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ABSTRACT

Offline reinforcement learning (RL) offers a promising direction for learning poli-
cies from pre-collected datasets without requiring further interactions with the
environment. However, existing methods struggle to handle out-of-distribution
(OOD) extrapolation errors, especially in sparse reward or scarce data settings.
In this paper, we propose a novel training algorithm called Conservative Density
Estimation (CDE), which addresses this challenge by explicitly imposing con-
straints on the state-action occupancy stationary distribution. CDE overcomes
the limitations of existing approaches, such as the stationary distribution correc-
tion method, by addressing the support mismatch issue in marginal importance
sampling. Our method achieves state-of-the-art performance on the D4RL bench-
mark. Notably, CDE consistently outperforms baselines in challenging tasks with
sparse rewards or insufficient data, demonstrating the advantages of our approach
in addressing the extrapolation error problem in offline RL. Code is available at
https://github.com/czp16/cde-offline-rl.

1 INTRODUCTION

Reinforcement Learning (RL) has witnessed remarkable advancements in recent years (Akkaya et al.,
2019; Kiran et al., 2021). Nevertheless, the success of RL relies on continuous online interactions,
resulting in high sample complexity and potentially restricting its practical applications in real-world
scenarios (Levine et al., 2016; Gu et al., 2022). As a compelling solution, offline RL has been
brought to the fore, with the objective of learning effective policies from pre-existing datasets, thereby
eliminating the necessity for further environment interactions (Fu et al., 2020; Prudencio et al., 2023).

Despite its benefits, offline RL is not devoid of challenges, most notably the out-of-distribution
(OOD) extrapolation errors, which emerge when the agent encounters state-actions that were absent
in the dataset. These issues pose significant hurdles when learning policies from datasets with sparse
rewards or low coverage of state-action spaces (Levine et al., 2020). To address OOD estimation errors
in value-based offline RL, current efforts primarily revolve around two strategies: pessimism-based
methods (Xie et al., 2021a; Shi et al., 2022) and the integration of regularizations (Kostrikov et al.,
2021a). However, these approaches hinge on assumptions of the behavior policy. In addition, many
works push policy to behavior policy to achieve pessimism (Fujimoto et al., 2019; Shi et al., 2022),
which is more challenging to select the level of pessimism when the data distribution estimation is
difficult (Liu et al., 2020; Xie et al., 2021a) (e.g., in high-dimensional state-action space), while
regularization methods may struggle with the tuning of the regularization coefficient (Lee et al., 2021;
Lyu et al., 2022). As such, striking the optimal balance of conservativeness remains a challenging
goal particularly in sparse-reward settings.

Recent attention has been drawn towards an alternative method that employs importance sampling
(IS) for offline data distribution correction (Precup, 2000; Jiang & Li, 2016). Among these, Dis-
tribution Correction-Estimation (DICE)-based methods have garnered substantial interest, which
uses a single marginal ratio to reweight rewards for each state-action pair and has a relatively low
estimation variance (Nachum et al., 2019b; Zhang et al., 2020; Lee et al., 2021). DICE provides
a behavior-agnostic estimation of stationary distributions, presenting a more direct approach for
offline learning. However, DICE-based techniques rely on an implicit assumption of the dataset’s
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concentrability(Munos, 2007; Xie et al., 2021b; Li et al., 2022), otherwise the stationary distribution
support mismatch between the dataset and policy can cause an arbitrarily large IS ratio, resulting in
unstable training and poor performance, which can be significantly severe with insufficient data.

To address these challenges, we introduce a novel method, the Conservative Density Estimation
(CDE), that integrates the strengths of both pessimism-based and DICE-based approaches. CDE
employs the principles of conservative Q-learning (Kumar et al., 2020) in a unique way, incorporating
pessimism within the stationary distribution space to achieve a theoretically-backed conservative
occupation distribution. On the one hand, CDE does not rely on Bellman update-style value esti-
mation, favoring a direct behavior-policy-agnostic stationary distribution correction that improves
performance in sparse reward scenarios. On the other hand, by constraining the density of the
stationary distribution induced by OOD state-action pairs, CDE significantly enhances performance
in data-limited settings. This stands in contrast to the significant performance degradation observed
in baseline offline RL methods with diminishing dataset sizes, as CDE maintains high rewards even
with only 1% trajectories in challenging D4RL tasks (Fu et al., 2020).

1. We introduce the first approach to explicitly apply pessimism in the stationary distribution space.
Notably, CDE outperforms conservative value learning-based approaches in sparse reward settings
and demonstrates superior performance over DICE-based methods in handling scarce data situations.

2. We present a method that automatically bounds the concentrability coefficient without resorting
to the common concentrability assumption (Rashidinejad et al., 2021; Shi et al., 2022; Zhan et al.,
2022), underlining its robustness in managing the OOD extrapolation issue inherent in offline RL.

3. We demonstrate the resilience of CDE in maintaining high rewards even with significantly reduced
dataset sizes, such as 1% of trajectories, while prior methods fail. Therefore, our method provides a
viable solution for real-world applications where data can be scarce or costly to obtain.

2 RELATED WORK

Offline RL with regularization or constraints. To mitigate OOD issues, Q-value-based methods
are often enhanced with regularization or constraint terms (Levine et al., 2020; Prudencio et al.,
2022). These techniques restrict the learned policy’s deviation from the behavior policy in the dataset,
whether through explicit constrained policy spaces (Fujimoto et al., 2019) or regularizers in the
objective (Wu et al., 2019; Peng et al., 2019; Kumar et al., 2019; Nair et al., 2020; Fujimoto & Gu,
2021). Alternatively, value regularization is employed to yield lower estimates for unseen states or
actions, resulting in conservative policies (Kostrikov et al., 2021a; Kumar et al., 2020). However,
those methods may suffer instability from approximation error when learning value with Bellman
update iteratively (Fujimoto et al., 2018; Fu et al., 2019; Brandfonbrener et al., 2021), often failing
in sparse reward settings even with expert demonstrations. Meanwhile, the reliance on heuristic
regularization can lead to overly conservative policies and degrade performance.

Offline RL with marginal importance sampling. The DICE method represents a class of ap-
proaches that directly address distribution shift using marginal importance sampling, offering reduced
estimation variance compared to naive importance weighting (Precup, 2000). These methods reframe
the learning objective as maximizing expected reward, using the primal-dual correspondence between
value-function linear programming and distribution optimization (Nachum et al., 2019b; Nachum &
Dai, 2020). DICE calculates the importance ratio using either a forward method that minimizes the
residual error of the transposed Bellman equation (Zhang et al., 2020), or a backward method that
optimizes the value function via duality (Nachum et al., 2019a). Some variations add a regularization
to the objective function, yielding a closed-form solution for the importance ratio (Nachum et al.,
2019b; Lee et al., 2021). Despite their ability to provide unbiased policy evaluation, DICE-style
methods yield arbitrarily large importance ratios when the dataset lacks sufficient state-action space
coverage, a challenge particularly acute in scarce data settings.

3 METHOD

3.1 PRELIMINARIES

We formulate reinforcement learning problem in the context of a Markov Decision Process (MDP)
M = ⟨S,A, T, r, γ, ρ0⟩, where S is the state space, A is the action space, T : S ×A× S → [0, 1]
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specifies the transition probability T (s′|s, a), r : S × A → R is the reward function, γ is the
discount factor, and ρ0 : S → [0, 1] is the initial state distribution. The policy π : S × A → [0, 1]
maps from a state to a distribution over actions. Given a policy π, consider the trajectory τ =
{s0, a0, s1, a1, . . . } sampled by π, i.e., s0 ∼ ρ0, at ∼ π(·|at), st+1 ∼ T (·|st, at), the stationary
state-action distribution is defined as dπ(s, a) = (1 − γ)

∑∞
t=0 γ

t Pr(st = s, at = a). The goal

of RL is to learn a return-maximization policy π∗ = argmaxπ Eτ∼π[
∑∞

t=0 γ
tr(st, at)], which is

equivalent to reward maximization (Puterman, 2014): π∗ = argmaxπ Es,a∼dπ [r(s, a)].

In offline RL, the agent learns the policy from a pre-collected dataset D = {(si, ai, ri, s′i)}Ni=1. For

simplicity, we denote the empirical state-action distribution of offline dataset as dD. The DICE-style
methods apply marginal IS to estimate the expection of certain function g: Es,a∼dπ [g(s, a)] =

Es,a∼dD [ d
π(s,a)

dD(s,a)
g(s, a)] with dπ, dD as target and proposal distributions. The IS estimation can thus

be approximated by sampling from offline dataset.

3.2 CONSERVATIVE DENSITY ESTIMATION

In this section, we present Conservative Density Estimation (CDE), which aims to learns a policy
that induces the distribution with conservative density in unseen state-action region. We first consider
a f -divergence regularized policy optimization problem (Nachum et al., 2019a;b):

max
dπ≥0

Edπ [r(s, a)]− αDf (d
π∥dD), s.t.

∑

a

dπ(s, a) = (1− γ)ρ0(s) + γT∗dπ(s), ∀s, (1)

where Df (d
π∥dD) = EdD [f( dπ(s,a)

dD(s,a)
)] is the f -divergence between two distributions, α is the

hyperparameter of regularization, T∗dπ(s) =
∑

s′,a′ T (s|s′, a′)dπ(s′, a′) is the transposed transition

operator. Here we adhere to state-wise Bellman flow constraint as Lee et al. (2021) to incorporate the
stochasticity of action distribution on next state a′ ∼ π(·|s′) since the state-action-wise constraint can
lead to overestimation for ‘lucky’ samples (Kostrikov et al., 2021b) and instability during training.
Particularly, we have following assumption on f function selection:

Assumption 1. The f function in f-divergence is strictly convex and continuously differentiable, and
(f ′)−1(x) ≥ 0, ∀x ∈ R.

The previous DICE methods (Nachum et al., 2019b; Nachum & Dai, 2020; Lee et al., 2021) transform
constrained optimization problem to unconstrained one in Eq.(1) by Lagrange or Fenchel-Rockafellar
duality and evaluate the unconstrained objective by marginal IS with dD as proposal distribution.
However, one implicit assumption behind DICE methods is that the support of dataset distribution is
wide enough and otherwise the density of unseen state-actions in dD can be zero or arbitrarily small.
Therefore, when the support of dπ mismatches dD, there will be a large extrapolation error for OOD
state-actions and variance in IS estimation. Meanwhile, the f -divergence regularization is enforced
on the support of data distribution and approximated by single or several sample points, failing to
serve as an effective supervision to explicitly reduce extrapolation errors for unseen state-actions.

To overcome the above issues, we consider a new constraint on the density of dπ(s, a) by µ(s, a):
dπ(s, a) ≤ ϵµ(s, a), ∀s, a ∈ supp(µ), where µ(s, a) is a distribution on OOD state-action pairs, i.e.,
supp(µ) ∩ supp(dD) = ∅. The new optimization problem is formulated as

max
dπ≥0

Edπ [r(s, a)]− αDf (d
π∥dD) (2)

s.t.
∑

a

dπ(s, a) = (1− γ)ρ0(s) + T∗dπ(s), ∀s (3)

dπ(s, a) ≤ ϵµ(s, a), ∀s, a ∈ supp(µ). (4)

The corresponding unconstrained problem is maxdπ minλ≥0,v L(dπ, v, λ), where

L(dπ, v, λ) = Edπ [A(s, a)] + (1− γ)Eρ0
[v(s0)]− αDf (d

π∥dD)− Eµ [λ(s, a) (d
π/µ(s, a)− ϵ)]

(5)
and A(s, a) := r(s, a) + γEs′∼T (·|s,a)v(s

′)− v(s) is regarded as advantage function if we interpret

v(s) as the V-value of state s. The derivation is attached in Appendix A.1.

In practice, we restrict the state marginal of µ to match the state distribution of dataset dD(s) as
previous OOD querying methods (Kumar et al., 2020; Kostrikov et al., 2021a; Lyu et al., 2022) and
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shrink the OOD region to unseen actions with existing states. Given a state s in dataset, suppose

there exists n actions a(1), . . . , a(n) such that (s, a(i)) ∈ D, i = 1, . . . , n, we define the set of OOD

actions as AOOD(s) := {a
∣

∣mini ∥a − a(i)∥∞ ≥ ∆a}. See more details in Appendix B.2.3. We

further adopt a uniform distribution πµ(a|s) over the unseen action space AOOD(s) as the policy of µ,
i.e., µ(s, a) = dD(s)πµ(a|s). We want to emphasize that our method is also compatible with other
OOD sampling distribution with proper inductive bias.

3.2.1 POLICY EVALUATION AND IMPROVEMENT

Based on the unconstrained objective in Eq.(5), we first adopt marginal IS to evaluate a policy
given its stationary distribution. To avoid the support mismatch issue, we consider a new proposal

distribution d̂D(s, a) := ζdD(s, a) + (1 − ζ)µ(s, a) in importance sampling, where ζ ∈ (0, 1) is
the mixture coefficient. Therefore, the support of new proposal distribution can cover the target

distribution dπ . We further replace the original f -divergence regularizer by Df (d
π∥d̂D) to constrain

the density of both OOD and in-support state-actions. Besides, we substitute the importance ratio

w(s, a) = dπ(s, a)/d̂D(s, a) for dπ as d̂D is fixed. The new objective function is

L′(w, v, λ) = ζEdD [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)]

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] ,
(6)

where ϵ̃ = ϵ
1−ζ . The derivation is attached in Appendix A.1. With assumption 1, the objective

in Eq.(2) is convex and thus is equivalent to the minimax problem minλ≥0,v maxdπ L(dπ, v, λ) by
Slater’s condition. Moreover, the inner maximization has a closed-form solution (Nachum & Dai,
2020; Nachum et al., 2019b;a) and the outer minimization is a convex optimization problem. The
proofs are in Appendix A.3, A.4.

Proposition 1. With assumption 1, the closed-form solution to inner maximization problem
maxw≥0 L′(w, v, λ) is

w∗(s, a) = (f ′)−1(Ã(s, a)/α), (7)

where Ã(s, a) := A(s, a)− 1{(s, a) ∈ supp(µ)} · λ(s, a) denotes regularized advantage function
and 1{·} is the indicator function.

Proposition 2. The outer minimization problem minλ≥0,v L′(w∗, v, λ) is a convex optimization
problem. Suppose the optimal solution is (λ∗, v∗), then λ∗ has a closed-form solution

λ∗(s, a) = max{0, A∗(s, a)− αf ′(ϵ̃)}, ∀s, a ∈ supp(µ), (8)

where A∗(s, a) = r(s, a) + γEs′∼T (·|s,a)v
∗(s′)− v∗(s). The optimal regularized advantage is

Ã∗(s, a) =

{

A∗(s, a), (s, a) ∈ supp(dD)

min{αf ′(ϵ̃), A∗(s, a)}, (s, a) ∈ supp(µ)
(9)

Based on the closed-form relation between stationary distribution dπ and value function, we can
thus improve the policy by maximizing w.r.t. value function. Since it requires the reward r(s, a) and

transition T (·|s, a) to compute regularized advantage function Ã(s, a), which is available only for

(s, a) ∈ D, we consider function approximation for both V-value v and regularized advantage Ã by
parameters φ and ϕ. The optimization is in two steps: 1) We first optimize vφ by minimizing the
value of states in distribution:

min
φ

EdD [w∗(s, a)(r(s, a) + γEs′vφ(s
′)− vφ(s))− αf(w∗(s, a))]+(1−γ)Es0∼ρ0

[vφ(s0)]. (10)

2) Then we regress the regularized advantage Ãϕ to the optimal Ã∗ in Eq.(9). Specifically, we regress
the OOD advantages to αf ′(ϵ̃) if they exceed it and regress the in-distribution advantages to the
values from vφ: Aφ(s, a) = r(s, a) + γEs′vφ(s

′)− vφ(s). In summary, we optimize the regularized
advantage function by following mean squared error (MSE):

min
ϕ

ζEdD [(Ãϕ(s, a)−Aφ(s, a))
2]+(1−ζ)Eµ[1{Ãϕ(s, a) > αf ′(ϵ̃)}(Ãϕ(s, a)−αf ′(ϵ̃))2], (11)

and obtain the approximated optimal importance ratios for both in-distribution and OOD state-actions:

w̃∗(s, a) = (f ′)−1(Ãϕ(s, a)/α). (12)

By definition, the optimal distribution is d∗(s, a) = w̃∗(s, a)d̂D(s, a). In practice, we introduce
another constraint to enforce

∑

s,a d
∗(s, a) = 1 as (Zhang et al., 2020). See Appendix A.2 for full

derivations.
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3.2.2 POLICY EXTRACTION

Finally, we extract the policy from the learned importance ratios. Since one policy is uniquely
determined given its corresponding stationary distribution, we extract the policy by minimizing the
KL divergence between the stationary distributions of optimal policy and parameterized policy πθ.
Meanwhile, as we have no access to dπθ (s, a) in offline setting, we estimate it by d∗(s)πθ(a|s),
where the optimal state marginal d∗ can be viewed as a state distribution of successful trajectories in
dataset. The objective of policy extraction is

min
θ

DKL[d
πθ∥d∗] ≈ min

θ
Es∼d∗,a∼πθ

[

log
d̂D(s, a)

d∗(s, a)
+ log

πθ(a|s)
π̂D(a|s) + log

d∗(s)

dD(s)

]

(13)

= min
θ

Es∼d∗,a∼πθ
[− log w̃∗(s, a)] + Es∼d∗ [DKL[πθ(·|s)∥π̂D(·|s)]], (14)

where π̂D(a|s) = ζπD(a|s) + (1 − ζ)πµ(a|s) is the mixed behavior policy and πD(a|s) denotes
the empirical behavior policy. We will analyze the error induced by state marginal approximation in
Theorem 2. The final objective in Eq.(14) consists of two components: the maximizing of w̃∗ and
minimizing the divergence with mixed behavior policy, indicating the trade-off between performance
improvement by maximizing the value and conservative learning to reduce extrapolation error.

Algorithm 1 Conservative Density Estimation

Initialize value functions vφ, Ãϕ, behavior policy πD,
policy πθ.

1: ▷ policy evaluation and improvement
2: for training iteration i do
3: Sample batch {(si, ai, ri, s′i)} from D and n

OOD actions {a(1), . . . , a(n)} for each s;
4: Update V-value vφ by Eq.(10);

5: Update regularized advantage Ãϕ by Eq.(11);

6: Update πD by behavioral cloning.
7: end for
8: ▷ policy extraction
9: for training iteration j do

10: Update policy πθ by Eq.(14).
11: end for

The key steps of complete training proce-
dure are summarized in Algo. 1. See Ap-
pendix B.2 for full algorithm and training
details. One noteworthy difference from
other actor-critic methods is that CDE up-
dates the policy after the value function
converges, which improves the learning sta-
bility and computation efficiency.

The advantages of CDE over previous
DICE methods are two-fold: 1) the pro-

posal distribution (i.e., d̂D) has wider cov-
erage than dD, which mitigates the support
mismatch in importance sampling and pre-
vents the arbitrarily large importance ratio;
2) CDE produces a conservative estimation
of density in OOD region. Compared to
previous conservative methods, CDE de-
termines the degree of conservatism precisely by optimal λ in Proposition 2, mitigating overly
pessimistic estimation and loss of the generalization ability (Lyu et al., 2022). Furthermore, CDE
disentangles two optimization steps, i.e., learning the value function by convex optimization and
extracting the policy from the optimal importance ratio, thereby reducing the compounded error
amplified by the interleaved optimization (Brandfonbrener et al., 2021).

3.3 THEORETICAL ANALYSIS

CDE adopts a proposal distribution with broader support in marginal IS and explicitly constrains the
stationary distribution density of the OOD region, resulting in a theoretical bound for the importance
ratio, also known as concentrability coefficent (Munos, 2007; Rashidinejad et al., 2021).

Proposition 3 (Upper bound of concentrability ratio on OOD state-actions). With assumption 1, the
theoretical optimal importance ratio is upper bounded by w∗(s, a) ≤ ϵ̃, ∀(s, a) ∈ supp(µ).

The proof of Proposition 3 is in Appendix A.5. It should be noted that an unbounded importance ratio
can cause unstable training for importance-sampling-based methods (Shi et al., 2022). We further
bound the function approximation w̃∗ in Eq.(12) with following continuity assumption:

Assumption 2 (Lipschitz continuity of Aϕ(s, a)). There is a constant L > 0 such that

|Aϕ(s, a)−Aϕ(s, a
′)| ≤ L · ∥a− a′∥∞, ∀a, a′ ∈ AOOD(s), ∀s ∈ D.

Theorem 1 (Upper bound of function approximated concentrability ratio). Suppose that 1) the action
space is d-dim, i.e., A ⊂ R

d, 2) the diameter of A is M , i.e., ∥a1 − a2∥∞ ≤ M, ∀a1, a2 ∈ A, and
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3) there are at least N OOD action samples from µ given any state s ∈ D. When the continuity
assumption 2 holds, with probability at least 1− δ, δ > 0, we have

w̃∗(s, a) ≤ (f ′)−1

(

f ′(ϵ) +
ξ

α
+

L

α

(

∆ad +
Md

N
log

1

δ

)1/d
)

, ∀(s, a) ∈ supp(µ) (15)

where ξ is the maximum residual error of OOD regression in Eq.(11), ∆a is the radius of in-
distribution region as previously defined.

The proof of Theorem 1 is in Appendix A.6. Proposition 3 and Theorem 1 show that CDE inherently
bounds the OOD concentrability coefficient. This coefficient is frequently assumed to be bounded in
the variance or performance analysis in both off-policy evaluation and offline RL domains (Rashidine-
jad et al., 2021; Ma et al., 2022; Zhan et al., 2022), as an unbounded concentrability coefficient can
lead to instability during training. As such, the CDE framework shows promise as a potential tool for
reducing variance or establishing performance lower bounds in future research.

Meanwhile, CDE evaluates the policy within the stationary distribution space, enabling the compu-
tation of performance differences between policies based on the discrepancies in their respective
stationary distributions. Consequently, we can establish the following bound on the performance gap
between the learned and optimal policies.

Theorem 2 (The upper bound of performance gap). Suppose the maximum reward is Rmax =
maxs,a ∥r(s, a)∥, let V π(ρ0) := Es0∼ρ0

[V π(s0)] denote the performance given a policy π. For

policy π optimized by Eq.(14) and N transition data from dD, under mild assumptions, we have

V ∗(ρ0)− V π(ρ0) ≤
2Rmax

1− γ
DTV(d

D(s)∥d∗(s)) + eN (16)

and eN converges in probability to zero at the rate N− 1
4+h , ∀h > 0, i.e., N

1
4+h eN

N→∞−−−−→ 0
in probability. Here, dD(s), d∗(s) denote the state marginal of dD, d∗, and V ∗(ρ0) denotes the
performance of optimal policy.

The full assumptions and proof are in Appendix A.7. The performance gap bound comprises two
elements: 1) the discrepancy between the state distribution of the data and the optimal policy, and 2)
the number of training samples. The first element stems from the state-marginal approximation in
Eq.(13) during policy extraction. Importantly, this bound explicitly highlights two crucial factors
influencing the final performance of the learned policy: the performance of behavior policy πD and
the size of the offline dataset. It provides a quantitative illustration of how the offline RL problem
difficulty increases as the performance of behavior policy degrades and the dataset size decreases.

4 EXPERIMENT

In this section, we aim to study if CDE can truly combine the advantages of both pessimism-based
methods and the DICE-based approaches. We are particularly interested in two main questions:

(1) Does CDE incorporate the strengths of the stationary-distribution correction training framework
when handling sparse reward settings?

(2) Can CDE’s explicit density constraint effectively manage out-of-distribution (OOD) extrapolation
issues in situations with insufficient datasets?

Tasks. To answer these questions, we adopt 3 Maze2D datasets, 8 Adroit datasets, and 6 MuJoCo
(medium, medium-expert) datasets from the D4RL benchmark (Fu et al., 2020). The original rewards
of Maze2D and Adroit tasks are sparse so we adopt the normalized score as the evaluation metric.
Since the MuJoCo tasks are with dense rewards, we convert them to sparse-reward ones in the setting
of goal reaching. Specifically, we first set the 75-percentile of all returns (the sum of rewards) in the
dataset as return threshold. Subsequently, we assign a reward of 0 to all trajectories in the lower 75%
of returns, and a reward of 1 to the top 25% of trajectories if the cumulative dense reward surpasses
the threshold, which means the agent reaches the ºgoalº. We compare the success rate of different
methods on sparse-MuJoCo tasks. We adopt º-v1º tasks for Maze2D and Adroit domains and º-v2º
tasks for MuJoCo domain. To assess the performance under scarce data conditions, we employ a
random sampling strategy on the full dataset.
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Baselines. We compare our CDE method with a collection of state-of-the-art offline RL baselines
spanning different categories. These include: 1) behavior cloning (BC); 2) BCQ (Fujimoto et al.,
2019) as a direct policy constraint method; 3) CQL (Kumar et al., 2020) as a value regularization
method; 4) IQL (Kostrikov et al., 2021b) as an asymmetric Q-learning method; 5) TD3+BC (Fujimoto
& Gu, 2021) as an implicit policy regularization method; 6) AlgaeDICE (Nachum et al., 2019b) as
a policy-gradient-based DICE method; and 7) OptiDICE (Lee et al., 2021) as an in-sample DICE
method. More details regarding the tasks and baselines are available in Appendix B.1.

Training details. We use tanh-squashed Gaussian policy for CDE’s policy π following SAC(Haarnoja
et al., 2018) and tanh-squashed Gaussian mixture model for empirical behavior policy πD to improve
the expressivity for multi-modality of offline data from composite policies (e.g., medium-expert tasks
in MuJoCo) or non-Markovian policies (e.g., Maze2D tasks). Following Lee et al. (2021), we adopt
soft-chi function fsoft−χ2 in f -divergence and thus the (f ′)−1 is equal to ELU function (Clevert
et al., 2015) plus one, which satisfies Assumption 1 and also avoids the gradient vanishing problem
for small values when computing importance ratios. For consistent evaluation and fair comparison,
we keep hyperparameters the same for experiments in the same domain. We evaluate all methods
every 1000 training steps and compute a mean value over 20 trajectories. The reported scores are the
average of last 5 evaluation values with 5 seeds. We adopt the scores of baselines if they are reported
in original paper. Full experimental details are included in Appendix B.2.

4.1 RESULTS ON D4RL SPARSE REWARD TASKS

Table 1 and 2 present the normalized scores and success rate, respectively. See more results in
Appendix B.3. CDE consistently matches or surpasses the performance of the best baseline iacross
nearly all tasks, achieving a particularly noteworthy margin of improvement in the Maze2D domain.
On sparse-MuJoCo tasks, BCQ, CQL, and TD3+BC, while achieving high scores in dense-reward
settings, display vulnerability to value function approximation errors due to reward sparsity, resulting
in inferior performance. The substantial improvement CDE exhibits over over standard-RL-based
methods highlights its capability to mitigate compounded value estimation error by leveraging a
closed-form optimal value solution instead of Bellman bootstrapping value update.

Table 1: Normalized scores of CDE against other baselines on D4RL sparse-reward tasks. We bold the mean
values that ≥ 0.99 ∗ highest value.

Task BC BCQ CQL IQL TD3+BC
Algae-
DICE

OptiDICE CDE

maze2d-umaze 3.8 32.8 5.7 50.0 41.5 -15.7 111.0±8.3 134.1±10.4

maze2d-medium 30.3 20.7 5.0 31.0 76.3 10.0 145.2±17.5 146.1±13.1

maze2d-large 5.0 47.8 12.5 58.0 77.8 -0.1 155.7±33.4 210.0±13.5

pen-human 63.9 68.9 37.5 71.5 2.0 -3.3 42.1±15.3 72.1±15.8

hammer-human 1.2 0.5 4.4 1.4 1.4 0.3 0.3±0.0 1.9±0.7

door-human 2.0 0.0 9.9 4.3 -0.3 0.0 0.1±0.1 7.7±3.3

relocate-human 0.1 -0.1 0.2 0.1 -0.3 -0.1 -0.1±0.1 0.3±0.1

pen-expert 85.1 114.9 107.0 111.7 79.1 -3.5 80.9±31.4 105.0±12.3

hammer-expert 125.6 107.2 86.7 116.3 3.1 0.3 127.0±3.0 126.3±3.4

door-expert 34.9 99.0 101.5 103.8 -0.3 0.0 103.4±2.8 105.9±0.3

relocate-expert 101.3 41.6 95.0 102.7 -1.5 -0.1 99.7±4.2 102.6±1.9

Table 2: Success rate (%) of CDE against other baselines on sparse-MuJoCo tasks.

Task BCQ CQL IQL TD3+BC OptiDICE CDE

halfcheetah-medium 57.8±13.2 97.6±4.1 76.6±5.8 41.6±17.6 80.0±3.4 82.0±8.6

walker2d-medium 41.0±11.5 17.7±10.4 19.5±4.2 21.0±16.7 38.4±13.3 53.0±11.7

hopper-medium 2.0±4.0 74.0±5.0 0.0±0.0 0.0±0.0 81.0±5.7 85.5±5.7

halfcheetah-medium-expert 24.8±9.8 4.2±5.8 95.4±4.2 0.0±0.0 90.8±5.0 95.2±2.9

walker2d-medium-expert 87.0±13.4 61.6±23.5 94.6±5.9 32.2±22.8 69.0±18.8 97.0±2.8

hopper-medium-expert 20.0±11.0 0.0±0.0 94.8±2.8 22.0±10.8 97.4±1.0 97.0±1.4

Another notable observation is that CDE exceeds both AlgaeDICE and OptiDICE in most tasks.
AlgaeDICE falls short because it updates the policy via high-variance policy gradients, as opposed
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A SUPPLEMENTARY DERIVATIONS AND PROOFS

A.1 DERIVATION OF EQ.(5)(6)

Derivations of Eq.(5) and Slater’s Condition.

Given the optimization problem:

max
dπ≥0

Edπ [r(s, a)]− αDf (d
π∥dD)

s.t.
∑

a

dπ(s, a) = (1− γ)ρ0(s) + T∗dπ(s), ∀s

dπ(s, a) ≤ ϵµ(s, a), ∀s, a ∈ supp(µ).

The corresponding unconstrained problem is

max
dπ

min
λ≥0,v

L(dπ, v, λ)L(dπ, v, λ) = Edπ [A(s, a)] + (1− γ)Eρ0
[v(s0)]− αDf (d

π∥dD)

− Eµ [λ(s, a) (d
π/µ(s, a)− ϵ)]

where A(s, a) := r(s, a) + γEs′∼T (·|s,a)v(s
′)− v(s).

Proof. The Lagrangian for constrained optimization is

max
dπ

min
λ≥0,v

L(dπ, v, λ) := E (s,a)∼dπ

s′∼T (·|s,a)

[r(s, a)]−
∑

s,a∈supp(µ)

λ(s, a)[dπ(s, a)− ϵµ(s, a)]+

∑

s

v(s)[(1− γ)ρ0(s) + γT∗dπ(s)−
∑

a

dπ(s, a)]− αDf (d
π∥dD) (17)

=Edπ [r(s, a)]− Eµ

[

λ(s, a)

(

dπ

µ
− ϵ

)]

− αDf (d
π∥dD)

+ (1− γ)Eρ0
[v(s0)] +

∑

s

v(s)
∑

s̄,ā

T (s|s̄, ā)dπ(s̄, ā)− Edπ [v(s)] (18)

=Edπ [r(s, a)]− Eµ

[

λ(s, a)

(

dπ

µ
− ϵ

)]

− αDf (d
π∥dD)

+ (1− γ)Eρ0
[v(s0)] +

∑

s′

v(s′)
∑

s,a

T (s′|s, a)dπ(s, a)− Edπ [v(s)] (19)

=Edπ [r(s, a)]− Eµ

[

λ(s, a)

(

dπ

µ
− ϵ

)]

− αDf (d
π∥dD)

+ (1− γ)Eρ0
[v(s0)] + Es,a∼dπ,s′∼T (·|s,a)[v(s

′)]− Edπ [v(s)] (20)

=Edπ

[

r(s, a) + Es′∼T (·|s,a)[v(s
′)]− v(s)

]

− Eµ

[

λ(s, a)

(

dπ

µ
− ϵ

)]

− αDf (d
π∥dD) + (1− γ)Eρ0

[v(s0)] (21)

=Edπ [A(s, a)] + (1− γ)Eρ0
[v(s0)]− αDf (d

π∥dD)− Eµ

[

λ(s, a)

(

dπ

µ
− ϵ

)]

(22)

The Slater’s Condition for Problem in Eq.(2-4).

The corresponding Slater’s condition for optimization problem in eq.(2-4) is that there exists a strictly
feasible state-action distribution d(s, a) s.t. the equality constraint in eq.(3) holds while constraint
in eq.(4) is satisfied with strict inequality. One strictly feasible solution is dπD (s, a), the stationary
state-action distribution of behavior policy πD:

1. Bellman flow constraint
∑

a d
πD (s, a) = (1− γ)ρ0(s) + T∗dπD (s) holds because the πD

is a valid policy and dπD (s, a) is its corresponding stationary distribution;

13



Published as a conference paper at ICLR 2024

2. dπD (s, a) = 0 < ϵµ(s, a), ∀s, a ∈ supp(µ) by definition of µ.

Therefore, the Slater’s condition holds.

Derivations of Eq.(6).

Replace Df (d
π∥dD) by Df (d

π∥d̂D) as new regularizer, and use d̂D(s, a) := ζdD(s, a) + (1 −
ζ)µ(s, a) as proposal distribution, we can obtain

L′(w, v, λ) = ζEdD [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)]

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] .

Proof.

L′(w, v, λ) = Edπ [A(s, a)] + (1− γ)Eρ0
[v(s0)]− αDf (d

π∥d̂D)− Eµ

[

λ(s, a)

(

dπ

µ
− ϵ

)]

(23)

=Ed̂D

[

dπ

d̂D
A(s, a)− αf

(

dπ

d̂D

)]

+ (1− γ)Eρ0
[v(s0)]− Eµ

[

λ(s, a)

(

dπ

µ
− ϵ

)]

(24)

=Ed̂D [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)]− Eµ

[

λ(s, a)

(

dπ

µ
− ϵ

)]

(25)

=ζEdD [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)]

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] , (26)

A.2 DERIVATION OF NORMALIZATION FOR STATIONARY DISTRIBUTION

In practice, the optimal distribution d∗ may not satisfy
∑

s,a d
∗(s, a) = 1 due to function approxima-

tion error. Therefore, we explicitly enforce the
∑

s,a d
∗(s, a) = 1 (Zhang et al., 2020) to make d∗ a

valid distribution, which is equivalent to Ed̂Dw∗(s, a) = 1.

With new normalization constraint, the corresponding unconstrained problem becomes

min
λ≥0,v,η

max
w

L(w; v, λ, η) := ζEdD [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)]

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] + η(1− Ed̂Dw
∗(s, a))

(27)

= ζEdD [w(s, a)(A(s, a)− η)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)]

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a)− η)− αf(w(s, a)) + ϵ̃λ(s, a)] + η, (28)

where η is the dual variable of the normalization constraint. Therefore, we only need to replace Ã by

Ã− η for optimization w.r.t. vφ and πθ. Meanwhile, we will also update η by gradient descent. See
more details in full algorithm in Appendix B.2.5.

A.3 PROOF FOR PROPOSITION 1

With assumption 1, the closed-form solution to inner maximization problem maxw≥0 L′(w, v, λ) is

w∗(s, a) = (f ′)−1(Ã(s, a)/α),

where Ã(s, a) := A(s, a)− 1{(s, a) ∈ supp(µ)} · λ(s, a) denotes regularized advantage function
and 1{·} is the indicator function.

Proof. Let
∂L′(w,v,λ)

∂w = 0 and we have

ζEdD [A(s, a)− αf ′(w(s, a))] + (1− ζ)Eµ[A(s, a)− λ(s, a)− αf ′(w(s, a))] = 0 (29)

Separate state-action space S × A into the support of dD and µ, then we can get the solution as
Eq.(29). Meanwhile, w∗ ≥ 0 always holds by assumption 1. Therefore, the solution is valid and is
exactly the optimal solution.
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The closed-form solution to optimal importance ratio can also be derived by Fenchel-Rockafellar
dual form of f -divergence (Nachum et al., 2019b; Nachum & Dai, 2020), which leads to the same
results.

A.4 PROOF FOR PROPOSITION 2

The outer minimization problem minλ≥0,v L′(w∗, v, λ) is a convex optimization problem. Suppose
the optimal solution is (λ∗, v∗), then λ∗ has a closed-form solution

λ∗(s, a) = max{0, A∗(s, a)− αf ′(ϵ̃)}, ∀s, a ∈ supp(µ),

where A∗(s, a) = r(s, a) + γEs′∼T (·|s,a)v
∗(s′)− v∗(s). The optimal regularized advantage is

Ã∗(s, a) =

{

A∗(s, a), (s, a) ∈ supp(dD)

min{αf ′(ϵ̃), A∗(s, a)}, (s, a) ∈ supp(µ)

Proof. Notice that the convexity of dual function, which corresponds to g(v, λ) := maxw L′(w, v, λ)
in our setting, is proved by previous literature (Proposition 1, section 8.3 in (Luenberger, 1997)).

Then we prove the closed form of optimal λ∗. Consider the partial differential of L′(w∗, v, λ) w.r.t λ:

∂L′(w∗, v, λ)

∂λ
=

∂

∂λ
(1− ζ)Eµ

[

(f ′)−1

(

A− λ

α

)

(A− λ)− αf

(

(f ′)−1

(

A− λ

α

))

+ λϵ̃

]

(30)

=(1− ζ)Eµ

[

((f ′)−1)′
(

A− λ

α

)(

− 1

α

)

(A− λ)− (f ′)−1

(

A− λ

α

)

−αf ′

(

(f ′)−1

(

A− λ

α

))

((f ′)−1)′
(

A− λ

α

)(

− 1

α

)

+ ϵ̃

]

(31)

=(1− ζ)Eµ

[

−((f ′)−1)′
(

A− λ

α

)

A− λ

α
− (f ′)−1

(

A− λ

α

)

+((f ′)−1)′
(

A− λ

α

)

A− λ

α
+ ϵ̃

]

(32)

=(1− ζ)Eµ

[

−(f ′)−1

(

A− λ

α

)

+ ϵ̃

]

(33)

We omit (s, a) for A and λ functions for brevity. By assumption 1, f is convex and f ′ is monotonic
increasing. Therefore, when A(s, a) ≤ αf ′(ϵ̃), the gradient of λ is always non-negative for λ ≥ 0;
otherwise, the gradient equals to zero when λ = A(s, a)− αf ′(ϵ̃).

Therefore, the optimal solution of λ is

λ∗(s, a) = max{0, A(s, a)− αf ′(ϵ̃)}. (34)

Plug-in the λ∗ to Proposition 1 and then we can get the optimal regularized advantage function

Ã∗.

A.5 PROOF FOR PROPOSITION 3

With assumption 1, the theoretical optimal importance ratio is upper bounded by w∗(s, a) ≤
ϵ̃, ∀(s, a) ∈ supp(µ).

Proof. Combine equation 7 and equation 8,

w∗(s, a) := (f ′)−1

(

A(s, a)− λ∗(s, a)

α

)

(35)

= (f ′)−1

(

A(s, a)−max{0, A(s, a)− αf ′(ϵ̃)}
α

)

(36)

= (f ′)−1

(

min

{

A(s, a)

α
, f ′(ϵ̃)

})

(37)
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By Assumption 1, f ′ is strictly increasing and so is (f ′)−1. As a result,

w∗(s, a) = (f ′)−1

(

min

{

A(s, a)

α
, f ′(ϵ̃)

})

= min{(f ′)−1(A(s, a)/α), ϵ̃} (38)

A.6 PROOF FOR THEOREM 1

We first give the following lemma.

Lemma 1. Suppose that 1) the action space is d-dim, i.e., A ⊂ R
d, 2) the diameter of A is M , i.e.,

∥a1 − a2∥∞ ≤ M, ∀a1, a2 ∈ A , and 3) there are N action samples from µ given any state s ∈ D,
denoted by (s, a1), . . . , (s, aN ), and µ is a uniform distribution over OOD action space. Let δ > 0,
(s, a) ∈ D, ã ∈ AOOD(s). We have

P

(

min
i=1,...,N

∥ã− ai∥∞ > δ

)

≤
(

1− δd −∆ad

Md

)N

(39)

Now we consider the theorem:

Suppose that 1) the action space is d-dim, i.e., A ⊂ R
d, 2) the diameter of A is M , i.e., ∥a1−a2∥∞ ≤

M, ∀a1, a2 ∈ A, and 3) there are at least N OOD action samples from µ given any state s ∈ D.
When the continuity assumption 2 holds, with probability at least 1− δ, δ > 0, we have

w̃∗(s, a) ≤ (f ′)−1

(

f ′(ϵ) +
ξ

α
+

L

α

(

∆ad +
Md

N
log

1

δ

)1/d
)

, ∀(s, a) ∈ supp(µ)

where ξ is the maximum residual error of OOD regression in Eq.(11), ∆a is the radius of in-
distribution region as previously defined.

Proof. Let B∞(x, y) = {x′ ∈ R
d : ∥x− x′∥∞ ≤ y} denote the d-dim Euclidean Ball under ∥ · ∥∞.

The volume of B∞(x, y) is then given by Vol(B∞(x, y)) = 2dyd. We have

P(∥ã− a1∥∞ > δ) = 1− P(∥ã− a1∥∞ ≤ δ) = 1− P(a1 ∈ B∞(ã, δ)) (40)

Recall that (s, a1), . . . , (s, aN ) are i.i.d. samples from uniform distribution on A\B∞(a,∆a). Thus,
we can establish the following equality

P(a1 ∈ B∞(ã, δ)) =

∫

Rd

1{x ∈ B∞(ã, δ)}µ(x)dx (41)

=

∫

Rd

1{x ∈ B∞(ã, δ)}1{x ∈ A\B∞(a,∆a)}
Vol(A\B∞(a,∆a))

dx (42)

=
1

Vol(A\B∞(a,∆a))

∫

Rd

1{x ∈ B∞(ã, δ) ∩ A\B∞(a,∆a)}dx (43)

=
Vol(B∞(ã, δ) ∩ A\B∞(a,∆a))

Vol(A\B∞(a,∆a))
(44)

Since the action space A is bounded with radius M ,

Vol(A\B∞(a,∆a)) ≤ Vol(B∞(a,M)) (45)

In addition, notice that

Vol(B∞(ã, δ) ∩ A\B∞(a,∆a)) ≥ Vol(B∞(ã, δ))− Vol(B∞(a,∆a)) (46)

Combining the above inequalities and plugging in the formula for d-dim ball under ∥ · ∥∞, we have

P(∥ã− a1∥∞ > δ) (47)

=1− P(a1 ∈ B∞(ã, δ)) (48)

≤1− Vol(B∞(ã, δ))− Vol(B∞(a,∆a))

Vol(B∞(a,M))
(49)

=1− δd −∆ad

Md
(50)
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By independence between the OOD samples

P

(

min
i=1,...,N

∥ã− ai∥∞ > δ

)

(51)

=P

(

N
⋂

i=1

{∥ã− ai∥∞ > δ}
)

= P(∥ã− a1∥∞ > δ)N ≤
(

1− δd −∆ad

Md

)N

(52)

This finishes the proof.

As a remark, if we consider ∥ · ∥p instead of ∥ · ∥∞, the result would still be the same. Now we give
the proof of Theorem 1.

Proof. Let (s, a) ∈ D and suppose that (s, a1), . . . , (s, aN ) are the i.i.d. samples from µ. Let a′ ∈
{a1, . . . , aN} be the OOD sample that is closest to a under ∥·∥∞ (i.e., a′ = argminx∈{a1,...,aN} ∥x−
a∥∞). Since the maximum regression residual error is ξ, we have

Ãϕ(s, a
′) ≤ αf ′(ϵ̃) + ξ. (53)

Then, by assumption 2, we have

Ãϕ(s, a) ≤ Ãϕ(s, a
′) + |Ãϕ(s, a)− Ãϕ(s, a

′)| ≤ αf ′(ϵ̃) + L · ∥a− a′∥∞ + ξ (54)

Let δ̃ > 0 and δ′ = α
L (f

′(ϵ̃+ δ̃)− f ′(ϵ̃)− ξ
α ). Suppose δ′ > 0, by Lemma 1, and using the fact that

1 + x ≤ ex, ∀x ∈ R, we have

P(∥a′ − a∥∞ ≤ δ′) ≥ 1−
(

1− δ′d −∆ad

Md

)N

≥ 1− e−N δ′d−∆ad

Md (55)

Combine equation 54 and equation 55, we have, with probability at least 1− e−N δ′d−∆ad

Md ,

Ãϕ(s, a) ≤ αf ′(ϵ̃) + Lδ′ + ξ = αf ′(ϵ̃+ δ̃) (56)

Recall that w̃∗(s, a) := (f ′)−1(Ãϕ(s, a)/α). By equation 56, we have

w̃∗(s, a) := (f ′)−1(Ãϕ(s, a)/α) ≤ (f ′)−1(f ′(ϵ̃+ δ̃)) = ϵ̃+ δ̃ (57)

with probability at least 1− e−N δ′d−∆ad

Md , where δ′ = α
L (f

′(ϵ̃+ δ̃)− f ′(ϵ̃)− ξ
α ). The inequality step

in equation 57 follows from the fact that f ′ is increasing.

Let δ ∈ (0, 1). Consider δ̃ = (f ′)−1(f ′(ϵ̃)+ ξ
α + L

α (∆ad+ Md

N log 1
δ )

1
d )− ϵ̃. First, we verify δ′ > 0

with this choice of δ̃.

δ′ :=
α

L

(

f ′(ϵ̃+ δ̃)− f ′(ϵ̃)− ξ

α

)

(58)

=
α

L

(

f ′(ϵ̃) +
ξ

α
+

L

α

(

∆ad +
Md

N
log

1

δ

)

1
d

− f ′(ϵ̃)− ξ

α

)

(59)

=

(

∆ad +
Md

N
log

1

δ

)

1
d

(60)

> 0 (61)

Substitute δ̃ back into equation 57. We get

w∗(s, a) ≤ ϵ̃+ (f ′)−1

(

f ′(ϵ̃) +
ξ

α
+

L

α

(

∆ad +
Md

N
log

1

δ

)

1
d

)

− ϵ̃ (62)

= (f ′)−1

(

f ′(ϵ̃) +
ξ

α
+

L

α

(

∆ad +
Md

N
log

1

δ

)

1
d

)

(63)
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with probability of at least

1− e−N δ′d−∆ad

Md (64)

=1− exp

(

−N
(αL (f

′(ϵ̃+ δ̃)− f ′(ϵ̃)− ξ
α ))

d −∆ad

Md

)

(65)

=1− exp

(

−N
(αL (f

′(ϵ̃) + ξ
α + L

α (∆ad + Md

N log 1
δ )

1
d − f ′(ϵ̃)− ξ

α ))
d −∆ad

Md

)

(66)

=1− exp

(

−N
∆ad + Md

N log 1
δ −∆ad

Md

)

(67)

=1− δ (68)

This finishes the proof of Theorem 1.

A.7 PROOF OF THEOREM 2

In this section, we consider the performance of our policy as the sample size N grows.

Let dD denote the data distribution from which D is obtained. Thus D can be viewed as N i.i.d.
samples from dD. In this section, we use the notation with subscript DN to denote D to address the
number of data and avoid ambiguity.

Recall that πθ minimizes the empirical objective 1
N

∑N
i=1 DKL(d

∗(si)πθ(·|si)∥d∗(si, ·)) as an esti-
mation in Eq.(14).

We make following assumptions:

Assumption 3. Denote the space of parameter θ in the policy extraction step by Θ. Let gθ(s) :=
DKL(πθ(·|s)∥π∗(·|s)), where d∗(s) denotes the state marginal of d∗. Then, the function class
F = {gθ(·) : S → R|θ ∈ Θ} is dD-Donsker. And Vars∼dD(s)(gθ(s)) < ∞ for all θ ∈ Θ.

Assumption 3 guarantees the consistency of θ trained with dataset DN , which is a common assumption
when considering training with finite samples Van der Vaart (2000); Geer (2000); Ma & Kosorok
(2005); Cheng & Huang (2010). A sufficient condition for Assumption 3 is Θ being bounded, together
with a Lipschitz-type condition on F Van der Vaart (2000).

Assumption 4. Suppose the policy extracted from Eq.(14) is π, define the state marginal of dD, dπ, d∗

as dD(s), dπ(s), d∗(s), then

DTV(d
π(s)∥d∗(s)) ≤ DTV(d

D(s)∥d∗(s)) (69)

The Assumption 4 holds in general because the performance of learned policy π is empirically in
between πD and π∗, indicating that the stationary state distribution of learned policy dπ is closer to
the optimal state distribution than dataset distribution.

Then we introduce the following lemma based on Lemma 6 in Xu et al. (2020):

Lemma 2. Suppose the maximum reward is Rmax = maxs,a ∥r(s, a)∥, V π(ρ0) := Es0∼ρ0
[V π(s0)]

denote the performance given a policy π, then with assumption 4,

|V π(ρ0)− V ∗(ρ0)| ≤
2Rmax

1− γ
DTV(d

∗(s)∥dD(s)) + 2Rmax

1− γ
EdD(s)[DTV(π(·|s)∥π∗(·|s))], (70)

where dπ(s), dD(s) denote the state marginal of dπ, dD and dDπ(s, a) := dD(s)π(a|s).

18



Published as a conference paper at ICLR 2024

Proof.

|V π(ρ0)− V ∗(ρ0)| =
1

1− γ

∣

∣E(s,a)∼dπ [r(s, a)]− E(s,a)∼d∗ [r(s, a)]
∣

∣ (71)

≤ Rmax

1− γ

∑

s,a

|dπ(s, a)− d∗(s, a)| (72)

=
2Rmax

1− γ
DTV(d

π∥d∗) (73)

≤2Rmax

1− γ
(DTV(d

π∥d∗(s) · π) +DTV(d
∗(s) · π∥d∗)) (74)

=
2Rmax

1− γ
DTV(d

π(s)∥d∗(s)) + 2Rmax

1− γ
Ed∗(s)[DTV(π(·|s)∥π∗(·|s))] (75)

≤2Rmax

1− γ
DTV(d

D(s)∥d∗(s)) + 2Rmax

1− γ
Ed∗(s)[DTV(π(·|s)∥π∗(·|s))] (76)

The Eq.(74) follows the triangle inequality of TV distance.

Now we give the complete statement and proof of Theorem 2.

Theorem 3. Suppose the maximum reward is Rmax = maxs,a ∥r(s, a)∥, let V π(ρ0) :=
Es0∼ρ0

[V π(s0)] denote the performance given a policy π. For policy πθ optimized by Eq.(14)

and N transition data from dD, if πθ is a universal approximator, under Assumption 3 and 4, we have

V ∗(ρ0)− V πθ (ρ0) ≤
2Rmax

1− γ
DTV(d

D(s)∥d∗(s)) + eN

and eN converges in probability to zero at the rate N− 1
4+h , ∀h > 0, i.e., N

1
4+h eN

N→∞−−−−→ 0 in
probability.

Proof. By Lemma 2, it remains to establish the vanishing rate of eN := 2Rmax

1−γ EdD [DTV(π∥π∗)]. By

Pinsker’s inequality and Jensen’s inequality,

Es∼dD [DTV(π(·|s)∥π∗(·|s))] ≤Es∼dD [
√

2DKL(π(·|s)∥π∗(·|s))] (77)

≤
√

2Es∼dD [DKL(π(·|s)∥π∗(·|s))] (78)

Recall that the πθ minimizes an empirical expectation

min
θ

1

N

N
∑

i=1

DKL(d
∗(si)πθ(·|si)∥d∗(si, ·)) =

1

N

N
∑

i=1

DKL(πθ(·|si)∥π∗(·|si)). (79)

i.e., the objective is equivalent to minimizing the KL divergence over policy distribution. When πθ is
a universal approximator, it exactly minimizes the objective to 0.

Use notation gθ(s) = DKL(π(·|s)∥π∗(·|s)) as defined in Assumption 3. By Assumption 3,√
N(Es∼dD [gθ(s)]− 1

N

∑N
i=1 gθ(si)) converges in distribution to a normal distribution with mean 0

and variance Vars∼dD (gθ(s)) < ∞. (see e.g., Van der Vaart (2000))

As a result, for any h > 0,

N
1

2+h

(

Es∼dD [gθ(s)]−
1

N

N
∑

i=1

gθ(si)

)

N→∞−−−−→ 0, in probability (80)

Therefore,

Es∼dD [DTV(πθ(·|s)∥π∗(·|s))] ≤
√

2Es∼dD [DKL(πθ(·|s)∥π∗(·|s))] (81)

=
√

2Es∼dD [gθ(s)] (82)

=

√

√

√

√2

(

Es∼dD [gθ(s)]−
1

N

N
∑

i=1

gθ(s)

)

(83)
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Combine with equation 80, for any h > 0, we have

N
1

4+h eN =N
1

4+h
2Rmax

1− γ
Es∼dD [DTV(π(·|s)∥π∗(·|s))] (84)

≤2Rmax

1− γ

√

√

√

√2N
1

2+h/2

(

Es∼dD [gθ(s)]−
1

N

N
∑

i=1

gθ(s)

)

N→∞−−−−→ 0, in probability (85)

This finishes the proof.
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B EXPERIMENT DETAILS

B.1 TASKS AND BASELINES

Tasks. We adopt º-v1º tasks for Maze2D and Adroit domains and º-v2º tasks for MuJoCo domain.
We do not adopt antmaze tasks because the initial distributions are significantly different between
training and test settings: the starting point can be anywhere in the offline dataset but is always at
the same corner when tested. CDE learns the value functions by optimizing an objective (eq.(6))
w.r.t. initial distribution and dD, which is not compatible with antmaze tasks. This inconsistency
also partially explain why trajectory optimization methods (e.g., decision transformer) fail but the
Bellman bootstrapping methods are less affected.

We make the rewards sparse in MuJoCo tasks as stated in main text, and return thresholds (i.e., the
75-percentile of the trajectory returns in dataset) are listed in table 3. During evaluation, a trajecotory
is viewed as a successful one if its reward return exceeds the threshold.

Table 3: The return thresholds for sparse-MuJoCo tasks.

Task Return threshold

halfcheetah-medium 4909.1

walker2d-medium 3697.8

hopper-medium 1621.5

halfcheetah-medium-expert 10703.4

walker2d-medium-expert 4924.8

hopper-medium-expert 3561.9

Details of baselines. We adopt the results of baselines if reported in the original paper. We rerun
the baselines for these tasks using their official codes (IQL, TD3+BC, OptiDICE) or the d3rlpy
library (Seno & Imai, 2022) (BCQ, CQL), because 1) d3rlpy keeps the same hyperparameters as
the original papers, and 2) the performance of d3rlpy is better and more stable than the original
implementation for BCQ, CQL (e.g., the performances of BCQ on Maze2d and Adroit).

B.2 FULL ALGORITHM AND PRACTICAL DETAILS OF CDE

In this section, we present the full algorithm and implementation details. Without otherwise state-
ments, the policies or critics defaults to be parameterized by neural networks (NN).

B.2.1 VALUE FUNCTIONS SEPARATION

In CDE, we learn both the V-value function and the advantage function. The former can incorporate
the stochasticity of action distribution to reduce the instability, and the latter is to generalize the
optimal importance ratios to OOD regions since the reward and transition probability functions for
unseen transition (s, a, r, s′) are absent in offline datasets. Meanwhile, we take two steps to train
V-value and advantage functions instead of optimizing the objective function in Eq.(6). Note that the
objective can be separated into in-distribution and OOD parts:

ζEdD [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)]

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] , (86)

=ζ(EdD [w(s, a)A(s, a)− αf(w(s, a))] + ((1− γ)Eρ0
[v(s0)]))

+ (1− ζ)(Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] + (1− γ)Eρ0
[v(s0)])

(87)

where the in-distribution part corresponds to the learning objective of the V-value function in Eq.(10),
which is also the dual form of following constrained optimization:

max
dπ≥0

Edπ [r(s, a)]− αDf (d
π∥dD) (88)

s.t.
∑

a

dπ(s, a) = (1− γ)ρ0 + T∗dπ(s), ∀s, a ∈ supp(dD). (89)
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The main difference of it from the previous one in Eq.(1) is that it constrains the state-action in the
support of offline datasets. Therefore, the objective for V-value function learning in Eq.(10) is still a
convex optimization problem.

B.2.2 POLICY EXTRACTION

In policy extraction, we need to estimate the KL divergence between learned policy and mixed
behavior policy π̂D in eq.(14). As we only train the behavior policy πD from offline dataset, we
apply Jensen inequality to get an upper bound of the objective:

DKL[πθ(·|s)∥π̂D(·|s)] = Ea∼πθ
[log π(a|s)− log(ζπD(·|s) + (1− ζ)πµ(a|s))] (90)

≤ Ea∼πθ
[log π(a|s)− ζ log πD(·|s)− (1− ζ) log πµ(a|s)] (91)

which is adopted in policy extraction step in practical implementation.

Meanwhile, we simply set the optimal state distribution d∗(s) as a uniform distribution on the states
in the successful trajectories (i.e., the trajectories with returns larger than 0).

B.2.3 OOD ACTION SPACE

Remember we define the OOD action region AOOD based on the ∆a in Sec. 3.2. Here ∆a defines the
radius of the in-distribution action region and AOOD can cover the action space without overlapping
with in-distribution action. As we cannot precisely tell the in-distribution region given an offline
dataset, which only provides one action for each state especially in continuous tasks. Therefore, we
estimate it by behavioral cloning: we employ NN to approximate the behavior policy πD that outputs

a Gaussian distribution N (µD(s), σD2
(s)) for each state; then the standard deviation σD(s) can be a

measurement for the breadth of in-distribution region on. In practice, we adopt ∆a = σD(s) when
computing AOOD(s). We further give a parameter study on ∆a in appendix B.4.3.

B.2.4 HYPERPARAMETERS

Before training NN, we standardize the observation and reward and scale the reward by multiplying
0.1. To extract the policy after the optimization over value functions converges, we set the warm-up
training step following Lee et al. (2021) and the policy πθ will not start until warm-up training
ends. As shown in table 4, we set the same f -divergence coefficient α for each domain because the
divergence between the optimal and behavior policies varies in different domains. Note this is still
significantly different from previous DICE paper (Lee et al., 2021) that finetunes and assigns different
hyperparameters for every single task. The other shared hyperparameters are summaries in table 5.
More details can be found in codes provided in supplementary materials.

Table 4: The f -divergence coefficient α.

Domain α
Maze2D 0.001

Adroit 0.01

MuJoCo 0.1

Table 5: The shared hyperparameters.

Hyperparameters values

hidden layers of policy πθ [256,256]

hidden layers of πD [256,256]

number of mixtures of πD 3

hidden layers of V-value vφ [256,256]

hidden layers of advantage Aϕ [256,256]

activation function of networks ReLU

NN optimizer Adam

NN learning rate 3e-4

discount factor γ 0.99

batch size 512

mixture coefficient ζ 0.9

max OOD IS ratio ϵ̃ 0.3

number of OOD action samples 5

B.2.5 FULL ALGORITHM

In this section, we present the full algorithm in Algorithm. 2.
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Table 8: Normalized scores on original dense-reward MuJoCo tasks.

BCQ CQL IQL TD3+BC CDE

halfcheetah-medium 40.7 49.1 47.4 48.3 43.3±2.9
walker2d-medium 54.5 82.9 78.3 83.7 73.8±4.4
hopper-medium 53.1 64.6 66.3 59.3 51.2±3.7
halfcheetah-medium-expert 64.7 85.8 86.7 90.7 75.6±7.2
walker2d-medium-expert 110.9 109.5 109.6 110.1 107.7±10.4
hopper-medium-expert 57.5 102.0 91.5 98.0 108.6±4.8

datasets consist of expert and random data. We then compare our method with GCSL (Ghosh et al.,
2019), WGCSL (Yang et al., 2022) and GoFAR (Ma et al., 2022), where the former two methods are
goal-conditioned imitation learning and the latter one is a goal-conditioned version of DICE method.

Table 9 shows the average reward returns comparison. The performances of baselines are adopted
from Ma et al. (2022). Note that all compared baselines use goal relabeling during training while our
method ignores the goal and only uses the states to train policy. We can find that CDE obtains the
highest rewards on 3 tasks and comparable rewards on FetchPush. Meanwhile, CDE does not use
goal state during training and may fail to stitch transitions from different trajectories, which can be a
part of reason for failure on FetchSlide. As this paper focuses on the standard offline RL setting, it
can be a future direction to extend existing method to goal-conditioned setting.

Table 9: The performances comparison on goal-conditioned tasks.

Task GCSL WGCSL GoFAR CDE

FetchReach 20.9±2.8 21.9±2.1 28.2±0.6 29.1±1.7
FetchPick 8.9±3.1 9.8±2.6 19.7±2.6 27.7±1.4
FetchPush 13.4±3.0 14.7±2.7 18.2±3.0 16.6±2.0
FetchSlide 1.8±1.3 2.7±1.6 2.5±1.4 1.1±1.0
HandReach 1.4±2.2 6.0±4.8 11.5±5.3 17.0±2.9

B.3.6 COMPARISON ON COMPUTATION TIME

One drawback of our method compared to baselines is that CDE may require more computation
time in training. Therefore, we compare baselines and our method on halfcheetah-medium-expert-
v2 task. We use the server with AMD EPYC 7542 32-Core CPU and A5000 GPU. To compare
different methods fairly, we report the time of 200,000 steps with batch size = 512 and defaulted
hyper-parameters for baselines. The final results are shown in table 10.

Table 10: The computation time comparison.

Method BCQ CQL IQL TD3+BC CDE

Computation time (min) ∼200 ∼150 ∼40 ∼30 ∼90

B.4 MORE PARAMETER STUDIES AND ABLATION STUDIES

In this section, we present more parameter studies w.r.t the hyperparameters in our method. We
mainly choose Maze2d tasks as our testbench as they are more sensitive to the hyperparameters.

B.4.1 PARAMETER STUDY ON MAX OOD IS RATIO

Although we visualize the stationary state distribution of policies with different ϵ̃ in maze2d-large
task, we provide performances on all maze2d tasks in table 11 as a supplement. As ϵ̃ decreases,
constraint on unseen region gets stronger. There is a performance gain with proper conservatism but
it also ruins the final performance if the constraint is too conservative.
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Table 11: The performances on maze2d tasks with different ϵ̃.

ϵ̃ 3.0 0.3 0.03 0.003

maze2d-umaze 121.7±12.5 134.1±10.4 132.7±11.4 114.5±17.3
maze2d-medium 154.2±14.9 146.1±13.1 135.2±12.3 89.4±29.5
maze2d-large 189.7±19.7 210.0±13.5 174.5±24.7 51.6±37.9

B.4.2 PARAMETER STUDY ON NUMBER OF OOD ACTION SAMPLES

We use sampling on OOD actions in eq.(11) to approximate the out-of-distribution constraint. To
study how the action sample number N influences the final performance, we test our method with
different N on maze2d tasks and show the results in table 12. Theoretically, the approximation error
on OOD constraint will decrease as we increase the N . In practice, we find there is no significant
performance improvement when N ≥ 3. Therefore, we simply set N = 5 for all tasks in practice.

Table 12: The performances on maze2d tasks with different number of OOD action samples N .

N 1 3 5 (adopted) 10

maze2d-umaze 115.2±6.9 131.7±3.5 134.1±10.4 141.1±10.1
maze2d-medium 132.6±11.9 142.9±13.8 146.1±13.1 146.8±14.8
maze2d-large 179.4±21.5 202.0±24.7 210.0±13.5 209.7±14.8

B.4.3 PARAMETER STUDY ON IN-DISTRIBUTION WIDTH

We use the standard deviation of the behavior policy output σD(s) as a measurement of the width
of in-distribution region. However, there may still be some concerns on the overlap between OOD
action space and in-distribution region. Therefore, we conduct a parameter study on ∆a.

Table 13: The performances on maze2d tasks with different ∆a.

∆a/σD(s) 0.3 0.7 1.0 (adopted)

maze2d-umaze 131.3±16.4 137.7±9.3 134.1±10.4
maze2d-medium 149.1±12.7 151.2±11.0 146.1±13.1
maze2d-large 211.5±14.3 204.0±17.3 210.0±13.5

As listed in table 13, there is no significant performance drop when decreasing ∆a/σD(s) (i.e.,
the higher risk of overlap between OOD and in-distribution region). This is because the advantage
learning step in eq.(11) involves both in-distribution and OOD regression. When an in-distribution
action is wrongly recognized as OOD action, its value function will exist both in two terms. Therefore,
the value function of in-distribution action will not be negatively affected while the OOD actions in
Aood can always be constrained.

From the above results, we can observe that the performance of our method is robust to the most
hyperparameters except ϵ̃, which controls the degree of conservativeness on unseen regions.

B.4.4 ABLATION STUDY ON WARM-UP STAGE

We adopt warm-up where we only update the value function and stop policy updating. To investigate
its influence on final performances, we present the results of ablation study on Maze2d tasks in
table 14.
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Table 14: The performances on maze2d tasks with/without warm-up stage.

with warm-up w.o. warm-up

maze2d-umaze 134.1±10.4 136.2±13.2
maze2d-medium 146.1±13.1 141.7±17.3
maze2d-large 210.0±13.5 205.4±15.4

We can find that the warmup stage does not influence the final performances significantly.
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