
Application-Attuned Memory Management for

Containerized HPC Workflows

Moiz Arif†, Avinash Maurya†, M. Mustafa Rafique†, Dimitrios S. Nikolopoulosλ, Ali R. Buttλ

†Rochester Institute of Technology, λVirginia Tech
†{ma3890, am6429, mrafique}@cs.rit.edu, λ{dsn, butta}@cs.vt.edu

Abstract—High-Performance Computing (HPC) jobs consist of
data and memory-intensive tasks often executed as workflows
or ensembles to facilitate efficient and coordinated execution.
These workflows are traditionally executed on HPC systems
and have unique memory requirements based on the data size,
computational complexity, and I/O activity. Recently container-
ized execution of these workflows has been extensively explored.
Containerized workflow execution of HPC jobs requires several
terabytes of memory that exceed node capacity, resulting in
excessive data swapping to slower storage, degraded job per-
formance, and failures. Similarly, colocated bandwidth-intensive,
latency-sensitive, or short-lived workflows suffer from degraded
performance due to contention, memory exhaustion, and higher
access latency due to suboptimal memory allocation. Recently,
tiered memory systems comprising persistent memory and com-
pute express link (CXL) have been explored to provide additional
memory capacity and bandwidth to memory-constrained systems
and applications. However, current memory allocation and man-
agement techniques for tiered memory subsystems are inadequate
to meet the diverse needs of colocated containerized jobs in HPC
systems that concurrently run workflows and ensembles at scale.
This paper leverages tiered memory systems for containerized
HPC workflows and proposes efficient memory management
policies including intelligent page placement and eviction policies
to improve memory access performance. Our page allocation and
replacement policies incorporate task characteristics and enable
efficient memory sharing between workflows. We integrate our
policies with the popular HPC scheduler, SLURM, and container
runtime, Singularity, to show that our approach improves tiered
memory utilization and application performance and reduces
workflow execution times by up to 51%, 87%, and 35% as
compared to the ideal, realistic, and optimized tiered execution
environments, respectively.

Index Terms—Tiered Memory Systems, Memory Management,
Containers, HPC Workflows

I. INTRODUCTION

High-Performance Computing (HPC) jobs are composed

of compute and memory-intensive tasks that involve large-

scale simulations, data analysis, or scientific computations.

These jobs can be managed and executed as HPC work-

flows, composed of a series of interconnected computational

tasks, often represented as directed acyclic graphs (DAGs),

executed in a specific order to achieve a larger computational

goal, where the output of one task serves as the input for

subsequent tasks. HPC workflows are complex and involve

diverse computational tasks, including data pre-processing,

compression, checkpointing, simulations, and post-processing.

Similarly, workflows may also consist of HPC ensembles,

which involve the simultaneous execution of multiple instances

of a task where each ensemble member represents a different

realization of the task using different input parameters, initial

conditions, or algorithmic choices. HPC ensembles are often

used in scientific simulations [1], [2], climate modeling [3]

computational physics [4], optimization problems [5], and

machine learning [6] to explore a broader range of possi-

bilities and derive more robust conclusions. Moreover, HPC

workloads are deconstructed into smaller workflows, which

enable node-level colocation on HPC systems, optimize re-

source utilization, and address stranded memory problems. By

effectively managing and executing HPC jobs using workflows

and ensembles, researchers can achieve improved scalability,

optimize resource utilization, analyze uncertainties, and gain

valuable insights from their computational endeavors.

Traditionally, HPC workflows and ensembles are executed

on bare-metal HPC systems to leverage high-performance on

specialized hardware. However, in recent years, using contain-

ers [7]–[9] for executing HPC workflows is being explored

for improved portability and reproducibility. Containerization

technologies, such as Singularity [10], enables efficient re-

source utilization by colocating multiple workflows on the

same host, thus taking advantage of increased parallelism and

throughput. Because of this, leading computing facilities, such

as Riken Fugaku [11], OLCF Summit [12], ALCF Theta [13]

and ALCF Polaris [14], have adopted Singularity as the

containerization runtime. While containerized environments

lead to higher system utilization and energy efficiency due

to colocation, they also incur performance penalties [15]–

[18] due to diverse memory requirements, latency sensitiv-

ity, throughput, and resource sharing. Similarly, colocated

workflows have complex performance requirements related

to memory such as access latency, bandwidth and capacity.

Moreover, short-lived workflows require minimum access la-

tency and high bandwidth to meet SLAs. Traditional memory

management techniques do not account for these requirements

leading to suboptimal memory allocation amongst colocated

workflows. These challenges necessitate the development of

holistic application-attuned memory management techniques

to efficiently utilize containers for running HPC workflows

for increasing overall memory utilization, improving workflow

performance, and reducing the startup time of large-scale

containerized HPC deployments.

Memory tiers in modern HPC systems [19]–[21], such as

those incorporating DRAM and persistent memory play a

crucial role where each tier offers different performance, ca-



pacity, bandwidth, and access latency. Similarly, CXL memory

introduces a new tier into the existing memory hierarchy pro-

viding direct memory access (DMA) via load/store semantics

for efficient data movement across the memory hierarchy.

Managing memory in a tiered system involves employing

various strategies to optimize data placement and movement

across these tiers [22]–[24] such as interleaving [25], weighted

interleaving [26], and AutoNUMA [27] thereby enhancing

overall system performance. Additionally, data movement poli-

cies are employed to dynamically move data between tiers

based on access patterns, while ensuring that data is stored in

the most appropriate tier at any given time. These techniques

work well for general-purpose computing workloads, however,

they cannot optimize memory placement and management

across tiers based on the workflow requirements. Similarly,

the colocation of diverse workflows from various HPC work-

loads renders approaches, such as AutoNUMA, TPP, weighted

interleaving, etc. sub-optimal on a tiered memory system since

these approaches do not differentiate between workload pages

and their sensitivity to page movement between tiers. Thus, the

performance of workflows is negatively impacted by inefficient

allocation and management of tiered memory resulting in: (1)

limited access bandwidth; (2) suboptimal memory capacity

utilization; and (3) higher memory access latencies.

In this paper, we address the aforementioned limitations of

containerized HPC workflows and address the performance

challenges in tiered memory systems by proposing application-

attuned intelligent memory management policies. Our memory

management policies incorporate the access latency associated

with memory tiers to optimize the performance of workflows

while incorporating the performance characteristics, i.e., sen-

sitivity to latency, bandwidth, and capacity, of each workflow

task. Our policies leverage workflow memory access patterns

and system memory utilization to evict data from memory

tiers. Our proposed memory management policies support

containerized and bare-metal executions, however, the colo-

cation of containerized HPC workflows introduces significant

complexity due to diverse memory resource requirements of

each colocated workflow compared to the bare-metal HPC

execution model. To demonstrate the effectiveness of our

approach, we integrate it with SLURM and Singularity [10],

and conduct extensive evaluations using real-world HPC jobs.

To the best of our knowledge, this is the first effort to address

the performance challenges of leveraging tiered memory to

provide additional memory to containerized HPC jobs.

Specifically, we make the following contributions:

• We analyze the memory requirements of popular HPC

workflows and ensembles and explore challenges related

to the suboptimal memory management and utilization on

the performance of HPC workflow and ensembles.

• We propose holistic application-attuned memory manage-

ment policies for tiered memory for containers that opti-

mizes access latency, bandwidth, and capacity to enable

efficient workflow execution with minimal overhead.

• We implement and integrate our approach and runtime

with HPC job scheduler, i.e., SLURM, and container

runtime, i.e., Singularity, to support several classes of

workflows that allocate additional memory from various

memory tiers including local DRAM, CXL (emulated

through remote NUMA), and persistent memory (PMem)

modules.

• We thoroughly evaluate the proposed memory manage-

ment policies and show that our approach increases over-

all memory utilization, improves workflow performance

and reduces the startup time for large-scale container-

ized HPC deployments. Our approach shows up to 35%

performance improvement over the existing workflow

oblivious tiered memory management techniques.

II. BACKGROUND AND MOTIVATION

A. HPC Workflows and Workflow Management Systems

HPC workloads are composed of a series of tasks, organized

as workflows, that work in tandem to run larger scientific

applications such as (1) scientific simulations, which run in

embarrassingly parallel or tightly coupled fashion; (2) surro-

gate computations, which typically generate a deep-learning-

based approximation to assist the scientific simulation for

faster convergence; (3) real-time data analysis, which in-

cludes on-the-fly data manipulation and visualization based on

which experiments and/or algorithms are steered; (4) producer-

consumer workflow patterns, where workflows consume data

generated by other workflows; and (5) checkpointing for fault-

tolerance, posthoc analysis, supporting out-of-core adjoint

computations, or explaining the evolution of data and scientific

model. Several Workflow Management Systems (WMS), e.g.,

Pegasus [28], Cromwell [29], and Nextflow [30], facilitate

the orchestration and automation of complex computational

workflows. WMSs interact with sophisticated schedulers to

efficiently allocate computing resources, optimize task depen-

dencies, and balance workflows. However, they face chal-

lenges in managing diverse workflows with varying resource

demands, adapting to dynamic system conditions, and ensuring

optimal resource utilization amidst changing priorities and

constraints [31]. Additionally, optimizing memory allocation

in tiered memory systems, efficient data movement between

memory tiers, optimal data placement, catering for data local-

ity, memory requirements, and inter-task communication fur-

ther complicates the scheduling process and is not supported

in modern WMSs [28], [29], [32].

B. Memory Characteristics for HPC Jobs

HPC jobs pose diverse requirements to memory subsystems,

such as combinations of large memory tiers, low latency, and

high bandwidth. These requirements can change dynamically

during job execution. Moreover, HPC jobs are often composed

of several workflows with diverse memory requirements [33]–

[35] causing memory starvation, contention, and degraded per-

formance. Traditionally, the basic allocation unit for HPC jobs

is a compute node that leads to reduced resource utilization

and fragmentation. The available memory is limited by the

job-level allocations and the total physical memory installed



on each server. To improve the performance of HPC jobs, in-

memory computation is becoming increasingly popular [36]

leading to higher memory demands in HPC clusters.

In containerized execution, memory is allocated at the start

based on the memory requirement of the job and does not sup-

port dynamic memory allocation based on different execution

phases of HPC workflows. Typically, HPC jobs are deployed

as separate workflows [37] with diverse resource profiles, e.g.,

compute and memory-intensive tasks, bandwidth-intensive op-

erations, and capacity- and latency-sensitive operations. Given

the varying demands of different resource profiles, accurately

identifying the memory requirements for each workflow is

challenging. Similarly, colocated containerized HPC work-

flows and ensembles have additional resource limitations, e.g.,

CPU, memory, storage, I/O, and network, which are specified

by the workflow and negatively impact its performance. These

restrictions limit the performance of highly parallel memory

and data-intensive workflows where most tasks require a large

amount of memory to store the input, intermediate, and output

data of various tasks of HPC workflow. Similarly, accurately

estimating the memory requirements of workflow tasks to

allocate enough memory is challenging resulting in a loss of

critical computation during failures [38].

C. Tiered Memory Systems

Tiered memory systems utilize the latest advancements in

memory subsystems to provide large memory to servers and

workflows. It allows workflows to scale by utilizing additional

memory available beyond the total available DRAM on each

server. In tiered memory systems, the DRAM tier is utilized

for high-speed, low-latency access to frequently accessed data,

whereas PMem [39] bridges the gap between volatile and

non-volatile memory to provide a balance between speed and

persistence. Recently CXL [40], [41] has been explored to

provide high-speed, low-latency memory access between the

host processor and devices while expanding overall memory

capacity and bandwidth [25], [42]. CXL memory also enables

direct access to additional memory resources and optimizes

data movement by providing byte-addressable, cache-coherent

memory in the same physical address space and allowing

transparent memory allocation using standard memory alloca-

tion APIs. Even with colocated memory-intensive tasks, HPC

jobs rarely use the entire allocated memory and often leave a

large amount of unused memory during their life cycles. For

instance, our evaluations (Section IV) demonstrate that during

the initial 120 seconds of training BERT [43] model, ∼55%-

80% of the allocated memory remains idle, thereby becoming

cold memory pages. Moving these cold memory pages to a

slower memory tier can allow hot memory pages to reside in

fast memory tiers and improve application performance. Intel-

ligently placing data between different memory tiers based on

their access pattern ensures that frequently used data remains

in high-speed low-latency memory tiers, thereby minimizing

the need for costly swaps to slower persistent storage.

Figure 1 shows the impact of allocating tiered memory

to different containerized workflows. The setup consists of

 0

 100

 200

 300

 400

 500

Data Comp. Deep Learning Scientific Data Mining

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Local Memory w/o Swap
Local Memory w/ Swap
Tiered Memory w/o Swap
Tiered Memory w/ Swap

Fig. 1: Impact of tiered memory on workflows with SSD-based swap.

512 GB of main memory, 1 TB persistent memory, and emu-

lated CXL memory using a remote NUMA socket (detailed in

Section IV-C). The performance of all workflows significantly

drops when onboard system memory is limited and memory

pages are swapped to disk-based swap storage. Allocating

memory from different tiers improves the performance of each

workflow regardless of the workload type and memory access

pattern, however, bandwidth-intensive tasks benefit more due

to additional bandwidth available over the CXL interface.

Moreover, the performance is further improved when the

memory pages are actively migrated to CXL-based memory

instead of disk-based swap storage.

With the popularity of containerized HPC workflows, there

is a need to rethink the management of tiered memory to

support granular memory allocation for workflow tasks, in-

telligent data placement techniques for latency-sensitive tasks,

and enable fast data sharing between local and remote tasks

from the same or different workflows to increase the resource

utilization and reduce the execution time of HPC jobs. To

the best of our knowledge, we are the first to explore tiered

memory for containerized HPC jobs and propose specialized

memory allocation and management policies to meet latency,

bandwidth, and capacity requirements of workflow tasks.

III. TIERED MEMORY MANAGEMENT FOR HPC JOBS

In this section, we outline the design objectives and detail

our proposed memory management policies for optimizing

workflow execution on HPC systems utilizing tiered memory.

A. Design Objectives

The main goal of our proposed memory management poli-

cies and runtime is to minimize the execution time of HPC

workflows by mitigating the impact of inefficient memory

allocations, replacement, and movement policies of existing

tiered memory approaches. The key objectives of the proposed

policies are as follows:

1) Design intelligent memory management policies to fully

utilize distributed heterogeneous memory subsystems

to improve the overall memory utilization, and reduce

workflow failures due to limited memory [44], [45], thus

improving the overall system throughput.

2) Mitigate the impacts of using tiered memory on work-

flow performance by using intelligent page allocation



IMME/
TMM

Task queue

Workflow (W)

1 2

DRAM
PMem
CXL
SSD

IMME/TMC

Node-n

5

Compute Cluster

DRAM
PMem
CXL
SSD

IMME/TMC

Node-1

DRAM
PMem
CXL
SSD

IMME/TMC

Node-0

3

WMS/SLURM

4

Submit Node

Singularity containers

W1:T3 W0:T3W1:T1 W1:T2

Fig. 2: High-level system architecture with IMME leveraging tiered
memory for containerized HPC workflows.

and replacement policies that leverage the access la-

tencies of different memory tiers, the interconnection

bandwidth, and local memory availability.

3) Design and develop a highly efficient and lightweight

runtime that manages allocation and movement of ad-

ditional memory requests from HPC workflows and

transparently moves memory pages between memory

tiers to maximize the overall system performance.

4) Enable workflows to use tiered memory with minimal

overhead and modifications to the user code.

B. High-level System Overview

The high-level architecture of our proposed runtime is

shown in Figure 2. The workflow is first submitted to the WMS

where it is converted to an executable workflow represented by

a DAG. Our proposed runtime ensures that the HPC workflows

optimally leverage additional memory from the memory tiers

and enable workflow-aware memory allocation to jobs. Work-

flow containers can request memory from specific memory

tiers which can be different from the initial memory allocation.

Our allocation policy serves such memory requests by effi-

ciently allocating memory pages from the requested memory

tier. It identifies the best memory tier based on the workflow

characteristics, i.e., latency sensitivity, bandwidth and capacity

intensive, and execution makespan, and allocates either the

entire block from a single tier or from multiple memory tiers

including the local and CXL memory. Our target capacity-

intensive jobs, such as training DL models [46], [47] and

large-scale simulations [48], require large memory capacity

for continued execution and are independent of their latency

and bandwidth requirements. If enough local memory is not

available, then our page replacement policy and proactive

swapping mechanism move existing memory pages to the

appropriate lower memory tiers to provide large contiguous

memory space for workflows.

1) System Characteristics: In this paper, we use heteroge-

neous memory systems that include at least two memory tiers

TABLE I: APIs to allocate/deallocate tiered memory.

API Description

void* allocate_TM(size, flags)
Allocates tiered

memory based on flags

void free_TM(void *ptr)
Releases tiered

memory

including the DRAM, PMem, and CXL memory supported by

NVMe, SSD-based storage, and similar technologies in mem-

ory and storage subsystems. We note that distributed HPC ex-

ecution environments, such as Aurora [19], and Pegasus [21],

host a subset of these memory and storage tiers at each

server. We also assume that the tiered memory is accessible on

every node in the cluster including PMem and CXL memory

over the CXL interconnect, which provides high-bandwidth,

low-latency, cache-coherent access to memory resources and

supports multiple memory types, including DDR5 [49], and

HBM [40]. Similarly, multiple tasks of a workflow can be

scheduled on a server to achieve higher system throughput

and improve workflow performance.

C. System Design

In this section, we describe the details of our proposed

runtime to reduce the total execution and access latency

for containerized workflows with tiered memory-aware page

allocation, replacement, and movement policies.

1) Tiered Memory Manager: The Tiered Memory Manager

is the main component of our runtime, that handles coordina-

tion between components of our proposed runtime by using a

manager and a client deployed on the cluster nodes. The main

responsibilities of Tiered Memory Manager are: 1) identify

various memory types; 2) categorize memory into tiers; 3)

create staging buffers on each tier; 4) dynamically adjust

buffers based on utilization; and 5) track the hotness/coldness

of workflow pages. The Tiered Memory Manager identifies

various memory types available on the HPC systems and

classifies them into tiers with the primary tier being the DRAM

memory. The classification of memory into tiers depends

on the available memory capacity, access latency, maximum

attainable bandwidth, and the interconnect type. It also creates

staging buffers on each tier based on the fair-share approach,

tier characteristics, and available memory. These buffers are

dynamically adjusted based on the memory utilization on each

tier and the workflow requirements. Moreover, staging buffers

required for transparent data movement across memory tiers

are created for each compute node. Lastly, Tiered Memory

Manager also tracks the hotness of each page of the work-

flows. The heatmaps are used to identify frequently accessed

pages and least frequently accessed pages for efficient page

movement between the memory tiers.

The memory allocation, deallocation, and management are

done transparently by the runtime based on the workflow

requirements and the memory access patterns of the given ap-

plication. The Tiered Memory Manager exposes APIs, shown

in Table I, that can be used by workflows to request tiered







filtered pages are tracked and moved to the lower memory

tier rather than swapped out to the underlying disk-based swap

space (Line 7). Once the victim pages are identified, they are

swapped to the swap space and replaced with the requested

page by the application. Finally, the allocation map is updated

with the replaced pages (Line 8). Our page replacement policy

ensures that the memory pages belonging to the latency-

sensitive and short-lived workflows are not blindly swapped

out by the Linux kernel resulting in major page faults that

eventually degrade application performance.

4) Intelligent Page Movement Policy: To improve applica-

tion performance and reduce the latency of accessing memory

pages, we propose an intelligent page movement policy that

proactively moves memory pages between various memory

tiers and implements a proactive page-swapping mechanism

that swaps out memory pages to the CXL memory. To mitigate

the negative impacts of proactive swapping, the swapped-

out memory pages are cached in the page cache if there

is enough memory available on the main memory and are

marked as dispensable and the corresponding page table entry

is updated. If enough system memory is not available, then

the memory pages are simply moved to the CXL memory

tier. Once the system memory runs out, instead of swapping

pages to the swap space, the pages in the page cache are

first swapped out and then the workflow memory pages are

swapped. The page movement from the main memory is

based on workflow characteristics, e.g., latency-sensitivity, to

the CXL memory and then eventually to the local disk. The

proactive page swapping also performs memory compaction to

reduce fragmentation and enable contiguous memory blocks

to be allocated to workflows for colocating more workflows

on the system, thus improving system utilization.

The proposed page movement policy also moves pages be-

tween persistent and CXL-attached memory tier based on the

available page access heatmaps as discussed in Secion III-C1.

This enables the runtime to effectively move pages to faster

memory tiers that were previously identified as cold but later

categorized as hot pages. Our application-aware intelligent

page movement policy prioritizes application pages that do

not belong to latency-sensitive or short-lived applications. If

a page belonging to the above classes of applications must

be moved, then the policy prioritizes pages belonging to the

pageable memory region as defined in the page allocation

map. Our intelligent page movement policy minimizes the

impact of page swapping by enabling the swapped pages to be

available in the fastest available memory tier. Finally, our page

movement policy reduces the number of major page faults and

subsequently increases the number of minor page faults as the

page is accessible on other memory tiers or the page cache.

5) Management of Shared Memory Across Workflows: CXL

memory provides a fast backend to improve the performance

of shared memory regions for HPC workflows. Input or read-

only data shared between workflows can be staged in the CXL

memory, which can be leveraged by the HPC job scheduler

e.g. SLURM, to launch workflows at scale and minimize

the scale-up time and data transfers between workflows. For

example, launching thousands of HPC workflows using a

custom Singularity container image requires the image to be

moved to all the servers that will run the job workflows. This

creates a network and I/O bottleneck when a large number

of workflows access the same data resulting in an increased

execution time to prepare the runtime and increase the cold-

start latency for containers. For simplicity, we assume that the

workflow manages the shared memory and handles locking

mechanisms as offered by several libraries [58], [59] to block

read or write operations during an ongoing write to the shared

memory region. We provide three strategies for efficiently

managing shared memory between workflows at the workflow

and platform levels. First, shared memory pages are made

locality-aware by incorporating the location of workflows

accessing the shared memory by the HPC job scheduler. Such

memory pages are hosted on the CXL memory accessible

to both workflows, and the memory pages are cached in

the local buffers for fast access on each server. Second, to

improve the capability of the HPC job scheduler to scale up

workflows and reduce the cold start latency, we leverage the

CXL memory to host container images and application data.

Third, our proposed runtime keeps track of the memory tagged

as shared memory and ensures that during a scale-down event,

the shared memory is not deallocated. The shared memory is

freed when all references in the corresponding page tables

have been removed. These approaches ensure that the shared

memory is effectively allocated, managed, and utilized for

large-scale containerized HPC workflow deployments.

IV. PERFORMANCE EVALUATION

In this section, we present the evaluation of the proposed

memory management policies for HPC workflows using tiered

memory. We explain our prototype implementation, evaluation

methodology, testbed, workflows, and performance metrics

that we use to analyze and compare our proposed runtime

with baseline and other alternative execution approaches.

A. Prototype Implementation

We implemented the proposed runtime using approximately

1500 lines of C code including two Linux Kernel modules,

and integrated it with the HPC job scheduler SLURM [60],

container framework Singularity [10], and Pegasus [28] WMS.

Our runtime allocates the initial memory and serves workflow

requests using the provided APIs for allocating and deallo-

cating memory across the tiered memory. In our prototype

implementation, we modify SLURM to support the required

flags along with the job script to infer hints about the charac-

teristics of workflow for allocating and deallocating memory

for that workflow. Our hand-tuned implementation customizes

the page allocation and replacement policies to incorporate

additional memory tiers hosting one workflow per container

and launching multiple workflows on the HPC cluster.

B. Evaluation Methodology

We compare our runtime with the baseline scenario where

HPC workflows are colocated and frequently run out of



memory resulting in swapping out of memory pages. We also

compare its performance with a more realistic scenario where

workflows memory is allocated from CXL memory without

considering the workflow performance characteristics. In our

evaluation, we study the following metrics to demonstrate the

effectiveness of our proposed approach: total workflow execu-

tion time, number of page faults, total execution makespan

of HPC workflows submitted as batch jobs, and workflow

and cluster scalability. The total execution time is the time

required to complete the scheduled workflows and return the

results. The bandwidth and latency numbers are reported for

the CXL memory allocated to the workflows and compared to

the local memory and swap space. Lastly, we use the number

of memory accesses, the amount of data swapped to disk,

and CXL memory to gauge the performance of the memory

management policies. To evaluate workflows that have varying

memory access patterns we randomly select workflows and

substitute them with versions that request additional memory

during execution using our APIs and incorporating specific

flags. This approach ensures that the experimentation environ-

ment remains dynamic, facilitating the exploration of various

memory access patterns that may evolve during execution. We

run each experiment 10 times and report the average. Overall,

we observe a negligible variance, i.e., less than 5% between

different executions of the same experiment in our evaluation.

C. Evaluation Setup

1) Testbed: Our evaluation setup consists of a cluster of

8 bare-metal servers connected using 10G Ethernet. Each

server has two Intel Xeon Gold 6126/6240R/6242 processors,

contains 512 GB of main memory, 1 TB of Intel Optane

DC persistent memory, and runs Ubuntu 22.04 LTS server

operating system. We deploy SLURM along with Singularity

on all servers in our evaluation setup. We provision the tiered

memory using the local DRAM, persistent, and CXL memory

available on the servers via the CXL interconnection. The CXL

memory is emulated [40], [61], [62] using the remote NUMA

socket as advocated by POND [63] and CXLMemSim [62]. In

our testbed, we observe the local and remote NUMA latencies

to be ∼80 ns and ∼140 ns, respectively, which represent the

approximate latency of a CXL-attached memory [46], [63].

2) Evalation Workflows: Modern HPC workflows [64]–[67]

typically consist of core scientific computing (SC) simula-

tions [5], surrogate deep-learning (DL) tasks that assist the

core simulation [68]–[70], data compression/decompression

(DC) [71]–[73] for collective communications and storage, and

data mining (DM) [74]–[76] required by analytics engines to

steer the experimental trajectory in real-time. In our evalua-

tions, we consider HPC workflows composed of these where

each workflow represents jobs with unique characteristics,

i.e., computing (requires powerful CPUs), data (processes

large volumes of data), bandwidth-intensive (requires large

bandwidth), latency-sensitive (requires fast access), and short-

lived. DL is a data and bandwidth-intensive workflow in which

we train the popular NLP model, i.e., Bert [43], over the

IMDB dataset [77] for a total of 5 epochs. The DM workflow

 0

 100

 200

 300

 400

 500

DL DM DC SC

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

IE CBE TME IMME

Fig. 5: Impact of our runtime on the studied execution environments.

is a latency-sensitive workflow running a task on Spark that

performs ETL [78] over the US census data [79] and computes

the diversity index. The DC workflow is a compute and data-

intensive workflow in which we run Zip [80] compression on

a set of 50 GB input files. The SC workflow runs BFS using

igraph [81] on a binary tree.

3) Execution Environments: To study the impact of our

memory management policies, we define four realistic exe-

cution environments for running HPC workflows based on

the availability of memory and storage subsystems. These

execution environments are:

1) Ideal Environment (IE) represents an ideal baseline

environment with enough local memory.

2) Constrained Baseline Environment (CBE) represents a

more realistic environment with limited system memory

and memory pages are frequently swapped out.

3) Tiered Memory Environment (TME) is based on the

Constrained Baseline Environment but uses tiered mem-

ory for memory allocation with default Linux page

promotion and demotion based on page temperatures.

4) Intelligent Memory Management Environment

(IMME) is based on the Tiered Memory Environment

and uses our intelligent memory management policies.

D. Performance Results

In this section, we present the performance results of our

proposed approaches by executing the workflows on the stud-

ied execution environments and comparing their performance.

1) Impact of Tiered Memory on Total Execution Time of

HPC Workflows: We study the impact of allocating tiered

memory to HPC workflows and report the total execution time

for the studied execution environments. The results are shown

in Figure 5. We observe that the Ideal Environment takes the

least execution time for all studied workflows because suffi-

cient system memory is available to host the entire footprint of

HPC workflows in memory. We observe degraded performance

for the Constrained Baseline Environment as compared to

Ideal Environment due to the limited system memory avail-

ability and frequent swapping of workflow memory pages to

slower tiers. Similarly, the performance of latency-sensitive

and short-lived, i.e., the DM workflows, drops significantly due

excessive swapping and contention. However, the availability

of tiered memory in the Tiered Memory Environment reduces

this impact by providing a faster alternative and performs



 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Tiered Memory Allocation (%)

DL (TME)
DL (IMME)

DM (TME)
DM (IMME)

DC (TME)
DC (IMME)

SC (TME)
SC (IMME)

Fig. 6: Impact of our proposed runtime on the workflow performance
with varying tiered memory availability.

better than the Constrained Baseline Environment. Similarly,

for Intelligent Memory Management Environment, we observe

that our runtime utilizes tiered memory to improve the per-

formance of workflows by allocating memory to appropriate

workflows, intelligently moving pages between memory tiers,

and proactive swapping memory pages to the CXL memory

tier. Overall, we observe that the Intelligent Memory Man-

agement Environment reduces the execution time of studied

workflows by up to 7%, 87%, and 25% as compared to the

Ideal Environment, Constrained Baseline Environment, and

Tiered Memory Environment, respectively.

We also study the impact of varying tiered memory alloca-

tions on the execution time. Figure 6 shows the results. Here,

we vary the tiered memory allocation from 10% to 50%, where

each data point represents the percentage of workflow memory

allocated from the CXL memory tier. In the Tiered Memory

Environment, we observe that as we increase the allocation of

CXL memory to the workflows, the execution time increases

due to the additional latency associated with accessing the

CXL memory. We also observe that the Tiered Memory Envi-

ronment does not manage tiered memory efficiently and causes

bandwidth-intensive workflows to not fully utilize the addi-

tional available bandwidth, and latency-sensitive workflows

to experience additional latency over the CXL interconnect.

Since our proposed runtime allocates tiered memory based

on workflow requirements and characteristics, we observe a

reduced execution time for the studied workflows. Moreover,

workflows that require additional memory continue to execute

by expanding their memory footprint on the tiered memory

which would otherwise crash due to limited local memory

or fixed memory allocations. Overall, we observe that our

memory management policies improve workflow performance

by up to 80% as compared to the Tiered Memory Environment

by efficiently allocating and managing memory tiers based on

workflow characteristics and requirements.

2) Impact of Page Allocation Policy on Workflow Perfor-

mance: We study the impact of our page allocation policy

on workflow performance by launching multiple instances

of the studied workflows on the HPC cluster. To evaluate

the effectiveness of our allocation policy, we report the total

execution time of each workflow in Figure 7. We com-

pare our page allocation policy with two approaches: 1) the

Default Allocation policy where the system memory and

 250

 300

 350

 400

 450

 500

0 10 20 30 40 50

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Tiered Memory Allocation (%)

TME - Default Allocation
TME - Uniform Allocation
IMME - Application-Attuned Allocation

Fig. 7: Impact of our memory allocation policy on execution time.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

90 80 70 60 50

M
a
k
e
s
p
a
n
 (

s
e
c
)

Local Memory Availability (% of Workflow’s WSS)

DL (IE)
DL (TME)
DL (IMME)

DM (IE)
DM (TME)
DM (IMME)

DC (IE)
DC (TME)
DC (IMME)

SC (IE)
SC (TME)
SC (IMME)

Fig. 8: Impact of our memory allocation policy on the execution
makespan of the studied workflows.

CXL memory are allocated to workflows regardless of its

requirements; 2) the Uniform Allocation policy allocates CXL

memory to all workflows in a uniform fashion regardless

of the workflow requirements. We observe that the Default

Allocation policy allocates CXL memory to workflows based

on its demand without catering to the class it belongs to

and results in degraded performance for latency-sensitive and

short-lived workflows. This approach is beneficial for latency-

sensitive workflows and capacity-intensive workflows, but the

performance of latency-sensitive workflows degrades as soon

as the memory footprint overflows to tiered memory. The

Uniform Allocation policy results in the worst performance

for latency-sensitive workflows as they experience additional

access latency of the tiered memory due to interleaving.

However, interleaving results in improved performance for

bandwidth-intensive workflows due to the availability of addi-

tional bandwidth. Overall, the Uniform Allocation outperforms

the Default Allocation, however, the memory allocation is not

aware of the workflow characteristics. The performance of

Uniform Allocation can be further improved with weighted

interleaving, however, setting weights does not consider the

characteristic for all workflow types. We also observe that our

memory allocation policy reduces the total workflow execution

time by intelligently allocating CXL memory to workflows

to minimize the impact of additional access latency. Overall,

we observe that our allocation policy reduces the execution

time by 44% and 8% on average as compared to the Default

Allocation and Uniform Allocation strategies, respectively.

We also study the impact of our memory allocation policy

on each class of workflow by varying the percentage of

available DRAM to each workflow as a function of its working

set size (WSS). The results are shown in Figure 8. We observe



 0

 20000

 40000

 60000

 80000

 100000

 120000

DL DM DC SC

A
v
e
ra

g
e
 P

a
g
e
 F

a
u
lt
s
/s

IE (Minor PF)
IE (Major PF)
IMME (Minor PF)
IMME (Major PF)

Fig. 9: Impact of our page movement policy on workflow page faults.

that as the amount of DRAM available to latency-sensitive

workflows decreases, the memory access time increases re-

sulting in a significant impact on makespan and performance.

Similarly, for bandwidth-intensive workflows, we observe that

our memory allocation policy leverages the available CXL

memory to improve the overall throughput by leveraging the

additional memory tiers. For Tiered Memory Environment, we

observe that as the memory available to workflows decreases,

the hot pages are promoted to DRAM reducing the impact

of additional latency of CXL memory. Moreover, the speedup

is achieved as the additional memory availability reduces the

impact of swapping to slower storage for the Ideal Environ-

ment. Moreover, workflows that require large memory capacity

to successfully execute, benefit from potentially unlimited

memory availability from the CXL memory. Overall, we

observe that our memory allocation policy reduces the overall

makespan by 25%, 85%, 35%, and 71% on average compared

to Ideal Environment for deep learning, data mining, data com-

pression, and scientific workflows, respectively. Similarly, we

observe that our memory allocation policy reduces the overall

makespan by 8%, 31%, 9%, and 22% on average compared to

Tiered Memory Environment for deep learning, data mining,

data compression, and scientific workflows, respectively.

3) Impact of Page Movement Policy on Workflow Perfor-

mance: We study the impact of our intelligent page movement

policy by observing the page fault statistics for the studied

workflows. The results are shown in Figure 9. We observe

that in the Ideal Environment, the Linux kernel swaps out

memory pages based on the least recently used (LRU) policy

regardless of the workflow requirements or characteristics.

This causes a performance drop in latency-sensitive workflows

which are most susceptible to additional latency when pages

are swapped back in by the Linux kernel. We observe that

with the availability of CXL memory, our page movement

policy reduces the number of pages that are swapped to the

disk by reducing the major page faults, thereby, improving

workflow performance. However, workflows that are extremely

sensitive to latency suffer additional latency when reading and

writing from CXL memory. Our intelligent page movement

policy reduces the number of major page faults by moving

pages to the CXL memory which in turn increases minor

page faults for each workflow. Furthermore, Linux swapping

increases workflow execution time even with CXL memory.

We observe that our intelligent page movement policy per-

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Cluster Nodes

IE
CBE
TME
IMME

Fig. 10: Impact of our runtime on execution time of 3000 workflows
on an 8-node cluster.

forms workflow-attuned page movement and ensures that the

memory pages are available in the fastest tier and pages of

latency-sensitive and short-lived workflows are protected from

swapping. Our intelligent memory movement also performs

proactive swapping in the background in addition to moving

memory pages between various memory tiers. Our proactive

swapping moves out workflow memory pages that are less

sensitive to the overhead of moving pages back into the

memory. This enables keeping more pages of latency-sensitive

and short-lived workflows in the memory. Overall, we observe

that our workflow-attuned page movement and proactive page-

swapping improve workflow performance by 46% as compared

to the default swapping policy.

4) Scalability Analysis of our Proposed Runtime on Work-

flow Performance: We increase the size of the HPC cluster

and the number of concurrent workflows to study the impact of

our proposed runtime on a large HPC cluster. We launch 2000

instances of the studied workflows (150 for DL, 1100 for DM,

150 for DC, 600 for SC workflows) concurrently and observe

the impact on the workflow execution time. Figure 10 shows

the results of this experiment. We observe that the execution

time is significantly reduced with the increasing number of

cluster nodes thanks to the overall memory allocation and

page movement on each server leveraging the CXL memory

effectively. With the Constrained Baseline Environment, the

execution time is the highest due to the limited resource avail-

ability and the contention at each node of the cluster. As the

memory utilization of the system increases due to colocation,

the Tiered Memory Environment efficiently utilizes the tiered

memory to promote hot pages to faster tiers improving the

overall workflow performance. Moreover, we observe that for

large-scale invocations, the overall execution time and the

workflow startup time are reduced with Intelligent Memory

Management Environment due to the effective placement of

shared files on the CXL memory that is accessible to all

the nodes in the cluster. Overall, we observe a performance

improvement of up to 51%, 76%, and 32% compared to the

Ideal Environment, Constrained Baseline Environment, and

Tiered Memory Environment, respectively.

We also study the impact of concurrent workflow invo-

cations on the overall execution time of batch HPC jobs

containing all studied workflows with varying, i.e., 100, 200,

400, and 800, instances. The results are shown in Figure 11.



 300

 400

 500

 600

 700

 800

100 200 400 800

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Concurrent Workflow Invocations

IE
CBE

TME
IMME

Fig. 11: Impact of our runtime on execution time on an 8-node cluster.

We observe that as the number of concurrent workflows

increases, the execution time also increases due to resource

contention at servers. We observe a negligible overhead, i.e.,

4%, of our proposed runtime as the workflows are scaled

up due to efficient multi-tiered memory allocation policy and

intelligent page movement to ensure that the workflow startup

time is reduced. Overall, we observe that our proposed runtime

reduces the execution time by up to 19%, 48%, and 4%

compared to the Ideal Environment, Constrained Baseline

Environment, and Tiered Memory Environment, respectively.

V. RELATED WORK

Workflow Management Systems and HPC Workflows:

Modern large-scale HPC workloads typically consist of multi-

ple complex workflows represented as DAG, and executed on

HPC systems. To address complex data, task, and resource

dependencies, workflow management systems (WMS) are

used to run such HPC workloads. WMSs such as Balsam [32],

Pegasus [28], and Cromwell [29] have been extensively used

for steering complex scientific experiments [82], real-time

data analysis [83], ensembles [84], deep-learning based sur-

rogates [85], etc. for both baremetal and containerized execu-

tions. WMSs utilize HPC schedulers such as SLURM [60] or

COBALT [86] to handle scheduling requests. However, none

of the WMSs perform task scheduling based on the memory

requirement of the workflow/tasks, resulting in suboptimal

resource allocation, utilization, and reduced performance.

Tiered Memory Systems: Tiered memory systems in HPC

address the increasing memory capacity, bandwidth, and la-

tency requirements of HPC workflows. These systems leverage

different memory technologies, e.g., DRAM, PMem, and

CXL-based memory, where each memory type offers distinct

performance characteristics [87], [88]. DRAM provides high-

speed and low-latency access while PMem offers non-volatile

memory and bridges the gap between DRAM and storage, en-

abling data persistence even during power loss [89]–[91]. CXL

memory provides fast, high-capacity, and low-latency access

to applications enhancing scalability and resource pooling in

tiered memory systems for improved HPC performance [41],

[92]–[94]. Tiered memory systems also improve overall mem-

ory utilization by intelligently allocating data to the most

appropriate tier based on access patterns and performance

requirements [95]–[97]. However, neither the applications nor

the platforms are optimized to leverage the true potential

of tiered memory systems resulting in degraded application

performance and system utilization.

Memory Management Approaches: Tiered memory man-

agement approaches have been extensively explored by sev-

eral studies such as Nimble [57], TPP [98], HeMem [99],

Pond [41], AutoTM [100] etc. These approaches perform

application-agnostic memory allocations and page movement

across various memory tiers. However, these techniques result

in degraded performance for colocated HPC workflows with

diverse memory requirements. Moreover, they perform strictly

hierarchical page movement and do not perform concurrent

tiered memory allocation to optimize bandwidth through par-

allel interconnects. Other efforts [101]–[105] either solve the

challenge of memory management for terabyte-scale appli-

cations (e.g., HM-Keeper [101]) or partially optimize and

automate memory management across multiple memory tiers.

Similarly, MTM [106] performs application-transparent page

management based on profiling, multi-tiered page migration

policy, and huge page awareness. Our approach extends on

the general design ideas of the above state-of-the-art tiered

memory approaches, and incorporates applications’ memory

characteristics for efficient memory management.

VI. CONCLUSION

Containerized HPC workflows have gained rapid adoption

for running HPC workloads due to their native support for

high concurrency and scalability. However, running multiple

containerized HPC workflows present unique challenges as-

sociated with memory including performance penalties due

to limited memory bandwidth, latency, and workflow-agnostic

page management. Recently, tiered memory systems have

been explored to address the above challenges, however,

current memory management approaches do not perform

application-attuned memory allocation and management to

maximize workflow performance. In this paper, we explore

tiered memory systems for running containerized HPC work-

flows and propose application-attuned intelligent page allo-

cation, movement, and replacement policies to improve per-

formance. We integrate our proposed runtime with popular

HPC scheduler (SLURM) and container runtime (Singularity)

and evaluate its performance using diverse HPC workflows

with various computing, capacity, bandwidth, and latency

requirements. Our evaluation shows that our proposed runtime

reduces workflow execution times by up to 51%, 87%, and

35% as compared to the ideal, realistic, and optimized tiered

execution environments, respectively. In the future, we plan to

extend our page allocation policy to support variable latency

and bandwidth to enable more efficient page replacement and

movement. Furthermore, we plan on extending our implemen-

tation to include accelerator memory.

ACKNOWLEDGEMENTS

This material is based upon work supported by the

National Science Foundation (NSF) under Grant No. CSR-

2315851/2106634/2106635/2312785/CCF-1919113/OAC-

2004751, Sony Faculty Innovation Award (Contract

AG3ZURVF), and Cisco Research Award (Contract 878201).



REFERENCES

[1] Alexander Brace, Igor Yakushin, Heng Ma, Anda Trifan, Todd Munson,
Ian Foster, Arvind Ramanathan, Hyungro Lee, Matteo Turilli, and
Shantenu Jha. Coupling streaming ai and hpc ensembles to achieve
100–1000× faster biomolecular simulations. In 2022 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), pages
806–816. IEEE, 2022.

[2] William D Marks, Jun Yokose, Takashi Kitamura, and Sachie K Ogawa.
Neuronal ensembles organize activity to generate contextual memory.
Frontiers in Behavioral Neuroscience, 16:75, 2022.

[3] Sam Partee, Matthew Ellis, Alessandro Rigazzi, Andrew E Shao,
Scott Bachman, Gustavo Marques, and Benjamin Robbins. Using
machine learning at scale in numerical simulations with smartsim:
An application to ocean climate modeling. Journal of Computational

Science, 62:101707, 2022.
[4] Kazuki Maeda, Thiago Teixeira, Jonathan M Wang, Jeffrery Hokanson,

Caetano Melone, Mario Di Renzo, Steve Jones, Javier Urzay, and
Gianluca Iaccarino. An integrated heterogeneous computing framework
for ensemble simulations of laser-induced ignition. In AIAA AVIATION

2023 Forum, page 3597, 2023.
[5] J Luc Peterson, K Athey, PT Bremer, V Castillo, F Di Natale, JE Field,

D Fox, J Gaffney, D Hysom, SA Jacobs, et al. Merlin: enabling machine
learning-ready hpc ensembles. Technical report, Lawrence Livermore
National Lab.(LLNL), Livermore, CA (United States), 2019.

[6] Logan Ward, Ganesh Sivaraman, J Gregory Pauloski, Yadu Babuji,
Ryan Chard, Naveen Dandu, Paul C Redfern, Rajeev S Assary, Kyle
Chard, Larry A Curtiss, et al. Colmena: Scalable machine-learning-
based steering of ensemble simulations for high performance comput-
ing. In 2021 IEEE/ACM Workshop on Machine Learning in High

Performance Computing Environments, pages 9–20. IEEE, 2021.
[7] Yinzhi Wang, R. Todd Evans, and Lei Huang. Performant container

support for hpc applications. In Proceedings of the Practice and

Experience in Advanced Research Computing on Rise of the Machines

(Learning), PEARC ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[8] Subil Abraham, Arnab K. Paul, Redwan Ibne Seraj Khan, and Ali R.
Butt. On the use of containers in high performance computing
environments. In 2020 IEEE 13th International Conference on Cloud

Computing (CLOUD), pages 284–293, 2020.
[9] Moiz Arif, Kevin Assogba, and M. Mustafa Rafique. Canary: Fault-

tolerant faas for stateful time-sensitive applications. In SC22: Inter-

national Conference for High Performance Computing, Networking,

Storage and Analysis, pages 1–16, Los Alamitos, CA, USA, nov 2022.
IEEE Computer Society.

[10] David Godlove. Singularity: Simple, secure containers for compute-
driven workloads. In Proc. of the Practice and Experience in Advanced

Research Computing on Rise of the Machines, pages 1–4. 2019.
[11] Riken Center for Computational Science. About Fugaku. https:

//www.r-ccs.riken.jp/en/fugaku/about/. Accessed on: 09-29-2023.
[12] Kim Askey. Deep Learning to Predict Protein Functions at Genome

Scale – OLCF. https://www.olcf.ornl.gov/2022/01/10/scientists-use-
summit-supercomputer-deep-learning-to-predict-protein-functions-at-
genome-scale/. Accessed on: 04-06-2023.

[13] Taylor Childers. Singularity on Theta: How to Build and Scale
Containers at the ALCF — Argonne Leadership Computing Facility.
https://www.alcf.anl.gov/support-center/training-assets/singularity-
theta-how-build-and-scale-containers-alcf. Accessed: 2023-04-07.

[14] Argonne National Laboratory. Containers — ALCF User guides.
https://docs.alcf.anl.gov/polaris/data-science-workflows/containers/
containers/. Accessed on: 04-06-2023.

[15] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona,
Stephen Herbein, Helgi I. Ingólfsson, Joseph Koning, Tapasya Patki,
Thomas R.W. Scogland, Becky Springmeyer, and Michela Taufer. Flux:
Overcoming scheduling challenges for exascale workflows. Future

Generation Computer Systems, 110:202–213, 2020.
[16] Tu Mai Anh Do, Loı̈c Pottier, Rafael Ferreira da Silva, Frédéric Suter,

Silvina Caı́no-Lores, Michela Taufer, and Ewa Deelman. Co-scheduling
ensembles of in situ workflows. In 2022 IEEE/ACM Workshop on

Workflows in Support of Large-Scale Science (WORKS), pages 43–51,
2022.

[17] Tu Mai Anh Do, Loı̈c Pottier, Rafael Ferreira da Silva, Silvina Caı́no-
Lores, Michela Taufer, and Ewa Deelman. Performance assessment of
ensembles of in situ workflows under resource constraints. Concur-

rency and Computation: Practice and Experience, page e7111.

[18] Stephen Herbein, Ayush Dusia, Aaron Landwehr, Sean McDaniel, Jose
Monsalve, Yang Yang, Seetharami R Seelam, and Michela Taufer.
Resource management for running hpc applications in container clouds.
In High Performance Computing: 31st International Conference, ISC

High Performance 2016, Frankfurt, Germany, June 19-23, 2016, Pro-

ceedings, pages 261–278. Springer, 2016.
[19] U.S. DEPARTMENT OF ENERGY. U.S. Department of

Energy and Intel to deliver first exascale supercomputer.
https://www.anl.gov/article/us-department-of-energy-and-intel-to-
deliver-first-exascale-supercomputer, 2019.

[20] Barcelona Supercomputing Center. BSC executes, for the first time,
big encrypted neural networks using Intel Optane Persistent Memory
and Intel Xeon Scalable Processors. https://www.bsc.es/news/bsc-
news/bsc-executes-the-first-time-big-encrypted-neural-networks-
using-intel-optane-persistent-memory-and, 2021.

[21] University of Tsukuba. Pegasus - Big memory supercomputer. https:
//www.ccs.tsukuba.ac.jp/eng/supercomputers/#Pegasus, 2023.

[22] Adnan Maruf, Daniel Carlson, Ashikee Ghosh, Manoj Saha, Janki
Bhimani, and Raju Rangaswami. Allocation policies matter for hybrid
memory systems. In Proceedings of the 32nd International Symposium

on High-Performance Parallel and Distributed Computing, HPDC ’23,
page 321–322, New York, NY, USA, 2023. Association for Computing
Machinery.

[23] Hwanjun Lee, Seunghak Lee, Yeji Jung, and Daehoon Kim. T-cat:
Dynamic cache allocation for tiered memory systems with memory
interleaving. IEEE Computer Architecture Letters, 22(2):73–76, 2023.

[24] Baptiste Lepers and Willy Zwaenepoel. Johnny cache: the end of
DRAM cache conflicts (in tiered main memory systems). In 17th

USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI 23), pages 519–534, Boston, MA, July 2023. USENIX
Association.

[25] Jacob Wahlgren, Maya Gokhale, and Ivy B. Peng. Evaluating
emerging cxl-enabled memory pooling for hpc systems. In 2022

IEEE/ACM Workshop on Memory Centric High Performance Comput-

ing (MCHPC), pages 11–20, 2022.
[26] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, Ren

Wang, and Nam Sung Kim. Demystifying cxl memory with genuine
cxl-ready systems and devices, 2023.

[27] Diego Moura, Daniel Mossé, and Vinicius Petrucci. Performance
characterization of autonuma memory tiering on graph analytics. In
2022 IEEE International Symposium on Workload Characterization

(IISWC), pages 171–184, 2022.
[28] Ewa Deelman, Rafael Ferreira da Silva, Karan Vahi, Mats Rynge,

Rajiv Mayani, Ryan Tanaka, Wendy Whitcup, and Miron Livny. The
pegasus workflow management system: translational computer science
in practice. Journal of Computational Science, 52:101200, 2021.

[29] Kate Voss, Geraldine Van Der Auwera, and Jeff Gentry. Full-stack
genomics pipelining with gatk4 + wdl + cromwell [version 1; not peer
reviewed], 2017.

[30] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto
Barja, Emilio Palumbo, and Cedric Notredame. Nextflow enables re-
producible computational workflows. Nature biotechnology, 35(4):316–
319, 2017.

[31] Rosa Maria Badia Sala, Eduard Ayguadé Parra, and Jesús José
Labarta Mancho. Workflows for science: A challenge when facing
the convergence of hpc and big data. Supercomputing frontiers and

innovations, 4(1):27–47, 2017.
[32] Michael A Salim, Thomas D Uram, J Taylor Childers, Prasanna

Balaprakash, Venkatram Vishwanath, and Michael E Papka. Balsam:
Automated scheduling and execution of dynamic, data-intensive hpc
workflows. arXiv preprint arXiv:1909.08704, 2019.

[33] Ivy Peng, Ian Karlin, Maya Gokhale, Kathleen Shoga, Matthew Legen-
dre, and Todd Gamblin. A holistic view of memory utilization on hpc
systems: Current and future trends. In The International Symposium

on Memory Systems, pages 1–11, 2021.
[34] Dan Huang, Zhenlu Qin, Qing Liu, Norbert Podhorszki, and Scott

Klasky. A comprehensive study of in-memory computing on large hpc
systems. In 2020 IEEE 40th International Conference on Distributed

Computing Systems (ICDCS), pages 987–997. IEEE, 2020.
[35] Ranjan Sarpangala Venkatesh, Tony Mason, Pradeep Fernando, Greg

Eisenhauer, and Ada Gavrilovska. Scheduling hpc workflows with
intel optane persistent memory. In 2021 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), pages
56–65. IEEE, 2021.



[36] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and
Evangelos Eleftheriou. Memory devices and applications for in-
memory computing. Nature nanotechnology, 15(7):529–544, 2020.

[37] Sebastian Lührs, Daniel Rohe, Alexander Schnurpfeil, Kay Thust, and
Wolfgang Frings. Flexible and generic workflow management. In
Parallel Computing: On the Road to Exascale, pages 431–438. IOS
Press, 2016.

[38] Kevin Assogba, Moiz Arif, M. Mustafa Rafique, and Dimitrios S.
Nikolopoulos. On realizing efficient deep learning using serverless
computing. In 2022 22nd IEEE International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), pages 220–229, 2022.
[39] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu,

Amir Saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu,
Subramanya R. Dulloor, Jishen Zhao, and Steven Swanson. Basic
performance measurements of the intel optane DC persistent memory
module. CoRR, abs/1903.05714, 2019.

[40] Jacob Wahlgren, Maya Gokhale, and Ivy B Peng. Evaluating emerg-
ing cxl-enabled memory pooling for hpc systems. arXiv preprint

arXiv:2211.02682, 2022.
[41] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-

doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, et al. Pond: Cxl-based memory pooling systems
for cloud platforms. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2, pages 574–587, 2023.
[42] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin

Kim, Jaemin Jung, Oliver Rebholz, Vincent Pham, Krishna Mal-
ladi, and Yang Seok Ki. Enabling cxl memory expansion for in-
memory database management systems. In Data Management on New

Hardware, DaMoN’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[44] Jörn Kuhlenkamp, Sebastian Werner, Maria C Borges, Karim El Tal,
and Stefan Tai. An evaluation of faas platforms as a foundation for
serverless big data processing. In Proceedings of the 12th IEEE/ACM

International Conference on Utility and Cloud Computing, pages 1–9,
2019.

[45] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui,
and Alain Tchana. Ofc: An opportunistic caching system for faas
platforms. In Proceedings of the Sixteenth European Conference on

Computer Systems, EuroSys ’21, page 228–244, New York, NY, USA,
2021. Association for Computing Machinery.

[46] Moiz Arif, Kevin Assogba, M. Mustafa Rafique, and Sudharshan
Vazhkudai. Exploiting cxl-based memory for distributed deep learning.
In 2022 51st International Conference on Parallel Processing, 2022.

[47] Miryeong Kwon, Junhyeok Jang, Hanjin Choi, Sangwon Lee, and
Myoungsoo Jung. Training resilience with persistent memory pooling
using cxl technology. In Heterogeneous and Composable Memory

Workshop at HPCA, 2023. IEEE, 2023.
[48] Connor Imes, Steven Hofmeyr, Dong In D. Kang, and John Paul

Walters. A case study and characterization of a many-socket, multi-
tier numa hpc platform. In 2020 IEEE/ACM 6th Workshop on the

LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop

on Hierarchical Parallelism for Exascale Computing (HiPar), pages
74–84, 2020.

[49] Daniel S Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish
Shah, Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D
Hill, et al. Design tradeoffs in cxl-based memory pools for public cloud
platforms. IEEE Micro, 2023.

[50] Xinjian Long, Xiangyang Gong, Bo Zhang, and Huiyang Zhou. An
intelligent framework for oversubscription management in cpu-gpu
unified memory. Journal of Grid Computing, 21(1):11, 2023.

[51] Salman Abdul Baset, Long Wang, and Chunqiang Tang. Towards an
understanding of oversubscription in cloud. In Hot-ICE, 2012.

[52] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan
Ernst, Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark D. Hill,
Marcus Fontoura, and Ricardo Bianchini. First-generation memory
disaggregation for cloud platforms, 2022.

[53] Niall Douglas. User mode memory page allocation: A silver bullet for
memory allocation? arXiv preprint arXiv:1105.1811, 2011.

[54] Amit S Chavan, Kartik R Nayak, Keval D Vora, Manish D Purohit, and
Pramila M Chawan. A comparison of page replacement algorithms.
International Journal of Engineering and Technology, 3(2):171, 2011.

[55] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. Eelru: simple and
effective adaptive page replacement. ACM SIGMETRICS Performance

Evaluation Review, 27(1):122–133, 1999.
[56] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. Adaptive

page migration for irregular data-intensive applications under gpu
memory oversubscription. In 2020 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pages 451–461, 2020.
[57] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.

Nimble page management for tiered memory systems. In Proceedings

of the Twenty-Fourth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS
’19, page 331–345, New York, NY, USA, 2019. Association for
Computing Machinery.

[58] Tim Blechmann. Boost. lockfree. Boost C++ Libraries, 2013.
[59] Dave Dice and Nir Shavit. Tlrw: return of the read-write lock.

In Proceedings of the twenty-second annual ACM symposium on

Parallelism in algorithms and architectures, pages 284–293, 2010.
[60] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple

linux utility for resource management. In Workshop on job scheduling

strategies for parallel processing, pages 44–60. Springer, 2003.
[61] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin

Kim, Jaemin Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi,
and Yang Seok Ki. Enabling cxl memory expansion for in-memory
database management systems. In Data Management on New Hard-

ware, pages 1–5. 2022.
[62] Yiwei Yang, Pooneh Safayenikoo, Jiacheng Ma, Tanvir Ahmed Khan,

and Andrew Quinn. Cxlmemsim: A pure software simulated cxl. mem
for performance characterization. arXiv preprint arXiv:2303.06153,
2023.

[63] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan
Ernst, Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill,
Marcus Fontoura, et al. First-generation memory disaggregation for
cloud platforms. arXiv preprint arXiv:2203.00241, 2022.

[64] Rafael Ferreira da Silva, Henri Casanova, Kyle Chard, Ilkay Altintas,
Rosa M Badia, Bartosz Balis, Tainã Coleman, Frederik Coppens,
Frank Di Natale, Bjoern Enders, Thomas Fahringer, Rosa Filgueira,
Grigori Fursin, Daniel Garijo, Carole Goble, Dorran Howell, Shantenu
Jha, Daniel S. Katz, Daniel Laney, Ulf Leser, Maciej Malawski,
Kshitij Mehta, Loı̈c Pottier, Jonathan Ozik, J. Luc Peterson, Lavanya
Ramakrishnan, Stian Soiland-Reyes, Douglas Thain, and Matthew
Wolf. A community roadmap for scientific workflows research and
development. In 2021 IEEE Workshop on Workflows in Support of

Large-Scale Science (WORKS), pages 81–90, 2021.
[65] J Luc Peterson, Ben Bay, Joe Koning, Peter Robinson, Jessica Sem-

ler, Jeremy White, Rushil Anirudh, Kevin Athey, Peer-Timo Bremer,
Francesco Di Natale, et al. Enabling machine learning-ready hpc en-
sembles with merlin. Future Generation Computer Systems, 131:255–
268, 2022.

[66] Graphcore. AI for Simulation: How Graphcore is Helping Transform
Traditional HPC. https://www.graphcore.ai/posts/ai-for-simulation-
how-graphcore-is-helping-transform-traditional-hpc, 2022.

[67] Jakob Lüttgau, Shane Snyder, Philip Carns, Justin M Wozniak, Julian
Kunkel, and Thomas Ludwig. Toward understanding i/o behavior in
hpc workflows. In 2018 IEEE/ACM 3rd international workshop on

parallel data storage & data intensive scalable computing systems

(PDSW-DISCS), pages 64–75. IEEE, 2018.
[68] Rushil Anirudh, Jayaraman J Thiagarajan, Peer-Timo Bremer, and

Brian K Spears. Improved surrogates in inertial confinement fusion
with manifold and cycle consistencies. Proceedings of the National

Academy of Sciences, 117(18):9741–9746, 2020.
[69] Matthew Chantry, Sam Hatfield, Peter Dueben, Inna Polichtchouk, and

Tim Palmer. Machine learning emulation of gravity wave drag in
numerical weather forecasting. Journal of Advances in Modeling Earth

Systems, 13(7):e2021MS002477, 2021.
[70] Junqi Yin, Feiyi Wang, and Mallikarjun Shankar. Strategies for

integrating deep learning surrogate models with hpc simulation applica-
tions. In 2022 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), pages 01–10. IEEE, 2022.
[71] Carlos HS Barbosa, Liliane NO Kunstmann, Rômulo M Silva, Char-

lan DS Alves, Bruno S Silva, MS Djalma Filho, Marta Mattoso,
Fernando A Rochinha, and Alvaro LGA Coutinho. A workflow for seis-



mic imaging with quantified uncertainty. Computers & Geosciences,
145:104615, 2020.

[72] Franz Poeschel, Juncheng E, William F Godoy, Norbert Podhorszki,
Scott Klasky, Greg Eisenhauer, Philip E Davis, Lipeng Wan, Ana
Gainaru, Junmin Gu, et al. Transitioning from file-based hpc workflows
to streaming data pipelines with openpmd and adios2. In Smoky

Mountains Computational Sciences and Engineering Conference, pages
99–118. Springer, 2021.

[73] Rubén Langarita Benı́tez. Evaluation of genome alignment work-
flows on hpc processors. Master’s thesis, Universitat Politècnica de
Catalunya, 2021.

[74] William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins,
Greg Eisenhauer, Junmin Gu, Philip Davis, Jong Choi, Kai Ger-
maschewski, Kevin Huck, et al. Adios 2: The adaptable input
output system. a framework for high-performance data management.
SoftwareX, 12:100561, 2020.

[75] Michael Laufer and Erick Fredj. High performance parallel i/o
and in-situ analysis in the wrf model with adios2. arXiv preprint

arXiv:2201.08228, 2022.
[76] Christian Witzler, J Miguel Zavala-Aké, Karol Sierociński, and Herbert

Owen. Including in situ visualization and analysis in pdi. In
International Conference on High Performance Computing, pages 508–
512. Springer, 2021.

[77] Imdb dataset. https://www.imdb.com/interfaces/.
[78] Shaker H Ali El-Sappagh, Abdeltawab M Ahmed Hendawi, and

Ali Hamed El Bastawissy. A proposed model for data warehouse etl
processes. Journal of King Saud University-Computer and Information

Sciences, 23(2):91–104, 2011.
[79] US Census Data, August 2022.
[80] Jean-loup Gailly and Mark Adler. Gnu gzip. GNU Operating System,

1992.
[81] Wuyang Ju, Jianxin Li, Weiren Yu, and Richong Zhang. Igraph: An

incremental data processing system for dynamic graph. 10(3):462–476,
jun 2016.

[82] Rafael Vescovi, Hanyu Li, Jeffery Kinnison, Murat Keçeli, Misha
Salim, Narayanan Kasthuri, Thomas D Uram, and Nicola Ferrier.
Toward an automated hpc pipeline for processing large scale electron
microscopy data. In 2020 IEEE/ACM 2nd Annual Workshop on

Extreme-scale Experiment-in-the-Loop Computing (XLOOP), pages
16–22. IEEE, 2020.

[83] Michael Salim, Thomas Uram, J Taylor Childers, Venkatram Vish-
wanath, and Michael Papka. Balsam: Near real-time experimental data
analysis on supercomputers. In 2019 IEEE/ACM 1st Annual Workshop

on Large-scale Experiment-in-the-Loop Computing (XLOOP), pages
26–31. IEEE, 2019.

[84] Stephen Hudson, Jeffrey Larson, John-Luke Navarro, and Stefan M
Wild. libensemble: A library to coordinate the concurrent evaluation
of dynamic ensembles of calculations. IEEE Transactions on Parallel

and Distributed Systems, 33(4):977–988, 2021.
[85] Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali

Emani, Anda Trifa, Austin R Clyde, Corey Adams, Thomas Uram,
Hyunseung Yoo, et al. Stream-ai-md: Streaming ai-driven adaptive
molecular simulations for heterogeneous computing platforms. In
Proceedings of the Platform for Advanced Scientific Computing Con-

ference, pages 1–13, 2021.
[86] Narayan Desai. Cobalt: an open source platform for hpc system

software research. In Edinburgh BG/L System Software Workshop,
pages 803–820, 2005.

[87] Yehonatan Fridman, Suprasad Mutalik Desai, Navneet Singh, Thomas
Willhalm, and Gal Oren. Cxl memory as persistent memory for disag-
gregated hpc: A practical approach. arXiv preprint arXiv:2308.10714,
2023.

[88] Robert Lasch, Thomas Legler, Norman May, Bernhard Scheirle, and
Kai-Uwe Sattler. Cost modelling for optimal data placement in
heterogeneous main memory. Proceedings of the VLDB Endowment,
15(11):2867–2880, 2022.

[89] Miryeong Kwon, Junhyeok Jang, Hanjin Choi, Sangwon Lee, and
Myoungsoo Jung. Failure tolerant training with persistent memory
disaggregation over cxl. IEEE Micro, 43(2):66–75, 2023.

[90] Daokun Hu, Zhiwen Chen, Wenkui Che, Jianhua Sun, and Hao Chen.
Halo: A hybrid pmem-dram persistent hash index with fast recovery.

In Proceedings of the 2022 International Conference on Management

of Data, pages 1049–1063, 2022.
[91] Jan Kończak and Paweł T Wojciechowski. Failure recovery from

persistent memory in paxos-based state machine replication. In 2021

40th International Symposium on Reliable Distributed Systems (SRDS),
pages 88–98. IEEE, 2021.

[92] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee,
and Myoungsoo Jung. Memory pooling with cxl. IEEE Micro,
43(2):48–57, 2023.

[93] Qirui Yang, Runyu Jin, Bridget Davis, Devasena Inupakutika, and Ming
Zhao. Performance evaluation on cxl-enabled hybrid memory pool. In
2022 IEEE International Conference on Networking, Architecture and

Storage (NAS), pages 1–5. IEEE, 2022.
[94] KyungSoo Lee, Sohyun Kim, Joohee Lee, Donguk Moon, Rakie Kim,

Honggyu Kim, Hyeongtak Ji, Yunjeong Mun, and Youngpyo Joo.
Improving key-value cache performance with heterogeneous memory
tiering: A case study of cxl-based memory expansion. IEEE Micro,
pages 1–11, 2024.

[95] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. Exploring the
design space of page management for multi-tiered memory systems.
In USENIX Annual Technical Conference, pages 715–728, 2021.

[96] Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li. Hierarchical hybrid
memory management in os for tiered memory systems. IEEE Trans-

actions on Parallel and Distributed Systems, 30(10):2223–2236, 2019.
[97] Sai Sha, Chuandong Li, Xiaolin Wang, Zhenlin Wang, and Yingwei

Luo. Hardware-software collaborative tiered-memory management
framework for virtualization. ACM Trans. Comput. Syst., 42(1–2), feb
2024.

[98] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. Tpp: Transparent
page placement for cxl-enabled tiered-memory. In Proceedings of

the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 3, ASPLOS
2023, page 742–755, New York, NY, USA, 2023. Association for
Computing Machinery.

[99] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. Hemem: Scalable tiered memory management for big data
applications and real nvm. In Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles, SOSP ’21, page 392–407,
New York, NY, USA, 2021. Association for Computing Machinery.

[100] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power,
and Venkatesh Akella. Autotm: Automatic tensor movement in het-
erogeneous memory systems using integer linear programming. In
Proceedings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, page 875–890, New York, NY, USA, 2020. Association
for Computing Machinery.

[101] Jie Ren, Dong Xu, Ivy Peng, Junhee Ryu, Kwangsik Shin, Daewoo
Kim, and Dong Li. Hm-keeper: Scalable page management for multi-
tiered large memory systems. arXiv preprint arXiv:2302.09468, 2023.

[102] Sandeep Kumar, Aravinda Prasad, Smruti R Sarangi, and Sreenivas
Subramoney. Radiant: efficient page table management for tiered mem-
ory systems. In Proceedings of the 2021 ACM SIGPLAN International

Symposium on Memory Management, pages 66–79, 2021.
[103] Tong Jin, Fan Zhang, Qian Sun, Hoang Bui, Melissa Romanus, Norbert

Podhorszki, Scott Klasky, Hemanth Kolla, Jacqueline Chen, Robert
Hager, et al. Exploring data staging across deep memory hierarchies
for coupled data intensive simulation workflows. In 2015 IEEE

International Parallel and Distributed Processing Symposium, pages
1033–1042. IEEE, 2015.

[104] Harald Servat, Antonio J Peña, Germán Llort, Estanislao Mercadal,
Hans-Christian Hoppe, and Jesús Labarta. Automating the application
data placement in hybrid memory systems. In 2017 IEEE International

Conference on Cluster Computing, pages 126–136. IEEE, 2017.
[105] Kyungsan Kim, Hyunseok Kim, Jinin So, Wonjae Lee, Junhyuk Im,

Sungjoo Park, Jeonghyeon Cho, and Hoyoung Song. Smt: Software-
defined memory tiering for heterogeneous computing systems with cxl
memory expander. IEEE Micro, 43(2):20–29, 2023.

[106] Jie Ren, Dong Xu, Ivy Peng, Junhee Ryu, Kwangsik Shin, Daewoo
Kim, and Dong Li. Rethinking memory profiling and migration for
multi-tiered large memory systems, 2023.


