
Towards Efficient Python Interpreter for Tiered Memory Systems
Yuze Li1 Shunyu Yao 1 Jaiaid Mobin 2 M. Mustafa Rafique 2 Dimitrios Nikolopoulos 1 Kirshanthan Sundararajah 1 Huaicheng Li 1 Ali R. Butt 1

1Virginia Tech 2Rochester Institute of Technology

Tiered Memory Systems

Figure 1. Slowdown percent of different
workloads in CXL.

Figure 2. Workloads slowdown by static placing
different percent of hottest memory pages to
DRAM, the rest to CXL.

The emergence of low-latency non-DDR technologies offers cheaper $/GB
memory cost. Running modern data-intensive applications in tiered memory sys-
tems experiences different percentage of slowdown. The principle is to track
data access frequencies and automatically migrates them among tiered memory
resources. Thus, a good solution must be:

Accuracy: Be precise about the memory boundaries to be hot or cold.
Low overhead: Solutions should not interfere with applications that much.
Portability: Can readily be deployed to today’s cloud.
Transparency: No need for program re-writing, static analysis.

Problem of Existing Solutions

OS level: Page table entry checking, hardware event sampling, LRU, AutoNUMA,
etc.

Coarse-grained observation point: Sub-page information, and application
semantics cannot be extracted.
Unbalanced accuracy and overhead: By increasing the accuracy, overhead
will increase

Runtime level: Defines new programming models through APIs, source code
static analysis, and profiling.

lack of transparency: Involves non-trivial programmer efforts, or exhaustive
profiling.

None of the existing methods can be directly ported to the popular language,
Python, considering Python’s top-ranking position in 2023.

Challenges of Tracking Python Object Temperatures

Challenge 1: Method of Tracing

Unlike C++, CPython does not offer smart pointer and operator
overloading.
Unlike JVM-based runtime, CPython does not have read-write barriers to
instrument.

Challenge 2: Tracing Overhead

CPython only maintains the references of container PyObjects, obtaining
all PyObjects references requires the GIL held (application paused).

Challenge 3: Handling Native Calls

CPython does not capture runtime semantics in native executions (C/C++).

Major Insights

Insight 1: Reference counting can be a potential indicator to infer PyObjects
accesses (challenge 1).

Insight 2: The set of live PyObjects is not likely to change until a cyclic-GC is
triggered; selectively tracing based on object semantics (challenge 2).

Pypper Overview

Figure 3. Pypper’s workflow.

Pypper comprises a control layer and a metadata layer. The control layer popu-
lates and analyzes the metadata.

1. Invoked from Python API (Pypper.start()), tracing enabled within
CPython main thread.

2. Live trace cascade traverses the cyclic-GC list to get all PyObjects
references.

3. Pypper triggers a separate CPython thread for consecutive active traces,
and records refcnt changes for each observed PyObject.

4. Mapping algorithm inspects the captured refcnt changes to infer the real
PyObject temperatures.

5. Migration plane merges hot/cold objects into compact segregated memory
ranges, aligns them to page boundaries, before migrating to designated
areas.

6. Upon receiving stop signal (Pypper.end()), Pypper frees metadata, resets
states, stops tracing.

Preliminary Results

Figure 4. Inferred PyObj temperatures based on
refcnt changes.

Figure 5. Real heatmap from
OS-based profiling.

Takeaway: The reference counting in the GC scheme can also be used to infer
object temperatures by defining a mapping model.

WiP and FutureWork

Live Trace Overhead Mitigation (WiP)
Make the best use of CPython’s cyclic-GC module by only traversing newly
survived container PyObjs.
Filter live PyObjs by observing their semantics, e.g., length, depths.

Mapping Algorithm (WiP)
A fine-grained mapping module from refcnt-changing to real object
temperatures is yet to be defined.

Handling Native Executions (future work)
Pypper should distinguish and handle native execution that is not based on
refcnt changes.


