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Abstract—Despite significant advances, training deep learning
models remains a time-consuming and resource-intensive task.
One of the key challenges in this context is the ingestion of
the training data, which involves non-trivial overheads: read the
training data from a remote repository, apply augmentations and
transformations, shuffle the training samples, and assemble them
into mini-batches. Despite the introduction of abstractions such
as data pipelines that aim to hide such overheads asynchronously,
it is often the case that the data ingestion is slower than
the training, causing a delay at each training iteration. This
problem is further augmented when training multiple deep
learning models simultaneously on powerful compute nodes
that feature multiple GPUs. In this case, the training data
is often reused across different training instances (e.g., in the
case of multi-model or ensemble training) or even within the
same training instance (e.g., data-parallel training). However,
transparent caching solutions (e.g., OS-level POSIX caching) are
not suitable to directly mitigate the competition between training
instances that reuse the same training data. In this paper, we
study the problem of how to minimize the makespan of running
two training instances that reuse the same training data. The
makespan is subject to a trade-off: if the training instances start
at the same time, competition for I/O bandwidth slows down
the data pipelines and increases the makespan. If one training
instance is staggered, competition is reduced but the makespan
increases. We aim to optimize this trade-off by proposing a
performance model capable of predicting the makespan based
on the staggering between the training instances, which can be
used to find the optimal staggering that triggers just enough
competition to make optimal use of transparent caching in
order to minimize the makespan. Experiments with different
combinations of learning models using the same training data
demonstrate that (1) staggering is important to minimize the
makespan; (2) our performance model is accurate and can predict
the optimal staggering in advance based on calibration overhead.

Index Terms—Deep Learning, Caching and Reuse of Training
Data, Co-Located Training, Performance Modeling

I. INTRODUCTION

Deep learning (DL) models are rapidly gaining traction both

in the industry and scientific computing [1], driven by the

accumulation of massive data and the computing capability of

accelerators such as GPUs. In science, for example, instru-

ments that collect data at GB/s and 100+ TB/day present a

wide range of learning opportunities in areas such as fusion

energy science [2], lattice quantum chromodynamics [3], pty-

chography [4], drug design and response prediction [5], etc.

Training a DL model is data-intensive and requires exten-

sive computation, communication, and storage resources. For

example, vision models such as VIT [6] and natural language

models such as BERT [7] contain hundreds of millions of

parameters. GPU accelerators and AI runtimes have evolved

to take advantage of massive parallelism, enabling efficient

training of such large DL models. However, the problem of

feeding the training data to AI runtimes fast enough to take

advantage of efficient training remains a key challenge.

Modern DL runtimes such as PyTorch [8] and Tensor-

Flow [9] are beginning to acknowledge the importance of

optimizing the entire training data life-cycle: from reading the

training samples, augmenting them through transformations,

shuffling them to simulate pseudo-random sampling, and fi-

nally grouping them together into mini-batches that are fed

to the training. To this end, data pipeline abstractions were

proposed (such as NVIDIA’s DALI [10]) that asynchronously

overlap the steps in the training data life-cycle with actual

training steps. However, despite such asynchronous overlaps,

the data pipeline may not keep up with the training steps, in

which case each training step needs to wait until the next mini-

batch is available [11]. This may happen especially when the

training data is stored on a remote repository (such as a parallel

file system), in which case high I/O latencies and insufficient

I/O bandwidth are to blame for stalls in the data pipeline [12].

In such scenarios, up to 85% of the training time may be spent

waiting for the data pipelines [13], [14].

This issue is amplified by the fact that modern HPC

systems feature compute nodes equipped with several GPUs

that compete for the limited I/O bandwidth. Specifically, each

GPU typically runs a different DL model training instance

that is attached to a different data pipeline, which means the

data pipelines compete for the I/O bandwidth to read the

training samples from the repository. Fortunately, in a large

number of scenarios, the training instances are related and

share the same training data. For example, this is the case for

multi-model learning (i.e., train different DL models to solve

the same problem, and use them in tandem to increase the

confidence in the inference results), neural architecture search

(automated exploration of DL model candidates feasible to

solve a problem), hyper-parameter optimization (fine-tuning

of DL model parameters such as learning rate and dropout).

Furthermore, it is often the case that different users (that are

unaware of each other) make use of the same standardized

training data (e.g., ImageNet [15]) to train their DL models.

Caching the training data is one possible solution to mitigate

the high I/O overheads of data pipelines [16]. It may even

happen automatically. For example, modern operating systems

use the spare memory available on the compute nodes to

cache the data read from POSIX file systems. Under ideal

circumstances, after training for an epoch (during which the
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full training data is visited exactly once), subsequent epochs

(and other training instances sharing the same training data)

would be able to benefit from local caching to reduce or even

eliminate remote I/O to external repositories.

However, as the cost of traditional training that involves a

large number of epochs is increasing, techniques such as fine-

tuning a DL model using transfer learning [17] or applying an

early stopping policy during neural architecture search [18]

combined with transfer learning [19] is becoming more

popular. In this context, DL training is short-lived and runs

for one or a few epochs only. Furthermore, it is often the case

that they need to be scheduled simultaneously (e.g., because

they are part of an ensemble). Under such circumstances, the

interleaving of different access patterns causes high cache

contention, misses, and trashing, which limits the reuse op-

portunity of cached training data and therefore the overall

effectiveness of caching.

In this paper, we focus on the problem of how to efficiently

train co-located DL models that share the same input data

stored initially on a remote repository. For simplicity, we focus

on the case of pairs of DL models. In this case, our goal is to

minimize the training makespan, i.e., the duration until both

DL models are fully trained. As a secondary goal, we aim

to simultaneously reduce the resource utilization needed for

the training. We assume that the scheduler has the freedom to

start the two DL model training instances in any configuration:

simultaneously, serially (one after another), or staggered (start

one of the training instances after a delay). In either case, we

define resource utilization as the sum of the runtimes of the

individual training instances on the GPUs. In other words, if

we have the choice between starting two training instances

simultaneously or staggered, and in both cases, the makespan

is the same, we prefer the staggered configuration, because

in this case, we can assign other work on the GPU that is

scheduled to run the staggered training instance later.

A key observation that we leverage is the fact that it is

possible to use the same pseudo-random number generator

seed in the data pipelines of both DL models we aim to

train simultaneously. Using this approach, the training data

will be read in the same order by both training instances,

thereby negating the cache-trashing effect, since we avoid the

interleaving of different access patterns. On the other hand, the

contention for I/O bandwidth is more difficult to address, as

it is subject to a trade-off: if we start both training instances

at the same time, then this allows the maximum degree of

training parallelism at the cost of high I/O cache contention.

At the other extreme, if we run the training instances serially,

we avoid I/O contention at the cost of no training parallelism.

To solve this trade-off, we have to find the optimal staggering,

which measures how long to wait after starting the first training

instance until we start the second training instance, such as to

minimize the training makespan. To this end, we introduce

several contributions, summarized below:

• We study the impact of I/O overheads during the training

of both individual and pairs of DL models and identify

key metrics that enable the characterization and mitiga-

tion of caching and I/O contention triggered by the data

pipelines (Section IV).

• We introduce a performance model that requires minimal

calibration in the form of training the pair of DL models

for a few training steps under well-defined circumstances

derived from the metrics used in the characterization.

The model aims to predict the optimal staggering that

minimizes the training makespan, which indirectly also

reduces resource utilization. To this end, the performance

model leverages piece-wise consistent behavior patterns

(thanks to the iterative nature of DL model training),

which are composed as a state machine (Section V).

• We demonstrate the effectiveness of the performance

model to minimize the makespan and reduce the resource

utilization for the training of different pairs of popular DL

models and standardized datasets used in the AI commu-

nity. To this end, we run extensive experiments to measure

the training makespan of all possible staggerings and

show that our model can predict the optimal staggering

with an error of less than 1%, while reducing the training

makespan and resource utilization by more than 50%

compared with several baseline approaches (Section VI).

II. RELATED WORK

Deep Learning I/O Optimization: Data movement is a

key performance bottleneck in modern DL training applica-

tions [20], [12] as approximately 62% of machine learning

workloads observe at least 1 ms of wait time and 16% spend

at least 100 ms waiting for the input data [21]. Stalls are in-

troduced by over-the-network data transfer, slow data pipeline

transformations, large discrepancies between modern hardware

accelerators and CPU processing speeds (especially when

transformations are performed on CPUs to avoid contention

for GPUs, where the training is performed) [22]. In particular,

the I/O access patterns (small, pseudo-random accesses) are

particularly challenging for traditional POSIX-based storage

systems such as parallel file systems (PFS) [23]. Pumma et

al. [24] have shown that memory-mapped databases can be

adapted to reorganize the training data such as to maximize

OS-level caching benefits and minimize POSIX metadata over-

heads (e.g., enumerate files in a directory). Other approaches

such as FanStore [25] provide a global cache layer on node-

local burst buffers in a compressed format, allowing POSIX-

compliant file access to the compressed data in user space.

Data pipelines that offer a streaming view over the training

data are becoming the norm in AI training, with industry-

standard approaches such as NVIDIA DALI [10] offering

asynchronous implementations that hide most overheads by

overlapping I/O reads, transformations, shuffling and batching

with the training. Such approaches are insufficient at a large

scale, as many training instances may share the training data

and therefore compete for the limited I/O bandwidth of the

repository storing it. In this case, collaborative caching of the

training data on the compute nodes is a popular technique.

Specifically, the compute nodes access each other’s cache pref-

erentially, which reduces the I/O contention on the repository.
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This approach can be further optimized by maximizing the

reuse of training data thanks to the foreknowledge of the

access pattern [14], [13]. Other complementary directions are

the use of low-latency emerging memory technologies, e.g.,

CXL [26], or specialized DL model repositories to store and/or

cache candidates viable for transfer learning [27], which is a

scenario particularly relevant for short-lived training instances.

Performance Prediction: A large number of performance

modeling solutions rely on observations from traces of his-

torical application executions to predict the future application

performance [28], [29]. One possible approach is to use ML-

based numerical models to identify representative patterns

from collected data [30]. When the application generates

specific repetitive behavior patterns of performance metrics

over time (both in terms of runtimes or CPU, memory,

and network utilization), sequence-to-sequence DL models

(originally applied in natural language processing) have been

successfully adapted to identify these behavior patterns in

an online fashion [31]. Analytical approaches [32], [33] are

also used to collectively or separately model the computation,

communication, and I/O performance of DL workloads. They

are based on the fundamental observation that DL workload

executions follow a repetitive pattern where one mini-batch of

data is processed per iteration and the entire dataset is read in

each epoch [34]. Furthermore, learning runtime properties by

sampling tasks may also be used to predict properties of the

whole workload and avoid the assumption of cyclic execution

patterns [35]. Combining both numerical and analytical solu-

tions further optimizes the prediction process as fewer data

points need to be collected. It is important to note that while

such approaches can be effective at predicting the behavior of a

single DL training instance, in our scenario we are interested in

multiple DL training instances that are co-located and compete

for resources, which makes the problem more challenging.

Concurrent Execution of Co-Located DL Workloads:

The concurrent execution of co-located DL workloads leads to

workload interference through resource contention, bandwidth

bottleneck, race conditions, etc [36]. Different workloads

can be scheduled on dedicated GPUs to provide isolation

to training processes. However, this configuration does not

eliminate interference due to data pipelines competing for I/O

and CPU resources. In this regard, one particular aspect that

has proved successful is the load balancing of the stages of

the data pipeline across the CPU cores [13] (i.e., allocate

CPU cores to data pipeline stages proportionally to their

computational complexity). Nevertheless, the competition for

I/O resources and OS-level caches leads to unpredictability in

workload performance depending on the co-located workload

and resource availability [37]. As a consequence, efforts have

emerged to optimize the training data layout and caching

strategies for frequent reuse [38], [39]. For example, Meta

has built a central data warehouse for training instances that

heavily filter massive and evolving datasets before reusing

them. Nevertheless, such efforts are often targeted at domain-

specific areas (e.g., recommender systems [40]).

To our best knowledge, we are the first to study the ben-

efits of optimal staggering of co-located DL model training

instances for the purpose of mitigating the contention of the

data pipelines through shared caches of training data, which

ultimately reduces the makespan and resource utilization.

III. BACKGROUND AND PROBLEM FORMULATION

Data pipelines abstract input data as a potentially infinite

sequence of training samples, e.g., tensors or composite types

(tuples, nested datasets, etc.). Training samples are not ac-

cessed individually, but in groups called mini-batches that are

assembled into a batch queue, working like an iterator used to

feed a new mini-batch at each training iteration. The path from

reading the input data to generating the mini-batches creates a

complex multi-stage producer-consumer pipeline, as illustrated

in Figure 1. Specifically, the training samples are read from

the repository (typically as files stored on a PFS), encoded

as tensors, optionally transformed using custom augmentation

functions, shuffled, and finally assembled into mini-batches,

which are finally enqueued into the batch queue.

A typical implementation of a data pipeline (such as

NVIDIA’s DALI [10]) is asynchronous, i.e., it fills the batch

queue in the background, without blocking the training iter-

ations. If the data pipeline cannot keep up with the training

iterations (i.e., the training iterations consume mini-batches

from the batch queue faster than the data pipeline can pro-

duce them), the training needs to wait for the data pipeline

between the iterations. Such I/O wait delays increase the

overall duration of the training. An example is illustrated in

Figure 2: the data pipeline assembles mini-batches one and two

quickly, but takes much longer for mini-batch three. Although

a large part of the overhead of assembling mini-batch three is

overlapped with the second training iteration, this still causes

a significant I/O wait delay until the third training iteration

can start. Furthermore, while these data pipelines are highly

optimized and can take advantage of both GPUs and CPUs to

parallelize the intermediate stages (decoding, transformations,

shuffling, etc.), I/O requests often become a weak link in the

pipeline, especially when they need to be served by a PFS,

bottlenecking the rest of the stages [12], [13].

For the purpose of this work, we assume two DL training

instances A and B that share the same training data. To

take advantage of caching, they are co-located on the same

compute node but run on different GPUs. If A and B overlap

during their runtime, then they will either compete for the I/O

bandwidth to the remote repository (if they need to access

different training samples that are not cached locally) or they

will compete for the cache (both for reads and writes). Our

goal is to minimize the makespan of finishing the training of

both A and B while reducing the GPU resource utilization

necessary to achieve this objective.

Since both A and B visit all training samples of the same

dataset exactly once during an epoch, a naive strategy could

simply start both A and B at the same time and let them

compete for I/O bandwidth to the remote repository, under

the assumption that any first-time read of a training sample

can be cached locally, therefore the I/O overhead of accessing
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Fig. 1. Data pipeline: multi-stage streaming of training data from a remote repository.

Batch 1 Batch 2

Training 1 Training 2

Batch 3

Training 3Batch
Queue

I/O
Wait

Fig. 2. Data pipeline: mini-batches that accumulate slowly in the batch queue cause I/O wait delays that slow down the training.

the remote repository is paid only once, regardless of which

training instances issued the first time read. We explain why

such a naive strategy is sub-optimal in the next section.

IV. STUDY OF I/O BOTTLENECKS DURING CO-LOCATED

TRAINING WITH VARIABLE STAGGERING

In this section, we aim to characterize the I/O and caching

behavior of co-located DL training instances that share the

same training data. It simultaneously motivates our contribu-

tion and explains key behavior patterns and metrics that are

leveraged by our contribution.

Since the I/O bandwidth to the remote repository is shared

by the two co-located DL training instances A and B, a naive

strategy that simply starts them at the same time amplifies the

I/O wait delays due to competition for limited I/O bandwidth,

especially when A and B visit the training data in a different

order. A simple fix to solve this issue would be to force A and

B to visit the training data in the same order, which would

maximize the reuse of locally cached training data.

We propose to achieve this by fixing the pseudo-random

number generator seed used by the data pipelines of A and

B to sample the training data, which effectively results in a

deterministic order of visiting the training data. However, a key

question is whether such a simple fix is enough to enable the

naive strategy to achieve our goal of minimizing the makespan.

As expected, this is not the case. To illustrate this point, we

construct an experimental setup that concurrently trains two

DL models (A: ResNet-50 and B: EfficientNet-B0), commonly

used as benchmarks, on two GPUs of the same compute

node. These DL models use the same standardized training

data (TinyImageNet [41]) available on a remote repository

(GlusterFS) and begin with a cold cache. For completeness,

please refer to the full description of the setup in Section VI-A.

We fix the pseudo-random number generator seed for the

data pipelines of A and B to implement a deterministic read

order of the training samples for the naive strategy. We say

the naive strategy has a staggering of 0% because both A and

B start at the same time. Then, we compare with alternative

experiments that start ResNet-50 first, then wait until X% of

the total runtime of ResNet-50 has passed (100% denotes the

total runtime of ResNet-50 when running standalone, without

competition for I/O bandwidth), then start EfficientNet-B0. In

this case, we say the staggering is X%. A staggering of 100%

corresponds to the case when A and B run serially.

We depict the results in Figure 3. Indeed, as can be

observed, the naive strategy does not produce the minimum

makespan and leads to high resource utilization. By using a

staggering of 40%, the makespan can be reduced, while at the

same time the resource utilization of EfficientNet-B0 is 40%

lower since it starts later but finishes faster. In general, we

note the following important observations:

Observation 1 - I/O competition negatively impacts

the individual runtimes and resource utilization of both

training instances: Even with a fixed visiting order of the
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