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ABSTRACT
We redesign the police patrol beat in South Fulton, Georgia, in

collaboration with the South Fulton Police Department (SFPD), us-

ing a predictive data-driven optimization approach. Due to rapid

urban development and population growth, the existing police beat

design done in the 1970s was far from efficient, which leads to low

policing efficiency and long 911 call response time. We balance the

police workload among different city regions, improve operational

efficiency, and reduce 911 call response time by redesigning beat

boundaries for the SFPD. We discretize the city into small geograph-

ical atoms, which correspond to our decision variables; the decision

is to map the atoms into “beats”, the basic unit of the police opera-

tion. We first analyze workload and trend in each atom using the

rich dataset, including police incidents reports and U.S. census data;

We then predict future police workload for each atom using spa-

tial statistical regression models; Lastly, we formulate the optimal

beat design as a mixed-integer programming (MIP) program with

continuity and compactness constraints on the beats’ shape. The

optimization problem is solved using simulated annealing due to its

large-scale and non-convex nature. The simulation results suggest

that our proposed beat design can reduce workload variance among

beats significantly by over 90%.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and

decision-making; •Mathematics of computing → Combinato-
rial optimization.
KEYWORDS

data-driven optimization, predictive policing, police beat re-

design

1 INTRODUCTION
The City of South Fulton, Georgia, was recently established in May

2017 from previously unincorporated land outside Atlanta. It is

now the third-largest city in Fulton County, Georgia, and serves a

population of over 98,000, among which 91.4% are black, or African

American [33]. South Fulton is a historic area renowned for its art

and activism. Despite this, the city has often faced the challenge

of climbing crime rates and long police response times. In a 2019

survey, 46.48% of residents responded that they do not feel safe in

South Fulton. In the same year, the South Fulton City Council made

Figure 1: City-wide police district map of South Fulton, GA.
Therewere 7 beats, whichwas initially designed in the 1970s.
The city boundary is highly irregular which requires intri-
cate design of police beats.

it clear that their number one priority was to make South Fulton

safer [16].

The South Fulton Police Department (SFPD) is the main policing

force in the city. From 2019 to early 2020, our team worked with

the SFPD to improve their police operation efficiency. Our project

specifically focused on redistricting beat configurations (by com-

pletely re-drawing the beat boundaries and changing the number of

beats), aiming to rebalance SFPD officers’ workload (total amount of

working time). The initial analysis identified that workload unbal-

ance among different areas of the city was caused by an outdated

beat design that had not been changed for over five decades; the

inefficient beat design, in turn, lead to long 911 call response time

in some areas.

Previously, the police operation of South Fulton was according

to seven police beats, which divide the city geographically as shown
in Figure 1. 117 police personnel were allocated to the beats for

patrolling and responding to the 911 calls [7]. Typically, at each shift,

one response unit (usually a police car with one to two officers)

answers all the 911 calls that occurred in a certain beat. If the

response unit is busy handling another incident, nearby available

response units may be dispatched by the operator to answer the

call.
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Figure 2: Distribution of 911 calls-for-services requests in
South Fulton, GA. Blue shaded area is the city limit of South
Fulton. Blue dots are locations of requests. The requests are
unevenly distributed among different regions.

Themost recent South Fulton police beat redesign occurred in the

1970s – almost five decades ago. Since then, the area (which even-

tually became the City of South Fulton) has undergone tremendous

urban growth that drastically changes its landscape. The U.S. Cen-

sus Bureau estimated that South Fulton’s population has increased

by 13.7% from 2010 to 2018 [33]. The city’s rapid development has

led to a significant increase in police workload, exacerbated by the

difficulty in officer recruitment and retention faced by the SFPD.

Moreover, demographic and traffic pattern changes also create an

unbalanced workload among different regions. Figure 2 shows the

distribution of 911 calls, recorded by real 911-call reports provided

by SFPD from 2018 to 2019. The figure shows some beats faced

a significantly higher workload than others. For example, police

officers in the city’s southeastern area respond to more calls than

those in the western region.

Since the seminal work by R. Larson and others [17, 20], re-

searchers have recognized that beat configuration may significantly

impact police response time to 911 calls and operational efficiency.

In particular, the area and shape of beats determine the workload

and travel time in that beat. Hence, it is critical to design the bound-

aries of beats to balance the workload.

Outline.We redesigned the police patrol beats in the City of South

Fulton using a data-driven optimization approach. The outline of

our approach is summarized in Figure 3. Our objective is to bal-

ance police workload in each beat by redrawing beat boundaries.

First, we divided the geographical areas of the city into a large

number of “atoms”. Then, we estimated the workload in each atom

using police reports data and census data, including population and

socio-economic factors. These steps are described in Sec. 2 and 3.

Based on the workload estimation, we developed statistical models

to predict police workload in the next few years (Sec. 4). We then

formulate the beat redesign problem as a clustering problem: each

beat is formed with a cluster of atoms. This clustering problem is

formulated and solved using mixed-integer programming (MIP),

where the objective function is a metric of workload unbalance

(defined as the workload variance across all beats). We also impose

constraints that require beats to be contiguous and compact so

that they are not irregularly shaped. The problem formulation is

described in Sec. 5. To tackle the computational complexity of solv-

ing a large-scale optimization problem, we developed a simulated
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Figure 3: An illustration for data-driven optimization frame-
work of police beat redesign.

annealing based approach with efficient solution exploration. We

also study the districting with the different number of beats and

find the optimal number of beats with the highest cost-effectiveness.

Numerical results (Sec. 6) show that our proposed beat design can

reduce workload variance among different regions by over 90%.

In January 2020, together with the SFPD, we presented our final

redesign plan to the South Fulton city council, which was officially

approved for implementation.

Contribution. Our work proposes a new data-driven framework

that integrates data, statistical prediction, and optimization in the

context of police beat design. Previous works in the predictive

policing literature tend to focus on only the prediction aspect. The

operations research literature often studies police zone design based

on analyzing stochastic models without explicitly considering data

sources. We take advantage of the availability of abundant data and

adopt a new data-driven approach: the workload and other impor-

tant parameters for optimization are estimated and predicted from

data. From a methodological perspective, we use geo-spatial atoms

to define city boundaries and police beat boundaries. This approach

enables accurate workload prediction by correlating historical po-

lice data with the census data and beat design optimization.

Our project also had a significant societal impact and directly im-

proved the police operations of the SFPD and the safety of residents

in South Fulton. It is worth mentioning that although we focus on

the study of police beat redesign in South Fulton, our method can

be applied to other cities facing similar issues.

Related work. Police districting (designing beats or zones) is a

classical problem studied in operations research dating back to the

1970s (see the seminal work [17] and the surveys by [5, 13] for

reviews). [11] is one of the earliest works that study optimal beat

allocation using integer programming. [2] considers the beat allo-

cation problem to minimize response time for police service calls.

In particular, the paper also considers overlapping beats, where

multiple patrol officers share one patrol area. [6, 18] use queueing

models to estimate travel time. In particular, our proposed data-

driven model includes the travel time in the workload calculation.

[19] introduces a heuristic approach to the design of beats with

implementation in Boston. [4] considers fairness issues of police

zone design. We remark that most classical works rely on ana-

lyzing stochastic models for police workload estimation, which

usually requires stringent assumptions, e.g., calls arrive according

to homogeneous Poisson processes (with the notable exception of

[18]). Here, rather than obtained from stochastic models, we take

advantage of the availability of abundant data and adopt a data-

driven approach: the workload and other important parameters for

optimization are estimated and predicted from data.

There is also a large body of works on other types of geographi-

cal districting problems, such as political districting. This includes

the pioneering work [10] studies political districting using integer
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programming. Their method is extended by [31] for other geograph-

ical districting problems. A few other works [8, 23–25, 35, 37] apply

meta-heuristics (e.g., genetic algorithms, simulated annealing) to

geographical districting, which usually lack optimality guarantees.

Geographic districting often include criteria such as contiguity

[10, 14, 22, 23, 26, 35] and compactness [10, 27, 38], which are also

important in the police zone design context. However, political

districting has different considerations than police districting.

In the last decade, we have seen the rise of predictive policing, i.e.,

the use of mathematical and statistical methods in law enforcement

to predict future criminal activity based on past data. Its importance

has been even recognized by Time magazine that in November 2011

named predictive policing as one of the 50 best inventions of 2011

[15]. The RAND Corporation and the National Institute of Justice of

the United States (NIJ) also acknowledge the need for taking a step

forward and developing explicit methodologies and tools to take

advantage of the information provided by predictive policing mod-

els to support decision makers in law enforcement agencies [28].

We remark that most classical works do not leverage the historical

operational data and rely on analyzing stochastic models for police

workload estimation, which usually requires stringent assumptions,

e.g., calls arrive according to homogeneous Poisson processes. Here,

rather than obtained from stochastic models, we take advantage of

the availability of abundant data and adopt a data-driven approach:

the future workload and other essential parameters for optimization

are estimated and predicted from data.

2 DATA
We start by describing the various sources of data used for South

Fulton police beats reconfiguration, including 911 calls-for-service

reports, geographical data of the city, and the socio-economic data

collected by the American Community Survey (ACS) from the U.S.

Census Bureau.

911 calls-for-service data. The SFPD provides comprehensive

911-call reports between May 2018 to April 2019, which contains

69,170 calls in total (Figure 2). The recorded 911 calls cover more

than 600 categories of incidents, including assaults, terrorist threats,

domestic violence, robbery, burglary, larcenies, auto-thefts, etc.

These reports are generated by mobile patrol units in the city, which

handle 911 calls 24/7. Teams of response units (police cars and offi-

cers) are assigned to patrol city streets, and answer calls for service.

When a 911 call for a traffic incident comes in at the call time, a new
incident record will be created at the dispatch center, and the call

location will be recorded. The operator assigns an officer to handle

the call. The unit arrives at the scene and starts the investigation.

Once the police complete the investigation and clear the incident,

the police report will be closed and record the clear time. The time

interval that it takes police to process the call between the call time

and the clear time is called processing time. The police workload is

calculated using both the geolocation data and 911 call processing

time data (The calculation method which will be discussed in more

detail in Sec. 3). The geolocation consists of the GPS location of

reported incidents. From the geographical data of South Fulton, we

are also able to identify which beat each incident is located.

GIS data & beat configuration. Geographic information system

(GIS) data contain the geographical information of the city’s and

(a) Population (b) Median rent (c) Median income

(d) Population (e) Median rent (f) Median income

Figure 4: (a-c): Raw data for demographic factors of South
Fulton, GA in 2019, from American Community Survey, or-
ganized by census blocks. (d-f): Corresponding atomized
census data of South Fulton, GA, in 2019.

beats’ boundaries, which are extracted from Fulton County Special

Services District digest parcel data [12]. Geographically, the city

boundary of South Fulton is quite irregular with jagged edges, holes,

and disconnected segments (Figure 1). This irregularity is due to

the formation of the City of South Fulton, with the city being a new

combination of all the unincorporated land in southwest Fulton

County. Currently, there are seven beats in the City of South Fulton.

As shown in figure 1, beat (district) 1, 2, 3, and 4 include larger areas

that are relatively compact, while remaining beats contain smaller

scattered areas. The irregular shape of the city brings difficulty to

police officers while reaching locations of requests and patrolling.

Moreover, as the busiest airport globally, the Hartsfield-Jackson

Atlanta International Airport is situated east of the city, which

significantly adds to the city’s workload disparity.

Census data. The American Community Survey (ACS) collected

by the U.S. Census Bureau provides comprehensive information

about the population, demographic, and economic status of different

Georgia areas. Unlike the census, which takes place every ten years,

the ACS is conducted once per year. Some demographic factors are

useful in predicting future workload (by correlating the city’s socio-

economic profile with theworkload). These factors contain essential

information about the development and economic growth of the

city. Besides, census data is organized by census blocks, as shown

in Figure 4 (a - c), which is also different from the geographical

atoms we consider for our study. In our discussions with the SFPD,

we selected eight most influential factors that play a vital role in

determining the police workload, such as population and median

rent, school enrollment, and the average year structures were built.

The full list of census factors we are considering has been shown

in Table 1.

3 DATA PREPROCESSING
In this section, we describe three key steps in data preprocessing

before performing the beat design. In particular, we need to address
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Figure 5: South Fulton region is partitioned into 1,187 square
geographical atoms. Color indicates the beat membership.

the following challenge in using the data: how to align time resolu-

tion and spatial resolution from the raw data with what we need in

the design.

Geographical atoms. To accurately capture changing demograph-

ics and determine the new boundaries for each police beat, we define

high-resolution geographical atoms by creating artificial polygons

of identical size as our geographical atoms to break up the city. The

optimal beat design can be found by aggregating multiple adjacent

polygons. The size of geographical atoms is essential to our design’s

performance since it determines the number of variables in the op-

timization and the precision of the workload estimation. There is

a trade-off between computational efficiency and model accuracy

in determining the size of geographical atoms. If the atoms’ size is

too large, then we are unable to capture community demographics

accurately; if the size of the atoms is too small, then the problem

will become computationally intractable. After rounds of discus-

sion with the SFPD, we decide atoms to be a square area with a

side length of 0.345 miles, roughly the city block size. This allows

us to estimate the local workload accurately while resulting in a

reasonable number of decision variables in our optimization prob-

lem. The atomized map of the city was generated by intersecting

the city boundary with a grid of atoms, resulting in a new grid of

1,187 geographical atoms, as shown in Figure 5. The police work-

load estimation and prediction will be performed based on these

predefined geographical atoms. Formally, let 𝑖 ∈ I = {1, . . . , 𝐼 }
denote the 𝑖-th atom and 𝑘 ∈ K = {1, . . . , 𝐾} denote the 𝑘-th

beat in our design. Let the binary decision variable 𝑑𝑖𝑘 ∈ {0, 1}
denote whether or not atom 𝑖 is assigned to beat 𝑘 . A particular

beat design is a unique graph partition determined by a matrix

𝐷 = {𝑑𝑖𝑘 } ∈ {0, 1}𝐼×𝐾 . For each 𝑖 , it satisfies ∑𝐾
𝑘=1

𝑑𝑖𝑘 = 1. Given

the beat design 𝐷 , the set of atoms assigned to beat 𝑘 is denoted by

I𝑘 (𝐷) = {𝑖 : 𝑑𝑖𝑘 = 1} ⊆ I . Figure 5 also shows the discretization

of the existing beat configuration, where atoms with the same color

represent a police beat.

Census data atomization. A major challenge for estimating the

socio-economic data for each geographical atom using census data

is the inconsistency between census blocks and geographical atoms,

where, as shown in Figure 4 (a-c), census blocks usually have amuch

larger area than geographical atoms. Here we need to perform a

spatial interpolation to align the census data with our geographical

atoms. Specifically, we assume the census data, such as population,

in the same geographical atom, are evenly distributed. The data

of each census factor in a geographical atom can be estimated by

proportionally dividing the value in the census block where the

atom falls into. The weight of the portion that an atom takes from

a census block can be measured by the proportion between their

areas. As shown in Figure 4 (d - f), the census data collected by

census blocks have been discretized into geographical atoms. Given

historical census data in the month ℓ ∈ [𝐿 − 𝐿0, 𝐿], where 𝐿 and

𝐿0 denote the last month and the time span of the historical data,

respectively. The preprocessed census data is denoted as a tensor

𝑋 = {𝑥𝑖ℓ𝑚} ∈ R𝐼×𝐿0×𝑀 , where each entry 𝑥𝑖ℓ𝑚 indicates the value

of the census factor𝑚 ∈ M = {1, . . . , 𝑀} in atom 𝑖 and month ℓ .

911 calls-for-service data preprocessing. We estimate the po-

lice workload for each geographical atom using the 911 calls-for-

service dataset. The workload of each 911 call is evaluated by its

processing time, i.e., the total time that the police spend on travel-

ing and the investigation. We calculate the workload by two steps:

(1) count the number of 911 calls occurred in the 𝑖-th atom in ℓ-th

month, denoted as 𝑁𝑖ℓ ; (2) estimate the total workload for the 𝑖-th

atom in the ℓ-th month by multiplying 𝑁𝑖ℓ by the average pro-

cessing time, denoted as𝑤𝑖ℓ . The count of 911 calls will be further

used as the predictor in our spatial regression model, which will be

discussed in Sec. 4.

4 POLICE WORKLOAD PREDICTION
Predicting the police workload is particularly challenging. Although

we assumes the call arrival rates are time-homogeneous, we ob-

serve in the actual data that the call arrival rates have a significant

seasonality pattern and yearly trend, as well as correlation over ad-

jacent geographical areas. Therefore, we propose a spatio-temporal

model to predict future call arrival rates. We assume that the call

arrival rate 𝜆𝑖ℓ for atom 𝑖 in a month ℓ is a constant. Thus, each beat

is a homogeneous Poisson process with rate 𝜆𝑖ℓ . The arrival rates

Λ = {𝜆𝑖ℓ } ∈ R𝐼×𝐿0+ can be approximated by 𝑁𝑖ℓ , where 𝐿0 = 12. We

learned from the SFPD that, the occurrence of 911 calls is highly

correlated with population and economic status of the beat and its

neighborhood. We predict the arrival rate 𝜆𝑖ℓ in the future month

ℓ = 𝐿 + 𝑡, 𝑡 = 1, 2, . . . using a linear model that regresses the arrival

rate to other endogenous variables (arrival rates in other beats) and

exogenous factors (demographic factors). As shown in Table 1, we

consider 𝑀 = 8 demographic factors, which are statistically veri-

fied to be good predictors, including population, education level,

and household income. Specifically, we use the spatially lagged

endogenous regressors [30] defined as

𝜆𝑖ℓ =
∑︁

(𝑖, 𝑗) ∈A

𝛼𝑖 𝑗𝜆 𝑗ℓ +𝛽0𝜆𝑖,ℓ−1+
𝑝∑︁
𝑡=1

𝜷
⊺
𝑡 𝑋𝑖,ℓ−𝑡 +𝜖𝑖 , ∀ℓ ∈ [𝐿−𝐿0, 𝐿],

where 𝑝 is the total number of past months of data that we consider

for fitting the regressor, which in our case was 1. The adjacency

matrix 𝐴 = {𝛼𝑖 𝑗 } ∈ R𝐼×𝐼 specifies adjacency relationships between

atoms. The temporal coefficient 𝛽0 ∈ R specifies the influence of

the last month. The coefficient 𝜷𝑡 ∈ R𝑀 ,∀1 ≤ 𝑡 ≤ 𝑝 specifies
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Table 1: Variables used for workload prediction

Predictor Regression Coefficient p-value

Population 439.558 0.007

Number of housing units 158.440 0.019

School Enrollment 79.236 0.008

Median Household Income 59.420 0.000

Median Number of Rooms -10.560 0.006

Median Age -7.421 0.001

Median House Price -16620 0.000

Average Year Built 170.140 0.003

correlations with census factors and error term 𝜖𝑖 are spatially

correlated. The set of adjacency pairs is defined by A = {(𝑖, 𝑗) :
𝑖, 𝑗 are adjacent in G; 𝑖, 𝑗 ∈ I }. The graph G is given by associ-

ating a node with every atom and connecting two nodes by an

edge whenever the corresponding atoms are geographically adja-

cent. Here, we capture the spatial correlation between data using

the standard spatial statistics approach, by assuming 𝜖𝑖 to be spa-

tially correlated with correlation depending distance between two

locations [29].

5 BEAT REDESIGN OPTIMIZATION
In this section, we introduce our objective and solution methods to

the beat redesign optimization problem.We develop an optimization

framework to shift beat boundaries, where artificial geographical

atoms were assigned to beats while balancing the workload. We

formulate this problem as minimizing the workload variance by re-

configuring the beat plan with constraints, including the continuity

and compactness of beats.

5.1 Objective
Our goal is to shift beat boundaries and make inter-beat work-

load distribution even. Based on the discussion with the police,

we choose the objective function as the workload variance among

different zones, which quantitatively measure the police workload

imbalance between zones from a macro view. The objective of this

problem can be formulated as minimizing the inter-beat workload

variance 𝑍 (𝐷) given a beat design 𝐷 :

minimize

𝐷
𝑍 (𝐷) :=

𝐾∑︁
𝑘=1

(
𝑤𝑘ℓ (𝐷) −

∑𝐾
𝜅=1𝑤𝜅ℓ (𝐷)

𝐾

)
2

subject to

𝐾∑︁
𝑘=1

𝑑𝑖𝑘 = 1, ∀𝑖

contiguity and compactness for each beat.

(1)

Recall that the matrix 𝐷 = {𝑑𝑖𝑘 } ∈ {0, 1}𝐼×𝐾 represents decision

variables, where binary variable 𝑑𝑖𝑘 ∈ {0, 1} indicates whether

or not geographical atom 𝑖 is assigned to beat 𝑘 ; and 𝑤𝑘ℓ (𝐷) =∑
𝑖∈I𝑘 (𝐷) 𝑤𝑖ℓ represents the total workload in beat 𝑘 = 1, · · · , 𝐾

in month ℓ . The variance is a quadratic function of the workload

in each beat, which implies that the objective function is convex

with respect to the decision variables. A smaller variance indicates

a more balanced inter-beat police workload. The constraints will

be explicitly defined in Sec. 5.2.

5.2 Compactness and contiguity constraints
In addition to balancing the police workload, it is desirable that the

beat shapes are contiguous and compact. In fact, the police never

used a quantitative measure of compactness to declare the plans

unsuitable. Instead, the police have simply disallowed plans with

long and thin or snakelike districts. In other words it appears that

the police have evaluated compactness only visually. Since it is

not obvious how to determine an acceptable compact design, we

choose to minimize the workload variance based on the discussion

with the police; but it should be understood that compactness is in

reality a loose constraint rather than an objective. Therefore, we

formulate the contiguity and compactness criteria as a set of linear
constraints [10, 27, 32, 38] by introducing additional variables: 𝑓𝑖 𝑗𝑘
is the flow from atom 𝑖 to atom 𝑗 in beat 𝑘 ; ℎ𝑖𝑘 equals to 1 if atom

𝑖 ∈ I is selected as a sink in beat 𝑘 ∈ K , otherwise 0; 𝑞 is the

maximum beat capacity. Hence, there are 21,170,145 variables with

63,421,410 constraints in total.

Contiguity constraints. Contiguity constraints are imposed on

each beat using the flow method [32]. For each beat 𝑘 , there is a

flow 𝑓𝑖 𝑗𝑘 on the graph, where 𝑓𝑖 𝑗𝑘 denotes flow from 𝑖 to 𝑗 . Each

beat has a hub vertex whose net flow is at most the number of

vertices in the beat, less one. Each other vertex in the beat has a

net flow of at most −1. This ensures that there is a path of positive

flow from any vertex in the beat to the hub, implying contiguity.

Specifically, constraints (2a) represent the net outflow from each

beat. The two terms on the left indicate, respectively, the total

outflow and total inflow of atom 𝑖 . If atom 𝑖 is included in beat 𝑘

but is not a sink, then we have 𝑑𝑖𝑘 = 1, ℎ𝑖𝑘 = 0, and thus atom 𝑖

must have supply ≥ 1. If atom 𝑖 is included in beat 𝑘 and is a sink,

then we have 𝑑𝑖𝑘 = 1, ℎ𝑖𝑘 = 1, and thus atom 𝑖 can have demand

(negative net outflow) ≤ 𝑞−1. If atom 𝑖 is not included in beat 𝑘 and

is not a sink, then we have 𝑑𝑖𝑘 = 0, ℎ𝑖𝑘 = 0, and thus atom 𝑖 must

have supply 0. If atom 𝑖 is not included in beat 𝑘 but is a sink, then

we have 𝑑𝑖𝑘 = 0, ℎ𝑖𝑘 = 1, and the rest of 𝑑 ·𝑘 are forced to be 0, that

is, no atoms are selected. Constraints (2b) specify the number of

atoms that can be used as sinks. Constraints (2c) ensure that each

beat must have only one sink. Constraints (2d) ensure that there is

no flow into any atom 𝑖 from outside of beat 𝑘 (where 𝑑𝑖𝑘 = 0), and

that the total inflow of any atom in beat 𝑘 (where 𝑑𝑖𝑘 = 1) does not

exceed 𝑞 − 1. Constraints (2e) make sure unless a atom 𝑖 is included

in beat 𝑘 , the atom 𝑖 cannot be a sink in beat 𝑘 . Constraints (2f) and

(2g) ensure that there are no flows (inflows and outflows) between

different beats which forces eligible contiguity.∑︁
(𝑖, 𝑗) ∈A

𝑓𝑖 𝑗𝑘 −
∑︁

(𝑖, 𝑗) ∈A

𝑓𝑗𝑖𝑘 ≥ 𝑑𝑖𝑘 − 𝑞ℎ𝑖𝑘 , ∀𝑖, 𝑘, (2a)

𝐾∑︁
𝑘

𝑁∑︁
𝑖

ℎ𝑖𝑘 = 𝐾, (2b)

𝑁∑︁
𝑖

ℎ𝑖𝑘 = 1, ∀𝑘, (2c)∑︁
(𝑖, 𝑗) ∈A

𝑓𝑗𝑖𝑘 ≤ (𝑞 − 1)𝑑𝑖𝑘 , ∀𝑘, (2d)

ℎ𝑖𝑘 − 𝑑𝑖𝑘 ≤ 0, ∀𝑖, 𝑘, (2e)

𝑓𝑖 𝑗𝑘 + 𝑓𝑗𝑖𝑘 ≤ (𝑞 − 1)𝑑𝑖𝑘 , ∀𝑖, 𝑘, (2f)
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𝑓𝑖 𝑗𝑘 + 𝑓𝑗𝑖𝑘 ≤ (𝑞 − 1)𝑑 𝑗𝑘 , ∀𝑗, 𝑘, (2g)

𝑑𝑖𝑘 , ℎ𝑖𝑘 ∈ {0, 1}, ∀𝑖, 𝑘, (2h)

𝑓𝑖 𝑗𝑘 ≥ 0, ∀𝑖, 𝑗, 𝑘, (2i)

Compactness constraints. Compactness is defined as geographi-

cal compactness with distance compactness and shape compactness

[27, 38]. For distance compactness, a district is feasible only if the

distance between population units must be less than a specified

upper bound. For shape compactness, a district is feasible only if the

square of the distance’s maximum diameter divided by the district’s

area must be less than another upper bound [10].

Following the existing literatures, we add two additional linear

constraints (3a), (3b) to ensure the compactness of beats. For each

atom 𝑖 , let 𝐴𝑖 be the area of 𝑖 , and for each pair of atoms 𝑖 and 𝑗 ,

let 𝑙𝑖 𝑗 be the square of the distance between the centroids of the

beats. We also have a parameter 𝑐1, 𝑐2 > 0 controlling the degree

of compactness.

𝑙𝑖 𝑗𝑒𝑖 𝑗𝑘 ≤ 𝑐1, ∀𝑖, 𝑗, 𝑘, (3a)

𝑙𝑖 𝑗𝑒𝑖 𝑗𝑘 ≤ 𝑐2
𝐾∑︁
𝑖=1

𝑑𝑖𝑘𝐴𝑖 , ∀𝑖, 𝑗, 𝑘, (3b)

5.3 Heuristic approximation
Three methods were discussed in our experiments to search for

optimal police beat design. The greedy algorithm serves to generate

new beats iteratively and confirms the optimal number of beats

for the future redesign. Following the greedy redesign, we adopt a

heuristic optimization approach to find the beat design in contrast

to the mixed-integer programming (MIP) approach.

Greedy search. To determine the optimal number of beats in the

final design, we perform an iterative greedy algorithm, which at-

tempts to generate new beat greedily for the design for each iter-

ation while preserving the original structure of the existing beat

as much as possible. Intuitively, more beats may result in a more

balanced workload distribution. However, the manpower of the

SFPD and resources of the South Fulton City Council are limited. It

is unrealistic to deploy such a design with a large number of beats.

Hence, we adopt the Greedy algorithm to explore the optimal num-

ber of beats in our design. The procedure for “Greedily” creating

new beat designs is demonstrated as follows.

For the 𝑛-th iteration, we define 𝐷𝑛 as the beat design, and 𝐾 is

the number of beats at the last iteration. For the predicted workload

in month ℓ , the greedy algorithm can be performed by selecting the

beat𝑘 in𝐷𝑛 with the largest workload, i.e., argmax𝑘 {𝑤𝑘ℓ (𝐷𝑛)}𝑘∈K .

Then we split up the beat 𝑘 evenly into two beats using the K-means

algorithm, where each atom in the beat is considered as a point. This

will lead to generating a new beat, i.e., 𝐾 ≔ 𝐾 +1 and K ≕ K ∪𝐾 .
The above process can be carried out iteratively until we find the

design with the optimal number of beats.

We visualize our greedy design with different number of beats

in Figures 8. As seen from the result, the beat with the highest

workload, shown in red, is split in each iteration as a result. We also

examine the variance of beat workload versus number of beats, and

find the optimal number of beats, which will be further discussed

in Sec. 6.

Mixed-integer programming.Mathematical programming mod-

els are essential tools for modeling and solving redistricting prob-

lems, which can guarantee the optimality of the obtained solutions,

are mostly based on mixed-integer programming (MIP). However,

as shown in Sec. 5.2, the problem involves a large number of vari-

ables, including 21,134,535 continuous variables and 35,610 binary

variables, as well as a set of additional linear constraints needed

to be satisfied. In practice, the problem itself of searching for the

global optimal design is computationally intractable and hard to be

implemented on a large scale.

Heuristic search. A metaheuristic method, simulated annealing

(see, e.g., [3]), has been widely adopted in solving the large-scale

combinatorial optimization problem. The simulated annealing al-

gorithm explores the neighborhood of the current solution and

decides a better substitution randomly. Simulated annealing can

achieve reasonable performance in practice for various settings,

although there are very limited theoretical performance guarantees

[1, 21, 34]. In particular, in our setting, we use the current/existing

partition as an initial solution. Based on this, a new solution can

be founded by selecting from a set of candidate solutions. The set

of candidate solutions is typically constructed as “neighboring”

solutions to the current solution without breaking contiguity.

Specifically, in the 𝑛-th iteration, our simulated annealing algo-

rithm performs the following acceptance-rejection sampling. Sup-

pose the starting partition is P𝑛 . For instance, we can take the

existing partition as an initialization. The next partition P𝑛+1 is
selected from a set of candidate partitions defined as S𝑛+1 and

P𝑛+1 ∈ S𝑛+1. The candidate partitions in S𝑛+1 satisfy contiguity

and balance constraints. We randomly choose one of these candi-

date partitions P𝑛+1 ∈ S𝑛+1, and evaluate a score

𝑃 (P𝑛+1,P𝑛 |𝑇 ) =
{
1, 𝑍 (P𝑛+1) < 𝑍 (P𝑛),
exp{|𝑍 (P𝑛+1) − 𝑍 (P𝑛) |/𝑇 }, otherwise.

where 𝑍 (·) denotes the cost associated with a partition (e.g., the

compactness shown in (2)), 𝑇 is a pre-specified temperature pa-

rameter that determines the speed of convergence, and the 𝑃 is

the acceptance probability. We generate an independent uniform

random variable 𝑈 ∈ [0, 1]. The proposed partition is accepted if

𝑃 (P𝑛+1,P𝑛 |𝑇 ) ≥ 𝑈 . We refer to an update of the proposed parti-

tion as a transition. Note that there is a chance that the transition
happens from a “low-cost” partition to a “high-cost” partition, and

this “perturbation” will prevent the algorithm from being trapped

at a local sub-optimal solution. The choice of the set candidate par-

titions S𝑛+1 is critical for the performance of simulated annealing,

which involves the trade-off between exploration and exploitation.

Below, we introduce two strategies for candidate partitions and

explore two types of “neighbor” partitions based on square and

hexagonal grids, respectively.

As illustrated in Figure 6, we first consider the following simple

heuristic in constructing the candidate set. This allows us to search

for local optimal partitions at a reasonable computational cost [36].

The candidate set contains all partitions that swap a single vertex

assignment at the boundary of the current partition. This simple

heuristic is easy to implement since the number of such candidate
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Figure 6: Illustrations of two approaches for candidate parti-
tions based on one-swapping neighborhoods. Red and blue
boxes represent vertices in different parts. The thick black
line represents the boundary of two parts. The left panel
shows the current partitions P𝑛 ; the middle and the right
panels show the candidate partition sets for the next itera-
tion S𝑛+1.

(a) 2020 prediction (b) 2021 prediction (c) 2022 prediction

Figure 7: Workload prediction where dark lines outline
boundaries of beats and the color depth represents the level
of the atom workload in each year.

partitions is usually small (because we only swap one end of the

boundary edge). However, on the other hand, such candidate sets

may contain partitions that are still too similar to the current parti-

tion. Therefore, we will consider the following alternative strategy.

6 RESULTS
In this section, we present our numerical results and final beat

redesign for the City of South Fulton.

Workload analysis and prediction. The most important metric

for evaluating imbalance we considered is workload variance over

beats. As we defined in Sec. 5, the variance is the sum of the squared

deviation of the beat workload from its mean. To fully understand

the workload imbalance situation, it is necessary to show how

the existing configuration exacerbates the unbalance of workload

over beats in the past and how the existing configuration will

impact the future. Figures 7 summarizes the predicted workload

distribution over the entire city for the next four years from 2020

to 2022. As we can see from the map, there is a clear trend that

the general workload level continues to increase, and the major

workload concentrates on particular areas (such as College Park in

the east of the city and I-285 & I-20 in beat 4). Due to the increasing

growth of South Fulton and urban sprawl, this trend is leading to a

police workload imbalance.

Optimal beat number. When creating a beat design, the most

important metric for evaluating imbalance is the workload variance

over beats. However, for determining the optimal number of beats in

the design, we also need to consider the cost associated with adding

more beats, which includes the cost of additional training, hiring

new officers, and so on. Therefore, there is a trade-off to minimize

the workload variance while avoiding unnecessary costs for adding

new beats. Figure 8 presents comparisons between existing beat

design, designs generated by greedy exploration algorithm, and the

proposed design. Figure 9 shows that as we first begin to increase

the number of beats, theworkload variance decreases sharply before

15 beats. We have shown that there are diminishing returns as we

further increase the number of beats beyond 15. Therefore, we

call 15 the optimal number of beats and the corresponding 15-beat

greedy design will be used as an initialization of the simulated

annealing for further refinement.

Proposed beat design. The initial report in 2019 contained beat-

wise workload prediction for the next three years (2020, 2021 and

2022), and proposed three candidate designs with similar beat shifts

that all attains the best workload balance. In Table 2, we list the

predicted annual workload in each beat, total workload, and work-

load variance. After the plans were reported to the police, we met

several times to deliberate the various trade-offs, and held police-

engagement meetings to elicit feedback from the patrol force. Police

Deputy Chief and couples of key senior officers also participated in

these discussions and voiced comments. The new design and the

previous existing design have been both presented in Figure 8. This

design is preferred by the police for three major reasons: (2) this

plan makes the minimal changes based on the existing police zone

configuration in comparison with other candidate plans, which

minimizes the implementation cost in practice; (2) the workload

variance has been drastically reduced by 89% ∼ 92% by increasing

the number of beats to 15; (3) the proposed plan achieves a lower

level of workload variance as well as a smaller variance increment

in the future year 2021.

Staffing level analysis.We quantify our potential police response

workload by converting the workload in each beat into hours per

day. Table 2 shows real workload distribution in 2019 and predicted

workload distribution in 2021 under different designs, respectively.

Entries of the table suggest the number of hours per day, a police

officer would expect to be responding to 911 calls. As we can see,

our proposed beat design drastically reduces the beatwise workload.

In particular, the proposed design results in a decrease in workload

Table 2: Summarization of workload per beat.

Beat Number Workload in 2019 Workload in 2021

(hours/day) (hours/day)

Existing Greedy Refined Greedy Refined

1 38.59 17.15 17.15 18.05 18.05

2 24.84 24.84 23.56 27.09 25.61

3 32.84 18.78 20.08 17.91 19.91

4 34.44 17.45 17.08 16.83 16.14

5 65.94 22.10 20.31 21.40 19.32

6 38.44 14.69 18.30 14.54 16.73

7 34.96 17.55 19.99 17.67 20.01

8 N/A 12.51 12.51 11.66 11.66

9 N/A 10.79 10.79 11.10 11.10

10 N/A 21.45 21.87 21.45 21.87

11 N/A 23.75 19.33 22.2 22.62

12 N/A 17.41 17.41 23.40 21.60

13 N/A 17.00 16.82 16.70 15.87

14 N/A 20.53 18.89 19.99 17.81

15 N/A 14.06 15.94 13.18 15.93

Variance 142.91 15.12 10.13 18.269 13.15
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(a) existing 7-beat (b) greedy 8-beat (c) greedy 9-design (d) greedy 10-beat (e) greedy 11-beat (f) greedy 12-beat

(g) greedy 13-beat (h) greedy 14-beat (i) greedy 15-beat (j) greedy 16-beat (k) greedy 17-beat (l) proposed 15-beat

Figure 8: Greedy beat designs where dark lines outline boundaries of beats and the color depth represents the level of the beat
workload. The scale is adjusted in each image.

variance of over 85% comparing to the existing design, making

policing more equitable in the city.

In the City of South Fulton council meeting, the city council

emphasizes the importance of community engagement from the

police force. Thanks to our beat design, the police workload per

day in each beat can be reduced drastically; this will allow police

officers to participate in community events and start pro-active

patrols. This is a huge difference from the past 50 years, where

police officers have been going from call to call on their entire

shift. Additionally, the staffing level prediction gives the SFPD how

many officers they need to handle the 911 calls in a beat. They

then can recruit more officers for the sole purpose of community

engagement and pro-active patrolling if they desire.

7 IMPLEMENTATION
In January 2020, we submitted the final report to the South Fulton

Police Department and the South Fulton City Council. The report

was reviewed by Police Chief Meadows, Deputy Police Chief Rogers,

and Mayor Bill Edwards. Our report analyzed the police workload

and proposed a detailed redistricting plan. Our redistricting plan
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Figure 9:Workload variance with different number of beats.

mainly changed in four areas (Figure 8l): We add three new beats in

the southeast of the city near College Park, the area with the highest

workload. The biggest beat in the west of the city is split into two

beats. We add a beat in the north of the city near the airport. The

southern beat is also split into two. In total, the redistricting plan

has reduced the response time throughout the city and rebalanced

the police workload between the fifteen beats.

Later that month, the South Fulton City Council approved the

new beat design. The South Fulton Police Department plan to im-

plement the new beat design in early 2020. The new beat design

was praised by the city council, as some council members said that

our beat design and study has been long needed and that it sets an

example for other cities in the southeast. Residents of South Fulton

acclaimed about the change on social media and thanked the City

of South Fulton Police Department and our team for contributing

to the communities. The new beat design also received coverage

from several news sources, including Fox 5 Atlanta [9].

8 CONCLUSION
In this paper, we presented our work on the City of South Fulton

police beat redesign. We propose an optimization framework with

the spatial regression model as well as large-scale data analytics. We

construct an operational model to predict zone workload using an

accurate and tractable linear approximation. The proposed method

yields a redesigned zone plan with lower workload variance by only

changing eight beats. Currently, we are continuing our partnership

with the SFPD. We will continue to observe the police workload

in the City of South Fulton as the city and workload grow. If the

workload becomes unbalanced once more, we can quickly suggest

a new beat design using our already existing methods. As the SFPD

continues to grow, they will also hire an information officer that will

assist in workload analytics and carry on our workload prediction.
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