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Quantization Avoids Saddle Points in Distributed
Optimization
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Distributed nonconvex optimization underpins key functionalities of numerous distributed
systems, ranging from power systems, smart buildings, cooperative robots, vehicle networks
to sensor networks. Recently, it has also merged as a promising solution to handle the
enormous growth in data and model sizes in deep learning. A fundamental problem
in distributed nonconvex optimization is avoiding convergence to saddle points, which
significantly degrade optimization accuracy. We discover that the process of quantization,
which is necessary for all digital communications, can be exploited to enable saddle-point
avoidance. More specifically, we propose a stochastic quantization scheme and prove
that it can effectively escape saddle points and ensure convergence to a second-order
stationary point in distributed nonconvex optimization. With an easily adjustable quantization
granularity, the approach allows a user to control the number of bits sent per iteration and,
hence, to aggressively reduce the communication overhead. Numerical experimental results
using distributed optimization and learning problems on benchmark datasets confirm the
effectiveness of the approach.

Quantization | Saddle-point Avoidance | Distributed Nonconvex Optimization

With the unprecedented advances in embedded electronics and communication
technologies, cooperation or coordination has emerged as a key feature in numerous
engineered systems such as smart grids, intelligent transportation systems, coopera-
tive robots, cloud computing, and smart cities. This has spurred the development of
distributed algorithms in which spatially distributed computing devices (hereafter
referred to as agents), communicating over a network, cooperatively solve a task
without resorting to a central coordinator/mediator that aggregates all data in
the network. Many of these distributed algorithms boil down to the following
distributed optimization problem:

min
θ∈Rd

F (θ) = 1
N

N∑
i=1

fi(θ), [1]

where fi(·) : Rd → R denotes the local objective function private to agent i,
F (·) : Rd → R is the global objective function representing the network-level cost
to be minimized cooperatively by all participating agents, and N is the number of
agents.

Initially introduced in the 1980s in the context of parallel and distributed
computation (1), the above distributed optimization problem has received intensive
interest in the past decade due to the surge of smart systems and deep learning
applications (2, 3). So far, plenty of approaches have been proposed to solve
the above distributed optimization problem, with some of the commonly used
approaches including gradient methods (see, e.g., (2, 4–8)), distributed alternating
direction method of multipliers (see, e.g., (9)), and distributed Newton methods
(see, e.g., (10)).

However, most of these approaches focus on convex objective functions, whereas
results are relatively sparse for nonconvex objective functions. In fact, in many
applications, the objective functions are essentially nonconvex. For example, in
the resource allocation problem of communication networks, the utility functions
are nonconvex when the communication traffic is non-elastic (11); in most machine
learning applications, the objective functions are nonconvex due to the presence
of multi-layer neural networks (12); in policy optimization for linear-quadratic
regulators (13) as well as for robust and risk-sensitive control (14), nonconvex
optimization naturally arises.

In nonconvex optimization, oftentimes, the most fundamental problem is
to avoid saddle points (stationary points that are not local extrema). For
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example, in machine learning applications, it has been
shown that the main bottleneck in parameter optimization
is not due to the existence of multiple local minima but the
existence of many saddle points that trap gradient updates
(15). The problem of saddle points is more acute in deep
neural networks, where saddle points are usually encircled
by high-error plateaus, exerting substantial deceleration on
the learning process while engendering a deceptive semblance
of the presence of a local minimum (16, 17). To escape
saddle points, classical approaches resort to second-order
information, in particular, the Hessian matrix of second-order
derivatives (see, e.g., (18, 19)). The Hessian matrix-based
approach, however, incurs high costs in both computation and
storage. This is because the dimension of the Hessian matrix
increases quadratically with an increase in the optimization-
variable dimension, which can scale to hundreds of millions
in modern deep learning applications (20). Recently, random
perturbations of first-order gradient methods have been shown
capable of escaping saddle points in centralized optimization
(see, e.g., (15, 21)). However, it is unclear if this is still
true in decentralized nonconvex optimization, where the
decentralized architecture brings in fundamental differences
in optimization dynamics. For example, in decentralized
optimization, the saddle points of individual local objective
functions fi(·) are different from those of the global objective
function F (·), which is the only function that needs to be
considered in centralized optimization. In fact, in distributed
optimization, all local objective functions fi(·) are private
to individual agents, preventing any single agent from
accessing the global objective function F (·) and further from
exploiting the gradient/Hessian information of F (·) in its
local iteration to avoid the saddle points of F (·). In addition,
the inter-agent coupling also complicates the optimization
dynamics. Note that random algorithm initialization has
been shown to be able to asymptotically avoid saddle points
in centralized nonconvex optimization (22), which has been
further extended to the decentralized case in (23). However,
the result in (21) shows that this approach to avoiding saddle
points may take an exponentially longer time, rendering it
impractical.

In this paper, we propose to exploit the effects of quantiza-
tion, which are naturally inherent to all digital communication
methods, to evade saddle points in distributed nonconvex
optimization. The process of quantization is necessary in
all modern communications to represent continuous-valued
variables with a smaller set of discrete-valued variables since
digital communication channels can only transmit/receive bit
streams. The conversion from continuous-valued variables
to discrete-valued variables inevitably leads to rounding and
truncation errors. In fact, in distributed learning for deep
neural networks, since model parameters or gradients have to
be shared across agents in every iteration and the dimension
of these model parameters and gradients can easily scale to
hundreds of millions (20), it is a common practice to use coarse
quantization schemes or compression techniques to reduce
the overhead of communication (24, 25). Recently, plenty of
distributed optimization and learning algorithms have been
proposed that can ensure provable convergence to the optimal
solution in the convex case (see, e.g., (26–34)) or to first-
order stationary points in the nonconvex case (see, e.g., (35–
37)), even in the presence quantization/compression errors.

However, in all these existing results, quantization effects are
treated as detrimental to the distributed optimization process
and have to be suppressed to ensure convergence accuracy. In
this paper, to the contrary, we exploit quantization effects to
evade saddle points and hence improve convergence accuracy
in distributed nonconvex optimization. By judiciously
designing the quantization scheme, we propose an algorithm
that can make use of quantization effects to effectively
escape saddle points and ensure convergence to second-order
stationary points. To the best of our knowledge, this is
the first time that quantization is shown to be beneficial to
the convergence accuracy of distributed optimization. The
proposed quantization scheme can also aggressively reduce
the overhead of communication, which is widely regarded as
the bottleneck in distributed training of machine-learning
models (24).

Problem Formulation

Notations. We use bold letters to denote matrices and vectors,
i.e., A and x. We use ∥ · ∥ to represent the ℓ2 norm of vectors
and the Frobenius norm of matrices. For a function F (·) :
Rd → R, we use ∇F (·) and ∇2F (·) to denote its gradient and
Hessian, respectively. We use O(·) to hide absolute constants
that do not depend on any problem parameter. We use [N ] to
represent the set {1, 2, · · · , N}. We use λmin(·) to represent
the minimal eigenvalue of a matrix.

Formulation. We consider a distributed optimization problem
where N agents, each with its own local objective function,
collaboratively optimize the network-level sum (average) of all
local objective functions. Since the local objective functions
are private to individual agents, no agents have access to
the global objective function. To solve the distributed
optimization problem, individual agents have to share local
intermediate optimization variables with their respective
immediate neighboring agents to ensure convergence to a
desired solution. We describe the local interaction among
agents using a weight matrix A = [aij ]N×N , where aij > 0 if
agent j and agent i can directly communicate with each other,
and aij = 0 otherwise. For an agent i ∈ [N ], its neighbor set
Ni is defined as the collection of agents j such that aij > 0.
aii represents self-interaction, i.e., the influence of agent
i’s optimization variable at iteration k on its optimization
variable at iteration k+1. Furthermore, we make the following
assumption on A:

Assumption 1. The matrix A = {aij} ∈ RN×N is symmet-
ric and satisfies 1⊤A = 1⊤, A1 = 1, and ∥A − 11⊤

N
∥ < 1.

Assumption 1 ensures that the interaction graph induced
by A is balanced and connected, i.e., there is a path from
each agent to every other agent.

The optimization problem in [1] can be reformulated as
the following multi-agent optimization problem:

min
x∈RN×d

f(x) = 1
N

N∑
i=1

fi(xi),

s.t. x1 = x2 = · · · = xN ,

[2]

where the matrix x is composed of all the local optimization
variables, i.e., x =

[
x⊤

1 ; x⊤
2 ; . . . ; x⊤

N

]
∈ RN×d.

In this paper, the local objective function fi(xi) and global
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objective function f(x) can be nonconvex. They are assumed
to satisfy the following conditions:

Assumption 2. Every fi(·) is differentiable and is Li-
Lipschitz as well as ρi-Hessian Lipschitz:

∥∇fi(x1) − ∇fi(x2)∥ ⩽ Li ∥x1 − x2∥, ∀x1, x2 ∈ Rd, [3]

∥∇2fi(x1) − ∇2fi(x2)∥ ⩽ ρi ∥x1 − x2∥, ∀x1, x2 ∈ Rd.
[4]

It can be verified that the global gradient ∇F (θ) =
1
N

∑N

i=1 ∇fi(θ) and Hessian ∇2F (θ) = 1
N

∑N

i=1 ∇2fi(θ) are
L-Lipschitz and ρ-Hessian Lipschitz, with L = 1

N

∑
i
Li and

ρ = 1
N

∑
i
ρi.

As in most existing results on distributed nonconvex
optimization, we assume that the local gradients ∇fi(·) are
bounded:

Assumption 3. There exists a constant G such that
∥∇fi(θ)∥ ⩽ G holds for all θ ∈ Rd and i ∈ [N ].

In this paper, we will show that quantization can help
evade saddle points and ensure convergence to second-order
stationary points in distributed nonconvex optimization. To
this end, we first recall the following definitions for first-order
stationary points, saddle points, and second-order stationary
points, which are commonly used in the study of saddle-point
problems:

Definition 1. For a twice differentiable objective function
F (·), we call θ⋆ ∈ Rd a first-order (respt. second-order)
stationary point if ∇F (θ⋆) = 0 (respt. ∇F (θ⋆) = 0 and
λmin(∇2F (θ⋆)) ⩾ 0) holds. Moreover, a first-order stationary
point θ⋆ can be viewed as belonging to one of the three
categories:

• local minimum: there exists a scalar γ > 0 such that
F (θ⋆) ⩽ F (θ) holds for any θ satisfying ∥θ⋆ − θ∥ ⩽ γ;

• local maximum: there exists a scalar γ > 0 such that
F (θ⋆) ⩾ F (θ) holds for any θ satisfying ∥θ⋆ − θ∥ ⩽ γ;

• saddle point: neither of the above two cases is true, i.e.,
for any scalar γ > 0, there exist θ1 and θ2 satisfying
∥θ1 − θ⋆∥ ⩽ γ and ∥θ2 − θ⋆∥ ⩽ γ such that F (θ1) <
F (θ⋆) < F (θ2) holds.

Since distinguishing saddle points from local minima for
smooth functions is NP-hard in general (38), we focus on a
subclass of saddle points, i.e., ϵ−strict saddle points:

Definition 2. (ϵ−strict saddle point and ϵ−second-order
stationary point) For a twice-differentiable function F (·),
we say that θ⋆ ∈ Rd is an ϵ−strict saddle point if 1) θ⋆

is an ϵ−first-order stationary point i.e., ∥∇F (θ⋆)∥ ⩽ ϵ;
and 2) λmin(∇2F (θ⋆)) ⩽ −√

ρϵ, where ρ is the Hessian
Lipschitz parameter in Assumption 2. Similarly, θ⋆ ∈ Rd is
an ϵ−second-order stationary point if 1) θ⋆ is an ϵ−first-order
stationary point, i.e., ∥∇F (θ⋆)∥ ⩽ ϵ and 2) λmin(∇2F (θ⋆)) >
−√

ρϵ.

For a smooth function, a generic saddle point must satisfy
that the minimum eigenvalue of its Hessian is non-positive.
Our consideration of strict saddle points rules out the case
where the minimum eigenvalue of the Hessian is zero. A line of
recent work in the machine learning literature shows that for

many popular models in machine learning, all saddle points
are indeed strict saddle points, with examples ranging from
tensor decomposition (15), dictionary learning (39), smooth
semidefinite programs (40), to robust principal component
analysis (41).

Proposed Algorithm

By exploiting the effects of quantization, we propose a
distributed nonconvex optimization algorithm that can ensure
the avoidance of saddle points and convergence to a second-
order stationary point. The detailed algorithm is summarized
in Algorithm 1.

Algorithm 1 Distributed Optimization with Guaranteed
Saddle-point Avoidance

Initialization: x0
i ∈ Rd for every agent i;

Parameters: Stepsize sequences {εk} and {ηk};

Quantization level ℓ;

for k = 1, 2, ... do

for all i ∈ [N ] do

1. Quantize its decision vector xk
i to obtain Qℓ(xk

i )
and send the quantized Qℓ(xk

i ) to all neighbor
agents in Ni;
2. Receive Qℓ(xk

j ) from neighbor agents j ∈ Ni

and calculate the following estimate of the global
optimization variable:

x̃k+1
i = xk

i + εk

∑
j∈Ni∪{i}

aij(Qℓ(xk
j ) − xk

i ); [5]

3. Calculate local gradient ∇fi(xk
i ) and update

xk+1
i by:

xk+1
i = x̃k+1

i − ηk∇fi(xk
i ). [6]

end for

end for

As key components of our approach to evading saddle
points and ensuring convergence accuracy, we propose the
following quantization scheme and stepsize strategy:

Quantization Scheme. Our quantization scheme is inspired
by the QSGD quantization scheme proposed in (25) and
the TernGrad quantization scheme in (24). (Note that
the QSGD and TernGrad schemes were proposed to
quantize gradients, whereas our Algorithm 1 quantizes
optimization variables.) More specifically, at each time
instant, we represent a continuous-valued variable with
a randomized rounding to a set of quantization points
with adjustable discrete quantization levels in a way
that preserves the statistical properties of the original.
However, different from (25), to ensure saddle-point
avoidance, we employ two sets of quantization levels and
purposely switch between the two sets of quantization levels

Bo et al. PNAS — March 14, 2024 — vol. XXX — no. XX — 3
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Quantization-level set 1 Quantization-level set 2

k = 0:

k = 1:

k = 2m:

k = 2m+1:

. . .

lll

llll -0.5-1.5-2.5-3.5

llll -0.5-1.5-2.5-3.5

llll 3.52.51.50.5

llll 3.52.51.50.50

-2-3 l l2 l3-

lll -2-3 l l2 l3- 0

lll l 0.50.5 2.52.5lll -1.5-1.5

Fig. 1. The proposed quantization scheme with quantization interval ℓ. The star
represents a value to be quantized, and it is located in the quantization interval
of [0, ℓ] under level-set 1 and [0.5ℓ, 1.5ℓ] under level-set 2. At any even-number
iteration (k is even), the star value will be quantized to either 0 or ℓ, with respective
probabilities provided in [7]. At any odd-number iteration (k is odd), the star value
will be quantized to either 0.5ℓ or 1.5ℓ, with respective probabilities given in [8].

in a periodic manner. The detailed scheme is described below:

For any v = [v1, v2, . . . , vd] ∈ Rd,

1. At any even-number iteration (k is even), map
every vi ∈ R onto the quantization level-set:
{· · · , −3ℓ, −2ℓ, −ℓ, 0, ℓ, 2ℓ, 3ℓ, · · · } (which we will re-
fer to “level-set 1” hereafter) as follows:

Qℓ (vi) =
{

nℓ, with probability 1 − p (vi, ℓ)
(n + 1)ℓ, with probability p (vi, ℓ)

[7]
where n ∈ Z is determined by the inequality nℓ ⩽ vi <
(n+1)ℓ, and the probability p (vi, ℓ) is given by p (vi, ℓ) =
vi
ℓ

− n.

2. At any odd-number iteration (k is odd), map
every vi ∈ R onto the quantization level-set:
{· · · , −2.5ℓ, −1.5ℓ, −0.5ℓ, 0.5ℓ, 1.5ℓ, 2.5ℓ, · · · } (which
we will refer to “level-set 2” hereafter) as follows:

Qℓ (vi) =
{

(n′ − 0.5)ℓ, with probability 1 − p′ (vi, ℓ)
(n′ + 0.5)ℓ, with probability p′ (vi, ℓ)

[8]
where n′ ∈ Z is determined by the inequality (n′−0.5)ℓ ⩽
vi < (n′ + 0.5)ℓ, and the probability p′ (vi, ℓ) is given by
p′ (vi, ℓ) = vi

ℓ
− n′ + 0.5.

It is worth noting that compared with existing quantization
schemes such as (25), this periodic switching between two sets
of quantization levels does not introduce extra communication
overheads. However, it avoids the possibility that any
quantization input vi always coincides with an endpoint of a
quantization interval, resulting in a deterministic quantization
output. Namely, for any point v ∈ Rd, it gives two different
representations in the quantized space, which is key to perturb
and avoid the state from staying on undesired saddle points
under a non-zero stepsize (which will be elaborated later).

An instantiation of this quantization scheme is depicted
in Fig. 1. It can be verified that the proposed quantization
scheme satisfies the following properties:

Lemma 1. For any v ∈ Rd, our quantization scheme
Qℓ(v) = [Qℓ (v1) , Qℓ (v2) , ..., Qℓ (vd)] has the following prop-
erties:

1. Unbiased quantization: E [Qℓ(v)] = v,

2. Bounded variance: E
[
∥Qℓ(v) − v∥2]

⩽ dℓ2.

Stepsize Strategy. In addition to purposely employing switch-
ing in the quantization scheme, the stepsizes {εk} and {ηk}
in Algorithm 1 also have to be judiciously designed so as to
evade saddle points and ensure convergence to a second-order
stationary point. Intuitively speaking, in the early stage
where saddle points may trap the optimization process, the
stepsize εk should be large enough to ensure that the switching
quantization-induced perturbation can effectively stir the
evolution of optimization variables. However, to ensure that
the optimization process can converge to an optimal solution,
the quantization effect should gradually diminish, or in other
words, εk should converge to zero. In addition, in distributed
optimization, to ensure that all agents can converge to an
optimal solution without any error, the stepsize ηk also has
to converge to zero (different from the centralized case, in
distributed optimization, a constant stepsize will lead to
optimization errors that are in the order of the stepsize
(2, 42, 43)). Moreover, to ensure that all agents can converge
to the same optimal solution, the stepsize εk should decay
slower than ηk (44–47). To fulfill these requirements, we
design the stepsize sequences {εk} and {ηk} as follows:

1. Choose two positive constants α and β sequentially
that satisfy the following relations: 0.6 < α < 2

3 and
3
2 α < β < 1. And then use these constants to construct
two reference functions c1

1+c2tα and c1
1+c2tβ , where t is

continuous time and c1 and c2 are all positive constants.

2. For any probability p (where 1 − p represents the desired
probability of converging to a second-order stationary
point, which can be chosen to be arbitrarily close to one,
see the statement of Theorem 4 for details) and ϵ > 0
given in Definition 2, select:
t0 ⩾ max{C1, C2, C3}, ti+1 = ti +⌈ 1+c2tα

i
c1

√
ρϵ

⌉ for 1 ⩽ i ⩽ I,

where I = 30 max{ f0−f⋆

Q
,

2(f0−f⋆)εt0
ϵ2ηt0

}.∗

3. The sequences {εk} and {ηk} for ∀k ∈ Z+ are given as
follows:

εk =


c1

1+c2kα , k < t0
c1

1+c2tα
i

, ti ⩽ k < ti+1
c1

1+c2kα , k ⩾ tI

[9]

ηk =


c1

1+c2kβ , k < t0
c1

1+c2t
β
i

, ti ⩽ k < ti+1

c1
1+c2kβ , k ⩾ tI

[10]

∗
C1 = (

4c
2/3
1 (d1+d2)

pc
2/3
2 (1−σ2)

)
3

2α , C2 = ( 4(f0−f⋆)(d1+d2)2/3(1−σ2)2/3c1
c2pϵ2√

ρϵ
)

1
2α−β ,

C3 = ( 12ρ(d1+d2)1/6

(1−σ2)1/6√
γ(ρϵ)1/4ℓ

)
1

β−4α/3 , Q = 1
602

√
ϵ3
ρ

, where d1 =

1+(1−σ2)ε0
1−σ2

G2 , d2 = (1 + (1 − σ2)ε0)σ2
2Ndℓ2 , and σ2 is the second largest

eigenvalue of A. f0 is the objective function value at k = 0. f⋆ denotes an estimated lower
bound on the minimum global objective function f(·). For instance, in the matrix factorization
problem where a low-rank matrix U ∈ Rd×r is used to approximate a high-dimension matrix
M⋆ ∈ Rd×d , the objective function is f(U) = 1

2 ∥UU⊤ − M⋆∥2
F and we can use

f⋆ = 0 as the lower bound (48).
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Fig. 2. An illustrative example of the stepsizes. The two solid curves represent two
reference functions which are defined on the continuous time t. The blue and orange
dots represent the values of stepsizes εk and ηk at discrete time instants k (which
are periodic samples of the continuous time t). The time instants t0, t1, t2, t3 are
determined in the second step of the stepsize strategy. Before t0, the descent of the
stepsize sequences is aligned with the reference functions. In intervals [ti, ti+1),
the stepsizes remain constant, as described in the third step of the stepsize strategy.

The setup in [9] and [10] makes the stepsizes εk and ηk

follow a decrease-and-hold pattern, as illustrated in Fig. 2.
The rationale for this design can be understood intuitively
as follows: To ensure that all agents can converge to a
desired optimal solution, the iteration process must fulfill
two objectives simultaneously: 1) ensure the consensual
convergence of all agents to a stationary point; and 2) avoid
saddle points. The “decrease” stages are important to fulfill
the first objective in that the stepsizes εk and ηk are used
to attenuate the quantization error and input heterogeneity
among the agents, respectively, (both of which act as counter-
forces for reaching consensus among all agents’ iterates), and
hence their decrease is key to ensure reaching consensus
among the agents. The “hold” stages are necessary to
accumulate enough stochastic quantization effects to stir the
evolution of optimization variables and ensure saddle-point
avoidance. It is worth noting that the decrease of stepsize ηk

should also be carefully designed in both decreasing speed
and timespan to ensure that sufficient gradient descent can
be carried out to explore the solution space and ensure
convergence to a stationary point. Hence we judiciously
design the stepsize strategy to strike a balance between
accumulating quantization noise to evade saddle points
and attenuating quantization noise to ensure consensual
convergence of all agents to a desired stationary point.

Based on the proposed quantization scheme and stepsize
strategy, we can prove that the proposed Algorithm 1 can
ensure all agents to evade saddle points and converge to
the same second-order stationary point. For convenience of
exposition, we divide the convergence analysis into two parts:
“Consensual convergence to a first-order stationary point” and
“Escaping saddle points and converging to a second-order
stationary point”. We leave all proofs in the Supporting
Information.

Consensual Convergence to a First-order Stationary
Point

We first prove that the proposed algorithm can ensure all
agents to reach consensus on their optimization variables.
For the convenience of analysis, we represent the effect of
quantifying xk

i as adding noise to xk
i , i.e., Qℓ(xk

i ) = xk
i + ξk

i ,
where ξk

i is the stochastic quantization error. Using the
iteration dynamics in [5] and [6], we can obtain the following
relationship:

xk+1
i = (1 − εk)xk

i + εkAQℓ(xk
i ) − ηk∇fi(xk

i ). [11]

By defining xk =
[
(xk

1)⊤; (xk
2)⊤; · · · ; (xk

N )⊤]
∈

RN×d, Ak = (1 − εk)I + εkA, ∇f(xk) =[
∇f⊤

1 (xk
1); ∇f⊤

2 (xk
2); · · · ; ∇f⊤

N (xk
N )

]
∈ RN×d, and

ξk =
[
(ξk

1)⊤; (ξk
2)⊤; · · · ; (ξk

N )⊤]
∈ RN×d, we can recast the

relationship in [11] into the following more compact form:

xk+1 = Akxk + εkAξk − ηk∇f(xk). [12]

Let x̄k be the average of all local optimization variables,
i.e., x̄k = 1

N

∑N

i=1 xk
i . It can be verified that x̄k is equal to

(xk)⊤1
N

, which can be further verified to satisfy the following
relationship based on [12]:

x̄k+1 = x̄k + εk
(ξk)⊤1

N
− ηk

∇f⊤(xk)1
N

. [13]

Define the consensus error between individual agents’ local
optimization variables and the average optimization variable
x̄k as ek := xk − 1(x̄k)⊤. It can be verified that the i-th
row of ek, i.e., ek

i , satisfies ek
i = (xk

i )⊤ − (x̄k)⊤. Using the
algorithm iteration rule described in [5] and [6], we can obtain
the following iteration dynamics for ek:

ek+1 =Akek + εkAW ξk − ηkW ∇f(xk), [14]

where W = I − 11⊤

N
.

Based on the dynamics of consensus errors ek in [14], we
can prove that the consensus error ∥ek∥2 will converge almost
surely to zero, i.e., all xk

i will almost surely converge to the
same value.

Theorem 1. (Consensus of Optimization Variables) Let
Assumptions 1, 2, and 3 hold. Given any probability 0 <
p < 1, Algorithm 1 with our stepsize strategy (which takes
p as input) ensures consensus error less than O

( 1
k

) α
3 with

probability at least 1 − p for all k ⩾ t0, where t0 is given in
step 1 and step 2 of the stepsize strategy, respectively:

P
(∥∥ek

∥∥2
⩽ O

( 1
k

) α
3

, for all k ⩾ t0

)
⩾ 1 − p. [15]

Moreover, all agents’ optimization variables converge to the
same value almost surely, i.e., the consensus error ∥ek∥
converges almost surely to zero.

Based on the consensus result in Theorem 1, we can further
prove that Algorithm 1 ensures all local optimization variables
to converge to a first-order stationary point under the given
quantization scheme and stepsize strategy:
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Theorem 2. (Converging to a First-order Stationary Point)
Let Assumptions 1, 2, and 3 hold. Given any probability
0 < p < 1, Algorithm 1 with our stepsize strategy (which
takes p as input) ensures that the gradient ∥∇F

(
x̄k

)
∥ will

converge to zero with a probability no less than 1 − p, i.e.,

P
(

lim
k→∞

∥∥∇F
(
x̄k

)∥∥2 = 0
)
⩾ 1 − p. [16]

It is worth noting that due to the employment of εk (which
gradually suppresses the influence of quantization errors) and
the unbiasedness of the quantization scheme (the quantization
error has a mathematical expectation equal to zero), our
algorithm ensures convergence to an exact minimum that has
a zero gradient value (with zero steady-state error). In fact,
the absence of steady-state error under unbiased quantization
has been obtained in the literature such as QSGD (25) and
TernGrad (24).

Escaping Saddle Points and Converging to a Second-
order Stationary Point

According to Definition 2, saddle points are undesirable states
that stall the iteration process. Given that 1) individual
agents’ local optimization variables xk

i quickly converge to
the same value (reach consensus) according to Theorem 1;
and 2) before reaching consensus, inter-agent interaction
acts as an additional force (besides the gradient) to keep
individual states xk

i evolving and hence to avoid them from
being trapped at any fixed value, we can only consider the
saddle-point problem when the states are consensual. In fact,
even after all states have reached consensus, since the force
brought by inter-agent iteration diminishes at a slower rate
than the driven force of the gradient (εk decays slower than
ηk in our stepsize strategy), the quantized interaction will
have enough perturbations on individual agents’ optimization
variables to efficiently avoid them from being trapped at any
saddle point. Formally, we can prove the following results:

Theorem 3 (Escaping Saddle Points). Let Assumptions 1, 2,
and 3 hold. Given any probability 0 < p < 1, Algorithm 1 with
our stepsize strategy (which takes p as input) ensures that any
“holding stage” in the stepsize strategy reduces the objective
function by a substantial amount. More specifically, for any
i ∈ {1, 2, . . . I}, after no more than K = O( 1

εti

√
ρϵ

) iterations
with the stepsizes held at {εti , ηti }, Algorithm 1 ensures that
with a substantial probability, the objective function has a
significant decrease, i.e.,

P
(
F

(
x̄ti+K

)
− F

(
x̄ti

)
⩽ −Q

)
⩾

1
3 − p, [17]

where Q is a constant satisfying Q = O
(√

ϵ3
ρ

)
.

It is worth noting that although the inter-agent interaction
(after quantization) can perturb individual agents’ optimiza-
tion variables from staying at any fixed point in the state
space, it cannot ensure escaping from a saddle point since
the state may evolve in and out of the neighborhood of a
saddle point. To facilitate escaping from saddle points, we
have to make full use of the existence of descending directions
at strict saddle points. More specifically, in our design of
the quantization scheme and stepsize strategy, we exploit
random quantization to ensure that perturbations exist in

every direction and use switching quantization levels to ensure
that the amplitude of such perturbations is persistent. To
ensure a sufficient integration of the perturbation effect into
the iterative dynamics and make it last long enough to evade
a saddle point, we hold the stepsizes εk and ηk constant for
a judiciously calculated period of time (see Fig. 2).

In fact, besides evading a saddle point, Theorem 3
establishes that in each “holding stage” where the stepsizes
εk and ηk are held constant, the algorithm is guaranteed
to decrease in the function value for a significant amount.
Therefore, if we can have an estimation of a lower bound on
the optimal function value f⋆, we can repeat this holding
stage multiple times to ensure avoidance of all potentially
encountered saddle points, and hence, to ensure convergence
to a second-order stationary point.

In practice, during the algorithm’s iterations, encountered
points can be classified into two categories: points with
relatively large gradients ∥∇F (x̄)∥ > ϵ and points with small
gradients ∥∇F (x̄)∥ ⩽ ϵ, i.e., saddle points. We can prove
that within the tI iterations defined in the stepsize strategy,
the algorithm will encounter a second-order stationary point
at least once:
Theorem 4. (Converging to a Second-order Stationary
Point) Let Assumptions 1, 2, and 3 hold. For any ϵ > 0
and any given probability 0 < p < 1, our stepsize strategy
(which takes p as input) ensures that Algorithm 1 will visit an
ϵ−second-order stationary point at least once with probability
at least 1 − p in tI iterations stated in the stepsize strategy.

From the derivation of Theorem 4 in the Supporting
Information, we can obtain that it takes the following number
of iterations to find an ϵ−second-order stationary point:

O
(

1
ϵ2 max

{
(Ndℓ2)

3
2α , ( (Ndℓ2) 2

3

ϵ2.5 )
1

2α−β , ( (Nd)1/6

ϵ1/4ℓ2/3 )
1

β−4α/3

})
,

[18]
where N is the number of agents participating in the dis-
tributed optimization, d is the dimension of the optimization
variable, ℓ is the size of the quantization interval, and α and β
are the parameters in stepsizes εk and ηk, respectively (note
that 2α > β > 4

3 α holds according to our stepsize strategy).
Therefore, the computational complexity of our algorithm
increases polynomially with increases in the network size
N and the dimension of optimization variation d. It is
worth noting that the computational complexity does not
increase monotonically with the size of the quantization
interval ℓ: both a too small ℓ and a too large ℓ lead to a high
computational complexity. This is understandable since a too
small quantization interval ℓ leads to too small quantization
errors to stir the evolution of optimization variables, which
makes it hard to evade saddle points; whereas a too large
quantization interval ℓ results in too much noise injected into
the system, which is also detrimental to the convergence of
all agents to a stationary point.

Experiments

In this section, we evaluate the performance of the proposed
algorithm in five nonconvex-optimization application
examples with different scales and complexities. In all five
experiments, we consider five agents interacting on the
topology depicted in Fig. 3.
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Fig. 3. Interaction weights of five agents

Binary Classification. In this experiment, we consider a simple
{0, 1} – classification neural network with a single linear
hidden layer and a logistic activation function. We use the
cross-entropy loss function to train the network (see (49) for
details). We denote the feature vector as h ∈ RM and the
binary class label as y ∈ {−1, 1}. For the fully connected
hidden layer, we represent the weights as W 2 ∈ RL×M and
W 1 ∈ RL. The output is of the form:

ŷ = 1
1 + e−⟨h,W ⊤

2 W 1⟩ [19]

Under the commonly used cross-entry loss function, the
objective function is of the following form:

L (W 1, W 2) = log
(

1 + e−y⟨h,W ⊤
2 W 1⟩

)
[20]

To visualize the evolution of optimization variables under
our algorithm, we consider the scalar case with L = M = 1
and plot the expected loss function (with regulation) in Fig. 4:

F (w1, w2) = E [L (w1, w2)] + ρ

2
(
∥ w1 ∥2 + ∥ w2 ∥2)

[21]

When the training samples satisfy E [yh] = 1 and the
regularization parameter is set to ρ = 0.1, it becomes
apparent that (w1, w2) = (0, 0) is a saddle point. We can also
verify that this saddle point is a strict saddle point since its
Hessian has a negative eigenvalue of −0.4. In our numerical
experiment, we purposely initialize all the agents from the
strict saddle point (0, 0), and plot in Fig. 4 the evolution of
each agent under stepsize parameters α = 0.62, β = 0.94,
c1 = 0.03, and c2 = 0.3. It can be seen that due to the
quantization effect, all five agents collectively move along
the descending direction, implying that our algorithm can
effectively evade saddle points.

Matrix Factorization. In this experiment, we consider the
‘Matrix Factorization’ problem using the ‘MovieLen 100K’
dataset and compare the performance of the proposed
algorithm with a commonly used algorithm in (50). In the
matrix factorization problem, given a matrix A ∈ Rm×n

and r < min{m, n}, the goal is to find two matrices U ∈
Rm×r and V ∈ Rn×r such that F (U , V ) = ∥UV ⊤−A∥2

F
2 is

minimized. However, due to the invariance property (51), the
matrix factorization problem cannot be considered strongly

Fig. 4. Trajectories of all five agents when initialized on the saddle point (0,0). Note
that all trajectories overlap with each other, implying perfect consensus among the
agents.
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Fig. 5. Comparison of the objective function value between the proposed Algorithm
1 and the existing algorithm DGD in (50).

convex (or even convex) in any local neighborhood around
its minima. In our numerical experiments, we implement
both our algorithm and the algorithm in (50). In order to
ensure a fair comparison, both algorithms share the same set
of learning rates (α = 0.62, β = 0.94, c1 = 0.3, c2 = 0.3). For
the quantization scheme, we chose ℓ such that all quantized
outputs are representable using a binary string of 9 bits. We
spread the data evenly across the five agents.

Fig. 5 shows the evolution of the objective function values
under our algorithm and the existing algorithm DGD in
(50), respectively. It is clear that our algorithm gives a much
smaller cost value. To show that this is indeed due to different
convergence properties between our algorithm and DGD, in
Fig. 6, we plot the distance between learned parameters
and the global optimal parameter, which is obtained using
centralized optimization. It is clear that our algorithm indeed
converges to a much better solution than DGD, likely due to
its ability to evade saddle points.

Convolutional Neural Network. For this experiment, we con-
sider the training of a convolutional neural network (CNN)
for the classification of the CIFAR-10 dataset, which contains
50,000 training images across 10 different classes. We evenly
spread the CIFAR-10 dataset to the five agents, and set
the batch size as 32. Our baseline CNN architecture is a
deep network ResNet-18, the training of which is a highly
nonconvex problem characterized by the presence of many
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Fig. 7. Comparison of training accuracy between the proposed algorithm and a
commonly used algorithm CDSGD from (52).
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Fig. 8. Comparison of loss function value between the proposed algorithm and a
commonly used algorithm CDSGD from (52).

saddle points (16). In the experiments, we train the CNN
using both the proposed Algorithm 1 and the decentralized
optimization algorithm CDSGD proposed in (52). In order
to ensure fairness in comparison, both algorithms use the
same set of learning rates (α = 0.62, β = 0.94, c1 = 0.5,
c2 = 0.3). The quantization interval ℓ is set such that all
quantized outputs are representable using a binary string of
10 bits.

The evolution of the training accuracies and loss-function
values averaged over 10 runs are illustrated in Fig. 7 and Fig. 8,
respectively. It is evident that Algorithm 1 achieves lower
loss function values more rapidly compared to CDSGD. This
difference indicates that controlled quantization effects in our
algorithm can aid in evading saddle points and discovering
better function values.

Tensor Decomposition. In this experiment, we consider
Tucker tensor decomposition on the neural dataset in (53).
For N neurons over K experimental trials, when each trial
has T time samples, the recordings of firing activities can be
represented as an N × T × K array, which is also called a
third-order tensor (54). Each element in this tensor, xn,t,k,
denotes the firing rate of neuron n at time t within trial k.
Tucker tensor decomposition decomposes a tensor into a core
tensor multiplied by a matrix along each mode. Following
(54), we consider the tensor decomposition problem for a
tensor recording X ∈ R50×500×100 of neural firing activities:

X ≈ T ×1 A×2 B ×3 C =
N∑

n=1

T∑
t=1

K∑
k=1

tn,k,tan ◦ bt ◦ ck, [22]

where ◦ represents the vector outer product, ×i (with i =
{1, 2, 3}) denotes the i-mode matrix product, T ∈ R5×5×5

is the core tensor, and A ∈ R50×5, B ∈ R500×5 and C ∈
R100×5 are the three factors for Tucker decomposition. The
goal of tensor decomposition is to minimize the normalized
reconstruction error E =

(
∥ X − T ×1 A ×2 B ×3 C ∥2

F

)
/ ∥

X ∥2
F , where the subscript F denotes the Frobenius norm.

It is well known that the tensor decomposition problem is
inherently susceptible to the saddle point issue (15).

We implement both the DGD algorithm in (50) and our
Algorithm 1 to solve the tensor decomposition problem. For
the DGD algorithm, we use the largest constant stepsize that
can still ensure convergence, and for our algorithm, we set
the stepsize parameters as α = 0.61, β = 0.92, c1 = 0.03,
and c2 = 0.3. The quantization interval ℓ is set such that all
quantized outputs are representable using a binary string of
6 bits.

The evolution of the reconstruction error for the two
algorithms under 50 runs is shown in Fig. 9. It is clear
that our algorithm finds better optimization solutions by
effectively evading saddle points.

Robust Principal Component Analysis (PCA). In this exper-
iment, we consider the problem of background subtraction
in computer vision using robust PCA. Compared with the
conventional PCA, robust PCA can provide a low-dimensional
approximation that is more robust to outliers in data samples.
For a given sequence of images (video), we employ robust
PCA to separate moving objectives in the video from the
static background. More specifically, for a given sequence
of images represented as a data matrix M ∈ Rm×n, we
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Fig. 9. Comparison of reconstruction error in tensor decomposition between the
proposed Algorithm 1 and the existing algorithm DGD in (50).

use robust PCA to decompose M into a low-rank matrix
UV ⊤ (representing the background) and a sparse matrix S
(representing moving objects), where U ∈ Rm×r, V ∈ Rn×r,
S ∈ Rm×n and r ≪ min{m, n}. Mathematically, the problem
can be formulated as the following optimization problem (55):

min
U,V

f(U , V ) + µ2∥U⊤U − V ⊤V ∥2
F ,

f(U , V ) = min
S∈Sᾱ

1
2∥UV ⊤ + S − M∥2

F ,
[23]

where µ2 is a constant and Sᾱ represents the set of matrices
with at most ᾱ−fraction of nonzero entries in every column
and every row.

In our experiment, we use the “WallFlower” datasets from
Microsoft (56). We randomly assign 200 image frames with
56 × 56 pixels to each agent, resulting in the data matrix
M i of agent i being of dimensions m = 9408 and n = 200.
We set µ2 to 0.01, ᾱ = 0.2, and r = 30, and then solve [23]
using the gradient descent based algorithm (“Fast RPCA”)
in (57). Fast RPCA employs a sorting-based estimator to
generate an initial estimate S0 and then it employs singular
value decomposition to generate the corresponding initial
values of U0 and V 0. Fast RPCA alternates between taking
gradient steps for U and V , and computing a sparse estimator
to adjust S. In the experiment, we use the best constant
stepsize that we can find for Fast RPCA (the largest stepsize
that can still ensure convergence). For our algorithm, we set
the stepsize parameters as α = 0.61, β = 0.92, c1 = 0.003,
and c2 = 0.3. The quantization interval ℓ is set such that all
quantized outputs are representable using a binary string of
5 bits.

Fig. 10 shows the evolutions of the reconstruction error
E =

∑N

i=1 ∥M i − U iV
⊤
i − Si∥/∥M i∥2

F under our algorithm
and Fast RPCA in (57), respectively. It is clear that our
algorithm is capable of identifying superior solutions that
yield a smaller reconstruction error. This implies that our
algorithm can locate more favorable stationary points by
effectively avoiding strict saddle points (it has been proven
in (15) that all saddle points in robust PCA are strict saddle
points).

Discussions

On Comparison with Other Stepsize Strategies. To test if
our stepsize strategy leads to a reduced convergence speed
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Fig. 10. Comparison of the reconstruction error in Robust PCA between the
proposed Algorithm 1 and the existing algorithm Fast RPCA in (57).

compared with existing counterparts which do not consider
saddle-point avoidance, we also conduct experiments using
the tensor decomposition problem to compare the convergence
speed under our stepsize strategy, the constant stepsize
strategy, a random stepsize strategy, and the conventional
diminishing stepsize strategy. For the constant stepsize case,
we use the largest constant stepsize that does not lead to
divergence, and for the random stepsize strategy, we select the
stepsize values in the “hold” stages of our approach randomly
from the reference functions 0.03

1+0.3t0.61 and 0.03
1+0.3t0.92 . For

the diminishing stepsize case, we use the reference functions
as the stepsizes, which are commonly used in distributed
optimization. The simulation results in Fig. S1 of the
Supporting Information show that our algorithm can provide
similar or even faster convergence speeds, and hence show that
our approach does not trade convergence speed for saddle-
point avoidance.

On Comparison with the Log-scale Quantization. It is worth
noting that recently (58) and (59) propose to use log-scale
quantization in distributed optimization and prove that accu-
rate convergence can be ensured when the objective functions
are convex. However, the log-scale quantization scheme is
not appropriate for the saddle-point avoidance problem in
distributed nonconvex optimization. This is because to enable
saddle-point avoidance, we have to keep the magnitude of
quantization error large enough to perturb the optimization
variable, no matter what the value of the optimization variable
is (because we do not know where the saddle-point is). In
fact, this is why we introduce the periodic switching between
two sets of quantization levels in our quantization scheme
(to avoid the possibility that a quantization input coincides
with an endpoint of a quantization interval and results in a
zero quantization error). However, the log-scale quantization
scheme results in a quantization error that can be arbitrarily
small when the quantization input is arbitrarily close to zero,
meaning that the quantization-induced perturbation becomes
negligible when the quantization input is close to zero, making
it inappropriate for saddle-point avoidance. In fact, our
experimental results using the binary classification problem
in Fig. S2 of the Supporting Information also confirm that
the log-scale quantization scheme cannot provide comparable
performance with our proposed quantization scheme.
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On Applicability to High-Order Optimization Methods. Given
that additive noises have been proven effective in evading
saddle points in second-order optimization algorithms as well
(see, e.g., (60)), our quantization effect based approach is
well positioned to help saddle-point avoidance in second-
order nonconvex optimization algorithms. To confirm this
point, we apply the quantization scheme to second-order
Newton-method based distributed optimization for the binary
classification problem (see details in the section “Experimen-
tal Results Based on the Newton Method” on page 19 of
the Supporting Information). The results in Fig. S3 in
the Supporting Information confirm that our quantization
scheme does significantly enhance the quality of the solution
by evading saddle points compared with the case without
quantization effects. We plan to systematically investigate
exploiting quantization effects in high-order optimization
algorithms to evade saddle points in future work.

On Relaxing the Smoothness Assumption. In the theoretical
analysis, we assume that the objective functions are Lipschitz
continuous. Given that “generalized gradients” (61) have been
proven effective to address non-smooth objective functions
in convex optimization, it is tempting to investigate if the
generalized gradient approach can be exploited to address
nonconvex and non-smooth objective functions. Unfortu-
nately, (62) proves that in general nonconvex and non-smooth
optimization, for any ϵ ∈ [0, 1), there is a more than 50%
probability that an ϵ-first-order-stationary point (defined in
the sense of the generalized gradient, usually called Clarke
stationary point) can never be found by any finite-time
algorithm. In future work, we plan to explore if some

subclasses of nonconvex and non-smooth objective functions
can be addressed using the generalized gradient approach.

Conclusions

Saddle-point avoidance is a fundamental problem in noncon-
vex optimization. Compared with the centralized optimiza-
tion case, saddle-point avoidance in distributed optimization
faces unique challenges due to the fact that individual agents
can only access local gradients, which may be significantly
different from the global gradient (which actually carries
information about saddle points). We show that quantization
effects, which are unavoidable in any digital communications,
can be exploited without additional cost to evade saddle
points in distributed nonconvex optimization. More specif-
ically, by judiciously co-designing the quantization scheme
and the stepsize strategy, we propose an algorithm that can
ensure saddle-point avoidance and convergence to second-
order stationary points in distributed nonconvex optimization.
Given the widespread applications of distributed nonconvex
optimization in numerous engineered systems and deep
learning, the results are expected to have broad ramifications
in various fields involving nonconvex optimization. Numerical
experimental results using distributed optimization and
learning applications on benchmark datasets confirm the
effectiveness of the proposed algorithm.

ACKNOWLEDGMENTS. The work was supported in part by the
National Science Foundation under Grants CCF-2106293, CCF-
2215088, and CNS-2219487.

1. D Bertsekas, J Tsitsiklis, Parallel and distributed computation: numerical methods. (Athena
Scientific), (2015).
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