VZ? VIRGINIA
TECH.

Tiered Memory Systems Pypper Overview

® place 0% (pure CXL) m place 10% = place 30% = place 50% = place 70% = place 90% GIL held
A

r N ‘ non-iterable PyObject

QO OQ O iterable PyObject

- |.'; Z ... 2. Perform -
\/\/\/ Live trace < cascade tracing Live trace
A A

Q‘ from GC lists

®m CXL slowdown = memory backend boundness 25

80

20

60

CPython main thread

15

40 10 . é N
Live objs set Active objs DLL Hot/cold Hot/cold
objs set pages
20 5 1. Enable V DV D O [] boundaries! yes, perform
Pypper tracing next live trace
00w X -
0 0 . 3 J ;
BFS DLA1 DL2 o

CL Matmul DLT GIF BFS MST PR 4. Map to real PyObj 5. Merge/
temperature align/migrate

3. Record PyObjs
5@ ' growth changes Active traces Mapping Migration yclic-G
> > —>

Entry point | | sample filtering algo plane iggere

Slowdown percent

Metadata

Slowdown or memory bound percent

Figure 1. Slowdown percent of different Figure 2. Workloads slowdown by static placing
workloads in CXL. different percent of hottest memory pages to
DRAM, the rest to CXL.

-

6. Signaled to exit

Pypper.end()

Pypper.start()

API

Python Pypper tracing
thread

The emergence of low-latency non-DDR technologies offers cheaper $/GB
memory cost. Running modern data-intensive applications in tiered memory sys-

tems experiences different percentage of slowdown. The principle is to track Figure 3. Pypper’s workflow.
data access frequencies and automatically migrates them among tiered memory
resources. Thus, a good solution must be: Pypper comprises a control layer and a metadata layer. The control layer popu-

. . | | h .
= Accuracy: Be precise about the memory boundaries to be hot or cold. ates and analyzes the metadata

= Low overhead: Solutions should not interfere with applications that much. 1. Invoked from Python API (Pypper.start()), tracing enabled within

= Portability: Can readily be deployed to today’s cloud. CPython main thread.

= Transparency: No need for program re-writing, static analysis. 2. Live trace cascade traverses the cyclic-GC list to get all PyObjects
references.

3. Pypper triggers a separate CPython thread for consecutive active traces,
and records refcnt changes for each observed PyObject.

4. Mapping algorithm inspects the captured refcnt changes to infer the real

Problem of Existing Solutions

OS level: Page table entry checking, hardware event sampling, LRU, AutoNUMA,

etc. PyObject temperatures.
. . . _ . o 5. Migration plane merges hot/cold objects into compact segregated memory
= Coarse-grained observation point: Sub-page information, and application ranges, aligns them to page boundaries, before migrating to designated
semantics cannot be extracted. areas.
. Unb.alanced accuracy and overhead: By increasing the accuracy, overhead 6. Upon receiving stop signal (Pypper.end()), Pypper frees metadata, resets
will increase states, stops tracing.

Runtime level: Defines new programming models through APIs, source code
static analysis, and profiling. Preliminary Results

= lack of transparency: Involves non-trivial programmer efforts, or exhaustive 18 5
prOﬁllng 44 16 10 40
38 14 35 35
None of the existing methods can be directly ported to the popular language, — 31 12 5, 30
Python, considering Python'’s top-ranking position in 2023. %25 10 25 25
& 8 20 20

S 19
Challenges of Tracking Python Object Temperatures 13 - i}
6 5 5
0 g O 0

0 10 20 30 40 50 60 70

Challenge 1: Method of Tracing 0 10 20 30 40 5 60 70 80

Time [5} Time (s)

i

= Unlike C++, CPython does not offer smart pointer and operator

overloading.
= Unlike JVM-based runtime, CPython does not have read-write barriers to

Figure 4. Inferred PyObj temperatures based on Figure 5. Real h;atmap from
refcnt changes. OS-based profiling.

nstrument. Takeaway: The reference counting in the GC scheme can also be used to infer
Challenge 2: Tracing Overhead object temperatures by defining a mapping model.

= CPython only maintains the references of container PyObjects, obtaining WiP and Future Work
all PyObjects references requires the GIL held (application paused).

Live Trace Overhead Mitigation (WiP)

= Make the best use of CPython's cyclic-GC module by only traversing newly
= CPython does not capture runtime semantics in native executions (C/C++). survived container PyObjs.
= Filter live PyObjs by observing their semantics, e.g., length, depths.

Challenge 3: Handling Native Calls

Major Insights Mapping Algorithm (WiP)

= A fine-grained mapping module from refcnt-changing to real object
temperatures is yet to be defined.

Insight 1: Reference counting can be a potential indicator to infer PyObjects
accesses (challenge 1).
Insight 2: The set of live PyObjects is not likely to change until a cyclic-GC is Handling Native Executions (future work)

triggered; selectively tracing based on object semantics (challenge 2). = Pypper should distinguish and handle native execution that is not based on
refcnt changes.

