
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

Quantization Avoids Saddle Points in Distributed
Optimization
Yanan Boa and Yongqiang Wanga,1

This manuscript was compiled on March 14, 2024

Distributed nonconvex optimization underpins key functionalities of numerous distributed
systems, ranging from power systems, smart buildings, cooperative robots, vehicle networks
to sensor networks. Recently, it has also merged as a promising solution to handle the
enormous growth in data and model sizes in deep learning. A fundamental problem
in distributed nonconvex optimization is avoiding convergence to saddle points, which
significantly degrade optimization accuracy. We discover that the process of quantization,
which is necessary for all digital communications, can be exploited to enable saddle-point
avoidance. More specifically, we propose a stochastic quantization scheme and prove
that it can effectively escape saddle points and ensure convergence to a second-order
stationary point in distributed nonconvex optimization. With an easily adjustable quantization
granularity, the approach allows a user to control the number of bits sent per iteration and,
hence, to aggressively reduce the communication overhead. Numerical experimental results
using distributed optimization and learning problems on benchmark datasets confirm the
effectiveness of the approach.

Quantization | Saddle-point Avoidance | Distributed Nonconvex Optimization

With the unprecedented advances in embedded electronics and communication
technologies, cooperation or coordination has emerged as a key feature in numerous
engineered systems such as smart grids, intelligent transportation systems, coopera-
tive robots, cloud computing, and smart cities. This has spurred the development of
distributed algorithms in which spatially distributed computing devices (hereafter
referred to as agents), communicating over a network, cooperatively solve a task
without resorting to a central coordinator/mediator that aggregates all data in
the network. Many of these distributed algorithms boil down to the following
distributed optimization problem:

min
θ∈Rd

F (θ) = 1
N

N∑
i=1

fi(θ), [1]

where fi(·) : Rd → R denotes the local objective function private to agent i,
F (·) : Rd → R is the global objective function representing the network-level cost
to be minimized cooperatively by all participating agents, and N is the number of
agents.

Initially introduced in the 1980s in the context of parallel and distributed
computation (1), the above distributed optimization problem has received intensive
interest in the past decade due to the surge of smart systems and deep learning
applications (2, 3). So far, plenty of approaches have been proposed to solve
the above distributed optimization problem, with some of the commonly used
approaches including gradient methods (see, e.g., (2, 4–8)), distributed alternating
direction method of multipliers (see, e.g., (9)), and distributed Newton methods
(see, e.g., (10)).

However, most of these approaches focus on convex objective functions, whereas
results are relatively sparse for nonconvex objective functions. In fact, in many
applications, the objective functions are essentially nonconvex. For example, in
the resource allocation problem of communication networks, the utility functions
are nonconvex when the communication traffic is non-elastic (11); in most machine
learning applications, the objective functions are nonconvex due to the presence
of multi-layer neural networks (12); in policy optimization for linear-quadratic
regulators (13) as well as for robust and risk-sensitive control (14), nonconvex
optimization naturally arises.

In nonconvex optimization, oftentimes, the most fundamental problem is
to avoid saddle points (stationary points that are not local extrema). For

Significance Statement

Distributed optimization underpins
key functionalities of numerous en-
gineered systems such as smart
grids, intelligent transportation, and
smart cities. It is also reshaping
the landscape of machine learn-
ing due to its inherent advantages
in handling large data/model sizes.
However, saddle-point avoidance
becomes extremely challenging in
distributed optimization because in-
dividual agents in distributed opti-
mization do not have access to the
global gradient. We show that quan-
tization effects, which are unavoid-
able due to communications in dis-
tributed optimization and regarded
as detrimental in existing studies,
can be exploited to enable saddle-
point avoidance for free. By judi-
ciously designing the quantization
scheme, we propose an approach
that evades saddle points and en-
sures convergence to a second-
order stationary point in distributed
nonconvex optimization.

Author affiliations: aDepartment of Electrical and Com-
puter Engineering, Clemson University, Clemson, SC
29634 USA

Y.B and Y.W designed research, performed research
and wrote the paper.

The authors declare no competing interest.
1To whom correspondence should be addressed. E-
mail: yongqiw@clemson.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS — March 14, 2024 — vol. XXX — no. XX — 1–11

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

example, in machine learning applications, it has been
shown that the main bottleneck in parameter optimization
is not due to the existence of multiple local minima but the
existence of many saddle points that trap gradient updates
(15). The problem of saddle points is more acute in deep
neural networks, where saddle points are usually encircled
by high-error plateaus, exerting substantial deceleration on
the learning process while engendering a deceptive semblance
of the presence of a local minimum (16, 17). To escape
saddle points, classical approaches resort to second-order
information, in particular, the Hessian matrix of second-order
derivatives (see, e.g., (18, 19)). The Hessian matrix-based
approach, however, incurs high costs in both computation and
storage. This is because the dimension of the Hessian matrix
increases quadratically with an increase in the optimization-
variable dimension, which can scale to hundreds of millions
in modern deep learning applications (20). Recently, random
perturbations of first-order gradient methods have been shown
capable of escaping saddle points in centralized optimization
(see, e.g., (15, 21)). However, it is unclear if this is still
true in decentralized nonconvex optimization, where the
decentralized architecture brings in fundamental differences
in optimization dynamics. For example, in decentralized
optimization, the saddle points of individual local objective
functions fi(·) are different from those of the global objective
function F (·), which is the only function that needs to be
considered in centralized optimization. In fact, in distributed
optimization, all local objective functions fi(·) are private
to individual agents, preventing any single agent from
accessing the global objective function F (·) and further from
exploiting the gradient/Hessian information of F (·) in its
local iteration to avoid the saddle points of F (·). In addition,
the inter-agent coupling also complicates the optimization
dynamics. Note that random algorithm initialization has
been shown to be able to asymptotically avoid saddle points
in centralized nonconvex optimization (22), which has been
further extended to the decentralized case in (23). However,
the result in (21) shows that this approach to avoiding saddle
points may take an exponentially longer time, rendering it
impractical.

In this paper, we propose to exploit the effects of quantiza-
tion, which are naturally inherent to all digital communication
methods, to evade saddle points in distributed nonconvex
optimization. The process of quantization is necessary in
all modern communications to represent continuous-valued
variables with a smaller set of discrete-valued variables since
digital communication channels can only transmit/receive bit
streams. The conversion from continuous-valued variables
to discrete-valued variables inevitably leads to rounding and
truncation errors. In fact, in distributed learning for deep
neural networks, since model parameters or gradients have to
be shared across agents in every iteration and the dimension
of these model parameters and gradients can easily scale to
hundreds of millions (20), it is a common practice to use coarse
quantization schemes or compression techniques to reduce
the overhead of communication (24, 25). Recently, plenty of
distributed optimization and learning algorithms have been
proposed that can ensure provable convergence to the optimal
solution in the convex case (see, e.g., (26–34)) or to first-
order stationary points in the nonconvex case (see, e.g., (35–
37)), even in the presence quantization/compression errors.

However, in all these existing results, quantization effects are
treated as detrimental to the distributed optimization process
and have to be suppressed to ensure convergence accuracy. In
this paper, to the contrary, we exploit quantization effects to
evade saddle points and hence improve convergence accuracy
in distributed nonconvex optimization. By judiciously
designing the quantization scheme, we propose an algorithm
that can make use of quantization effects to effectively
escape saddle points and ensure convergence to second-order
stationary points. To the best of our knowledge, this is
the first time that quantization is shown to be beneficial to
the convergence accuracy of distributed optimization. The
proposed quantization scheme can also aggressively reduce
the overhead of communication, which is widely regarded as
the bottleneck in distributed training of machine-learning
models (24).

Problem Formulation

Notations. We use bold letters to denote matrices and vectors,
i.e., A and x. We use ∥ · ∥ to represent the ℓ2 norm of vectors
and the Frobenius norm of matrices. For a function F (·) :
Rd → R, we use ∇F (·) and ∇2F (·) to denote its gradient and
Hessian, respectively. We use O(·) to hide absolute constants
that do not depend on any problem parameter. We use [N] to
represent the set {1, 2, · · · , N}. We use λmin(·) to represent
the minimal eigenvalue of a matrix.

Formulation. We consider a distributed optimization problem
where N agents, each with its own local objective function,
collaboratively optimize the network-level sum (average) of all
local objective functions. Since the local objective functions
are private to individual agents, no agents have access to
the global objective function. To solve the distributed
optimization problem, individual agents have to share local
intermediate optimization variables with their respective
immediate neighboring agents to ensure convergence to a
desired solution. We describe the local interaction among
agents using a weight matrix A = [aij]N×N , where aij > 0 if
agent j and agent i can directly communicate with each other,
and aij = 0 otherwise. For an agent i ∈ [N], its neighbor set
Ni is defined as the collection of agents j such that aij > 0.
aii represents self-interaction, i.e., the influence of agent
i’s optimization variable at iteration k on its optimization
variable at iteration k+1. Furthermore, we make the following
assumption on A:

Assumption 1. The matrix A = {aij} ∈ RN×N is symmet-
ric and satisfies 1⊤A = 1⊤, A1 = 1, and ∥A − 11⊤

N
∥ < 1.

Assumption 1 ensures that the interaction graph induced
by A is balanced and connected, i.e., there is a path from
each agent to every other agent.

The optimization problem in [1] can be reformulated as
the following multi-agent optimization problem:

min
x∈RN×d

f(x) = 1
N

N∑
i=1

fi(xi),

s.t. x1 = x2 = · · · = xN ,

[2]

where the matrix x is composed of all the local optimization
variables, i.e., x =

[
x⊤

1 ; x⊤
2 ; . . . ; x⊤

N

]
∈ RN×d.

In this paper, the local objective function fi(xi) and global

2 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bo et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

objective function f(x) can be nonconvex. They are assumed
to satisfy the following conditions:

Assumption 2. Every fi(·) is differentiable and is Li-
Lipschitz as well as ρi-Hessian Lipschitz:

∥∇fi(x1) − ∇fi(x2)∥ ⩽ Li ∥x1 − x2∥, ∀x1, x2 ∈ Rd, [3]

∥∇2fi(x1) − ∇2fi(x2)∥ ⩽ ρi ∥x1 − x2∥, ∀x1, x2 ∈ Rd.
[4]

It can be verified that the global gradient ∇F (θ) =
1
N

∑N

i=1 ∇fi(θ) and Hessian ∇2F (θ) = 1
N

∑N

i=1 ∇2fi(θ) are
L-Lipschitz and ρ-Hessian Lipschitz, with L = 1

N

∑
i
Li and

ρ = 1
N

∑
i
ρi.

As in most existing results on distributed nonconvex
optimization, we assume that the local gradients ∇fi(·) are
bounded:

Assumption 3. There exists a constant G such that
∥∇fi(θ)∥ ⩽ G holds for all θ ∈ Rd and i ∈ [N].

In this paper, we will show that quantization can help
evade saddle points and ensure convergence to second-order
stationary points in distributed nonconvex optimization. To
this end, we first recall the following definitions for first-order
stationary points, saddle points, and second-order stationary
points, which are commonly used in the study of saddle-point
problems:

Definition 1. For a twice differentiable objective function
F (·), we call θ⋆ ∈ Rd a first-order (respt. second-order)
stationary point if ∇F (θ⋆) = 0 (respt. ∇F (θ⋆) = 0 and
λmin(∇2F (θ⋆)) ⩾ 0) holds. Moreover, a first-order stationary
point θ⋆ can be viewed as belonging to one of the three
categories:

• local minimum: there exists a scalar γ > 0 such that
F (θ⋆) ⩽ F (θ) holds for any θ satisfying ∥θ⋆ − θ∥ ⩽ γ;

• local maximum: there exists a scalar γ > 0 such that
F (θ⋆) ⩾ F (θ) holds for any θ satisfying ∥θ⋆ − θ∥ ⩽ γ;

• saddle point: neither of the above two cases is true, i.e.,
for any scalar γ > 0, there exist θ1 and θ2 satisfying
∥θ1 − θ⋆∥ ⩽ γ and ∥θ2 − θ⋆∥ ⩽ γ such that F (θ1) <
F (θ⋆) < F (θ2) holds.

Since distinguishing saddle points from local minima for
smooth functions is NP-hard in general (38), we focus on a
subclass of saddle points, i.e., ϵ−strict saddle points:

Definition 2. (ϵ−strict saddle point and ϵ−second-order
stationary point) For a twice-differentiable function F (·),
we say that θ⋆ ∈ Rd is an ϵ−strict saddle point if 1) θ⋆

is an ϵ−first-order stationary point i.e., ∥∇F (θ⋆)∥ ⩽ ϵ;
and 2) λmin(∇2F (θ⋆)) ⩽ −√

ρϵ, where ρ is the Hessian
Lipschitz parameter in Assumption 2. Similarly, θ⋆ ∈ Rd is
an ϵ−second-order stationary point if 1) θ⋆ is an ϵ−first-order
stationary point, i.e., ∥∇F (θ⋆)∥ ⩽ ϵ and 2) λmin(∇2F (θ⋆)) >
−√

ρϵ.

For a smooth function, a generic saddle point must satisfy
that the minimum eigenvalue of its Hessian is non-positive.
Our consideration of strict saddle points rules out the case
where the minimum eigenvalue of the Hessian is zero. A line of
recent work in the machine learning literature shows that for

many popular models in machine learning, all saddle points
are indeed strict saddle points, with examples ranging from
tensor decomposition (15), dictionary learning (39), smooth
semidefinite programs (40), to robust principal component
analysis (41).

Proposed Algorithm

By exploiting the effects of quantization, we propose a
distributed nonconvex optimization algorithm that can ensure
the avoidance of saddle points and convergence to a second-
order stationary point. The detailed algorithm is summarized
in Algorithm 1.

Algorithm 1 Distributed Optimization with Guaranteed
Saddle-point Avoidance

Initialization: x0
i ∈ Rd for every agent i;

Parameters: Stepsize sequences {εk} and {ηk};

Quantization level ℓ;

for k = 1, 2, ... do

for all i ∈ [N] do

1. Quantize its decision vector xk
i to obtain Qℓ(xk

i)
and send the quantized Qℓ(xk

i) to all neighbor
agents in Ni;
2. Receive Qℓ(xk

j) from neighbor agents j ∈ Ni

and calculate the following estimate of the global
optimization variable:

x̃k+1
i = xk

i + εk

∑
j∈Ni∪{i}

aij(Qℓ(xk
j) − xk

i); [5]

3. Calculate local gradient ∇fi(xk
i) and update

xk+1
i by:

xk+1
i = x̃k+1

i − ηk∇fi(xk
i). [6]

end for

end for

As key components of our approach to evading saddle
points and ensuring convergence accuracy, we propose the
following quantization scheme and stepsize strategy:

Quantization Scheme. Our quantization scheme is inspired
by the QSGD quantization scheme proposed in (25) and
the TernGrad quantization scheme in (24). (Note that
the QSGD and TernGrad schemes were proposed to
quantize gradients, whereas our Algorithm 1 quantizes
optimization variables.) More specifically, at each time
instant, we represent a continuous-valued variable with
a randomized rounding to a set of quantization points
with adjustable discrete quantization levels in a way
that preserves the statistical properties of the original.
However, different from (25), to ensure saddle-point
avoidance, we employ two sets of quantization levels and
purposely switch between the two sets of quantization levels

Bo et al. PNAS — March 14, 2024 — vol. XXX — no. XX — 3

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

Quantization-level set 1 Quantization-level set 2

k = 0:

k = 1:

k = 2m:

k = 2m+1:

. . .

lll

llll -0.5-1.5-2.5-3.5

llll -0.5-1.5-2.5-3.5

llll 3.52.51.50.5

llll 3.52.51.50.50

-2-3 l l2 l3-

lll -2-3 l l2 l3- 0

lll l 0.50.5 2.52.5lll -1.5-1.5

Fig. 1. The proposed quantization scheme with quantization interval ℓ. The star
represents a value to be quantized, and it is located in the quantization interval
of [0, ℓ] under level-set 1 and [0.5ℓ, 1.5ℓ] under level-set 2. At any even-number
iteration (k is even), the star value will be quantized to either 0 or ℓ, with respective
probabilities provided in [7]. At any odd-number iteration (k is odd), the star value
will be quantized to either 0.5ℓ or 1.5ℓ, with respective probabilities given in [8].

in a periodic manner. The detailed scheme is described below:

For any v = [v1, v2, . . . , vd] ∈ Rd,

1. At any even-number iteration (k is even), map
every vi ∈ R onto the quantization level-set:
{· · · , −3ℓ, −2ℓ, −ℓ, 0, ℓ, 2ℓ, 3ℓ, · · · } (which we will re-
fer to “level-set 1” hereafter) as follows:

Qℓ (vi) =
{

nℓ, with probability 1 − p (vi, ℓ)
(n + 1)ℓ, with probability p (vi, ℓ)

[7]
where n ∈ Z is determined by the inequality nℓ ⩽ vi <
(n+1)ℓ, and the probability p (vi, ℓ) is given by p (vi, ℓ) =
vi
ℓ

− n.

2. At any odd-number iteration (k is odd), map
every vi ∈ R onto the quantization level-set:
{· · · , −2.5ℓ, −1.5ℓ, −0.5ℓ, 0.5ℓ, 1.5ℓ, 2.5ℓ, · · · } (which
we will refer to “level-set 2” hereafter) as follows:

Qℓ (vi) =
{

(n′ − 0.5)ℓ, with probability 1 − p′ (vi, ℓ)
(n′ + 0.5)ℓ, with probability p′ (vi, ℓ)

[8]
where n′ ∈ Z is determined by the inequality (n′−0.5)ℓ ⩽
vi < (n′ + 0.5)ℓ, and the probability p′ (vi, ℓ) is given by
p′ (vi, ℓ) = vi

ℓ
− n′ + 0.5.

It is worth noting that compared with existing quantization
schemes such as (25), this periodic switching between two sets
of quantization levels does not introduce extra communication
overheads. However, it avoids the possibility that any
quantization input vi always coincides with an endpoint of a
quantization interval, resulting in a deterministic quantization
output. Namely, for any point v ∈ Rd, it gives two different
representations in the quantized space, which is key to perturb
and avoid the state from staying on undesired saddle points
under a non-zero stepsize (which will be elaborated later).

An instantiation of this quantization scheme is depicted
in Fig. 1. It can be verified that the proposed quantization
scheme satisfies the following properties:

Lemma 1. For any v ∈ Rd, our quantization scheme
Qℓ(v) = [Qℓ (v1) , Qℓ (v2) , ..., Qℓ (vd)] has the following prop-
erties:

1. Unbiased quantization: E [Qℓ(v)] = v,

2. Bounded variance: E
[
∥Qℓ(v) − v∥2]

⩽ dℓ2.

Stepsize Strategy. In addition to purposely employing switch-
ing in the quantization scheme, the stepsizes {εk} and {ηk}
in Algorithm 1 also have to be judiciously designed so as to
evade saddle points and ensure convergence to a second-order
stationary point. Intuitively speaking, in the early stage
where saddle points may trap the optimization process, the
stepsize εk should be large enough to ensure that the switching
quantization-induced perturbation can effectively stir the
evolution of optimization variables. However, to ensure that
the optimization process can converge to an optimal solution,
the quantization effect should gradually diminish, or in other
words, εk should converge to zero. In addition, in distributed
optimization, to ensure that all agents can converge to an
optimal solution without any error, the stepsize ηk also has
to converge to zero (different from the centralized case, in
distributed optimization, a constant stepsize will lead to
optimization errors that are in the order of the stepsize
(2, 42, 43)). Moreover, to ensure that all agents can converge
to the same optimal solution, the stepsize εk should decay
slower than ηk (44–47). To fulfill these requirements, we
design the stepsize sequences {εk} and {ηk} as follows:

1. Choose two positive constants α and β sequentially
that satisfy the following relations: 0.6 < α < 2

3 and
3
2 α < β < 1. And then use these constants to construct
two reference functions c1

1+c2tα and c1
1+c2tβ , where t is

continuous time and c1 and c2 are all positive constants.

2. For any probability p (where 1 − p represents the desired
probability of converging to a second-order stationary
point, which can be chosen to be arbitrarily close to one,
see the statement of Theorem 4 for details) and ϵ > 0
given in Definition 2, select:
t0 ⩾ max{C1, C2, C3}, ti+1 = ti +⌈ 1+c2tα

i
c1

√
ρϵ

⌉ for 1 ⩽ i ⩽ I,

where I = 30 max{ f0−f⋆

Q
,

2(f0−f⋆)εt0
ϵ2ηt0

}.∗

3. The sequences {εk} and {ηk} for ∀k ∈ Z+ are given as
follows:

εk =


c1

1+c2kα , k < t0
c1

1+c2tα
i

, ti ⩽ k < ti+1
c1

1+c2kα , k ⩾ tI

[9]

ηk =


c1

1+c2kβ , k < t0
c1

1+c2t
β
i

, ti ⩽ k < ti+1

c1
1+c2kβ , k ⩾ tI

[10]

∗
C1 = (

4c
2/3
1 (d1+d2)

pc
2/3
2 (1−σ2)

)
3

2α , C2 = (4(f0−f⋆)(d1+d2)2/3(1−σ2)2/3c1
c2pϵ2√

ρϵ
)

1
2α−β ,

C3 = (12ρ(d1+d2)1/6

(1−σ2)1/6√
γ(ρϵ)1/4ℓ

)
1

β−4α/3 , Q = 1
602

√
ϵ3
ρ

, where d1 =

1+(1−σ2)ε0
1−σ2

G2 , d2 = (1 + (1 − σ2)ε0)σ2
2Ndℓ2 , and σ2 is the second largest

eigenvalue of A. f0 is the objective function value at k = 0. f⋆ denotes an estimated lower
bound on the minimum global objective function f(·). For instance, in the matrix factorization
problem where a low-rank matrix U ∈ Rd×r is used to approximate a high-dimension matrix
M⋆ ∈ Rd×d , the objective function is f(U) = 1

2 ∥UU⊤ − M⋆∥2
F and we can use

f⋆ = 0 as the lower bound (48).

4 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bo et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Fig. 2. An illustrative example of the stepsizes. The two solid curves represent two
reference functions which are defined on the continuous time t. The blue and orange
dots represent the values of stepsizes εk and ηk at discrete time instants k (which
are periodic samples of the continuous time t). The time instants t0, t1, t2, t3 are
determined in the second step of the stepsize strategy. Before t0, the descent of the
stepsize sequences is aligned with the reference functions. In intervals [ti, ti+1),
the stepsizes remain constant, as described in the third step of the stepsize strategy.

The setup in [9] and [10] makes the stepsizes εk and ηk

follow a decrease-and-hold pattern, as illustrated in Fig. 2.
The rationale for this design can be understood intuitively
as follows: To ensure that all agents can converge to a
desired optimal solution, the iteration process must fulfill
two objectives simultaneously: 1) ensure the consensual
convergence of all agents to a stationary point; and 2) avoid
saddle points. The “decrease” stages are important to fulfill
the first objective in that the stepsizes εk and ηk are used
to attenuate the quantization error and input heterogeneity
among the agents, respectively, (both of which act as counter-
forces for reaching consensus among all agents’ iterates), and
hence their decrease is key to ensure reaching consensus
among the agents. The “hold” stages are necessary to
accumulate enough stochastic quantization effects to stir the
evolution of optimization variables and ensure saddle-point
avoidance. It is worth noting that the decrease of stepsize ηk

should also be carefully designed in both decreasing speed
and timespan to ensure that sufficient gradient descent can
be carried out to explore the solution space and ensure
convergence to a stationary point. Hence we judiciously
design the stepsize strategy to strike a balance between
accumulating quantization noise to evade saddle points
and attenuating quantization noise to ensure consensual
convergence of all agents to a desired stationary point.

Based on the proposed quantization scheme and stepsize
strategy, we can prove that the proposed Algorithm 1 can
ensure all agents to evade saddle points and converge to
the same second-order stationary point. For convenience of
exposition, we divide the convergence analysis into two parts:
“Consensual convergence to a first-order stationary point” and
“Escaping saddle points and converging to a second-order
stationary point”. We leave all proofs in the Supporting
Information.

Consensual Convergence to a First-order Stationary
Point

We first prove that the proposed algorithm can ensure all
agents to reach consensus on their optimization variables.
For the convenience of analysis, we represent the effect of
quantifying xk

i as adding noise to xk
i , i.e., Qℓ(xk

i) = xk
i + ξk

i ,
where ξk

i is the stochastic quantization error. Using the
iteration dynamics in [5] and [6], we can obtain the following
relationship:

xk+1
i = (1 − εk)xk

i + εkAQℓ(xk
i) − ηk∇fi(xk

i). [11]

By defining xk =
[
(xk

1)⊤; (xk
2)⊤; · · · ; (xk

N)⊤]
∈

RN×d, Ak = (1 − εk)I + εkA, ∇f(xk) =[
∇f⊤

1 (xk
1); ∇f⊤

2 (xk
2); · · · ; ∇f⊤

N (xk
N)

]
∈ RN×d, and

ξk =
[
(ξk

1)⊤; (ξk
2)⊤; · · · ; (ξk

N)⊤]
∈ RN×d, we can recast the

relationship in [11] into the following more compact form:

xk+1 = Akxk + εkAξk − ηk∇f(xk). [12]

Let x̄k be the average of all local optimization variables,
i.e., x̄k = 1

N

∑N

i=1 xk
i . It can be verified that x̄k is equal to

(xk)⊤1
N

, which can be further verified to satisfy the following
relationship based on [12]:

x̄k+1 = x̄k + εk
(ξk)⊤1

N
− ηk

∇f⊤(xk)1
N

. [13]

Define the consensus error between individual agents’ local
optimization variables and the average optimization variable
x̄k as ek := xk − 1(x̄k)⊤. It can be verified that the i-th
row of ek, i.e., ek

i , satisfies ek
i = (xk

i)⊤ − (x̄k)⊤. Using the
algorithm iteration rule described in [5] and [6], we can obtain
the following iteration dynamics for ek:

ek+1 =Akek + εkAW ξk − ηkW ∇f(xk), [14]

where W = I − 11⊤

N
.

Based on the dynamics of consensus errors ek in [14], we
can prove that the consensus error ∥ek∥2 will converge almost
surely to zero, i.e., all xk

i will almost surely converge to the
same value.

Theorem 1. (Consensus of Optimization Variables) Let
Assumptions 1, 2, and 3 hold. Given any probability 0 <
p < 1, Algorithm 1 with our stepsize strategy (which takes
p as input) ensures consensus error less than O

(1
k

) α
3 with

probability at least 1 − p for all k ⩾ t0, where t0 is given in
step 1 and step 2 of the stepsize strategy, respectively:

P
(∥∥ek

∥∥2
⩽ O

(1
k

) α
3

, for all k ⩾ t0

)
⩾ 1 − p. [15]

Moreover, all agents’ optimization variables converge to the
same value almost surely, i.e., the consensus error ∥ek∥
converges almost surely to zero.

Based on the consensus result in Theorem 1, we can further
prove that Algorithm 1 ensures all local optimization variables
to converge to a first-order stationary point under the given
quantization scheme and stepsize strategy:

Bo et al. PNAS — March 14, 2024 — vol. XXX — no. XX — 5

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

Theorem 2. (Converging to a First-order Stationary Point)
Let Assumptions 1, 2, and 3 hold. Given any probability
0 < p < 1, Algorithm 1 with our stepsize strategy (which
takes p as input) ensures that the gradient ∥∇F

(
x̄k

)
∥ will

converge to zero with a probability no less than 1 − p, i.e.,

P
(

lim
k→∞

∥∥∇F
(
x̄k

)∥∥2 = 0
)
⩾ 1 − p. [16]

It is worth noting that due to the employment of εk (which
gradually suppresses the influence of quantization errors) and
the unbiasedness of the quantization scheme (the quantization
error has a mathematical expectation equal to zero), our
algorithm ensures convergence to an exact minimum that has
a zero gradient value (with zero steady-state error). In fact,
the absence of steady-state error under unbiased quantization
has been obtained in the literature such as QSGD (25) and
TernGrad (24).

Escaping Saddle Points and Converging to a Second-
order Stationary Point

According to Definition 2, saddle points are undesirable states
that stall the iteration process. Given that 1) individual
agents’ local optimization variables xk

i quickly converge to
the same value (reach consensus) according to Theorem 1;
and 2) before reaching consensus, inter-agent interaction
acts as an additional force (besides the gradient) to keep
individual states xk

i evolving and hence to avoid them from
being trapped at any fixed value, we can only consider the
saddle-point problem when the states are consensual. In fact,
even after all states have reached consensus, since the force
brought by inter-agent iteration diminishes at a slower rate
than the driven force of the gradient (εk decays slower than
ηk in our stepsize strategy), the quantized interaction will
have enough perturbations on individual agents’ optimization
variables to efficiently avoid them from being trapped at any
saddle point. Formally, we can prove the following results:

Theorem 3 (Escaping Saddle Points). Let Assumptions 1, 2,
and 3 hold. Given any probability 0 < p < 1, Algorithm 1 with
our stepsize strategy (which takes p as input) ensures that any
“holding stage” in the stepsize strategy reduces the objective
function by a substantial amount. More specifically, for any
i ∈ {1, 2, . . . I}, after no more than K = O(1

εti

√
ρϵ

) iterations
with the stepsizes held at {εti , ηti }, Algorithm 1 ensures that
with a substantial probability, the objective function has a
significant decrease, i.e.,

P
(
F

(
x̄ti+K

)
− F

(
x̄ti

)
⩽ −Q

)
⩾

1
3 − p, [17]

where Q is a constant satisfying Q = O
(√

ϵ3
ρ

)
.

It is worth noting that although the inter-agent interaction
(after quantization) can perturb individual agents’ optimiza-
tion variables from staying at any fixed point in the state
space, it cannot ensure escaping from a saddle point since
the state may evolve in and out of the neighborhood of a
saddle point. To facilitate escaping from saddle points, we
have to make full use of the existence of descending directions
at strict saddle points. More specifically, in our design of
the quantization scheme and stepsize strategy, we exploit
random quantization to ensure that perturbations exist in

every direction and use switching quantization levels to ensure
that the amplitude of such perturbations is persistent. To
ensure a sufficient integration of the perturbation effect into
the iterative dynamics and make it last long enough to evade
a saddle point, we hold the stepsizes εk and ηk constant for
a judiciously calculated period of time (see Fig. 2).

In fact, besides evading a saddle point, Theorem 3
establishes that in each “holding stage” where the stepsizes
εk and ηk are held constant, the algorithm is guaranteed
to decrease in the function value for a significant amount.
Therefore, if we can have an estimation of a lower bound on
the optimal function value f⋆, we can repeat this holding
stage multiple times to ensure avoidance of all potentially
encountered saddle points, and hence, to ensure convergence
to a second-order stationary point.

In practice, during the algorithm’s iterations, encountered
points can be classified into two categories: points with
relatively large gradients ∥∇F (x̄)∥ > ϵ and points with small
gradients ∥∇F (x̄)∥ ⩽ ϵ, i.e., saddle points. We can prove
that within the tI iterations defined in the stepsize strategy,
the algorithm will encounter a second-order stationary point
at least once:
Theorem 4. (Converging to a Second-order Stationary
Point) Let Assumptions 1, 2, and 3 hold. For any ϵ > 0
and any given probability 0 < p < 1, our stepsize strategy
(which takes p as input) ensures that Algorithm 1 will visit an
ϵ−second-order stationary point at least once with probability
at least 1 − p in tI iterations stated in the stepsize strategy.

From the derivation of Theorem 4 in the Supporting
Information, we can obtain that it takes the following number
of iterations to find an ϵ−second-order stationary point:

O
(

1
ϵ2 max

{
(Ndℓ2)

3
2α , ((Ndℓ2) 2

3

ϵ2.5)
1

2α−β , ((Nd)1/6

ϵ1/4ℓ2/3)
1

β−4α/3

})
,

[18]
where N is the number of agents participating in the dis-
tributed optimization, d is the dimension of the optimization
variable, ℓ is the size of the quantization interval, and α and β
are the parameters in stepsizes εk and ηk, respectively (note
that 2α > β > 4

3 α holds according to our stepsize strategy).
Therefore, the computational complexity of our algorithm
increases polynomially with increases in the network size
N and the dimension of optimization variation d. It is
worth noting that the computational complexity does not
increase monotonically with the size of the quantization
interval ℓ: both a too small ℓ and a too large ℓ lead to a high
computational complexity. This is understandable since a too
small quantization interval ℓ leads to too small quantization
errors to stir the evolution of optimization variables, which
makes it hard to evade saddle points; whereas a too large
quantization interval ℓ results in too much noise injected into
the system, which is also detrimental to the convergence of
all agents to a stationary point.

Experiments

In this section, we evaluate the performance of the proposed
algorithm in five nonconvex-optimization application
examples with different scales and complexities. In all five
experiments, we consider five agents interacting on the
topology depicted in Fig. 3.

6 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bo et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

Agent 1

Agent 2

Agent 3 Agent 4

Agent 5

0.6

0.2

0.8 0.3

0.3

0.2

0.4

0.1

0.6 0.3

Fig. 3. Interaction weights of five agents

Binary Classification. In this experiment, we consider a simple
{0, 1} – classification neural network with a single linear
hidden layer and a logistic activation function. We use the
cross-entropy loss function to train the network (see (49) for
details). We denote the feature vector as h ∈ RM and the
binary class label as y ∈ {−1, 1}. For the fully connected
hidden layer, we represent the weights as W 2 ∈ RL×M and
W 1 ∈ RL. The output is of the form:

ŷ = 1
1 + e−⟨h,W ⊤

2 W 1⟩ [19]

Under the commonly used cross-entry loss function, the
objective function is of the following form:

L (W 1, W 2) = log
(

1 + e−y⟨h,W ⊤
2 W 1⟩

)
[20]

To visualize the evolution of optimization variables under
our algorithm, we consider the scalar case with L = M = 1
and plot the expected loss function (with regulation) in Fig. 4:

F (w1, w2) = E [L (w1, w2)] + ρ

2
(
∥ w1 ∥2 + ∥ w2 ∥2)

[21]

When the training samples satisfy E [yh] = 1 and the
regularization parameter is set to ρ = 0.1, it becomes
apparent that (w1, w2) = (0, 0) is a saddle point. We can also
verify that this saddle point is a strict saddle point since its
Hessian has a negative eigenvalue of −0.4. In our numerical
experiment, we purposely initialize all the agents from the
strict saddle point (0, 0), and plot in Fig. 4 the evolution of
each agent under stepsize parameters α = 0.62, β = 0.94,
c1 = 0.03, and c2 = 0.3. It can be seen that due to the
quantization effect, all five agents collectively move along
the descending direction, implying that our algorithm can
effectively evade saddle points.

Matrix Factorization. In this experiment, we consider the
‘Matrix Factorization’ problem using the ‘MovieLen 100K’
dataset and compare the performance of the proposed
algorithm with a commonly used algorithm in (50). In the
matrix factorization problem, given a matrix A ∈ Rm×n

and r < min{m, n}, the goal is to find two matrices U ∈
Rm×r and V ∈ Rn×r such that F (U , V) = ∥UV ⊤−A∥2

F
2 is

minimized. However, due to the invariance property (51), the
matrix factorization problem cannot be considered strongly

Fig. 4. Trajectories of all five agents when initialized on the saddle point (0,0). Note
that all trajectories overlap with each other, implying perfect consensus among the
agents.

0 2000 4000 6000 8000 10000

Iteration

101

102

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

DGD

Algorithm 1

Fig. 5. Comparison of the objective function value between the proposed Algorithm
1 and the existing algorithm DGD in (50).

convex (or even convex) in any local neighborhood around
its minima. In our numerical experiments, we implement
both our algorithm and the algorithm in (50). In order to
ensure a fair comparison, both algorithms share the same set
of learning rates (α = 0.62, β = 0.94, c1 = 0.3, c2 = 0.3). For
the quantization scheme, we chose ℓ such that all quantized
outputs are representable using a binary string of 9 bits. We
spread the data evenly across the five agents.

Fig. 5 shows the evolution of the objective function values
under our algorithm and the existing algorithm DGD in
(50), respectively. It is clear that our algorithm gives a much
smaller cost value. To show that this is indeed due to different
convergence properties between our algorithm and DGD, in
Fig. 6, we plot the distance between learned parameters
and the global optimal parameter, which is obtained using
centralized optimization. It is clear that our algorithm indeed
converges to a much better solution than DGD, likely due to
its ability to evade saddle points.

Convolutional Neural Network. For this experiment, we con-
sider the training of a convolutional neural network (CNN)
for the classification of the CIFAR-10 dataset, which contains
50,000 training images across 10 different classes. We evenly
spread the CIFAR-10 dataset to the five agents, and set
the batch size as 32. Our baseline CNN architecture is a
deep network ResNet-18, the training of which is a highly
nonconvex problem characterized by the presence of many

Bo et al. PNAS — March 14, 2024 — vol. XXX — no. XX — 7

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

0 2 4 6 8 10

Iteration 104

102

103

D
is

ta
n
c
e
 (

lo
g
)

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

Fig. 6. Comparison of the distance between learned parameters and the
actual optimal solution x∗ (obtained using centralized optimization). The learned
parameters in our algorithm are represented as xAlg1, and the learned parameters
in the existing algorithm DGD are represented by xDGD . It can be seen that our
algorithm does converge to a better solution than DGD.

200 400 600 800 1000 1200 1400 1600 1800 2000

Epoch

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ra

in
in

g
 A

c
c
u
ra

c
y

Algorithm 1

CDSGD

Fig. 7. Comparison of training accuracy between the proposed algorithm and a
commonly used algorithm CDSGD from (52).

0 500 1000 1500 2000

Epoch

0

0.2

0.4

0.6

0.8

1

1.2

L
o
s
s
 v

a
lu

e

Algorithm 1

CDSGD

Fig. 8. Comparison of loss function value between the proposed algorithm and a
commonly used algorithm CDSGD from (52).

saddle points (16). In the experiments, we train the CNN
using both the proposed Algorithm 1 and the decentralized
optimization algorithm CDSGD proposed in (52). In order
to ensure fairness in comparison, both algorithms use the
same set of learning rates (α = 0.62, β = 0.94, c1 = 0.5,
c2 = 0.3). The quantization interval ℓ is set such that all
quantized outputs are representable using a binary string of
10 bits.

The evolution of the training accuracies and loss-function
values averaged over 10 runs are illustrated in Fig. 7 and Fig. 8,
respectively. It is evident that Algorithm 1 achieves lower
loss function values more rapidly compared to CDSGD. This
difference indicates that controlled quantization effects in our
algorithm can aid in evading saddle points and discovering
better function values.

Tensor Decomposition. In this experiment, we consider
Tucker tensor decomposition on the neural dataset in (53).
For N neurons over K experimental trials, when each trial
has T time samples, the recordings of firing activities can be
represented as an N × T × K array, which is also called a
third-order tensor (54). Each element in this tensor, xn,t,k,
denotes the firing rate of neuron n at time t within trial k.
Tucker tensor decomposition decomposes a tensor into a core
tensor multiplied by a matrix along each mode. Following
(54), we consider the tensor decomposition problem for a
tensor recording X ∈ R50×500×100 of neural firing activities:

X ≈ T ×1 A×2 B ×3 C =
N∑

n=1

T∑
t=1

K∑
k=1

tn,k,tan ◦ bt ◦ ck, [22]

where ◦ represents the vector outer product, ×i (with i =
{1, 2, 3}) denotes the i-mode matrix product, T ∈ R5×5×5

is the core tensor, and A ∈ R50×5, B ∈ R500×5 and C ∈
R100×5 are the three factors for Tucker decomposition. The
goal of tensor decomposition is to minimize the normalized
reconstruction error E =

(
∥ X − T ×1 A ×2 B ×3 C ∥2

F

)
/ ∥

X ∥2
F , where the subscript F denotes the Frobenius norm.

It is well known that the tensor decomposition problem is
inherently susceptible to the saddle point issue (15).

We implement both the DGD algorithm in (50) and our
Algorithm 1 to solve the tensor decomposition problem. For
the DGD algorithm, we use the largest constant stepsize that
can still ensure convergence, and for our algorithm, we set
the stepsize parameters as α = 0.61, β = 0.92, c1 = 0.03,
and c2 = 0.3. The quantization interval ℓ is set such that all
quantized outputs are representable using a binary string of
6 bits.

The evolution of the reconstruction error for the two
algorithms under 50 runs is shown in Fig. 9. It is clear
that our algorithm finds better optimization solutions by
effectively evading saddle points.

Robust Principal Component Analysis (PCA). In this exper-
iment, we consider the problem of background subtraction
in computer vision using robust PCA. Compared with the
conventional PCA, robust PCA can provide a low-dimensional
approximation that is more robust to outliers in data samples.
For a given sequence of images (video), we employ robust
PCA to separate moving objectives in the video from the
static background. More specifically, for a given sequence
of images represented as a data matrix M ∈ Rm×n, we

8 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bo et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

0 2 4 6 8 10

Iteration 10
4

10
-2

10
-1

10
0

10
1

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

(l
o
g
)

DGD

Algorithm 1

Fig. 9. Comparison of reconstruction error in tensor decomposition between the
proposed Algorithm 1 and the existing algorithm DGD in (50).

use robust PCA to decompose M into a low-rank matrix
UV ⊤ (representing the background) and a sparse matrix S
(representing moving objects), where U ∈ Rm×r, V ∈ Rn×r,
S ∈ Rm×n and r ≪ min{m, n}. Mathematically, the problem
can be formulated as the following optimization problem (55):

min
U,V

f(U , V) + µ2∥U⊤U − V ⊤V ∥2
F ,

f(U , V) = min
S∈Sᾱ

1
2∥UV ⊤ + S − M∥2

F ,
[23]

where µ2 is a constant and Sᾱ represents the set of matrices
with at most ᾱ−fraction of nonzero entries in every column
and every row.

In our experiment, we use the “WallFlower” datasets from
Microsoft (56). We randomly assign 200 image frames with
56 × 56 pixels to each agent, resulting in the data matrix
M i of agent i being of dimensions m = 9408 and n = 200.
We set µ2 to 0.01, ᾱ = 0.2, and r = 30, and then solve [23]
using the gradient descent based algorithm (“Fast RPCA”)
in (57). Fast RPCA employs a sorting-based estimator to
generate an initial estimate S0 and then it employs singular
value decomposition to generate the corresponding initial
values of U0 and V 0. Fast RPCA alternates between taking
gradient steps for U and V , and computing a sparse estimator
to adjust S. In the experiment, we use the best constant
stepsize that we can find for Fast RPCA (the largest stepsize
that can still ensure convergence). For our algorithm, we set
the stepsize parameters as α = 0.61, β = 0.92, c1 = 0.003,
and c2 = 0.3. The quantization interval ℓ is set such that all
quantized outputs are representable using a binary string of
5 bits.

Fig. 10 shows the evolutions of the reconstruction error
E =

∑N

i=1 ∥M i − U iV
⊤
i − Si∥/∥M i∥2

F under our algorithm
and Fast RPCA in (57), respectively. It is clear that our
algorithm is capable of identifying superior solutions that
yield a smaller reconstruction error. This implies that our
algorithm can locate more favorable stationary points by
effectively avoiding strict saddle points (it has been proven
in (15) that all saddle points in robust PCA are strict saddle
points).

Discussions

On Comparison with Other Stepsize Strategies. To test if
our stepsize strategy leads to a reduced convergence speed

0 500 1000 1500 2000 2500 3000

Iteration

10
-1

10
0

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

(l
o
g
)

Fast RPCA

Algorithm 1

Fig. 10. Comparison of the reconstruction error in Robust PCA between the
proposed Algorithm 1 and the existing algorithm Fast RPCA in (57).

compared with existing counterparts which do not consider
saddle-point avoidance, we also conduct experiments using
the tensor decomposition problem to compare the convergence
speed under our stepsize strategy, the constant stepsize
strategy, a random stepsize strategy, and the conventional
diminishing stepsize strategy. For the constant stepsize case,
we use the largest constant stepsize that does not lead to
divergence, and for the random stepsize strategy, we select the
stepsize values in the “hold” stages of our approach randomly
from the reference functions 0.03

1+0.3t0.61 and 0.03
1+0.3t0.92 . For

the diminishing stepsize case, we use the reference functions
as the stepsizes, which are commonly used in distributed
optimization. The simulation results in Fig. S1 of the
Supporting Information show that our algorithm can provide
similar or even faster convergence speeds, and hence show that
our approach does not trade convergence speed for saddle-
point avoidance.

On Comparison with the Log-scale Quantization. It is worth
noting that recently (58) and (59) propose to use log-scale
quantization in distributed optimization and prove that accu-
rate convergence can be ensured when the objective functions
are convex. However, the log-scale quantization scheme is
not appropriate for the saddle-point avoidance problem in
distributed nonconvex optimization. This is because to enable
saddle-point avoidance, we have to keep the magnitude of
quantization error large enough to perturb the optimization
variable, no matter what the value of the optimization variable
is (because we do not know where the saddle-point is). In
fact, this is why we introduce the periodic switching between
two sets of quantization levels in our quantization scheme
(to avoid the possibility that a quantization input coincides
with an endpoint of a quantization interval and results in a
zero quantization error). However, the log-scale quantization
scheme results in a quantization error that can be arbitrarily
small when the quantization input is arbitrarily close to zero,
meaning that the quantization-induced perturbation becomes
negligible when the quantization input is close to zero, making
it inappropriate for saddle-point avoidance. In fact, our
experimental results using the binary classification problem
in Fig. S2 of the Supporting Information also confirm that
the log-scale quantization scheme cannot provide comparable
performance with our proposed quantization scheme.

Bo et al. PNAS — March 14, 2024 — vol. XXX — no. XX — 9

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

On Applicability to High-Order Optimization Methods. Given
that additive noises have been proven effective in evading
saddle points in second-order optimization algorithms as well
(see, e.g., (60)), our quantization effect based approach is
well positioned to help saddle-point avoidance in second-
order nonconvex optimization algorithms. To confirm this
point, we apply the quantization scheme to second-order
Newton-method based distributed optimization for the binary
classification problem (see details in the section “Experimen-
tal Results Based on the Newton Method” on page 19 of
the Supporting Information). The results in Fig. S3 in
the Supporting Information confirm that our quantization
scheme does significantly enhance the quality of the solution
by evading saddle points compared with the case without
quantization effects. We plan to systematically investigate
exploiting quantization effects in high-order optimization
algorithms to evade saddle points in future work.

On Relaxing the Smoothness Assumption. In the theoretical
analysis, we assume that the objective functions are Lipschitz
continuous. Given that “generalized gradients” (61) have been
proven effective to address non-smooth objective functions
in convex optimization, it is tempting to investigate if the
generalized gradient approach can be exploited to address
nonconvex and non-smooth objective functions. Unfortu-
nately, (62) proves that in general nonconvex and non-smooth
optimization, for any ϵ ∈ [0, 1), there is a more than 50%
probability that an ϵ-first-order-stationary point (defined in
the sense of the generalized gradient, usually called Clarke
stationary point) can never be found by any finite-time
algorithm. In future work, we plan to explore if some

subclasses of nonconvex and non-smooth objective functions
can be addressed using the generalized gradient approach.

Conclusions

Saddle-point avoidance is a fundamental problem in noncon-
vex optimization. Compared with the centralized optimiza-
tion case, saddle-point avoidance in distributed optimization
faces unique challenges due to the fact that individual agents
can only access local gradients, which may be significantly
different from the global gradient (which actually carries
information about saddle points). We show that quantization
effects, which are unavoidable in any digital communications,
can be exploited without additional cost to evade saddle
points in distributed nonconvex optimization. More specif-
ically, by judiciously co-designing the quantization scheme
and the stepsize strategy, we propose an algorithm that can
ensure saddle-point avoidance and convergence to second-
order stationary points in distributed nonconvex optimization.
Given the widespread applications of distributed nonconvex
optimization in numerous engineered systems and deep
learning, the results are expected to have broad ramifications
in various fields involving nonconvex optimization. Numerical
experimental results using distributed optimization and
learning applications on benchmark datasets confirm the
effectiveness of the proposed algorithm.

ACKNOWLEDGMENTS. The work was supported in part by the
National Science Foundation under Grants CCF-2106293, CCF-
2215088, and CNS-2219487.

1. D Bertsekas, J Tsitsiklis, Parallel and distributed computation: numerical methods. (Athena
Scientific), (2015).

2. A Nedić, A Ozdaglar, Distributed subgradient methods for multi-agent optimization. IEEE
Transactions on Autom. Control. 54, 48–61 (2009).

3. A Nedić, A Ozdaglar, PA Parrilo, Constrained consensus and optimization in multi-agent
networks. IEEE Transactions on Autom. Control. 55, 922–938 (2010).

4. K Srivastava, A Nedić, Distributed asynchronous constrained stochastic optimization. IEEE
J. Sel. Top. Signal Process. 5, 772–790 (2011).

5. W Shi, Q Ling, G Wu, W Yin, Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM J. on Optim. 25, 944–966 (2015).

6. J Xu, S Zhu, YC Soh, L Xie, Convergence of asynchronous distributed gradient methods
over stochastic networks. IEEE Transactions on Autom. Control. 63, 434–448 (2017).

7. G Qu, N Li, Harnessing smoothness to accelerate distributed optimization. IEEE
Transactions on Control. Netw. Syst. 5, 1245–1260 (2017).

8. R Xin, UA Khan, A linear algorithm for optimization over directed graphs with geometric
convergence. IEEE Control. Syst. Lett. 2, 315–320 (2018).

9. W Shi, Q Ling, K Yuan, G Wu, W Yin, On the linear convergence of the ADMM in
decentralized consensus optimization. IEEE Transactions on Signal Process. 62,
1750–1761 (2014).

10. C Zhang, M Ahmad, Y Wang, ADMM based privacy-preserving decentralized optimization.
IEEE Transactions on Inf. Forensics Secur. 14, 565–580 (2018).

11. G Tychogiorgos, A Gkelias, KK Leung, A non-convex distributed optimization framework and
its application to wireless ad-hoc networks. IEEE Transactions on Wirel. Commun. 12,
4286–4296 (2013).

12. KI Tsianos, S Lawlor, MG Rabbat, Consensus-based distributed optimization: Practical
issues and applications in large-scale machine learning in 2012 50th Annual Allerton
Conference on Communication, Control, and Computing. (IEEE), pp. 1543–1550 (2012).

13. M Fazel, R Ge, S Kakade, M Mesbahi, Global convergence of policy gradient methods for
the linear quadratic regulator in International Conference on Machine Learning. (PMLR), pp.
1467–1476 (2018).

14. K Zhang, B Hu, T Başar, Policy optimization for H 2 linear control with H ∞ robustness
guarantee: Implicit regularization and global convergence. SIAM J. on Control. Optim. 59,
4081–4109 (2021).

15. R Ge, F Huang, C Jin, Y Yuan, Escaping from saddle points—online stochastic gradient for
tensor decomposition in Conference on Learning Theory. (PMLR), pp. 797–842 (2015).

16. YN Dauphin, et al., Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. Adv. Neural Inf. Process. Syst. 27 (2014).

17. A Choromanska, M Henaff, M Mathieu, GB Arous, Y LeCun, The loss surfaces of multilayer
networks in Artificial Intelligence and Statistics. (PMLR), pp. 192–204 (2015).

18. Y Nesterov, BT Polyak, Cubic regularization of Newton method and its global performance.
Math. Program. 108, 177–205 (2006).

19. FE Curtis, DP Robinson, M Samadi, A trust region algorithm with a worst-case iteration
complexity of O(ϵ−3/2) for nonconvex optimization. Math. Program. 162, 1–32 (2017).

20. Z Tang, S Shi, X Chu, W Wang, B Li, Communication-efficient distributed deep learning: A
comprehensive survey. arXiv preprint arXiv:2003.06307 (2020).

21. SS Du, et al., Gradient descent can take exponential time to escape saddle points. Adv.
Neural Inf. Process. Syst. 30 (2017).

22. JD Lee, M Simchowitz, MI Jordan, B Recht, Gradient descent only converges to minimizers
in Conference on Learning Theory. (PMLR), pp. 1246–1257 (2016).

23. A Daneshmand, G Scutari, V Kungurtsev, Second-order guarantees of distributed gradient
algorithms. SIAM J. on Optim. 30, 3029–3068 (2020).

24. W Wen, et al., Terngrad: Ternary gradients to reduce communication in distributed deep
learning. Adv. Neural Inf. Process. Syst. 30 (2017).

25. D Alistarh, D Grubic, J Li, R Tomioka, M Vojnovic, QSGD: Communication-efficient SGD via
gradient quantization and encoding. Adv. Neural Inf. Process. Syst. 30 (2017).

26. A Kashyap, T Başar, R Srikant, Quantized consensus. 2006 IEEE Int. Symp. on Inf. Theory
pp. 635–639 (2006).

27. MG Rabbat, RD Nowak, Quantized incremental algorithms for distributed optimization.
IEEE J. on Sel. Areas Commun. 23, 798–808 (2005).

28. M El Chamie, J Liu, T Başar, Design and analysis of distributed averaging with quantized
communication. IEEE Transactions on Autom. Control. 61, 3870–3884 (2016).

29. J Wang, N Elia, A control perspective for centralized and distributed convex optimization in
2011 50th IEEE Conference on Decision and Control and European Control Conference.
(IEEE), pp. 3800–3805 (2011).

30. M Zhu, S Martı́nez, On distributed convex optimization under inequality and equality
constraints. IEEE Transactions on Autom. Control. 57, 151–164 (2011).

31. SS Kia, J Cortés, S Martı́nez, Distributed convex optimization via continuous-time
coordination algorithms with discrete-time communication. Automatica 55, 254–264 (2015).

32. L Su, NH Vaidya, Fault-tolerant multi-agent optimization: optimal iterative distributed
algorithms in Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing. pp. 425–434 (2016).

33. Q Jia, W Chen, Y Zhang, H Li, Fault reconstruction and fault-tolerant control via learning
observers in takagi–sugeno fuzzy descriptor systems with time delays. IEEE Transactions
on Ind. Electron. 62, 3885–3895 (2015).

34. Y Wang, B Jiang, ZG Wu, S Xie, Y Peng, Adaptive sliding mode fault-tolerant fuzzy tracking
control with application to unmanned marine vehicles. IEEE Transactions on Syst. Man,
Cybern. Syst. 51, 6691–6700 (2020).

35. A Koloskova, SU Stich, M Jaggi, Decentralized stochastic optimization and gossip
algorithms with compressed communication in International Conference on Machine
Learning. (PMLR), Vol. 97, pp. 3479–3487 (2019).

10 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bo et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

36. K Yuan, et al., Revisiting optimal convergence rate for smooth and non-convex stochastic
decentralized optimization. Adv. Neural Inf. Process. Syst. 35, 36382–36395 (2022).

37. J Zeng, W Yin, On nonconvex decentralized gradient descent. IEEE Transactions on Signal
Process. 66, 2834–2848 (2018).

38. Y Nesterov, Squared functional systems and optimization problems in High Performance
Optimization. (Springer), pp. 405–440 (2000).

39. J Sun, Q Qu, J Wright, Complete dictionary recovery over the sphere I: Overview and the
geometric picture. IEEE Transactions on Inf. Theory 63, 853–884 (2017).

40. N Boumal, V Voroninski, A Bandeira, The non-convex burer-monteiro approach works on
smooth semidefinite programs. Adv. Neural Inf. Process. Syst. 29 (2016).

41. R Ge, C Jin, Y Zheng, No spurious local minima in nonconvex low rank problems: A unified
geometric analysis in International Conference on Machine Learning. (PMLR), pp.
1233–1242 (2017).

42. S Vlaski, AH Sayed, Distributed learning in non-convex environments—part II: Polynomial
escape from saddle-points. IEEE Transactions on Signal Process. 69, 1257–1270 (2021).

43. A Reisizadeh, A Mokhtari, H Hassani, R Pedarsani, An exact quantized decentralized
gradient descent algorithm. IEEE Transactions on Signal Process. 67, 4934–4947 (2019).

44. Y Wang, A Nedić, Tailoring gradient methods for differentially-private distributed
optimization. IEEE Transactions on Autom. Control. (2023).

45. Y Wang, Ensure differential privacy and convergence accuracy in consensus tracking and
aggregative games with coupling constraints. arXiv preprint arXiv:2210.16395 (2022).

46. Y Wang, HV Poor, Decentralized stochastic optimization with inherent privacy protection.
IEEE Transactions on Autom. Control. 68, 2293–2308 (2022).

47. TT Doan, ST Maguluri, J Romberg, Convergence rates of distributed gradient methods
under random quantization: A stochastic approximation approach. IEEE Transactions on
Autom. Control. 66, 4469–4484 (2020).

48. C Jin, R Ge, P Netrapalli, SM Kakade, MI Jordan, How to escape saddle points efficiently in
International Conference on Machine Learning. (PMLR), pp. 1724–1732 (2017).

49. S Vlaski, AH Sayed, Distributed learning in non-convex environments—part I: Agreement at
a linear rate. IEEE Transactions on Signal Process. 69, 1242–1256 (2021).

50. K Yuan, Q Ling, W Yin, On the convergence of decentralized gradient descent. SIAM J. on
Optim. 26, 1835–1854 (2016).

51. Z Zhu, Q Li, G Tang, MB Wakin, The global optimization geometry of low-rank matrix
optimization. IEEE Transactions on Inf. Theory 67, 1308–1331 (2021).

52. Z Jiang, A Balu, C Hegde, S Sarkar, Collaborative deep learning in fixed topology networks.
Adv. Neural Inf. Process. Syst. 30 (2017).

53. M Bashiri, A short tutorial on implementing canonical polyadic (cp) tensor decomposition in
python (https://github.com/mohammadbashiri/tensor-decomposition-in-python) (2019).

54. AH Williams, et al., Unsupervised discovery of demixed, low-dimensional neural dynamics
across multiple timescales through tensor component analysis. Neuron 98, 1099–1115
(2018).

55. S Ma, NS Aybat, Efficient optimization algorithms for robust principal component analysis
and its variants. Proc. IEEE 106, 1411–1426 (2018).

56. Test images for wallflower paper
(https://www.microsoft.com/en-us/download/details.aspx?id=54651) (2017).

57. X Yi, D Park, Y Chen, C Caramanis, Fast algorithms for robust PCA via gradient descent.
Adv. Neural Inf. Process. Syst. 29 (2016).

58. M Doostmohammadian, et al., Distributed anytime-feasible resource allocation subject to
heterogeneous time-varying delays. IEEE Open J. Control. Syst. 1, 255–267 (2022).

59. M Doostmohammadian, et al., Fast-convergent anytime-feasible dynamics for distributed
allocation of resources over switching sparse networks with quantized communication links
in 2022 European Control Conference (ECC). (IEEE), pp. 84–89 (2022).

60. S Paternain, A Mokhtari, A Ribeiro, A Newton-based method for nonconvex optimization
with fast evasion of saddle points. SIAM J. on Optim. 29, 343–368 (2019).

61. J Cortes, Discontinuous dynamical systems. IEEE Control. Syst. Mag. 28, 36–73 (2008).
62. J Zhang, H Lin, S Jegelka, S Sra, A Jadbabaie, Complexity of finding stationary points of

nonconvex nonsmooth functions in International Conference on Machine Learning. (PMLR),
pp. 11173–11182 (2020).

Bo et al. PNAS — March 14, 2024 — vol. XXX — no. XX — 11

https://github.com/mohammadbashiri/tensor-decomposition-in-python
https://www.microsoft.com/en-us/download/details.aspx?id=54651

