )
)

and selecting the vector wt ∈ {w0, . . . , wT }
with minimum empirical misclassification error 1

N ′
∑N ′

i=1 1{sign(wt · x̃(i)) ̸= ỹ(i)}. Clearly,
this additional step does not negatively impact the sample complexity or the runtime stated
in Theorem 9. The standard analysis for this part is provided in Appendix A.

Removing the Dependence on d from the Sample Complexity In Theorem 9,
the sample complexity N depends on d via the term d

ϵ log(1
δ ), which comes from the VC

dimension of O(d) that appears when bounding the error term E3. The dependence on d
can be avoided and replaced by 1/γ2, using standard dimension-reduction; see Appendix A.

Low-Noise Regime When the noise parameter η is equal to zero (i.e., in the realizable
setting), the sample complexity of the problem is Θ( 1

γ2ϵ
) and is achievable via the classical

Perceptron algorithm. Based on the result of Theorem 9 and with the dimension reduction
discussed in the previous paragraph, we recover this optimal sample complexity with our
algorithm not only for η = 0, but also whenever η = O(ϵ).

3. SQ Lower Bound For Learning Margin Halfspaces with RCN

In this section, we establish our SQ lower bound result (Theorem 4) and its associated
implication for low-degree polynomial tests. In addition to the STAT oracle defined in the
introduction, we also consider the VSTAT oracle, defined below.

Definition 10 (VSTAT Oracle) Let D be a distribution on Rd. A statistical query is a
bounded function f : Rd → [−1, 1]. For t > 0, the VSTAT(t) oracle responds to the query f

with a value v such that |v − Ex∼D[f(x)]| ≤ τ , where τ = max
(
1/t,

√
Varx∼D[f(x)]/t

)
.

Our main SQ lower bound result is stated in the following theorem.

Theorem 11 (Main SQ Lower Bound) Fix c ∈ (0, 1/2). Any SQ algorithm that learns
the class of γ-margin halfspaces on Sd−1 in the presence of RCN with η = 1/3 within
misclassification error η + ϵ either requires queries of accuracy better than O(ϵγ1/4−c/2),
i.e., queries to STAT(O(ϵγ1/4−c/2)) or VSTAT(O(γc−1/2/ϵ2)), or needs to make at least
2Ω(γ−c) statistical queries.

9
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3.1. Proof of Theorem 11

To prove the theorem, we construct a family of non-homogeneous margin halfspaces with
RCN such that any SQ learner requires the desired complexity. This result can be trans-
lated to an SQ lower bound for homogeneous halfspaces with almost as good margin (see
paragraph after Definition 1). The family of halfspaces that we construct is supported on
{±1}d and has margin γ = Ω(1/d). Note that we can straightforwardly extend this con-
struction to a higher dimensional space (by setting the values of the new coordinates of
points x ∼ Dx to zero). Hence, our construction directly implies a similar SQ lower bound
for γ-margin halfspaces on the unit sphere Sd−1 for any d ≫ 1/γ.

Fix ϵ ∈ (0, 1/2). For v ∈ {±1}d, let fv(x) = 1{v · x − t ≥ 0} and choose t ∈ R so that
Pr[fv(x) > 0] = 2ϵ. We define the distribution Dv over {±1}d×{0, 1} as follows. We choose
the marginal distribution of x, denoted by (Dv)x, to be the uniform distribution over the
set {±1}d. For each x, we couple the random variable y by setting Pr[y = fv(x)|x] = 1 − η
and Pr[y ̸= fv(x)|x] = η. Let Av be the conditional distribution of Dv given y = 1 and let
Bv be the conditional distribution of Dv given y = 0. We denote by Av(x) and Bv(x) the
pmf of Av and Bv, respectively. Moreover, we denote by Ud(x) the pmf of Ud. We first give
a closed form expression for the pmf of Av and Bv. Its proof can be found in Appendix B.

Claim 12 It holds Av(x) = η+(1−2η)fv(x)
η+(1−2η) E[fv(x)]Ud(x) and Bv(x) = 1−η−(1−2η)fv(x)

1−η−(1−2η) E[fv(x)]Ud(x).

Fix v, u ∈ {±1}d. We associate each v and u to a distribution Dv and Du, constructed
as above. The following lemma provides explicit bounds on the correlation between the
distributions Dv and Du, and its proof can be found in Appendix B.

Recall that the pairwise correlation of two distributions with pmfs D1, D2 with respect
to a distribution with pmf D is defined as χD(D1, D2) + 1 := ∑

x∈X D1(x)D2(x)/D(x) (see
Definition 30). We have the following lemma:

Lemma 13 Let D0 be a product distribution over Ud × {0, 1}, where Pr(x,y)∼D0 [y = 1] =
Pr(x,y)∼Dv [y = 1]. We have χD0(Dv, Du) ≤ 2(1 − 2η)(E[fv(x)fu(x)] − E[fv(x)] E[fu(x)])
and χ2(Dv, D0) ≤ (1 − 2η)(E[fv(x)] − E[fv(x)]2).

To bound the correlation between fv, fu, we use the following key lemma whose proof
can be found in Section 3.2.

Lemma 14 (Correlation Bound) Let v, u ∈ {±1}d and fv(x) = 1{v · x ≥ 2t − d}.
Choose t so that E[fv(x)] = ϵ for ϵ ∈ (0, 1). Assume that |v · u| ≤ O(d/polylog(d/ϵ)). Then
there is an absolute constant C > 0 such that E[fv(x)fu(x)] ≤ C log2(d/ϵ)ϵ2|v · u|/d + ϵ2 .

The following fact states that there exists a large set of almost orthogonal vectors in
{±1}d. Its proof can be found in Appendix B.

Fact 15 Let d ∈ Z+. Let 0 < c < 1/2. There exists a collection S of 2Ω(dc) vectors in
{±1}d, such that any pair v, u ∈ S, with v ̸= u, satisfies |v · u| < d1/2+c.

By Lemma 14, we get that for any two vectors v, u ∈ {±1}d, we have that χD0(Dv, Du) ≤
C log2(d/ϵ)(1 − 2η)ϵ2|v · u|/d and χ2(Dv, D0) ≤ (1 − 2η)4ϵ for some C > 0.

10
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By Fact 15, for any 0 < c < 1/2, there exists a set S of 2Ω(dc) vectors such that for
any two vectors v, u ∈ S, we have that |v · u|/d ≤ dc−1/2. Denote by D the set containing
the distributions Dv for each v ∈ S and let D0 be a product distribution over Ud × {0, 1},
where Pr(x,y)∼D0 [y = 1] = η + 2(1 − 2η)ϵ. By standard results (see Lemma 32), for the
decision problem B(D, D0) of distinguishing between a distribution in D and the reference
distribution D0, the following holds: any SQ algorithm either requires a query of tolerance
at most O(ϵdc/2−1/4) or needs to make at least 2Ω(dc) many queries.

It remains to reduce the testing (decision) problem above to the learning problem.
This is standard, but we include it here for completeness. Suppose we have access to an
algorithm A that solves the RCN problem with margin γ to excess error ϵ′ > 0. For
the distributions in the set D of hard distributions, the margin γ is 1/(2d). We describe
how algorithm A can be used to solve the testing problem B(D, D0). If the underlying
distribution were Dv for some v ∈ {±1}d, then algorithm A would produce a hypothesis
h such that Pr(x,y)∼Dv [h(x) ̸= y] ≤ η + ϵ′. If the underlying distribution were D0 — i.e.,
the one with independent labels — then the best attainable error would be η + 2(1 − 2η)ϵ
(achieved by the constant hypothesis h(x) ≡ 1). Therefore, for η = 1/3 and ϵ′ = ϵ/4,
algorithm A solves the decision problem B(D, D0). This completes the proof of Theorem 11.

3.2. Proof of Lemma 14

We start with some definitions of the Fourier transform over the uniform distribution on
the hypercube. For a subset T ⊆ [d] and x ∈ {±1}d, we denote χT (x) = ∏

i∈T xi. For
a function f from {±1}d, let f̂(T ) = E[f(x)χT (x)]. For a boolean function f : {±1}d 7→
{0, 1}, we can write f in the Fourier basis as follows, f(x) = ∑

T ⊆[d] E[f(z)χT (z)]χT (x) =∑
T ⊆[d] f̂(T )χT (x). Note that χT (x) is an orthonormal polynomial basis under the uniform

distribution over {±1}d; this means that E[χT (x)χT ′(x)] = δT,T ′ , where δ is the Kronecker
delta. Further, for any two functions f1, f2 : {±1}d 7→ {0, 1}, we have that E[f1(x)f2(x)] =∑

T ⊆[d] f̂1(T )f̂2(T ). We also define the normalized Kravchuk polynomials as follows.

Definition 16 (Normalized Kravchuk Polynomials) For n, a, b ∈ Z+ with 0 ≤ a, b ≤
n, the normalized Kravchuk polynomial K(n, a, b) is defined by

K(n, a, b) := 1(n
a

)(n
b

) ∑
A⊆[n],B⊆[n],|A|=a,|B|=b

(−1)|A∩B| .

One can think of the normalized Kravchuk polynomial K(n, a, b) as the expectation over the
random subsets A, B of size a and b of −1 to the number of elements in the intersection of
A and B. Note that for n, a, b ∈ Z+ K(n, a, b) = K(n, b, a) and |K(n, a, b)| = |K(n, a, n− b)|.
Furthermore, by definition, it also holds that |K(n, a, b)| ≤ 1. The proof of the following
lemma can be found in Appendix B.

Lemma 17 Let d, m, k ∈ Z. Then the following hold:

1. For k ≤ d/2, it holds |K(d, m, k)| ≤ ek23k
(
(kd−1)k/2 + (|d/2 − m|d−1)k

)
.

2. If k ≤ d/2 and |d/2 − m| ≤ d/4, then |K(d, m, k)| = exp(−Ω(k)).

11
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For a vector v ∈ {±1}d, we define the boolean function fv(x) = 1{v · x ≥ t}. We first
calculate the Fourier transform of fv(x). The proof can be found in Appendix B.

Claim 18 (Fourier Coefficients) Fix vector v ∈ {±1}d and let fv(x) = 1{v · x ≥ t}.
For T ⊆ [d], we have that the Fourier coefficient of f at χT (x), i.e., f̂(T ), is given by

f̂(T ) = E[fv(x)χT (x)] = χT (v)(−1)|T |2−d
d∑

s=t

(
d

s

)
K(d, s, |T |) .

Proof of Lemma 14 Using Claim 18, we have that

E[fv(x)fu(x)] =
∑

T ⊆[d]
f̂v(T )f̂u(T ) =

d∑
k=0

(
2−d

d∑
s=t

(
d

s

)
K(d, k, s)

)2 ∑
T ⊆[d],|T |=k

χT (v)χT (u)

=
d∑

k=0

(
d

k

)(
2−d

d∑
s=t

(
d

s

)
K(d, k, s)

)2

K(d, m, k) ,

where m is the number of components for which v, u agree. We proceed by bounding each
term of this sum. To this end, we denote Rk =

(d
k

) (
2−d∑d

s=t

(d
s

)
K(d, k, s)

)2
K(d, k, m).

First note that R0 = E[fv(x)]2; to see this, observe that R0 = E[fv(x)χ∅(x)]2 = E[fv(x)]2.
Next, we bound Rd. We have the following claim, whose proof can be found in Appendix B.

Claim 19 It holds that |Rd| ≤ 2−2d
(d−1

t−1
)2.

Therefore, using that
(d−1

t−1
)

=
( d−1

d−t−2
)

= (t/d)
(d

t

)
, we get that |Rd| ≤ (t/d)2(2−d

(d
t

)
)2 ≤

ϵ2/d. We next bound Rk for k ∈ {1, 2, . . . , d − 1} (see Appendix B for the proof).

Claim 20 Let c > 0 be a sufficiently large constant. We have that
∑d−c log(d/ϵ)

k=c log(d/ϵ) Rk ≤ ϵ2/d.

Finally, the following claim bounds the small degree terms.

Claim 21 Let k′ = c log(d/ϵ), where c > 0 is the absolute constant as in Claim 20. For
0 ≤ k ≤ k′ or d − k′ ≤ k ≤ d, we have |Rk| ≤ 4ϵ2k′|v · u|/d.

Proof We provide the proof for the case where 0 ≤ k ≤ k′, as the other case is symmetric.
Let a = |d−2m|/d and note that a = |v ·u|/d. From Lemma 17, we have that |K(d, m, k)| ≤
(ak + (log(d/ϵ)/d)k/2). Thus, it follows that

|Rk| =
(

d

k

)(
2−d

d∑
s=t

(
d

s

)
K(d, k, s)

)2

K(d, m, k)

≤ 24k

(
d

k

)(
2−d

d∑
s=t

(
d

s

)
K(d, k, s)

)2

(ak + (log(d/ϵ)/d)k/2)

≤ 24k

(
d

k

)(
2−d

d∑
s=t

|s−d/2|≤c′
√

dk log(d/ϵ)

(
d

s

)
|K(d, k, s)| + (ϵ/d)2ck

)2

(ak + (log(d/ϵ)/d)k/2) ,

12
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where we used that |K(d, k, s)| ≤ 1 and that ∑d
i=k

(d
i

)
2−d ≤ 2 exp(−(k − n/2)2/n) from

Hoeffding’s inequality, hence ∑d
s≥d/2c′

√
dk log(d/ϵ)

(d
s

)
≤ (ϵ/d)2ck. Futhermore, note that from

Lemma 17, we have that |K(d, k, s)| ≤ (2k
√

log(d/ϵ)/d)k for |s − d/2| ≤ c′√dk log(d/ϵ).
Therefore, we have that

|Rk| ≤ 24k

(
d

k

)(
(2
√

log(d/ϵ)/dk)k
d∑

s=t

(
d

s

)
2−d + (ϵ/d)2ck

)2

(ak + (log(d/ϵ)/d)k/2)

≤ 24kϵ2
(

d

k

)
(2
√

log(d/ϵ)/dk)2k(ak + (log(d/ϵ)/d)k/2) ,

where we used that by our choice of t it holds E[fv(x)] = ϵ; therefore, ∑d
s=t

(d
s

)
2−d ≤ ϵ.

Using the fact that κ ≤ c log(d/ϵ) and that
(d

k

)
≤ dk, we get that |Rk| ≤ ϵ2(2k′)C′k(ak +

d−k/2) . Therefore, if a ≤ C/poly(k′) for some sufficiently small absolute constant C > 0,
we get that all the terms are bounded by the first term, i.e., we get that |Rk| ≤ 4ϵ2k′α.

In summary, we have that ∑d
k=0 Rk ≤ C log2(d/ϵ)ϵ2|v ·u|/d+ϵ2, for some absolute constant

C > 0. This completes the proof. ■

4. Conclusions

We studied the classical problem of learning margin halfspaces with Random Classification
Noise. Our main finding is an information-computation tradeoff for SQ algorithms and
low-degree polynomial tests. Specifically, our lower bounds suggest that efficient learners
require sample complexity at least Ω(1/(γ1/2ϵ2)) (while Õ(1/(γ2ϵ)) samples information-
theoretically suffice). A number of interesting open questions remain. First, there is still a
gap between Õ(1/(γ2ϵ2)) — the sample complexity of our algorithm — and the lower bound
of Ω(1/(γ1/2ϵ2)). We believe that an SQ lower bound of Ω(1/(γϵ2)) can be obtained with
a more careful construction, but it is not clear what the optimal bound may be. Second,
it would be interesting to obtain reduction-based computational hardness matching our SQ
lower bound, along the lines of recent results (Gupte et al., 2022; Diakonikolas et al., 2022b,
2023).
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Appendix A. Omitted Proofs from Section 2

A.1. Proof of Lemma 7

We restate and prove the following.

Lemma 7 Consider Algorithm 1. There exists t ∈ {0, . . . T } such that

Pr[sign(wt · x) ̸= sign(w∗ · x)] ≤ E1 + E2 + E3,

where E1 = 2(1−η)
(1−2η)γ

√
T +1 , E2 = 2

(1−2η)γ ∥ĝN (w∗)∥2, and E3 = 1
T +1

∑T
t=0

[
Pr[sign(wt · x) ̸=

sign(w∗ · x)] − P̂rN (wt)
]
.

Proof We first argue, using standard regret analysis provided for completeness, that

1
t + 1

t∑
s=0

ĝN (ws) · (ws − w∗) ≤ 2
µ(t + 1) + µ(1 − η)2

2 , (6)

where µ is the step size specified in Algorithm 1.
Fix any t ∈ {0, 1, . . . , T − 1}. Recall that wt+1 = projB

(
wt − µĝN (wt)

)
and w∗ =

projB(w∗). Hence, by the nonexpansivity of the projection operator, we have

∥wt+1 − w∗∥2 ≤ ∥wt − w∗ − µĝN (wt)∥2. (7)

Further, expanding the square ∥wt − w∗ − µĝN (wt)∥2
2 and using Claim 6, we get

∥wt − w∗ − µĝN (wt)∥2
2 = ∥wt − w∗∥2

2 + µ2∥ĝN (wt)∥2
2 − 2µĝN (wt) · (wt − w∗)

≤ ∥wt − w∗∥2
2 + µ2(1 − η)2 − 2µĝN (wt) · (wt − w∗).

Hence, combining the last inequality with Equation (7), we get

∥wt+1 − w∗∥2
2 ≤ ∥wt − w∗∥2

2 + µ2(1 − η)2 − 2µĝN (wt) · (wt − w∗). (8)

To obtain Equation (6), it remains to rearrange Equation (8) and telescope. In particular,
for T itearations and µ = 2

(1−η)
√

T +1 , we have

1
T + 1

T∑
t=0

ĝN (wt) · (wt − w∗) ≤ 2(1 − η)√
T + 1

. (9)

Writing ĝN (wt) ·(wt −w∗) as ĝN (wt) ·(wt −w∗) = ĝN (w∗) ·(wt −w∗)+(ĝN (wt)−ĝN (w∗)) ·
(wt − w∗) and rearranging Equation (9), we further get

1
T + 1

T∑
t=0

(ĝN (wt) − ĝN (w∗)) · (wt − w∗) ≤ 2(1 − η)√
T + 1

+ ĝN (w∗) ·
(
w∗ − 1

T + 1

t∑
t=1

wt

)
≤ 2(1 − η)√

T + 1
+ 2∥ĝN (w∗)∥2, (10)

where we used Cauchy-Schwarz inequality and w∗, wt ∈ B, for all t ∈ {0, . . . , T }.
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Recall from Equation (3) that

(gη(w) − gη(w∗)) · (w − w∗) = (1 − 2η)1{sign(w · x) ̸= sign(w∗ · x)}(|w · x| + |w∗ · x|)
≥ (1 − 2η)γ1{sign(w · x) ̸= sign(w∗ · x)},

where the inequality holds by Definition 1, Item (A1). Hence, by the definitions of ĝN and
P̂rN (from Equation (5) and Equation (4)), we have

(ĝN (wt) − ĝN (w∗)) · (wt − w∗) ≥ (1 − 2η)γP̂rN (wt). (11)

Combining Equation (10) and Equation (11), we then obtain the claimed regret bound,
using simple algebraic manipulations.

A.2. Proof of Lemma 8

We restate the lemma and provide proof.

Lemma 8 Let E2 and E3 be defined as in Lemma 7. For any ϵ̄ > 0, δ > 0, if N =
Ω
(

d
ϵ̄ + η

(1−2η)2ϵ̄2γ2 ) log(1
δ )
)
, then with probability at least 1 − δ we have E2 + E3 ≤ ϵ̄

2 .

We first bound the error E2 = 2
(1−2η)γ ∥ĝN (w∗)∥2. Observe that E[gη(w∗)] = 0 and

that, by Claim 6, ∥gη(w∗)∥2 ≤ 1 − η surely. We use the following Bennett-type inequality

Fact 22 ((Smale and Zhou, 2007), Lemma 1) Let Z1, . . . , Zn ∈ Rd be random vari-
ables such that for each i ∈ [n] it holds ∥Zi∥2 ≤ M < ∞ almost surely and let σ2 =∑n

i=1 E[∥Zi∥2
2]. Then, we have that for any ϵ > 0,

Pr
[∥∥∥∥∥ 1

n

n∑
i=1

(Zi − E[Zi])
∥∥∥∥∥

2
≥ ϵ

]
≤ 2 exp

(
− nϵ

2M
log

(
1 + nMϵ

σ2

))
.

Note that E[∥gη(w∗)∥2
2 = O(η) and using Fact 22, along with the inequality log(1+z) ≥ z/2,

for z ∈ (0, 1) (note that σ2 is at most nM), we get that for any ϵ̂ and N ≥ Ω( log(1/δ)
ϵ̂2 ), with

probability at least 1 − δ/2, we have

∥ E[gη(w∗)] − ĝN (w∗)∥2 = ∥ĝN (w∗)∥2 ≤ ϵ̂ .

To complete bounding E2, it remains to choose ϵ̂ = (1−2η)γϵ̄
8 .

To complete the proof and bound E3 = 1
T +1

∑T
t=0

[
Pr[sign(wt · x) ̸= sign(w∗ · x)] −

P̂rN (wt)
]
, we use uniform convergence results for the function w 7→ 1{sign(w · x) ̸=

sign(w∗ ·x)}. Note that this boolean concept class is a subset of the class of the intersection
of two halfspaces. The latter class has VC dimension O(d). Thus, by the standard VC
inequality combined with uniform convergence (see e.g., p. 31 of Devroye and Lugosi (2001))
we have that N = Ω(d

ϵ̄ log(1/δ)) samples suffice so that with probability 1 − δ/2, we have
E3 ≤ ϵ̄

4 . ■
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A.3. Testing to Find the Right Hypothesis

The following lemma justifies the claim made at the end of the proof of Theorem 9 and
completes its proof. We use the following fact from Shalev-Shwartz and Ben-David (2014).

Fact 23 (Thereom 6.8 of Shalev-Shwartz and Ben-David (2014)) Given a finite
set of hypotheses H, by drawing N = O( log(|H|+log( 1

δ
))

ϵ2 ) samples, it is guranteed that with
probability at least 1 − δ it holds

min
h∈H

{ 1
N

N∑
i=1

1{h(x(i)) ̸= y(i)}
}

≤ min
h∈H

Pr[h(x) ̸= y] + ϵ .

A.4. Dimension Reduction

We will use the following Johnson-Lindenstrauss lemma as our main technique to reduce
the dimension of the space.

Lemma 24 (Johnson-Lindenstrauss) Let β, ϵ be some positive constants. Let A ∈
Rm×d be a random matrix with each entry Aij sampled from Uniform{−1/

√
m, 1/

√
m}

where m = O(log(1/β)/ϵ2). Then, for any unit vector u, v ∈ Rd, it holds

Pr
A

[|u · v − (Au) · (Av)| ≥ ϵ] ≤ β.

Consequently, for any unit vector u ∈ Rd, we have PrA[|∥u∥2
2 − ∥Au∥2

2| ≥ ϵ] ≤ β.

Corollary 25 Let β, β′, γ be some positive constants such that β ≤ β′ and γ ∈ (0, 1).
Let A ∈ Rm×d be a random matrix with each entry Aij sampled uniformly at random
from {−1/

√
m, 1/

√
m} where m = O(log(1/β)/γ2). Then, for x ∼ Dx and w∗ ∈ B, with

probability at least 1 − β/β′ it holds

Pr
x∼Dx

[|w∗ · x − (Aw∗) · (Ax)| ≥ γ/2] ≤ β′.

In addition, with probability at least 1 − β/β′ it holds Prx∼Dx [|∥x∥2
2 − ∥Ax∥2

2| ≥ γ/2] ≤ β′.

Proof Lemma 24 indicates that since the matrix A is generated independent of the distri-
bution Dx, for any unit vector x ∼ Dx the norm of the transformed vector Ax is close to 1
with constant probability. To be specific, we have:

Pr
A,x∼Dx

[|w∗ · x − (Aw∗) · (Ax)| ≥ γ/2] ≤ β. (12)

Now let P (A) = Prx∼Dx [|w∗ ·x−(Aw∗) ·(Ax)| ≥ γ/2] = Ex∼Dx [1{|w∗ ·x−(Aw∗) ·(Ax)| ≥
γ/2}|A] be a random variable determined by A. Note that EA[P (A)] ≤ β by Equation (12).
Thus, applying Markov inequality to P (A) we get

Pr
A

[P (A) ≥ β′] ≤ EA[P (A)]
β′ ≤ β

β′ .
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Therefore, for any given matrix A sampled from the distribution Aij ∼ Uniform{± 1√
m

}
where m = O(log(1/β)/γ2), we have with probability at least 1 − β/β′,

Pr
x∼Dx

[|w∗ · x − (Aw∗) · (Ax)| ≥ γ/2] ≤ β′.

Following the same idea, we can also show that with probability at least 1 − β/β′ it holds
Prx∼Dx [|∥x∥2

2 − ∥Ax∥2
2| ≥ γ/2] ≤ β′.

Input: ϵ > 0, γ ∈ (0, 1), η ∈ (0, 1/2), m > 0, sample {x(i), y(i)}N
i=1 drawn i.i.d. from

D, a random matrix A ∈ Rm×d generated such that Aij = 1/
√

m w.p. 1/2 and
Aij = −1/

√
m w.p. 1/2, any w0 ∈ B

T =
⌈( 48(1−η)

(1−2η)γϵ

)2 − 1
⌉
, µ = 1

(1−η)
√

T +1 , x̄(i) = Ax(i) for i = 1, · · · , N .
for t = 0 : T − 1 do

ḡN (w̄t) = 1
2N

∑N
i=1

(
(1 − 2η)sign(w̄t · x̄(i)) − y(i))x̄(i)

w̄t+1 = proj∥w̄∥2≤1
(
w̄t − µḡN (w̄t)

)
end
return {A⊤w̄0, . . . , A⊤w̄T }

Algorithm 2: Dimension-Reduced Margin Halfspace Learner with RCN

Theorem 26 Fix ϵ > 0, γ ∈ (0, 1). Let the number of iterations be T = O
( (1−η)2

γ2ϵ2
)

and set
the stepsize µ = 1

(1−η)
√

T +1 . Furthermore, let A ∈ Rm×d be a matrix generated from the dis-

tribution described in Algorithm 2 with m = O
( log((1−2η)/(δϵ))

γ2
)
. Then running Algorithm 2

for T iterations with N = Ω̃
(( η

γ2ϵ2 + (1−2η)
γ2ϵ

log
(1−2η

δϵ

))
log(1

δ )
)

i.i.d. samples drawn from
distribution D, Algorithm 2 learns γ-margin halfspaces corrupted with η-RCN with error
η + ϵ with probability at least 1 − δ.

Proof The goal of the proof is to show that the analysis of Algorithm 1 can be transformed
to Algorithm 2 with minor modifications. For simplicity, let’s denote w̄ = Aw ∈ Rm and
x̄ = Ax ∈ Rm for any w, x ∈ Rd. Similarly, we have w̄∗ = Aw∗ and x̄(i) = Ax(i).

We first show that as a consequence of Lemma 24 and Corollary 25, with a large prob-
ability that the A generated in Algorithm 2 is a “good matrix” in the sense that for most
of the points in D, Ax will not be far away from x. Formally, we have the following claim.

Claim 27 Fix some constants γ, ϵ̄, δ > 0, N > 1 and let m = O( log(1/β)
γ2 ) where β = ϵ̄δ

20N .
For any A generated in Algorithm 2, denote EA = {x ∈ Sd−1 : |w∗ ·x−w̄∗ ·x̄| ≤ γ/2, |∥x∥2

2−
∥x̄∥2

2| ≤ γ/2} and let E be the set of A such that w̄∗ is close to w∗ and moreover, for
any x ∼ Dx, x ∈ EA with high probability, i.e., E =

{
A ∈ Rm×d : Prx∼Dx [x ∈ EA] ≥

1 − ϵ̄/(2N), |∥w∗∥2
2 − ∥w̄∗∥2

2| ≤ γ/2
}
. Then,

1. E happens with probability at least 1 − 2
5δ;

2. If E happens, then for any N i.i.d. samples {x(i)}N
i=1, it holds Pr[x(i) ∈ EA, ∀i ∈

[N ] ] ≥ 1 − ϵ̄
2 .
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Proof According to Lemma 24, we know that Pr[|∥w∗∥2
2 − ∥w̄∗∥2

2| ≤ γ/2] ≥ 1 − β =
1 − ϵ̄δ/(20N). Furthermore, recall that in Corollary 25 (with a union bound) we showed
with probability at least 1 − 4Nβ/ϵ̄ = 1 − δ/5, Prx∼Dx [x ∈ EA] ≥ 1 − ϵ̄/(2N), therefore the
first claim follows from a union bound on these 2 events.

Now conditioned on E . Given any N samples {x(i), y(i)}N
i=1, we know that Pr[x(i) ∈

EA] ≥ 1 − ϵ̄
2N , hence applying union bound we get Pr[x(i) ∈ EA, ∀i ∈ [N ] ] ≥ 1 − ϵ̄

2 .

For the analysis below, we will condition on the event A ∈ E which occurs with probabil-
ity at least 1 − 2

5δ. We begin with showing that under such fixed A, the norm of ∥ḡN (w̄)∥2
can be bounded by 2(1 − η).

Claim 28 Given N samples {x(i), y(i)}N
i=1 and suppose that x(i) ∈ EA, ∀i = 1, · · · , N , we

have
sup

w̄∈Rm
∥ḡN (w̄)∥2 ≤ 2(1 − η).

Proof Since x(i) ∈ EA, we have ∥x̄(i)∥2 ≤ ∥x(i)∥2 + γ/2. Hence, it holds

sup
w̄∈Rm

∥ḡN (w̄)∥2 = sup
w̄∈Rm

{ 1
2N

∥∥ N∑
i=1

(
(1 − 2η)sign(w̄ · x̄(i)) − y(i))x̄(i)∥∥

2

}
≤ (1 − η)∥x̄(i)∥2 ≤ (1 − η)(∥x(i)∥2 + γ/2) ≤ 2(1 − η),

where in the last inequality we used the fact that ∥x(i)∥2 = 1 and γ ∈ (0, 1).

We then study the difference between ∥w̄t+1 − w̄∗∥2 and ∥w̄t − w̄∗∥2, which is almost
analogous to the analysis we have seen in Lemma 7 with the only differences being that: (i)
with probability at least 1− ϵ̄/2 we have x(i) ∈ EA for i ∈ [N ], hence ∥ḡN (w̄)∥2 ≤ 2(1−η) for
every w̄t and w̄∗ as shown in Claim 27 and Claim 28; (ii) since |w∗ · x(i) − w̄∗ · x̄(i)| ≤ γ/2
for all i ∈ [N ], it holds sign(w∗ · x) = sign(w̄∗ · x̄(i)); (iii) ∥w̄∗∥2 ≤ 2 since we have
|∥w∗∥2

2 − ∥w̄∗∥2
2| ≤ γ/2 conditioning on the event E .

Now we further condition on the event that x(i) ∈ EA for i ∈ [N ] and denote the distri-
bution of Dx restricted on EA as Dx(EA). Then, choosing µ = 1

(1−η)
√

T +1 and following the
same steps as in Lemma 7, we have Prx∼Dx(EA)[sign((A⊤w̄t) ·x) ̸= sign(w∗ ·x)] ≤ E′

1 +E′
2 +

E′
3, where E′

1 = 8(1−η)
(1−2η)γ

√
T +1 , E′

2 = 6
(1−2η)γ ∥ḡN (w̄∗)∥2 and E′

3 = 1
T +1

∑T
t=0

{
Prx∼Dx(EA)[sign((A⊤w̄t)·

x) ̸= sign(w∗ · x)] − P̂rN (A⊤w̄)
}
.

We show that our choice of N and T suffices to make Prx∼Dx [sign((A⊤w̄t)·x) ̸= sign(w∗·
x)] ≤ ϵ̄. First, T =

( 48(1−η)
(1−2η)γϵ̄

)2 renders E′
1 ≤ ϵ̄/6. Next, observe that Ex∼Dx(EA)[gη(w̄∗; x̄, y)] =

0 and recall that ∥gη(w̄∗; x̄(i), y(i))∥2 ≤ 2(1−η), thus by Fact 22 we know N = Ω
(

log(1/δ)/ϵ̄2)
suffices to make E′

2 ≤ ϵ̄/6 with probability 1 − δ/10. Finally, since linear threshold function
class w̄ 7→ 1{sign((A⊤w̄) ·x) ̸= sign(w∗ ·x)} has VC dimension m+1, therefore by standard
VC dimension arguments choosing N ≥ Ω(m

ϵ̄ log(1/δ)) we are guaranteed to have E′
3 ≤ ϵ̄

6
with probability 1 − δ/10. Recall that Pr[x ∈ EA] ≥ 1 − ϵ̄/2, hence under our choice of
m, N, T , under the condition of event E and x(i) ∈ EA for i ∈ [N ], we have with probability
at least 1 − δ/5,

Pr
x∼Dx

[sign((A⊤w̄t)·x) ̸= sign(w∗·x)] ≤ Pr
x∈Dx(EA)

[sign((A⊤w̄t)·x) ̸= sign(w∗·x)]
(

1− ϵ̄

2

)
+ ϵ̄

2 ≤ ϵ̄.
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Finally, applying a union bound on all of these 3 events, we know that with probability at
least 1 − 2

5δ − ϵ̄
2 − 1

5δ ≥ 1 − δ, Prx∼Dx [sign((A⊤w̄t) · x) ̸= sign(w∗ · x)] ≤ ϵ̄. By substituting
ϵ̄ with ϵ/(1 − 2η), we get a learner with error η + ϵ and the proof is complete.

Appendix B. Omitted Proofs from Section 3

B.1. Additional Background on SQ Model

We will use the framework of Statistical Query (SQ) algorithms for problems over distribu-
tions (Feldman et al., 2017). We require the following standard definition.

Definition 29 (Decision/Testing Problem over Distributions) Let D be a distribu-
tion and D be a family of distributions over Rd. We denote by B(D, D) the decision (or
hypothesis testing) problem in which the input distribution D′ is promised to satisfy either
(a) D′ = D or (b) D′ ∈ D, and the goal of the algorithm is to distinguish between these two
cases.

To define the SQ dimension, we need the following definition.

Definition 30 (Pairwise Correlation) The pairwise correlation of two distributions with
probability mass functions (pmfs) D1, D2 : X → R+ with respect to a distribution with pmf
D : X → R+, where the support of D contains the supports of D1 and D2, is defined
as χD(D1, D2) + 1 := ∑

x∈X D1(x)D2(x)/D(x). We say that a collection of s distributions
D = {D1, . . . , Ds} over X is (γ, β)-correlated relative to a distribution D if |χD(Di, Dj)| ≤ γ
for all i ̸= j, and |χD(Di, Dj)| ≤ β for i = j.

The following notion of dimension effectively characterizes the difficulty of the decision
problem.

Definition 31 (SQ Dimension) For γ, β > 0, a decision problem B(D, D), where D is
fixed and D is a family of distributions over X , let s be the maximum integer such that there
exists DD ⊆ D such that DD is (γ, β)-correlated relative to D and |DD| ≥ s. We define the
Statistical Query dimension with pairwise correlations (γ, β) of B to be s and denote it by
SD(B, γ, β).

The connection between SQ dimension and lower bounds is captured by the following lemma.

Lemma 32 ((Feldman et al., 2017)) Let B(D, D) be a decision problem, where D is
the reference distribution and D is a class of distributions over X . For γ, β > 0, let
s = SD(B, γ, β). Any SQ algorithm that solves B with probability at least 2/3 requires at
least s · γ/β queries to the STAT(

√
2γ) or VSTAT(1/γ) oracles.

B.2. Proof of Fact 15

We restate and prove the following fact.

Fact 15 Let d ∈ Z+. Let 0 < c < 1/2. There exists a collection S of 2Ω(dc) vectors in
{±1}d, such that any pair v, u ∈ S, with v ̸= u, satisfies |v · u| < d1/2+c.
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Proof Sample two vectors v, u at random, i.e., v, u ∼ Ud. Note that v · u is a sum of
Rademacher random variables. We use the following concentration inequality:

Fact 33 Let z1, . . . , zn be Rademacher random variables. Then, for any t > 0, it holds

Pr
[∣∣∣∣∣

n∑
i=1

zi

∣∣∣∣∣ ≥ t
√

n

]
≤ 2 exp

(
− t2

2

)
.

Using Fact 33, we get that for t = dc for some 0 < c < 1/2, we get that

Pr
[
|v · u| ≥ d1/2+c

]
≤ 2 exp

(
−d2c

2

)
.

From union bound we get that there exists 2Ω(dc) such vectors.

B.3. Proof of Claim 12

We restate and prove the following claim.

Claim 12 It holds Av(x) = η+(1−2η)fv(x)
η+(1−2η) E[fv(x)]Ud(x) and Bv(x) = 1−η−(1−2η)fv(x)

1−η−(1−2η) E[fv(x)]Ud(x).

Proof Denote gDv the pmf of Dv. We show the claim only for the distribution Av as Bv

follows similarly. Note that Av(x) = gDv (x,y=1)
Pr[y=1] . By construction, we have that Pr[y =

1] = η + (1 − 2η)2ϵ and gDv(x, y = 1) = (η1{fv(x) = 0} + (1 − η)1{fv(x) > 0})Ud(x) =
(η + (1 − 2η)fv(x))Ud(x). Therefore, Av(x) = η+(1−2η)fv(x)

η+(1−2η)2ϵ Ud(x). Similarly, we show that
B(x) = 1−η−(1−2η)fv(x)

1−η−(1−2η)2ϵ Ud(x).

B.4. Proof of Lemma 13

We restate and prove the following.

Lemma 13 Let D0 be a product distribution over Ud × {0, 1}, where Pr(x,y)∼D0 [y = 1] =
Pr(x,y)∼Dv [y = 1]. We have χD0(Dv, Du) ≤ 2(1 − 2η)(E[fv(x)fu(x)] − E[fv(x)] E[fu(x)])
and χ2(Dv, D0) ≤ (1 − 2η)(E[fv(x)] − E[fv(x)]2).

Proof Denote κ1 = 1/ Pr(x,y)∼Dv [y = 1] and κ0 = 1/ Pr(x,y)∼Dv [y = 0]. We have that

χD0(Dv, Du) = Pr
(x,y)∼Dv

[y = 1]χUd
(Av, Au) + Pr

(x,y)∼Dv
[y = 0]χUd

(Bv, Bu)

= κ−1
1 χUd

(Av, Au) + κ−1
0 χUd

(Bv, Bu) .

We now bound each term in the above expression.

Claim 34 We have χUd
(Av, Au) ≤ (1 − 2η)κ2

1(E[fv(x)fu(x)] − E[fv(x)] E[fu(x)]) and
χUd

(Bv, Bu) ≤ (1 − 2η)κ2
0(E[fv(x)fu(x)] − E[fv(x)] E[fu(x)]).
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Proof We first bound χUd
(Av, Au) as the other follows similarly. We have that

χUd
(Av, Au) =

∑
x∈{±1}d

(Av(x) − Ud(x))(Au(x) − Ud(x))
Ud(x)

= 1 − 2η

(η + (1 − 2η) E[fv(x)])2

∑
x∈{±1}d

(fv(x) − E[fv(x)])(fu(x) − E[fu(x)])Ud(x)

= 1 − 2η

(η + (1 − 2η) E[fv(x)])2 (E[fv(x)fu(x)] − E[fv(x)] E[fu(x)]) .

Working in a similar way, we also get that χUd
(Bv, Bu) = (1 − 2η)κ2

0(E[fv(x)fu(x)] −
E[fv(x)] E[fu(x)]).

Using Claim 34, we get that

χD0(Dv, Du) ≤ (1 − 2η)(κ1 + κ0) E[fv(x)fu(x)] ≤ 2(1 − 2η) E[fv(x)fu(x)] .

It remains to bound χ2(Dv, D0). We show the following:

Claim 35 Let κ = (1 − 2η)/(η + (1 − 2η)2 E[fv(x)] − E[fv(x)]2)2. It holds that

χ2(Dv, D0) ≤ (1 − 2η) E[fv(x)] − E[fv(x)]2 .

Proof Let κ = (1 − 2η)/(η + (1 − 2η)2 E[fv(x)] − E[fv(x)]2)2 We have that

χ2(Dv, D0) = κ−1
1 χ2(Ud, Av) + κ−1

0 χ2(Ud, Bv) .

χ2(Ud, Av) =
∑

x∈{±1}d

(Av(x) − Ud(x))2

Ud(x) = (1 − 2η)κ2
1

∑
x∈{±1}d

(fv(x) − E[fv(x)])2Ud(x)

= (1 − 2η)κ2
1(E[fv(x)] − E[fv(x)]2) .

Similarly, we show that χ2(Ud, Bv) = (1 − 2η)κ2
0(E[fv(x)] − E[fv(x)]2). Combining, we get

the result.

B.5. Proof of Lemma 17

The following is a more detailed version of Lemma 17.

Lemma 36 Let d, m, k ∈ Z. Then, the following hold

1. |K(d, m, k)| ≤ 1 for any k ∈ Z.

2. For k ≤ d/2, it holds

|K(d, m, k)| ≤ ek23k

((
k

d

)k/2
+
( |d/2 − m|

d

)k
)

.
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3. If k ≤ d/2 and |d/2 − m| ≤ d/4, then |K(d, m, k)| = exp(−Ω(k)).

Proof The first part follows from the fact that K(d, m, k) is the expectation of a random
variable with support in [−1, 1]. For the next claims, we use the following fact.

Fact 37 (Claim 22 of Błasiok et al. (2021)) Let d, m, k ∈ Z, then

|K(d, m, k)| ≤ ek23k(d
k

) ((
d

k

)k/2
+
( |d/2 − m|

k

)k
)

.

Using the inequality
(d

k

)
≥ (d/k)k, we have that

|K(d, m, k)| ≤ ek23k

((
k

d

)k/2
+
( |d/2 − m|

d

)k
)

.

If k ≤ d/12 and |d/2−m| ≤ d/4, then we have that |K(d, m, k)| ≤ 2 exp(−0.2k). We provide
a proof for the final part, i.e., the case where d/12 ≤ k ≤ d/2. Denote YA,B = (−1)A∩B.
The sum we want to bound is equal to EA,B[YA,B]. Denote A′ = {1, 3, . . . , 2m − 1} and
sB

i = |B ∩ {2i − 1, 2i}| for i = 1, . . . , m. Note that the EA,B[YA,B | A = A′, sB
1 , . . . , sB

m] = 0,
if we condition that any sB

i = 1. This holds because if sB
i = 1 for some i, then we can swap

which 2i and 2i − 1 is in B to create B′ and hence (−1)A∩B + (−1)A∩B′ = 0.
It suffices to show that if we choose B at random, i.e., B is a uniform subset of [d] of

size k, then with probability at most exp(−Ω(k)) we are in the case where no sB
i is equal

to 1. To show that, we create a new random variable B′ and we sample B′ as follows: we
let the size of B′ be equal to Bin(d, k/d), which is equivalent to sampling each element of
[d] with probability k/d. Now each sB′

i is independent of each other. The probability that
each sB′

i is equal to one is 2k/d(1 − k/d) = Ω(k/d). Therefore, the probability that no sB′
i

is one is at most

(1 − Ω(k/d))m ≤ exp(−Ω(−km/d)) = exp(−Ω(k)) ,

where we used that |d/2 − m| ≤ d/4. Therefore, | E[YA,B′ |A]| ≤ exp(−Ω(k)). It remains to
relate the expectation with respect B′ to the expectation of B. Note that according to the
sampling rule, there is an Ω(1/

√
k) probability of generating a uniform subset of size k, but

the probability that Y is non-zero is at most exp(−Ω(k)). Therefore, we have that

| E[YA,B′ |A]| = | E[YA,B′ |A, |B′| = k]| ≤ exp(−Ω(k))
√

k = exp(−Ω(k)) ,

where we used that k is large enough by assumption. Therefore, | E[YA,B|A]| ≤ exp(−Ω(k))
and the total expectation is at most exp(−Ω(k)).

B.6. Proof of Claim 18

We restate and prove the following.
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Claim 18 (Fourier Coefficients) Fix vector v ∈ {±1}d and let fv(x) = 1{v · x ≥ t}.
For T ⊆ [d], we have that the Fourier coefficient of f at χT (x), i.e., f̂(T ), is given by

f̂(T ) = E[fv(x)χT (x)] = χT (v)(−1)|T |2−d
d∑

s=t

(
d

s

)
K(d, s, |T |) .

Proof We have that

E[fv(x)χT (x)] = 2−d
∑

x∈{±1}d

fv(x)χT (x)

= 2−d
d∑

s=t

∑
A⊆[d],|A|=s

∏
i∈T ∩A

vi

∏
i∈T ∩Ā

(−vi)

= χT (v)(−1)|T |2−d
d∑

s=t

∑
A⊆[d],|A|=s

(−1)|T ∩A|

= χT (v)(−1)|T |2−d
d∑

s=t

∑
A⊆[d],|A|=s

(
d

|T |

)−1 ∑
B⊆[d],|B|=|T |

(−1)|A∩T |

= χT (v)(−1)|T |2−d
d∑

s=t

(
d

|s|

)
K(d, s, |T |) ,

where in the first equality we changed the summation so that s is the number of xi that
agree with vi, and we sum from t as if v and x agree in more than t coordinates, then the
indicator is positive. In the third inequality, we used the fact that, due to the symmetry,
the sum only depends on the size of |T |; hence, we sum over all subsets with size |T | and
divide by the number of subsets with size |T |.

B.7. Proof of Claim 19

We restate and prove the following:

Claim 19 It holds that |Rd| ≤ 2−2d
(d−1

t−1
)2.

Proof We have that

K(d, d, s) = 1(d
s

) ∑
A⊆[d],|A|=s

(−1)|A∩[d]| = (−1)s ,

hence, Rd = (2−d∑d
s=t(−1)s

(d
s

)
)2K(d, d, m). Therefore, |Rd| ≤ 2−2d(∑d

s=t(−1)s
(d

s

)
)2. Us-

ing the two identities about binomial sums, i.e., that ∑t
s=0(−1)s

(d
s

)
= (−1)t

(d−1
t

)
and∑d

s=0(−1)s
(d

s

)
= 0, we have that |Rd| ≤ 2−2d

(d−1
t−1
)2.
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B.8. Proof of Claim 20

We restate and prove the following claim.

Claim 20 Let c > 0 be a sufficiently large constant. We have that
∑d−c log(d/ϵ)

k=c log(d/ϵ) Rk ≤ ϵ2/d.

Proof Note that, ∑d
k=0

(d
k

) (
2−d∑d

s=t

(d
s

)
K(d, k, s)

)2
= E[f2

v(x)] = ϵ. From Lemma 17,
we get that |K(d, m, k)| ≤ exp(−ck), where c > 0 is an absolute constant. Therefore, if
d/2 ≥ k ≥ c log(d/ϵ) we have that |K(d, m, k)| ≤ ϵ/d. Furthermore, using the fact that
|K(d, m, k)| is symmetric with center d/2, we get that if d/2 ≤ k ≤ d − c log(d/ϵ), then we
also have that |K(d, m, k)| ≤ ϵ/d. Therefore, we have that

d/2−c log(d/ϵ)∑
k=c log(d/ϵ)

Rk ≤
d/2−c log(d/ϵ)∑
k=c log(d/ϵ)

|Rk| ≤ (ϵ/d)
d/2−c log(d/ϵ)∑
k=c log(d/ϵ)

(
d

k

)(
2−d

d∑
s=t

(
d

s

)
K(d, k, s)

)2

≤ ϵ2/d .

This completes the proof.

Appendix C. Lower Bound for Low-Degree Polynomial Testing

We begin by formally defining a hypothesis problem.

Definition 38 (Hypothesis testing) Let a distribution D0 and a set S = {Du}u∈S of
distributions on Rd. Let µ be a prior distribution on the indices S of that family. We are
given access (via i.i.d. samples or oracle) to an underlying distribution where one of the
two is true:

• H0: The underlying distribution is D0.

• H1: First u is drawn from µ and then the underlying distribution is set to be Du.

We say that a (randomized) algorithm solves the hypothesis testing problem if it succeeds
with non-trivial probability (i.e., greater than 0.9).

Definition 39 Let D0 be the joint distribution D0 over the pair (x, y) ∈ {±1}d × {0, 1}
where x ∼ Ud and y ∼ D0(y) independently of x. Let Dv be the joint distribution over
pairs (x, y) ∈ {±1}d × {0, 1} where the marginal on y is again D0(y) but the conditional
distribution Ev(x|1) is of the form Av (as in Theorem 11) and the conditional distribution
Ev(x|0) is of the form Bv . Define S = {Ev}v∈S for S being the set of d-dimensional nearly
orthogonal vectors from Fact 15 and let the hypothesis testing problem be distinguishing
between D0 vs. S with prior µ being the uniform distribution on S.

We need the following variant of the statistical dimension from Brennan et al. (2020),
which is closely related to the hypothesis testing problems considered in this section. Since
this is a slightly different definition from the statistical dimension (SD) used so far, we will
assign the distinct notation (SDA) for it.
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Notation For f : R → R, g : R → R and a distribution D, we define the inner product
⟨f, g⟩D = EX∼D[f(X)g(X)] and the norm ∥f∥D =

√
⟨f, f⟩D.

Definition 40 (Statistical Dimension) For the hypothesis testing problem of Defini-
tion 38, we define the statistical dimension SDA(S, µ, n) as follows:

SDA(S, µ, n) = max
{

q ∈ N : E
u,v∼µ

[|⟨D̄u, D̄v⟩D0 − 1| | E] ≤ 1
n

for all events E s.t. Pr
u,v∼µ

[E] ≥ 1
q2

}
.

We will omit writing µ when it is clear from the context.

The following lemma translates the (γ, β)-correlation of S to a lower bound for the
statistical dimension of the hypothesis testing problem. The proof is very similar to that of
Corollary 8.28 of Brennan et al. (2020) but it is given below for completeness.

Lemma 41 Let 0 < c < 1/2 and d, m ∈ Z+. Consider the hypothesis testing problem of
Definition 39. Then, for any q ≥ 1,

SDA
(

D,

(
ϵ−1Ω(d)1/2−c

(1 − 2η)ϵ(q2/2Ω(dc/2) + 1)

))
≥ q .

Proof The first part is to calculate the correlation of the set S. By Theorem 11, we know
that the set S is (γ, β)-correlated with γ = (1 − 2η)ϵ2Ω(d)c−1/2 and β = 4(1 − 2η)ϵ.

We next calculate the SDA according to Definition 40. We denote by Ēv the ratios of
the density of Ev to the density of R. Note that the quantity ⟨Ēu, Ēv⟩ − 1 used there is
equal to ⟨Ēu − 1, Ēv − 1⟩. Let E be an event that has Pru,v∼µ[E] ≥ 1/q2. For d sufficiently
large we have that

E
u,v∼µ

[|⟨Ēu, Ēv⟩ − 1|E] ≤ min
(

1,
1

|S| Pr[E]

)
β + max

(
0, 1 − 1

|S| Pr[E]

)
γ

≤ (1 − 2η)ϵ
(

q2

2Ω(dc) + ϵ

Ω(d)1/2−c

)
= (1 − 2η)ϵ

(
ϵ−1Ω(d)1/2−c

q2/2Ω(dc/2) + 1

)−1

,

where the first inequality uses that Pr[u = v|E] = Pr[u = v, E]/ Pr[E] and bounds the
numerator in two different ways: Pr[u = v, E]/ Pr[E] ≤ Pr[u = v]/ Pr[E] = 1/(|S| Pr[E])
and Pr[u = v, E]/ Pr[E] ≤ Pr[E]/ Pr[E] = 1.

C.1. Preliminaries: Low-Degree Method

We begin by recording the necessary notation, definitions, and facts. This section mostly
follows Brennan et al. (2020).

Low-Degree Polynomials A function f : Ra → Rb is a polynomial of degree at most k
if it can be written in the form

f(x) = (f1(x), f2(x), . . . , fb(x)) ,
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where each fi : Ra → R is a polynomial of degree at most k. We allow polynomials to have
random coefficients as long as they are independent of the input x. When considering list-
decodable estimation problems, an algorithm in this model of computation is a polynomial
f : Rd1×n → Rd2×ℓ, where d1 is the dimension of each sample, n is the number of samples,
d2 is the dimension of the output hypotheses, and ℓ is the number of hypotheses returned.
On the other hand, Brennan et al. (2020) focuses on binary hypothesis testing problems
defined in Definition 38.

A degree-k polynomial test for Definition 38 is a degree-k polynomial f : Rd×n → R
and a threshold t ∈ R. The corresponding algorithm consists of evaluating f on the input
x1, . . . , xn and returning H0 if and only if f(x1, . . . , xn) > t.

Definition 42 (n-sample ϵ-good distinguisher) We say that the polynomial p : Rd×n 7→
R is an n-sample ϵ-distinguisher for the hypothesis testing problem in Definition 38 if

| E
X∼D⊗n

0

[p(X)] − E
u∼µ

E
X∼D⊗n

u

[p(X)]| ≥ ϵ
√

Var
X∼D⊗n

0

[p(X)] .

We call ϵ the advantage of the distinguisher.

Let C be the linear space of polynomials with a degree at most k. The best possible
advantage is given by the low-degree likelihood ratio

max
p∈C

E
X∼D⊗n

0
[p2(X)]≤1

| E
u∼µ

E
X∼D⊗n

u

[p(X)] − E
X∼D⊗n

0

[p(X)]| =
∥∥∥∥ E

u∼µ

[
(D̄⊗n

u )≤k
]

− 1
∥∥∥∥

D⊗n
0

,

where we denote D̄u = Du/D0 and the notation f≤k denotes the orthogonal projection of
f to C.

Another notation we will use regarding a finer notion of degrees is the following: We
say that the polynomial f(x1, . . . , xn) : Rd×n → R has samplewise degree (r, k) if it is a
polynomial, where each monomial uses at most k different samples from x1, . . . , xn and
uses degree at most r for each of them. In analogy to what was stated for the best
degree-k distinguisher, the best distinguisher of samplewise degree (r, k)-achieves advan-
tage

∥∥∥Eu∼µ[(D̄⊗n
u )≤r,k] − 1

∥∥∥
D⊗n

0
the notation f≤r,k now means the orthogonal projection of

f to the space of all samplewise degree-(r, k) polynomials with unit norm.

C.2. Hardness of Hypothesis Testing Against Low-Degree Polynomials

We restate and prove the following.

Theorem 43 Let 0 < c < 1/2. Consider the hypothesis testing problem of Definition 39.
For d ∈ Z+ with d larger than an absolute constant, any n ≤ Ω(d)1/2−c/(ϵ2(1 − 2η)) and
any even integer k < dc/4, we have that∥∥∥∥ E

v∼µ

[
(Ē⊗n

v )≤∞,Ω(k)
]

− 1
∥∥∥∥2

D⊗n
0

≤ 1 .

Proof In Brennan et al. (2020), the following relation between SDA and low-degree likeli-
hood ratio is established.
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Theorem 44 (Theorem 4.1 of Brennan et al. (2020)) Let D be a hypothesis testing
problem on Rd with respect to null hypothesis D0. Let n, k ∈ N with k even. Suppose that for
all 0 ≤ n′ ≤ n, SDA(S, n′) ≥ 100k(n/n′)k. Then, for all r,

∥∥∥Eu∼µ

[
(D̄⊗n

u )≤r,Ω(k)
]

− 1
∥∥∥2

D⊗n
0

≤
1.

In Lemma 41 we set n = Ω(d)1/2−c/(ϵ2(1 − 2η)) and q =
√

2Ω(dc/2)(n/n′). Then,

SDA(S, n′) ≥
√

2Ω(dc/2)(n/n′) ≥ (100n/n′)k for k < dc/4 and then we apply the theorem
above.
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