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ABSTRACT

The goal of reinforcement learning (RL) is to find a policy that maximizes
the expected cumulative return. It has been shown that this objective can be
represented as an optimization problem of state-action visitation distribution
under linear constraints. The dual problem of this formulation, which we refer
to as dual RL, is unconstrained and easier to optimize. In this work, we first cast
several state-of-the-art offline RL and offline imitation learning (IL) algorithms as
instances of dual RL approaches with shared structures. Such unification allows
us to identify the root cause of the shortcomings of prior methods. For offline
IL, our analysis shows that prior methods are based on a restrictive coverage
assumption that greatly limits their performance in practice. To fix this limitation,
we propose a new discriminator-free method ReCOIL that learns to imitate from
arbitrary off-policy data to obtain near-expert performance. For offline RL, our
analysis frames a recent offline RL method XQL in the dual framework, and we
further propose a new method f -DVL that provides alternative choices to the
Gumbel regression loss that fixes the known training instability issue of XQL.
The performance improvements by both of our proposed methods, ReCOIL and
f -DVL, in IL and RL are validated on an extensive suite of simulated robot
locomotion and manipulation tasks.

Project page (Code and Videos): hari-sikchi.github.io/dual-rl/

1 INTRODUCTION

A number of deep Reinforcement Learning (RL) algorithms optimize a regularized policy learning
objective using approximate dynamic programming (ADP) [Bertsekas and Tsitsiklis, 1995]. Popular
off-policy temporal difference algorithms spanning both imitation learning [Kostrikov et al., 2018, Ni
et al., 2021] and RL [Haarnoja et al., 2018, Janner et al., 2019, Sikchi et al., 2022b, Hafner et al., 2023]
exemplify this class. As we discuss in Section 3, one way to develop a principled off-policy algorithm
is to ensure unbiased estimation of the on-policy policy gradient using off-policy data [Nachum
and Dai, 2020]. Unfortunately, many classical off-policy algorithms do not guarantee this property,
resulting in issues like training instability and over-estimation of the value function [Fu et al., 2019,
Fujimoto et al., 2018, Baird, 1995]. To obtain high learning performance, these algorithms require
that most data be nearly on-policy, otherwise require special algorithmic treatments (e.g., importance
sampling [Precup et al., 2001], layer normalization [Ball et al., 2023], prioritized sampling [Vecerik
et al., 2017]) to avoid the aforementioned issues. Recently, there have been developments leading
to new off-policy algorithms with improved performance for RL [Kumar et al., 2020, Garg et al.,
2021, Kostrikov et al., 2021] and IL [Zhu et al., 2020, Ma et al., 2022, Garg et al., 2021, Florence
et al., 2022]. These methods are derived via a variety of mathematical tools and attribute their success
to different aspects. It remains an open question if we can inspect these algorithms under a unified
framework to understand their limitations, and subsequently propose better methods.

In this work, we consider a specific formulation for RL that writes the performance of a policy as a
convex program with linear constraints [Manne, 1960]. This convex program can be converted into
unconstrained forms using Lagrangian duality, which is more amenable for numerical optimization.
We refer to the class of approaches that admit the dual formulations as Dual RL. Dual RL approaches
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Method dual-Q/V Gradient Objective Off-Policy Data

RL

AlgaeDICE, GenDICE, CQL Q semi regularized RL Arbitrary

OptiDICE V full regularized RL Arbitrary

XQL, REPS, f -DVL V semi regularized RL Arbitrary

VIP, GoFAR V full regularized RL Arbitrary

Logistic Q-learning QV 1 full regularized RL ✗

IL

IQLearn, IBC Q semi Df pρπ}ρEq Expert-only

OPOLO, OPIRL Q semi Dklpρπ}ρEq Arbitrary

SMODICE V full Dklpρπ}ρEq Arbitrary

DemoDICE, LobsDICE V full Dklpρπ}ρEq ` αDklpρπ}ρRq Arbitrary

P2IL QV 1 full DCpρπ}ρEq1
✗

ReCOIL-Q Q full Df pρπmix}ρE,R
mixq Arbitrary

ReCOIL-V V full Df pρπmix}ρE,R
mixq Arbitrary

Table 1: A number of recent works can be studied together under the unified umbrella of dual-RL. These
methods are instantiations of dual-RL with a choice of update strategy, objective, constraints, and their ability to
handle off-policy data. Bold names correspond to the methods proposed in the paper and Italic names correspond
to methods that aren’t yet known to be dual-approaches.

naturally provide unbiased estimation of the on-policy policy gradient using off-policy data, in a
principled way. They avoid explicit importance sampling that leads to high variance and ensures
training stability and convergence [Tsitsiklis and Van Roy, 1996]. Related approaches in this space
have often been referred to as DICE (DIstribution Correction Estimation) methods in previous
literature [Nachum et al., 2019, Kostrikov et al., 2019, Lee et al., 2021, Ma et al., 2022, Zhang et al.,
2020]. We note that the linear programming formulation for the RL objective has been used and
studied in Manne [1960], Denardo [1970], de Ghellinck and Eppen [1967], Borkar [1988], Malek
et al. [2014] and the general duality framework for regularized RL was first introduced in Nachum
and Dai [2020].

Our first contribution is to extend the work of Nachum and Dai [2020] and show that many recent
algorithms in deep RL and IL can all be viewed as different instantiations of dual problems for
regularized policy optimization, see Table 1 for the complete list. These algorithms have been
motivated from a variety of perspectives and differing derivations. For example, XQL [Garg et al.,
2023] focuses on introducing Gumbel regression into RL, CQL [Kumar et al., 2020] aims at learning
a pessimistic Q function, IQLearn [Garg et al., 2021] and OPOLO [Zhu et al., 2020] use the change
of variables for IL, and IBC [Florence et al., 2022] uses a contrastive loss for imitation learning, but
as we show all can actually be derived from the dual formulation.

Second, the dual unification in IL reveals an important shortcoming of prior methods that learn to
imitate the expert by leveraging arbitrary off-policy data. Prior work [Ma et al., 2022, Zhu et al., 2020,
Kim et al., 2022b] imposes a coverage assumption (the suboptimal data covers the visitations of the
expert data) and learn a density ratio between suboptimal and expert data via a discriminator to use
it for downstream learning. In an offline setting, with limited data and coverage, learning a density
ratio between suboptimal and expert can be challenging, and the inaccuracies of the discriminator can
compound in downstream RL, negatively affecting resulting policy performance. We show that by a
simple modification to the dual formulation, we can get away from this limitation. In Section 5, we
present ReCOIL, a simple, theoretically principled, and discriminator-free imitation learning method
from arbitrary off-policy data. We empirically demonstrate the failure of previous IL methods based
on the coverage assumption in a number of MuJoCo environments and show substantial performance
improvements of ReCOIL in Section 7.

Third, the presented unification also provides us with a useful tool to examine the limitation for a
recent offline RL method, XQL [Garg et al., 2023]. XQL’s success was originally attributed to better
modeling of Bellman errors using Gumbel regression. On the other hand, XQL also suffers from
training instability, also caused by Gumbel regression. By situating the implicit policy improvement
algorithms like XQL in the dual RL framework, in Section 6 we are able to propose a family of
implicit algorithms f -Dual V Learning (f -DVL), which successfully addresses the training instability
issue. The empirical experiments on the D4RL benchmarks establish the superior performance of
f -DVL, see Section 7.

1These methods use a different regularizer. More details in Appendix C.4.
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2 RELATED WORK

Off-Policy Methods for IL Imitation learning has benefited greatly from using off-policy data
to improve learning performance [Kostrikov et al., 2018, Agarwal et al., 2020, Zhu et al., 2020,
Ni et al., 2021, Sikchi et al., 2022a]. Often, replacing the on-policy expectation common in most
Inverse RL formulations [Ziebart et al., 2008, Swamy et al., 2021] by expectation under off-policy
samples, which is unprincipled, has led to gains in sample efficiency [Kostrikov et al., 2018]. Previous
works have proposed a solution in the dual RL space for principled off-policy imitation but is based
on a restrictive coverage assumption [Ma et al., 2022, Zhu et al., 2020, Kim et al., 2022b] which
requires estimating a density ratio using a discriminator and further limit themselves to matching a
particular f -divergence. In this work, we eliminate this assumption and allow for generalization to all
f -divergences, presenting a principled off-policy discriminator-free approach to imitation.

Off-Policy Methods for RL Off-policy RL methods promise a way to utilize data collected by
arbitrary behavior policies to aid in learning an optimal policy and thus are advantageous over
on-policy methods. This promise falls short, as previous off-policy algorithms are plagued with
a number of issues such as overestimation of the value function, training instability, and various
biases [Thrun and Schwartz, 1993, Fu et al., 2019, Fujimoto et al., 2018, Kumar et al., 2019]. A
common cause for a number of these issues is distribution mismatch. As we shall discuss later, the
RL objective requires on-policy samples but is often estimated by off-policy samples in practice.
Prior works have proposed fixing the distribution mismatch by using importance weights [Precup,
2000], which can lead to high variance policy gradients or ignoring the distribution mismatch
completely [Haarnoja et al., 2018, Fujimoto et al., 2018, Sun et al., 2022, Ji et al., 2023, Chen et al.,
2021b]. Unfortunately, these approaches do not carry over well to the offline setting. For example,
when deploying the policy online, the overestimation bias can be corrected by the environment
feedback, which is infeasible for offline RL.A number of solutions exist for controlling overestimation
in prior work—f -divergence regularization to the training distribution [Wu et al., 2019, Fujimoto
et al., 2019], support regularization [Singh et al., 2022], implicit maximization [Kostrikov et al., 2021],
Gumbel regression [Garg et al., 2023] and learning a Q function that penalizes OOD actions [Kumar
et al., 2020]. Dual-RL methods consider a regularized RL setting suitable for offline RL as well as
fixing the distribution mismatch issue in a principled way.

3 PRELIMINARIES

We consider an infinite horizon discounted Markov Decision Process denoted by the tuple
M “ pS,A, p, r, γ, d0q, where S is the state space, A is the action space, p is the transition
probability function, r : S ˆ A Ñ R is the reward function, γ P p0, 1q is the discount factor,
and d0 is the distribution of initial state s0. Let ∆pAq denote the probability simplex supported
on A. The goal of RL is to find a policy π : S Ñ ∆pAq that maximizes the expected return:

Eπ

“ř8
t“0

γtrpst, atq
‰
, where we use Eπ to denote the expectation under the distribution induced by

at „ πp¨|stq, st`1 „ pp¨|st, atq. We also define the discounted state-action visitation distribution

dπps, aq “ p1 ´ γqπpa|sqř8
t“0

γtP pst “ s|πq. The unique stationary policy that induces a

visitation dps, aq is given by πpa|sq “ dps, aq{řa dps, aq. We will use dO and dE to denote the
visitation distributions of the behavior policy of the offline dataset and the expert policy, respectively.
f -divergences are denoted by Df and measure the distance between two distributions. For a more
formal overview of the above concepts, refer to Appendix B.1.

Value Functions and Bellman Operators Let V π: S Ñ R be the state value function of π. V πpsq
is the expected return when starting from s and following π: V πpsq “ Eπ

“ř8
t“0

γtrpst, atq|s0 “ s
‰
.

Similarly, let Qπ : S ˆ A Ñ R be the state-action value function of π, such that
Qπps, aq “ Eπ

“ř8
t“0

γtrpst, atq|s0 “ s, a0 “ a
‰
. Let V ˚ and Q˚ denote the value functions

corresponding to an optimal policy π˚. Let T π
r be the Bellman operator with policy π and reward

function r such that T π
r Qps, aq “ rps, aq ` γEs1„pp¨|s,aq,a1„πp¨|s1qrQps1, a1qs. We also define the

Bellman operator for the state value function TrV ps, aq “ rps, aq ` γEs1„pp¨|s,aqrV ps1qs.

3.1 REINFORCEMENT LEARNING VIA LAGRANGIAN DUALITY

RL optimizes the expected return of a policy. We consider the linear programming formulation of the
expected return [Manne, 1960], to which we can apply Lagrangian duality or Fenchel-Rockfeller
duality to obtain corresponding constraint-free problems. We now review this framework, first
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introduced by Nachum and Dai [2020]1. Consider the regularized policy learning problem

max
π

Jpπq “ Edπps,aqrrps, aqs ´ αDf pdπps, aq || dOps, aqq, (1)

whereDf pdπps, aq || dOps, aqq is a conservatism regularizer that encourages the visitation distribution

of π to stay close to some distribution dO, and α is a temperature parameter that balances the expected
return and the conservatism. An interesting fact is that Jpπq can be rewritten as a convex problem
that searches for a visitation distribution that satisfies the Bellman-flow constraints. We refer to this
form as primal-Q:

primal-Q max
π

Jpπq “ max
π

“
max
d

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t dps, aq “ p1 ´ γqd0psq.πpa|sq ` γ
ř
s1,a1 dps1, a1qpps|s1, a1qπpa|sq, @s P S, a P A

‰
.

(2)

We can convert this to an unconstrained problem with dual variables Qps, aq defined for all s, a P
S ˆ A by applying Lagrangian duality and the convex conjugate, giving us the dual-Q formulation:

dual-Q maxπminQp1 ´ γqEs„d0,a„πpsqrQps, aqs ` αEps,aq„dO rf˚ prT π
r Qps, aq ´Qps, aqs {αqs, (3)

where f˚ is the convex conjugate of f . In fact, one can note that Problem (2) is overconstrained—the
constraints already determine the unique solution dπ, rendering the inner maximization w.r.t d
unnecessary. Therefore, we can relax the constraints to obtain another problem with the same optimal
solution π˚ and d˚, which we call primal-V below:

primal-V max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř
aPA dps, aq “ p1 ´ γqd0psq ` γ

ř
ps1,a1qPSˆA

dps1, a1qpps|s1, a1q, @s P S.
(4)

Similarly, we consider the Lagrangian dual of (4), with dual variables V psq defined for all s P S:

dual-V min
V

p1 ´ γqEs„d0rV psqs ` αEps,aq„dO
“
f˚
p prT V ps, aq ´ V psqqs {αq

‰
, (5)

where f˚
p is a variant of f˚ defined as f˚

p pxq “ maxp0, f 1´1pxqqpxq ´ fpmaxp0, f 1´1pxqqq. Such

modification is to cope with the nonnegativity constraint dps, aq ě 0 in primal-V. Note that in
both cases for dual-Q and dual-V, the optimal solution is the same as their primal formulations
due to strong convexity. See Appendix B.1 for a detailed review, connections between Fenchel and
Lagrangian duality, and discussion of computing π˚ from V ˚ for the dual-V formulation.

Remarks. The dual formulations have a few appealing properties. (a) They allow us to transform
constrained distribution-matching problems into unconstrained forms w.r.t previously logged data.
(b) One can show that the gradient of dual-Q w.r.t π, when Q is optimized for the inner problem, is
the on-policy policy gradient computed by off-policy data [Nachum and Dai, 2020]. This property is
key to relieving the instability or divergence issue in many off-policy learning algorithms [Thrun and
Schwartz, 1993, Fu et al., 2019, Fujimoto et al., 2018].

4 A UNIFIED PERSPECTIVE ON RL AND IL THROUGH DUALITY

In this section, we discuss how a number of recent RL and IL algorithms can be cast as dual-RL
methods. We restrict ourselves to demonstrating this equivalence on a subset of methods in offline RL
and IL settings from Table 1 whose shortcomings we study via the unified viewpoint. In later sections,
we present approaches for addressing these shortcomings in both RL and IL. For the interested reader,
a complete discussion on Table 1, particularly how algorithms like implicit behavior cloning, CQL
and OPOLO can be cast as dual-RL, can be found in Appendix C. We further discuss the extension
of dual-RL formulation to the online setting in Appendix E. All proofs are deferred to the appendix.

4.1 DUAL FORMULATION FOR EXISTING IMITATION LEARNING ALGORITHMS

We first consider the standard imitation learning setup where the agent is given a set of expert
demonstrations, i.e. state-action trajectories, and does not have access to environment reward. We
consider two possible offline IL settings — 1) only expert demonstrations are available and 2) we
additionally have access to suboptimal transitions from the environment. Intuitively, these suboptimal
transitions should aid in better matching the expert behavior.

a. Offline IL with Expert Data Only Imitation learning, or occupancy matching [Ghasemipour
et al., 2020] is a direct consequence of the regularized RL problem (Eq. 1) when the reward is set to
be 0 uniformly across the state-action space and the regularization distribution and dO are set to be
the expert visitation distribution dE . The corresponding dual-Q under these conditions simplifies

1We use Lagrangian duality instead of Fenchel-Rockfeller duality for ease of exposition.
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to:
dual-Q maxπminQp1 ´ γqEd0psq,πpa|sqrQps, aqs ` αEs,a„dE rf˚ prT π

0
Qps, aq ´Qps, aqs {αqs. (6)

Interestingly, this reduction directly leads us to IQLearn [Garg et al., 2021], which was derived using
a change of variables in the form of an inverse backup operator.

Proposition 1. IQLearn [Garg et al., 2021] is an instance of dual-Q using the semi-gradient 2

update rule with a (soft) Bellman operator, where rps, aq “ 0@s P S, a P A, dO “ dE .

b. Offline IL with Additional Suboptimal Data Unfortunately, the dual-RL formulations
above offer no way to naturally incorporate additional suboptimal data dS . To remedy this,
prior methods have relied on careful selection of the f -divergence and a coverage assumption
to craft an off-policy objective [Zhu et al., 2020, Hoshino et al., 2022, Ma et al., 2022, Kim
et al., 2022b,a]. More precisely, under the coverage assumption that the suboptimal data
visitation covers the expert visitation (dS ą 0 wherever dE ą 0) [Ma et al., 2022], and
with the KL divergence, we obtain the following simplification for the imitation objective:

DKLpdps, aq || dEps, aqq “ Es,a„dps,aq

„
log

dps, aq
dEps, aq


“ Es,a„dps,aq

„
log

dps, aq
dSps, aq ` log

dSps, aq
dEps, aq



“ Es,a„dps,aq

„
log

dSps, aq
dEps, aq


`DKLpdps, aq || dSps, aqq.

The final objective now resembles primal-Q when rps, aq “ ´ log
dSps,aq
dEps,aq and correspondingly

we obtain the following dual-Q problem using Eq. 3:
dual-Q maxπpa|sq minQps,aqp1 ´ γqEρ0psq,πpa|sqrQps, aqs ` Es,a„dS

“
f˚pT π

rimitQps, aq ´Qps, aqq
‰
, (7)

where Trimit denote Bellman operator under the pseudo-reward function rimitps, aq “ ´ log
dSps,aq
dEps,aq .

This objective also allows us to cast IL method OPOLO [Zhu et al., 2020] in the dual-Q framework
(see Appendix C.3). The pseudo-reward is a logarithmic density ratio learned using a discriminator
and is later used for policy learning by optimizing Equation 7. Density ratio learning is difficult in a
limited data regime as well as when the expert and suboptimal data share low coverage, and errors in
learned discriminators can cascade for RL training and deteriorate the performance of output policy.
We show how a simple modification to the imitation objective can allow us to relax the coverage
assumption and propose a discriminator-free IL method that learns performant policies from arbitrary
suboptimal data, see Section 5.

4.2 DUAL FORMULATION FOR EXISTING REINFORCEMENT LEARNING ALGORITHMS

Now that we have seen how IL can be understood as a special case of the full regularized RL
objective, we consider the full objective in Eq. (1). Regularized policy learning, in its various
forms [Nachum et al., 2019, Wu et al., 2019], is a natural objective for offline RL algorithms,
preventing the policy from incorrectly deviating out-of-distribution by regularizing against the offline
data visitation. However, implicit policy improvement (XQL [Garg et al., 2023], IQL [Kostrikov et al.,
2021]), one of the most successful classes of offline RL methods which uses in-distribution samples
to pessimistically estimate the greedy improvement to the Q-function, has evaded connections to
regularized policy optimization. Proposition 2 shows, perhaps surprisingly, that XQL can be cast as a
dual of regularized policy learning, concretely as a dual-V problem.

Proposition 2. XQL is an instance of dual-V under the semi-gradient update rule, where the
f -divergence is the reverse Kullback-Liebler divergence, and dO is the offline visitation distribution.

The success of XQL was attributed to the property that Gumbel distribution better models the Bellman
errors [Garg et al., 2023]. Despite its decent performance, XQL is prone to training instability (see
e.g., Figure 2), since the Gumbel loss is an exponential function that can produce large gradients
during training. Situating XQL in the dual-RL framework allows us to propose a solution to the
training instability problem, a new insight we discuss in Section 6.

A consequence of unification in RL: Offline RL can be broadly categorized in three approaches: 1)
regularized policy learning, 2) pessimistic value learning e.g. CQL [Kumar et al., 2020], ATAC [Cheng
et al., 2022] and 3) implicit policy improvement algorithms (e.g. XQL). The latter two frameworks
have seemingly been exceptions to the regularized policy learning formulation (e.g. Eq. (1)). In
Proposition 4, we show that with an appropriate choice of f -divergence, CQL and ATAC can be cast
as a dual-Q problem. Overall, our results (Proposition 4 and Proposition 2) are the first, to our

2For an overview of semi-gradient vs full-gradient methods please refer to Appendix B.1.7.
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knowledge, to bring together the latter two approaches, pessimistic value learning and implicit policy
improvement as dual approaches to regularized policy learning.

5 RECOIL: IMITATION LEARNING FROM ARBITRARY EXPERIENCE

As demonstrated in Section 4.1, previous off-policy IL methods often rely on the coverage assumption
and train a discriminator between the demonstration and the offline data to obtain a pseudo-reward
rimit. We propose RElaxed Coverage for Off-policy Imitation Learning (ReCOIL), an off-policy IL
algorithm that relaxes the coverage assumption and eliminates the need for the discriminator. To
achieve this, we consider an alternative way to leverage suboptimal data for imitation: matching two

mixture distributions dSmix :“ βdps, aq ` p1 ´ βqdSps, aq and d
E,S
mix :“ βdEps, aq ` p1 ´ βqdSps, aq,

where β P p0, 1q is a fixed hyperparameter. We consider the following problem in primal-Q form:

primal-Q max
dps,aq

´Df pdSmixps, aq || dE,Smix ps, aqq

s.t @s P S, a P A, dps, aq “ p1 ´ γqd0psqπpa|sq ` γ
ř

ps1,a1qPSˆA
dps1, a1qpps|s1, a1qπpa|sq. (8)

This is a valid imitation learning formulation [Ghasemipour et al., 2020] since the global maximum
of the objective is attained at d “ dE , irrespective of the suboptimal data distribution dS . The primal
formulation (Eq. 8) deters offline learning, as it requires sampling from d to estimate the f -divergence.
We thus consider its dual formulation that allows us to derive an off-policy objective that only requires
samples from the offline data. We term this formulation and associated approach ReCOIL.

Theorem 1. (ReCOIL objective) The dual-Q problem to the mixture distribution matching objective
in Eq. 8 is given by:

maxπminQ βp1 ´ γqEd0,πrQps, aqs ` E
s,a„dE,S

mix
rf˚pT π

0
Qps, aq ´Qps, aqqs ´ p1 ´ βqEs,a„dS rT π

0
Qps, aq ´Qps, aqs (9)

and recovers the same optimal policy π˚ as Eq. 8 since strong duality holds from Slater’s conditions.

In other words, imitation learning can be solved by optimizing the unconstrained problem ReCOIL

with arbitrary off-policy data, without the coverage assumption. Besides, as opposed to many previous
algorithms, ReCOIL uses the Bellman operator T0 which does not need the pseudo-reward rimit,
making it discriminator-free. Although the pseudo-reward is not needed for training, ReCOIL allows
for recovering the reward function using the learned Q˚, which corresponds to the intent of the
expert. That is, rps, aq “ Q˚ps, aq ´ T π

0
pQ˚ps, aqq. Moreover, our method is generic to incorporate

any f -divergence. We also present the dual-V form for ReCOIL in Appendix D but defer its
investigation for future work.

A Bellman Consistent Energy-Based Model (EBM) View for ReCOIL Instantiating ReCOIL
with χ2 Divergence, we present a simplified objective (complete derivation in Appendix D.3) to:

maxπminQ βpEdS ,πpa|sqrQps, aqs ´ EdEps,aqrQps, aqsq ` 0.25E
s,a„dE,S

mix
ps,aq

“
pγQps1, πps1qq ´Qps, aqq2

‰
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Bellman consistency

. (10)

Algorithm 1: ReCOIL (offline, χ2)

1: Initialize Qφ, Vθ, and πψ , mixing
ratio β, conservatism τ ,
temperature α

2: DS “ ps, a, s1q be suboptimal
dataset

3: DE “ ps, a, s1q be expert dataset.
4: for t “ 1..T iterations do
5: Train Qφ using minφ Lpϕq:
6: Train Vθ using minθ J pθq
7: Update πψ via maxψMpψq:

8: end for

One can see that ReCOIL learns a score functionQ whose
expected value is low over the suboptimal distribution but
high over the expert distribution, while ensuring that Q
is Bellman consistent over the mixture. The Bellman
consistency is crucial to propagate the information of how
to recover when the policy makes a mistake. The Q value
can be interpreted as a score as it is not representative of
any expected return, and thus ReCOIL is an energy-based
model with Bellman consistency. Figure 6 in the appendix
illustrates this intuition.

Practical Algorithm In Algorithm 1 we consider
three parameterized functions Qφps, aq, Vθpsq and πψ.

Furthermore, we rely on Pearson χ2 divergence (Eq. 10)
as it has been shown to lead to stable learning for the
imitation setting [Garg et al., 2021]. Our practical algorithm uses a semi-gradient update that results
in minimizing the following loss for Qφ:
Lpϕq “ βpEdS ,πpa|sqrQφps, aqs ´ EdEps,aqrQφps, aqsq ` 0.25 E

s,a„dE,S
mix

ps,aq

“
pγVθps1q ´Qφps, aqq2

‰
. (11)

Naively maximizing Q over π in Eq. 10 can result in the selection of out-of-distribution actions
in the offline setting. To prevent extrapolation error in the offline setting, we rely on an implicit
maximizer [Garg et al., 2023] that estimates the maximum over the Q-function conservatively with
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in-distribution samples.
J pθq “ E

s,a„dE,S
mix

ps,aqrexpppQφps, aq ´ Vθpsqq{τq ` pQφps, aq ´ Vθpsqq{τqs. (12)

Finally, the policy is extracted via advantage-weighted regression [Peters and Schaal, 2007]:
Mpψq “ max

ψ
E
s,a„dE,S

mix
ps,aqrexppαpQφps, aq ´ Vθpsqqq logpπψpa|sqqs. (13)

6 f-DVL : BETTER IMPLICIT MAXIMIZERS FOR OFFLINE RL

Proposition 2 shows that XQL is a particular dual-V problem where the Gumbel loss is the
conjugate f˚

p corresponding to reverse KL divergence. This insight allows us to extend XQL by
choosing different f -divergences, where the conjugate functions are more amenable to optimization.
We further show that the proposed methods enjoy both improved performance and better training
stability in Section 7.

Implicit policy improvement algorithms iterate two steps alternately: 1) regress Qps, aq to
rps, aq ` γV ps1q for transition ps, a, s1q and 2) estimate V psq “ maxaPAQps, aq. The learned Q,
V functions can be used to extract a policy. As for the dual-V formulation, see Appendix B.1.6.
Step 1) is akin to the policy evaluation step of generalized policy iteration (GPI), and step 2) acts
like the policy improvement step without explicitly learning a policy πpsq “ argmaxaQps, aq. The
crux is to conservatively estimate the maximum of Q in step 2.

Consider a rewriting of dual-V with the temperature parameter λ and a chosen surrogate function
f̄˚
p that extends the domain of f˚

p to R. We discuss the need for a surrogate function below.

min
V

p1 ´ λqEs„dO rV psqs ` λEps,aq„dO
“
f̄˚
p

`
Q̄ps, aq ´ V psq

˘‰
, (14)

where Q̄ps, aq denotes stop-gradientprps, aq ` γ
ř
s1 pps1|s, aqV ps1qq. Let x be a random

variable of distribution D. Eq (14) can be considered as a special instance of the following problem:
min
v

p1 ´ λqv ` λEx„D

“
f̄˚
p px´ vq

‰
, (15)

where x is analogous to Q̄ and v is analogous to V . As opposed to handcrafted choices [Kostrikov
et al., 2021, Garg et al., 2023], we show through Proposition 3 below that objective (15) naturally
gives rise to a family of implicit maximizers that estimates supx„D x as λ Ñ 1.

Proposition 3. Let x be a real-valued random variable such that Prpx ą x˚q “ 0. Let vλ be the
solution of Problem (15). It holds that vλ1

ď vλ2
, @ 0 ă λ1 ă λ2 ă 1. Further, limλÑ1 vλ “ x˚.

Figure 5 provides an illustration for Proposition 3. We propose a family of maximizers associated
with different f -divergences and apply them to dual-V. We call the resulting methods f -DVL
(Dual-V Learning).

Algorithm 2: f-DVL (Under Stochastic
Dynamics)

1: Initialize Qφ, Vθ, πψ , temperature α,
weight λ

2: Let D “ ps, a, r, s1q be offline dataset
3: for t “ 1..T iterations do
4: Train Qφ by minimizing:

Es,a,s1„D

“
pQφps, aq ´ prps, aq ` γVθps1qqq2

‰
.

5: Train Vθ by minimizing Eq 14
with surrogate f̄˚

p

6: Update πψ by maximizing:
Es,a„DreαpQφps,aq´Vθpsqq log πψps|aqs.

7: end for

Practical Considerations and Algorithm A
practical issue for optimizing Eq 14 is that f˚

p is not
well defined over the entire domain of R. To remedy
this, we consider an extension of f˚

p on R that leads

to the surrogate function denoted by f̄˚
p : for (1) Total

Variation: fpxq “ 1

2
|x´ 1|, f̄˚

p pyq “ maxpy, 0q, (2)

Pearson χ2 divergence: fpxq “ px´ 1q2, f̄˚
p pyq “

maxp 1

4
y2 ` y, 0q. We defer the derivation of these

surrogates to Appendix F.3. Recall that XQL uses
the implicit maximizer associated with reverse KL
divergence, where f˚

p is exponential. Compared with

XQL, our f̄˚
p functions are low-order polynomials

and are thus stable for optimization. Algorithm 2
details the steps for f-DVL.

7 EXPERIMENTS

Our experiments aim to answer the following four questions. IL: 1) How does ReCOIL perform and
compare with previous offline IL methods? 2) Can ReCOIL accurately estimate the policy visitation
distribution dπ and the reward function/intent of the expert? RL: 3) How does f-DVL perform and
compare with previous offline RL methods? 4) Is the training of f-DVL more stable than XQL?
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ReCOIL SMODICE IQLearn
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p
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(a)
Learned reward function Learned V* functionExpert trajectory

(b)

Figure 1: (a) [Left] shows an MDP that starts at the leftmost state and transitions to one of the five absorbing
states on the right. Under the given expert and replay/offline visitation we study if a prespecified policy’s
visitation can be inferred whose ground truth visitation is known [Right] shows MSE error plots with policy’s
ground truth visitation where ReCOIL perfectly infers dπ whereas a method that only relies on expert data or the
replay data with the coverage assumption fails. Results averaged over 100 seeds. More details in Appendix G.3
(b) Recovered R and V ˚ on a simple grid-world environment by ReCOIL.

In order to circumvent the intricacies associated with exploration and direct our attention towards the
intrinsic nature of dual RL formulation, we focus on the offline setting in this section, although the
approaches can also be applied to online settings. We consider the locomotion and manipulation tasks
from the D4RL benchmark [Fu et al., 2020], and report the results in Section 7.1 and 7.2, respectively.
For each algorithm, we train 7 instances with different seeds and report their average return and
standard derivation. Complete experiment details can be found in Appendix F.

7.1 OFFLINE IL

Benchmark Comparisons For every task, our agent is given 1 expert demonstration and a set
of suboptimal transitions, both extracted from the D4RL datasets. We follow the construction
of suboptimal dataset in SMODICE [Ma et al., 2022]. For locomotion tasks, the suboptimal
dataset consists of 1 million transitions of the random or medium D4RL datasets and 200
expert demonstrations, which we label as ’random+expert’ and ’medium+expert’, respectively.
We also consider suboptimal datasets mixed with only 30 expert demonstrations, which are
called random+few-expert and medium+few-expert to simulate a more difficult setting.
Similarly, we construct datasets for the manipulation tasks. More details in Appendix F.2.

Suboptimal Dataset Env RCE ORIL SMODICE BC (only expert data) BC (full dataset) IQ-Learn (offline) ReCOIL Expert

random+
hopper 51.41˘38.63 73.93˘11.06 101.61˘7.69 4.52˘1.42 5.64˘4.83 1.85 ˘2.19 108.18˘3.28 111.33

halfcheetah 64.19˘11.06 60.49˘3.53 80.16˘7.30 2.2˘0.01 2.25˘0.00 4.83˘7.99 80.20˘6.61 88.83
expert walker2d 20.90˘26.80 2.86˘3.39 105.86˘3.47 0.86˘0.61 0.91˘0.5 0.57˘0.09 102.16˘7.19 106.92

ant 105.38˘14.15 73.67˘12.69 126.78˘5.12 5.17˘5.43 30.66˘1.35 42.23˘20.05 126.74˘4.63 130.75

random+
hopper 25.31˘18.97 42.04˘13.76 60.11˘18.28 4.84˘3.83 3.0˘0.54 1.37 ˘1.23 97.85˘17.89 111.33

halfcheetah 2.99˘1.07 2.84˘5.52 2.28˘0.62 -0.93˘0.35 2.24˘0.01 1.14˘1.94 76.92˘7.53 88.83
few-expert walker2d 40.49˘26.52 3.22˘3.29 107.18˘1.87 0.98˘0.83 0.74˘0.20 0.39˘0.27 83.23˘19.00 106.92

ant 67.62˘15.81 25.41 ˘ 8.58 -6.10˘7.85 0.91˘3.93 35.38˘2.66 32.99˘3.12 67.14˘ 8.30 130.75

medium+
hopper 58.71˘34.06 61.68˘7.61 49.74˘3.62 16.09˘12.80 59.25˘3.71 12.90˘24.00 88.51˘16.73 111.33

halfcheetah 65.14˘13.82 54.66˘0.88 59.50˘0.82 -1.79˘0.22 42.45˘ 0.42 25.67˘20.82 81.15˘2.84 88.83
expert walker2d 96.24˘14.04 8.19˘7.70 2.62˘0.93 2.43˘1.82 72.76˘3.82 59.37˘30.14 108.54˘1.81 106.92

ant 86.14˘38.59 102.74˘6.63 104.95˘6.43 0.86˘7.42 95.47˘10.37 37.17˘41.15 120.36˘7.67 130.75

medium
hopper 66.15˘35.16 17.40˘15.15 47.61˘7.08 7.37˘1.13 46.87˘5.31 11.05˘20.59 50.01˘10.36 111.33

halfcheetah 61.14˘18.31 43.24˘0.75 46.45˘3.12 -1.15˘0.06 42.21˘0.06 26.27˘20.24 75.96˘4.54 88.83
few-expert walker2d 85.28˘34.90 6.81˘6.76 6.00˘6.69 2.02˘0.72 70.42˘2.86 73.30˘2.85 91.25˘17.63 106.92

ant 67.95˘36.78 81.53˘8.618 81.53˘8.618 -10.45˘1.63 81.63˘6.67 35.12˘50.56 110.38˘10.96 130.75

cloned+expert

pen 19.60˘11.40 -3.10˘0.40 -3.36˘0.71 13.95˘11.04 34.94˘11.10 2.18˘8.75 95.04˘4.48 106.42
door 0.08˘ 0.15 -0.33˘0.01 0.25˘ 0.54 -0.22˘0.05 0.011˘0.00 0.07˘0.02 102.75˘4.05 103.94

hammer 1.95˘3.89 0.25˘ 0.01 0.15˘ 0.078 2.41˘4.48 5.45˘ 7.84 0.27˘0.02 95.77˘17.90 125.71
relocate -0.25˘0.04 -0.29˘0.01 1.75˘3.85 -0.17˘0.04 -0.24˘ 0.01 -0.1˘0.12 67.43˘14.60 118.39

human+expert

pen 17.81˘5.91 -3.38˘2.29 -2.20˘2.40 13.83˘10.76 90.76˘25.09 14.29˘28.82 103.72˘2.90 106.42
door -0.05˘0.05 -0.33˘0.01 -0.20˘ 0.11 -0.03˘0.05 103.71˘1.22 5.6˘7.29 104.70˘0.55 103.94

hammer 5.00˘5.64 1.89˘0.70 -0.07˘0.39 0.18˘0.14 122.61˘4.85 5.32˘1.38 125.19˘3.29 125.71
relocate 0.02˘0.10 -0.29˘0.01 -0.16˘0.04 -0.13˘0.11 81.19˘7.73 -0.04˘0.22 91.98˘ 2.89 118.39

partial+expert kitchen 6.875˘9.24 0.00˘0.00 39.16˘ 1.17 2.5˘5.0 45.5˘1.87 0.0˘0.0 60.0˘5.70 75.0

mixed+expert kitchen 1.66˘2.35 0.00˘0.00 42.5˘2.04 2.2˘3.8 42.1˘1.12 0.0˘0.0 52.0˘1.0 75.0

Table 2: The normalized return obtained by different offline IL methods trained on the D4RL suboptimal datasets
with 1 expert trajectory. Methods with avg. perf within the std-dev of the top performing method is highlighted.

We compare ReCOIL against recent offline IL methods RCE [Eysenbach et al., 2021], IQLearn [Garg
et al., 2021], SMODICE [Ma et al., 2022], ORIL [Zolna et al., 2020] and behavior cloning. We
do not compare to DEMODICE [Kim et al., 2022b] and ValueDICE [Kostrikov et al., 2019] as
SMODICE was shown to outperform DEMODICE in Ma et al. [2022] and IQLearn was shown
to outperform ValueDICE in [Garg et al., 2021] on the same environments. Both SMODICE and
ORIL require learning a discriminator, and SMODICE relies on the coverage assumption. RCE
also uses a recursive discriminator to test the proximity of the policy visitations to successful
examples. In contrast, ReCOIL is discriminator-free and does not need this coverage assumption.
Table 2 shows that ReCOIL strongly outperforms the baselines in most environments. SMODICE
exhibits poor performance in cases when the combined offline dataset has few expert samples
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8 CONCLUSION

Our work unifies a significant number of recent developments in RL and IL. The insights gleaned
from the unification allow us to identify key gaps and subsequently improve performance and
training stability in imitation learning and reinforcement learning. Leveraging this unification,
we propose 1) a family of stable offline RL methods f -DVL relying on implicit value function
maximization, 2) ReCOIL, a general off-policy IL method to learn from arbitrary suboptimal
data while being discriminator-free. We show that f -DVL and ReCOIL both outperform previous
methods in online/offline RL and offline IL domains, respectively. We demonstrate that Dual-RL
algorithms have great potential for developing performant algorithms and warrant further study. We
direct interested readers to read our Appendix containing more insights into Dual-RL and potential
directions for improvements and new algorithms.
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A LIMITATIONS AND NEGATIVE SOCIETAL IMPACTS

Limitations: Notably, none of the supervised learning approaches, like Upside-Down
RL [Schmidhuber, 2019], DT [Chen et al., 2021a, Zheng et al., 2022] and RvS [Emmons et al., 2021],
can be cast as instances of this framework. The main reason is that there is no return optimization
term in the supervised learning loss for those approaches. Second, our framework is constrained
to the regularized RL setting where the regularization coefficient α ą 0 (see Eq. 1 ). Finally, our
framework considers a static regularization distribution dO, and we believe that regularization with
dynamically changing distributions, like those in on-policy methods (PPO [Schulman et al., 2017],
TRPO [Schulman et al., 2015], etc) requires a more careful theoretical treatment. Another limitation
of the paper is the assumption that the expert demonstrations used in the imitation learning process
are always of high quality and provide the desired behavior. In practice, obtaining high-quality
demonstrations can be challenging, especially in complex environments where the behavior of the
expert is not always clear. The performance of the proposed approach could be limited in cases where
the expert demonstrations are of poor quality or where the behavior of the expert does not correspond
to the desired behavior.

Negative Societal Impacts: As machine learning algorithms continue to grow in sophistication, it is
important to consider the potential risks and harms associated with their use. One such area of concern
is imitation learning, which involves training a model to imitate a desired behavior by providing it
with examples of that behavior. However, this approach can be problematic if the demonstration data
includes harmful behaviors, whether intentional or not. Even in cases where the demonstration data
is of high quality and desirable behavior is learned, the algorithm may still fall short of providing
sufficient guarantees of performance. In high-stakes domains, the use of such algorithms without
appropriate safety checks on learned behaviors could lead to serious consequences. As such, it is
crucial to carefully consider the potential risks and benefits of imitation learning, and to develop
strategies for ensuring safe and effective use of these algorithms in real-world application

B DUAL REINFORCEMENT LEARNING

B.1 A REVIEW OF DUAL-RL

In this section, we aim to give a self-contained review for Dual Reinforcement Learning. For a
more thorough read, refer to [Nachum and Dai, 2020]. Our proofs will take a different approach
than [Nachum and Dai, 2020] which we believe leads to easier exposition and understanding.

B.1.1 CONVEX CONJUGATES AND f -DIVERGENCE

We first review the basics of duality in reinforcement learning. Let f : R` Ñ R be a convex function.
The convex conjugate f˚ : R` Ñ R of f is defined by:

f˚pyq “ supxPR`
rxy ´ fpxqs. (16)

The convex conjugates have the important property that f˚ is also convex and the convex conjugate
of f˚ retrieves back the original function f . We also note an important relation regarding f and f˚:

pf˚q1 “ pf 1q´1, where the 1 notation denotes first derivative.

Going forward, we would be dealing extensively with f -divergences. Informally,
f -divergences [Rényi, 1961] are a measure of distance between two probability distributions. Here’s
a more formal definition:

Let P and Q be two probability distributions over a space Z such that P is absolutely continuous
with respect to Q 3. For a function f : R` Ñ R that is a convex lower semi-continuous and fp1q “ 0,

3Let z denote the random variable. For any measurable set Z Ď Z , Qpz P Zq “ 0 implies P pz P Zq “ 0.

17



Published as a conference paper at ICLR 2024

Divergence Name Generator fpxq Conjugate f˚pyq
Reverse KL x log x epy´1q

Squared Hellinger p?
x´ 1q2 y

1´y

Pearson χ2 px´ 1q2 y ` y2

4

Total Variation 1

2
|x´ 1| y if y P r´1

2
, 1
2

s otherwise 8 4

Jensen-Shannon ´px` 1q logpx`1

2
q ` x log x ´ log p2 ´ eyq

Table 4: List of common f -divergences.

the f -divergence of P from Q is

Df pP || Qq “ Ez„Q

„
f

ˆ
P pzq
Qpzq

˙
. (17)

Table 4 lists some common f -divergences with their generator functions f and the conjugate functions
f˚.

B.1.2 AN OVERVIEW OF REINFORCEMENT LEARNING VIA LAGRANGIAN DUALITY

In this section, we give a more detailed review than we are able to in the main text due to space
constraints. We consider RL problems with their average return considered in the form of a convex
program with linear constraints [Manne, 1960], to which we apply Lagrangian duality to obtain
corresponding constraint-free problems. This framework was first introduced in the work of Nachum
and Dai [2020], which obtains the same formulations as ours via Fenchel-Rockfeller duality. Here
we use Lagrangian duality for its simplicity and popularity.

Consider the following regularized policy learning problem

max
π

Jpπq “ Edπps,aqrrps, aqs ´ αDf pdπps, aq || dOps, aqq, (18)

whereDf pdπps, aq || dOps, aqq is a conservatism regularizer that encourages the visitation distribution

of π to stay close to some distribution dO, and α is a temperature parameter that balances the expected
return and the conservatism.

An interesting fact is that Jpπq can be rewritten as a convex problem that searches for an achievable
visitation distribution that satisfies the Bellman-flow constraints:

Jpπq “ max
d

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t dps, aq “ p1 ´ γqd0psq.πpa|sq ` γ
ř
s1,a1 dps1, a1qpps|s1, a1qπpa|sq, @s P S, a P A.

(19)

Applying Lagrangian duality and convex conjugate (16) to this problem, we can convert it to an
unconstrained problem with dual variables Qps, aq defined for all s, a P S ˆ A:

min
Q

p1 ´ γqEs„d0,a„πpsqrQps, aqs ` αEps,aq„dO rf˚ prT π
r Qps, aq ´Qps, aqs {αqs, (20)

where f˚ is the convex conjugate of f . We defer the derivation to the next section. As problem (19)
is convex, strong duality holds and problems (19) and (20) have the same optimal objective value up
to a constant scaling5. We refer to the nested policy learning problem where Jpπq is of form (19) as
primal-Q and the joint problem with scaled Jpπq of form (20) as dual-Q.

primal-Q max
π

rJpπq in the form Eq. (2)], (21)

dual-Q maxπminQp1 ´ γqEs„d0,a„πpsqrQps, aqs ` αEps,aq„dO rf˚ prT π
r Qps, aq ´Qps, aqs {αqs.

(22)
In fact, problem (19) is overconstrained – the maximization w.r.t d is unnecessary, as for a fixed π the
|S| ˆ |A| equality constraints already uniquely determine a solution dπ [Puterman, 2014]. Let π˚, d˚

be the optimal policy and corresponding visitation distribution. In fact, we can relax the constraints
to get another problem [Agarwal et al., 2019] with the same optimal solution d˚, which we call

4For our derivations, we will consider smooth extensions of TV conjugate function
5We scaled the dual problem by 1{α for derivation simplicity.
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primal-V below:

primal-V max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř
aPA dps, aq “ p1 ´ γqd0psq ` γ

ř
ps1,a1qPSˆA

dps1, a1qpps|s1, a1q, @s P S.

(23)
Comparing with problem (19), the constraints are relaxed and there is no policy π in this formulation.
In fact, as opposed to primal-Q, which needs to solve nested inner problems, primal-V solves a
single problem to obtain d˚, from which we can recover π˚ via Eq. (24)6:

πpa|sq “ dπps, aq{řaPA d
πps, aq. (24)

Similarly, we consider the Lagrangian dual of (23), with dual variables V psq defined for all s P S:

dual-V min
V

p1 ´ γqEs„d0rV psqs ` αEps,aq„dO
“
f˚
p prT V ps, aq ´ V psqqs {αq

‰
, (25)

where f˚
p is a variant of f˚ defined in Eq. (47). Such modification is to cope with the nonnegativity

constraint dps, aq ě 0 in primal-V. This constraint is ignored in primal-Q because the
constraints of the inner problem (19) already uniquely identify the solution. See Appendix B.1.4 for
the derivation. As before, strong duality holds here (up to a factor of 1{α), and we can compute the
optimal policy π˚ after obtaining V ˚. We discuss this in detail in Appendix B.1.6.

Remark 1. The above formulations generalizes to the popular MaxEnt RL framework, where the
objective Jpπq contains an extra policy entropy regularizer. One only needs to replace the Bellman
operator T π

r by its soft variant: T π
r,softQps, aq “ rps, aq ` γEs1,a1 rQps1, a1q ´ log πpa1|s1qs.

Remark 2. We derive the dual problems via the Lagrangian duality. Taking the primal-Q problem
as an example, the key step which bridges its Lagrangian dual problem minQmaxd LpQ, dq and the
final formulation dual-Q is that the maximizer d˚ of the inner problem has a closed form solution.
Equivalently, we can rewrite the inner problem maxd LpQ, dq via the convex conjugate (32), which
eliminates the variable d. The Fenchel-Rockerfeller duality provides an alternative way to directly
reach the same formulation, where one first rewrites the linear constraints as part of the objective
using the Dirac delta function [Nachum and Dai, 2020].

Remark 3. The dual formulations have a few appealing properties. (a) They allow us to transform
constrained distribution-matching problems, w.r.t previously logged data, into unconstrained forms.
(b) One can show that the gradient of dual-Q w.r.t π, when Q is optimized for the inner problem, is
the on-policy policy gradient computed by off-policy data. This key property relieves the instability or
divergence issue in off-policy learning. (c) The dual framework can be extended to the max-entropy
RL setting, where Jpπq consists of additional entropy regularization, by replacing Bellman-operator
with their soft Bellman counterparts [Haarnoja et al., 2017].

B.1.3 DERIVING DUAL-Q

We again consider the RL problem as a maximization of a convex program for estimating
policy performance Jpπq by considering optimization over achievable state-action visitations (i.e
maxπ Jpπq):

max
π

„
max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq (26)

s.t dps, aq “ p1 ´ γqd0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq

, (27)

where α allows us to weigh policy improvement against conservatism from staying close to the
state-action distribution dO. We will assume that dO has non-zero coverage over S ˆ A for the
derivation below.

A careful reader may notice that the inner problem is overconstrained and overparameterized. The
solution to the inner maximization problem with respect to d is uniquely determined by the |S| ˆ |A|
linear constraints, and the nonnegativity constraint d ě 0 is not necessary. Moreover, given a fixed
policy π, the solution of the inner problem is its visitation distribution dπ .

6Eq. (24) can be easily computed for discrete actions, yet it is difficult for continuous actions. While our
analysis focuses on the tabular case, we discuss two methods for recovering π˚ for continuous actions in
Appendix B.1.6.
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The constraints of the inner problem are known as the Bellman flow equations that an achievable
stationary state-action distribution must satisfy. The next question is how can we solve it? Here
is where Lagrangian duality comes into play. First, we form the Lagrangian dual of our original
optimization problem, transforming our constrained optimization into an unconstrained form. This
introduces additional optimization variables - the Lagrange multipliers Q.

As mentioned before, we can discard the nonnegativity constraint d ě 0 as the other constraints imply
a unique solution for d. Focusing on the inner optimization problem, we optimize the Lagrangian
dual problem:

min
Qps,aq

max
d

Es,a„dps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

`
ÿ

s,a

Qps, aq
˜

p1 ´ γqd0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq ´ dps, aq
¸
,

where Qps, aq are the Lagrange multipliers associated with the equality constraints. We can now do
some simple algebraic manipulation to further simplify it:

min
Qps,aq

max
d

Es,a„dps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

`
ÿ

s,a

Qps, aq
˜

p1 ´ γqd0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq ´ dps, aq
¸

(28)

“ min
Qps,aq

max
d

p1 ´ γqEd0psq,πpa|sqrQps, aqs

` Es,a„d

«
rps, aq ` γ

ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

´ αDf pdps, aq || dOps, aqq,

(29)
where we swap the maximum and minimum in the last step as strong duality holds for this problem.
This is equivalent to solving the following scaled objective (scaled by 1{α).

min
Qps,aq

max
d

p1 ´ γq
α

Ed0psq,πpa|sqrQps, aqs

` Es,a„d

«
prps, aq ` γ

ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqq{α
ff

´Df pdps, aq || dOps, aqq

(30)

“ min
Qps,aq

p1 ´ γq
α

Ed0psq,πpa|sqrQps, aqs

` Es,a„dO

«
f˚pprps, aq ` γ

ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqq{αq
ff
, (31)

where we applied the convex conjugate (Eq. (16)) in the last step. To see this more clearly,

let yps, aq “
´
rps, aq ` γ

ř
s1,a1 pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

¯
{α. Then, under mild

conditions that the interchangeability principle [Dai et al., 2017] is satisfied, and dO has sufficient
support over S ˆ A [Nachum and Dai, 2020], it holds that

max
d

Es,a„dryps, aqs ´Df pdps, aq || dOps, aqq (32)

“max
d

Es,a„dO

„
dps, aq
dOps, aqyps, aq ´ f

ˆ
dps, aq
dOps, aq

˙
(33)

“EdO rf˚pyps, aqqs. (34)

We have transformed the problem of computing Jpπq to solving Eq. (31). Finally, the policy
optimization problem maxπ Jpπq is reduced to solving the following min-max optimization problem,
which we will refer to as dual-Q:
maxπminQ

p1´γq
α

Ed0psq,πpa|sqrQps, aqs ` Es,a„dO

”
f˚pprps, aq ` γ

ř
s1,a1 pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqq{αq

ı
.

(35)

Table 4 lists the corresponding convex conjugates f˚ for common f -divergences.
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In the case of deterministic policy and deterministic dynamics, the above-obtained optimization takes
a simpler form:

max
πpa|sq

min
Qps,aq

p1 ´ γq
α

Eρ0psqrQps, πpsqqs ` Es,a„dO
“
f˚pprps, aq ` γQps1, πps1qq ´Qps, aqq{αq

‰

(36)
Now, we have seen how we can transform a regularized RL problem into its dual-Q form which
uses Lagrange variables in the form of state-action functions. Interestingly, we can go further to
transform the regularized RL problem into Lagrange variables (V) that only depend on the state, and
in doing so we also get rid of the two-player nature (min-max optimization) in the dual-Q.

B.1.4 DERIVING DUAL-V

One important constraint we have not discussed so far is that the variable d we are optimizing must be
nonnegative. This constraint is not needed for primal-Q, as for the inner problem (2), the solution
is uniquely determined by the constraints. Nonetheless, it is important we consider this constraint for
primal-V and derive the correct dual problem.

In primal-V, we formulate the visitation constraints to depend solely on states rather than
state-action pairs. Note that doing this does not change the solution π˚ for the regularized RL
problem (Eq (18)). We consider α “ 1 for the sake of exposition. Interested readers can derive the
result for α ‰ 1 as in the dual-Q case above. Recall the formulation of primal-V:

max
dě0

Edps,aqrrps, aqs ´Df pdps, aq || dOps, aqq

s.t
ÿ

aPA

dps, aq “ p1 ´ γqd0psq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1q. (37)

As before, we construct the Lagrangian dual to this problem. Note that our constraints now solely
depend on s.

min
V psq

max
dě0

Es,a„dps,aqrrps, aqs ´Df pdps, aq || dOps, aqq

`
ÿ

s

V psq
˜

p1 ´ γqd0psq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1q ´
ÿ

aPA

dps, aq
¸

(38)

Using similar algebraic manipulations we used to obtain dual-Q in Section B.1.3, we have :

min
V psq

max
dps,aqě0

Es,a„dps,aqrrps, aqs ´Df pdps, aq || dOps, aqq

` Es,a„d

«
rps, aq ` γ

ÿ

s1

pps1|s, aqV ps1q ´ V psq
ff

´Df pdps, aq || dOps, aqq (39)

“min
V psq

max
dps,aqě0

p1 ´ γqEd0psqrV psqs

` Es,a„d

«
rps, aq ` γ

ÿ

s1

pps1|s, aqV ps1q ´ V psq
ff

´Df pdps, aq || dOps, aqq (40)

“min
V psq

max
dps,aqě0

p1 ´ γqEd0psqrV psqs

` Es,a„dO

«
dps,aq
dOps,aq

`
rps, aq ` γ

ÿ

s1

pps1|s, aqV ps1q ´ V psq
˘
ff

´ Es,a„dO

”
f
`
dps,aq
dOps,aq

˘ı
(41)

Let wps, aq “ dps,aq
dOps,aq and δV ps, aq “ rps, aq ` γ

ř
s1 pps1|s, aqV ps1q ´ V psq denote the TD error.

The last equation becomes
min
V psq

max
wps,aqě0

p1 ´ γqEd0psqrV psqs ` Es,a„dO rwps, aqpδV ps, aqqs ´ Es,a„dO rfpwps, aqqs. (42)

We now direct the attention to the inner maximization problem and derive a closed-form solution for
it. Consider the Lagrangian dual problem of it:

min
λě0

max
wps,aq

Es,a„dO rwps, aqpδV ps, aqqs ´ Es,a„dO rfpwps, aqqs `
ÿ

s,a

λps, aqwps, aq (43)

where the parameters λps, aq for all s P S and a P A are the Lagrange multipliers. Since strong
duality holds, we can use the KKT constraints to find the optimal solutions w˚ps, aq and λ˚ps, aq:
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1. Primal feasibility w˚ps, aq ě 0 @ s, a

2. Dual feasibility λ˚ps, aq ě 0 @ s, a

3. Stationarity dOps, aqp´f 1pw˚ps, aqq ` δV ps, aqq`λ˚ps, aq “ 0 @ s, a

4. Complementary Slackness w˚ps, aqλ˚ps, aq “ 0 @ s, a

Using stationarity we have the following:

dOps, aqf 1pw˚ps, aqq “ dOps, aqδV ps, aq ` λ˚ps, aq @ s, a (44)
Now using complementary slackness only two cases are possible w˚ps, aq ě 0 or λ˚ps, aq ě 0.
Combining both cases we arrive at the following solution for this constrained optimization:

w˚ps, aq “ max
´
0, f 1´1pδV ps, aqq

¯
(45)

We refer to the resulting function after plugging the solution for w˚ back in Eq. (42) and refer to the
closed form solution for d in second and third term as f˚

p .

f˚
p pδV ps, aqq “ w˚ps, aqpδV ps, aqq ´ fpw˚ps, aqq (46)

Plugging in w˚ps, aq from Eq. (45) to Eq. (46), we get:

f˚
p pδV ps, aqq “ max

´
0, f 1´1pδV ps, aqq

¯
pδV ps, aqq ´ f

´
max

´
0, f 1´1pδV ps, aqq

¯¯
(47)

Note that we get the original conjugate f˚ back if we do not consider the nonnegativity constraints:

f˚ps, aq “ f 1´1pδV ps, aqqpδV ps, aqq ´ fpf 1´1pδV ps, aqqq. (48)
Finally, we have the following optimization to solve for dual-V when considering the nonnegativity
constraints:

dual-V: minV psqp1 ´ γqEs„d0rV psqs ` Eps,aq„dO
“
f˚
p pδV ps, aqq

‰

Some works e.g. SMODICE [Ma et al., 2022], ignore the nonnegativity constraints and use the
corresponding dual-V formulation

dual-V (w/o nonneg. constraints): minV p1 ´ γqEs„d0rV psqs ` Eps,aq„dO rf˚pδV ps, aqs.

B.1.5 DISCUSSION ON DUAL FORMULATIONS

In summary, we have two dual formulations for regularized policy learning:

dual-Q: maxπminQp1 ´ γqEd0psq,πpa|sqrQps, aqs
` Es,a„dO rf˚ prps, aq ` γ

ř
s1 pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqqs

and

dual-V: minV psqp1 ´ γqEs„d0rV psqs ` Eps,aq„dO
“
f˚
p pδV ps, aqq

‰

The above derivations for dual of primal RL formulation - dual-Q and dual-V brings out some
important observations

• dual-Q and dual-V present off-policy policy optimization solutions for regularized RL
problems which requires sampling transitions only from the off-policy distribution the policy
state-action visitation is being regularized against. The gradient with respect to policy π
when d is optimized in dual-Q can be shown to be equivalent to the on-policy policy
gradient under a regularized Q-function (see Section 5.1 from [Nachum and Dai, 2020]).

• The above property allows us to solve not only RL problems but also imitation problems
by setting the reward function to be zero everywhere and dO to be the expert dataset,
and also offline RL problems where we want to maximize reward with the constraint
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that our state-action visitation should not deviate too much from the replay buffer (dO “
replay-buffer).

• dual-V formulation presents a way to solve the RL problem using a single optimization
rather than a min-max optimization of the primal-Q or standard RL formulation. dual-V
implicitly subsumes greedy policy maximization.

B.1.6 HOW TO RECOVER THE OPTIMAL POLICY IN DUAL-V?

In the above derivations for dual-Q and dual-V we leveraged the fact that the closed form solution
for optimizing Eq. (16) w.r.t d is known. The value of d˚ for which Eq. (32) is maximized can be
found by setting the gradient to zero (stationary point) leading to:

d˚ps, aq
dOps, aq “ max

ˆ
0, pf 1q´1

ˆ
yps, aq
α

˙˙
(49)

This ratio can be utilized in two different ways to recover the optimal policy:

Method 1: Maximum likelihood on expert visitation distribution

Policy learning can be written as maximizing the likelihood of optimal actions under the optimal
state-action visitation:

maxEs,a„d˚ rlog πθpa|sqs (50)
Using importance sampling we can rewrite the optimization above in a form suitable for optimization:

max
θ

Es,a„dO

„
d˚ps, aq
dOps, aq log πθpa|sq


“ max

θ
Es,a„dO rw˚ps, aq log πθpa|sqs (51)

This way of policy learning is similar to weighted behavior cloning or advantage-weighted regression,
but suffers from the issue that policy is not optimized at state-actions where the offline dataset dO has
no coverage but d˚ ą 0.

Method 2: Reverse KL matching on offline data distribution (Information Projection)

To allow the policy to be optimized at all that states in the offline dataset + actions outside the dataset
we consider an alternate objective:

min
θ
DKLpdOpsqπθpa|sq || dOpsqπ˚pa|sqq (52)

The objective can be expanded as follows:

min
θ
DKLpdOpsqπθpa|sq || dOpsqπ˚pa|sqq (53)

“ min
θ

Es„dOpsq,a„πθ

„
log

πθpa|sq
π˚pa|sq


(54)

“ min
θ

Es„dOpsq,a„πθ

„
log

πθpa|sqd˚psqdOpsqπopa|sq
π˚pa|sqd˚psqdOpsqπopa|sq


(55)

“ min
θ

Es„dOpsq,a„πθ

„
log

πθpa|sq
πopa|sq ´ logpw˚ps, aqq ` log

d˚psq
dOpsq


(56)

“ min
θ

Es„dOpsq,a„πθ
rlogpπθpa|sqq ´ logpπopa|sqq ´ logpw˚ps, aqqs (57)

This method recovers the optimal policy at the states present in the dataset but has the added
complexity of learning another policy πopa|sq. One way of obtaining πopa|sq is by behavior cloning
the replay buffer.

B.1.7 SEMI-GRADIENT AND FULL-GRADIENT

RL algorithms often learn via Bellman backups which minimize an error of the form Lpθq “
Eps,a,s1q„DrpQθps, aq ´ prps, aq ` γEa1„π

“
Qθps1, a1qq2

‰
. Full stochastic gradient differentiates

through the entire objective, whereas semi-gradient methods do not differentiate through theQθps1, a1q
term in the bootstrapping target and is generally implemented through a stop-gradient operator. Note
that the semi-gradient update still changes the value of the bootstrapping target when used at the
next iteration as θ is updated. Semi-gradient optimization is a common choice in deep RL and often
enables significantly faster learning [Sutton and Barto, 2018].
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C A UNIFIED PERSPECTIVE ON RL AND IL ALGORITHMS THROUGH DUALITY

Figure 4 shows an alternate viewpoint on the landscape of dualRL methods and highlights the gaps in
algorithms that we are able to successfully address in this work. Now we discuss in detail how recent
algorithms can be unified via duality viewpoint for both RL and IL.

   
 

Figure 4: We show that a number of prior methods can be understood as a special case of the dual RL framework.
Based on this framework, we also propose new methods addressing the shortcomings of previous works (boxed
in green).

C.1 DUAL CONNECTIONS TO REINFORCEMENT LEARNING

We begin by showing reducing popular offline RL class of methods: pessimistic value learning
(CQL [Kumar et al., 2020], ATAC [Cheng et al., 2022]) and implicit policy improvement (XQL [Garg
et al., 2021]) to the dual-Q and dual-V framework respectively. Then, we show how the dual-V
framework under a semi-gradient update rule leads to a family of offline RL algorithms that do not
sample OOD actions.

Proposition 4. CQL is an instance of dual-Q under the semi-gradient update rule, where the
f -divergence is the Pearson χ2 divergence, and dO is the offline visitation distribution.

Proof. We show that CQL [Kumar et al., 2020] and ATAC [Cheng et al., 2022], popular offline
RL methods are a special case of dual-Q for offline RL. Consider the χ2 f -divergence with the

generator function f “ pt ´ 1q2. The dual function f˚ is given by f˚ “ p t2
4

` tq. With this
f -divergence the dual-Q optimization can be simplified as:

p1 ´ γq
α

Ed0,πpa|sqrQps, aqs ` Es,a„dO

„
yps, a, r, s1q2

4α2
` yps, a, r, s1q

α


(58)

“ p1 ´ γq
α

Ed0,πpa|sqrQps, aqs ` Es,a„dO

„
yps, a, r, s1q

α


` Es,a„dO

„
yps, a, r, s1q2

4α2


(59)

Let’s simplify the first two terms:

1

α

«
p1 ´ γqEd0,πpa|sqrQps, aqs ` Es,a„dO

«
rps, aq ` γ

ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ffff

(60)

“
1

α

«
p1 ´ γqEd0,πpa|sqrQps, aqs ` Es,a„dO

«
γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1
, a

1q

ff
´ Es,a„dO rQps, aqs `

(
(

(
(

(
((

Es,a„dO rrps, aqs

ff

(61)

“
1

α

«
p1 ´ γq

ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s,a

d
Ops, aq

ÿ

s1

pps1|s, aqπpa1|s1qQps1
, a

1q ´ Es,a„dO rQps, aqs

ff

(62)

24



Published as a conference paper at ICLR 2024

“ 1

α

«
p1 ´ γq

ÿ

s,a

d0psqπpa|sqQps, aq ` γxdO, PπQy ´ Es,a„dO rQps, aqs
ff

(63)

“ 1

α

«
p1 ´ γq

ÿ

s,a

d0psqπpa|sqQps, aq ` γxPπ˚ dO, Qy ´ Es,a„dO rQps, aqs
ff

(64)

“ 1

α

«
p1 ´ γq

ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s,a

πpa|sqQps, aq
ÿ

s1,a1

pps|s1, a1qdps1, a1q ´ Es,a„dO rQps, aqs
ff

(65)

“ 1

α

«
ÿ

s,a

pd0psq ` γ
ÿ

s1a,1

pps|s1, a1qdps1, a1qqπpa|sqQps, aq ´ Es,a„dO rQps, aqs ` Es,a„dO rrps, aqs
ff

(66)

“ 1

α

«
ÿ

s,a

dOpsqπpa|sqQps, aq ´ Es,a„dO rQps, aqs ` Es,a„dO rrps, aqs
ff

(67)

“ 1

α

“
Es„dO,a„πrQps, aqs ´ Es,a„dO rQps, aqs

‰
(68)

where Pπ denotes the policy transition operator, Pπ˚ denotes the adjoint policy transition operator.
Removing constant terms (Eq. (61)) with respect to optimization variables we end up with the
following form for dual-Q:

1

α

»
—–Es„dO,a„πrQps, aqslooooooooooomooooooooooon

reduce Q at OOD actions

´ Es,a„dO rQps, aqslooooooooomooooooooon
increase Q at in-distribution actions

fi
ffifl ` Es,a„dO

„
yps, a, r, s1q2

4α2



loooooooooooooomoooooooooooooon
minimize Bellman Error

(69)

Hence the dual-Q optimization reduces to:

max
π

min
Q

α
“
Es„dO,a„πrQps, aqs ´ Es,a„dO rQps, aqs

‰
` Es,a„dO

„
yps, a, r, s1q2

4


(70)

Our proposition assumes semi-gradient update, i.e the gradients are not backpropogated through
the bootstrapping target Qps1, πps1qq when updating π or Q. The bootstrapping target is regularly
updated with the most recent parameters. Thus, maximization with respect to policy just amounts
to maximizing the first term Es„dO,a„πrQps, aqs. This update equation matches the unregularized
CQL objective (Equation 3 in [Kumar et al., 2020]) and the ATAC objective (Equation 1 in [Cheng
et al., 2022] when β “ 0.25). One of they key differences between CQL and ATAC is the use
of optimization strategy – CQL uses Gradient Descent Ascent whereas ATAC uses a Stackelberg
formulation.

Proposition 2. XQL is an instance of dual-V under the semi-gradient update rule, where the
f -divergence is the reverse Kullback-Liebler divergence, and dO is the offline visitation distribution.

Proof. We show that the Extreme Q-Learning [Garg et al., 2023] framework for offline and online
RL is a special case of the dual framework, specifically the dual-V using the semi-gradient update
rule.

Consider setting the f -divergence to be the KL divergence in the dual-V framework, the
regularization distribution and the initial state distribution to be the replay buffer distribution
(dO “ dR and d0 “ dR). The conjugate of the generating function for KL divergence is given by
f˚ptq “ et´1.

min
V psq

p1 ´ γqEd0psqrV psqs ` Es,a„dR

«
f˚

˜«
rps, aq ` γ

ÿ

s1

pps1|s, aqV ps1q ´ V psqq
ff

{α
¸ff

(71)
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min
V psq

p1 ´ γqEd0psqrV psqs ` Es,a„dS

«
expp

˜«
rps, aq ` γ

ÿ

s1

pps1|s, aqV ps1q ´ V psqq
ff

{α ´ 1

¸ff

(72)

A popular approach for stable optimization in temporal difference learning is the semi-gradient update
rule which has been studied in previous works [Sutton and Barto, 2018]. In this update strategy, we
fix the targets for the temporal difference backup. The target in the above optimization is given by:

Q̄ps, aq “ rps, aq ` γ
ÿ

s1

pps1|s, aqV ps1q (73)

The update equation for V is now given by:

min
V psq

p1 ´ γqEd0psqrV psqs ` Es,a„dR
“
expp

`“
Q̄ps, aq ´ V psqq

‰
{α ´ 1

˘‰
(74)

where hat denotes the stop-gradient operation. We approximate this target by using
mean-squared regression with the single sample unbiased estimate as follows:

min
Q

Es,a,s1„dR
“
pQps, aq ´ prps, aq ` V ps1qqq2

‰
(75)

The procedure (alternating Eq. (74) and Eq. (75)) is now equivalent to the Extreme-Q learning and is
a special case of the dual-V framework.

C.1.1 f-DVL: A FAMILY OF IMPLICIT POLICY IMPROVEMENT ALGORITHMS FOR RL

Figure 5: Illustration of a family of implicit maximizers corresponding to different f -divergences. The underlying
data distribution is a truncated Gaussian TN with mean 0, variance 1 and a truncation range p´2, 2q. We sample
10000 data points from TN and compute the solution vλ of Problem (15). As λ Ñ 1, the solution vλ becomes a
more accurate estimation for the supremum of the random variable x.

Proposition 3. Let x be a real-valued random variable such that Prpx ą x˚q “ 0. Let vλ be the
solution of Problem (15). It holds that vλ1

ď vλ2
, @ 0 ă λ1 ă λ2 ă 1. Further, limλÑ1 vλ “ x˚.

Proof. The behavior of dual-V (Equation 5) when f is reverse KL to serve as an implicit maximizer
was established in [Garg et al., 2023]. In this section we consider other divergences from Table 4
under the rewriting of dual-V in terms of temperature λ and a surrogate extention for f˚

p (defined
below). We analyze the behavior for the following optimization of interest.

min
v

p1 ´ λqEx„Drvs ` λEx„D

“
f̄˚
p px´ vq

‰
(76)

f˚
p ptq is given by (using the definition in Eq. (47):

f˚
p ptq “ ´f

´
maxpf 1´1ptq, 0q

¯
` tmax

´
f 1´1ptq, 0

¯
(77)

Accordingly, the function f˚
p admits two different behaviors given by:

f˚
p “

#
´fpf 1´1ptqq ` tf 1´1ptq “ f˚ptq, if f 1´1ptq ą 0

´fp0q, otherwise
(78)

where f˚ is the convex conjugate of f -divergence. We consider all f -divergences for which f˚

is strictly increasing in R
`, and note that TV divergence will need special treatment as pf 1q´1

is not well defined. Some properties of note are f 1 and pf 1q´1 is non-decreasing, fp0`q ě 0
and f˚pxq ě 0 @x ě 0 for the divergences we consider. A key limitation of formulating an
optimization objective with forms of f -divergences is their domain restriction of R`. First, we note
as a result of restriction of f to R

` that f 1 : R` Ñ rl,8q for some l P R and as a consequence
pf 1q´1 : rl,8q Ñ R

`. Since our objective function depends on pf 1q´1pxq being well defined
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on R, We consider an extension that preserves the non-decreasing property of pf 1q´1 such that
pf 1q´1pxq “ 0 for x P p´8, ls. We also know from above that for x ą“ l , pf 1q´1pxq ą“ 0 as
pf 1q´1 is non-decreasing. We define the surrogate f̄˚

p to be a particular extension for f˚
p with l “ 0.

Similar extensions can be found in prior work [Picard-Weibel and Guedj, 2022a, Goldfeld].

We analyze the second term in Eq. (76). It can be expanded as follows:

λ

ż

x:pf 1q´1px´vqą0

ppxqf˚px´ vqdx´ λ

ż

x:pf 1q´1px´vqď0

fp0qppxqdx (79)

From the properties of f , we use the fact that pf 1q´1px ´ vq ą 0 when x ´ v ą 0 or equivalently
x ą v.

λ

ż

xąv

ppxqf˚px´ vqdx´ λ

ż

xďv

fp0qppxqdx (80)

The first term in the above equation decreases monotonically and the second term increases
monotonically (thus the combined terms decrease) as v increases until v “ x˚ (supremum of
the support of the distribution) after which the equation assumes a constant value of ´λfp0q.

Going back to our original optimization in Eq. (76), the first term decreases monotonically with v.
As λ Ñ 1, the minimization of the second term takes precedence, with increasing v until saturation
(v “ x˚). We can go further to characterize the effect of λ on solution vλ of the equation. The
solution of the optimization can be written in closed form as (using stationarity):

p1 ´ λq
λ

“ Ex„D

”
f˚
p

1px´ vq
ı

(81)

Using the fact that f˚1

p is non-decreasing, we can show that the right-hand term in the equation above
increases/stays the same as v decreases. This in turn implies that for all λ1, λ2 such that λ1 ď λ2 we
have that vλ1

ď vλ2
.

TV divergence require a special treatment as pf 1q´1 is not defined. We construct f˚
p by noting that f˚

for TV exists even if pf 1q´1 does not. A concise proof can be found in Example 8.1 from Goldfeld.
Thus, for TV we consider a smooth extension in R

` by using f˚pxq “ x. For Squared Hellinger and
RKL, f˚ is discontinuous. The problem can be addressed by considering random variable x „ D
upper bounded by 1 and ln 2 for Hellinger and RKL respectively. This can be ensured by rescaling
rewards so that the maximum reward is 1 ´ γ and p1 ´ γq lnp2q for hellinger and RKL respectively.
Appendix F.3 outlines the derivation of surrogate implicit maximizers that we use in practice.

C.1.2 CONNECTIONS OF CQL TO ALGAEDICE AND XQL TO OPTIDICE

Kumar et al. [2020] shows that CQL outperforms a family of behavior-regularized offline RL
methods [Fujimoto et al., 2018, Wu et al., 2019, Nair et al., 2020], which solve different forms
of primal-Q using approximate dynamic programming. The above result indicates that CQL’s
better performance is likely due to the choice of f -divergence and more amenable optimization
afforded by the dual formulation. Moreover, the same dual-Q formulation has been previously
studied for online RL in AlgaeDICE [Nachum et al., 2019], and proposition 4 suggests that CQL is
an offline version of AlgaeDICE.

We also highlight that the full-gradient variant of the dual-V framework for offline RL has been
studied extensively in OptiDICE [Lee et al., 2021] and proposition 2 highlights that XQL is a special
case OptiDICE with a semi-gradient update rule.

C.2 DUAL CONNECTIONS TO IMITATION LEARNING

This section outlines the reduction of a number of algorithms for Imitation Learning to the dual
framework. Most prior methods can either take into account expert-only data for imitation whereas
the other methods which do imitation from arbitrary offline data are limited by their assumptions and
the form of f -divergence they optimize for. We walk through explaining how prior methods can be
derived through the unified framework and also why they are limited.

C.2.1 OFFLINE IMITATION LEARNING WITH EXPERT DATA ONLY

We saw in Section 4.1, how using the dual-Q framework directly led to a reduction of
IQ-Learn [Garg et al., 2021] as part of the dual framework. This was accomplished by simple
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setting the reward function to be 0 uniformly and setting the regularization distribution to the expert.
Garg et al. [2021] uses this method in the online imitation learning setting as well by incorporating
the replay data as additional regularization which we suggest is unprincipled, also pointed out by
others [Al-Hafez et al., 2023] (as only expert data samples can be leveraged in the above optimization)
and provide a fix in the Section 5. In this section, we show how the same approach can directly lead
to another method for learning to imitate from expert-only data avoiding the alternating min-max
optimization of IQ-Learn.

IV-Learn: A new method for offline imitation learning: Analogous to dual-Q (offline imitation),
we can leverage the dual-V (offline imitation) setting which avoids the min-max optimization given
by:

IV-Learn or dual-V (offline imitation from expert-only data):
min
V psq

p1 ´ γqEd0psqrV psqs ` Es,a„dE rf˚ prT0V ps, aq ´ V psqqs {αqs (82)

We propose dual-V (offline imitation) to be a new method arising out of this framework which
we leave for future exploration. This work primarily focuses on imitation learning from general
off-policy data.

Proofs for this section:

Corollary 1. IBC [Florence et al., 2022] is an instance of dual-Q using the full-gradient update
rule, where rps, aq “ 0 @s P S, a P A, dO “ dE , and the f -divergence is the total variation
distance.

Eq. (6) suggests that intuitively IQ-Learn trains an energy-based model in the form of Q where
it pushes down the Q-values for actions predicted by current policy and pushes up the Q-values
at the expert state-action pairs. This becomes more clear when the divergence f is chosen to be
Total-Variation (f˚ “ I), IQ-Learn for Total-Variation divergence reduces to:

p1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE

«
γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

(83)

“
«

p1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE

«
γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q
ffff

´ Es,a„dE rQps, aqs (84)

First, we simplify the initial two terms:

p1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE

«
γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q
ff

(85)

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s,a

dEps, aq
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q (86)

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s1,a1

ÿ

s,a

dEps, aqpps1|s, aqπpa1|s1qQps1, a1q (87)

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s1,a1

πpa1|s1qQps1, a1qp
ÿ

s,a

dEps, aqpps1|s, aqq (88)

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s1,a1

πpa1|s1qQps1, a1qp
ÿ

s,a

dEps, aqpps1|s, aqq (89)
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“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s,a

πpa|sqQps, aqp
ÿ

s1,a1

dEps1, a1qpps|s1, a1qq (90)

“
ÿ

s,a

p1 ´ γqd0psqπpa|sqQps, aq ` πpa|sqQps, aqp
ÿ

s1,a1

dEps1, a1qpps|s1, a1qq (91)

“
ÿ

s,a

πpa|sqQps, aq
«

p1 ´ γqd0psq ` γ
ÿ

s1,a1

dEps1, a1qpps|s1, a1q
ff

(92)

“
ÿ

s,a

πpa|sqQps, aqdEpsq (93)

where the last step is due to the steady state property of the MDP (Bellman flow constraint).

Therefore IQ-Learn/dual-Q for offline imitation (in the special case of TV divergence) simplifies to
(from Eq. (84)):«

p1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE

«
γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q
ffff

´ Es,a„dE rQps, aqs

(94)

“ min
Q

EdEpsq,πpa|sqrQps, aqs ´ Es,a„dE rQps, aqs (95)

The update gradient w.r.t for the above optimization matches the gradient update of infoNCE objective
in Implicit Behavior Cloning [Florence et al., 2022] with Q as the energy-based model.

C.3 OFF-POLICY IMITATION LEARNING (UNDER COVERAGE ASSUMPTION)

Directly utilizing the dual-RL framework for imitation has its limitation as we see in the previous
section – we cannot leverage off-policy suboptimal data. We first show that it is easy to see why
choosing the f -divergence to reverse KL makes it possible to get an off-policy objective for imitation
learning in the dual framework. We start with the primal-Q for imitation learning under the reverse
KL-divergence regularization (rps, aq “ 0 and dO “ dE):

max
dps,aqě0,πpa|sq

´DKLpdps, aq || dEps, aqq

s.t dps, aq “ p1 ´ γqρ0psq.πpa|sq ` γπpa|sq
ÿ

s1,a1

dps1, a1qpps|s1, a1q. (96)

Under the assumption that the suboptimal data visitation (denoted by dS) covers the expert visitation
(dS ą 0 wherever dE>0) [Ma et al., 2022], which we refer to as the coverage assumption, the
reverse KL divergence can be expanded as follows:

DKLpdps, aq || dEps, aqq “ Es,a„dps,aq

„
log

dps, aq
dEps, aq


“ Es,a„dps,aq

„
log

dps, aq
dEps, aq

dSps, aq
dSps, aq



(97)

“ Es,a„dps,aq

„
log

dps, aq
dSps, aq ` log

dSps, aq
dEps, aq


(98)

“ Es,a„dps,aq

„
log

dSps, aq
dEps, aq


`DKLpdps, aq || dSps, aqq. (99)

Hence the primal-Q can now be written as:

max
dps,aqě0,πpa|sq

Es,a„dps,aq

„
´ log

dSps, aq
dEps, aq


´DKLpdps, aq || dSps, aqq (100)

s.t dps, aq “ p1 ´ γqρ0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq. (101)

Now, in the optimization above the first term resembles the reward function and the second term
resembles the divergence constraint with a new distribution dSps, aq in the original regularized RL
primal (Eq. (26)). Hence we can obtain respective dual-Q and dual-V in the setting for off-policy

imitation learning using the reward function as rimitps, aq “ ´ log
dSps,aq
dEps,aq and the new regularization

distribution as dSps, aq. Using T π
rimit and Trimit to denote backup operators under a new reward function

rimit, we have
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Proof. Let’s define two mixture distributions that we are going to leverage to formulate the imitation

learning problem: dSmixps, aq :“ βdps, aq ` p1 ´ βqdSps, aq and d
E,S
mix ps, aq :“ βdEps, aq ` p1 ´

βqdSps, aq. dSmixps, aq is a mixture between the current agent’s visitation distribution with suboptimal

transition dataset obtained from a mixture of arbitrary policies and d
E,S
mix ps, aq is the mixture between

the expert’s visitation distribution with arbitrary experience from the offline transition dataset.
Minimizing the divergence between these visitation distributions still solves the imitation learning
problem, i.e d “ dE . We again start with the new modified primal-Q under this mixture divergence
regularization:

max
dps,aqě0,πpa|sq

´Df pdSmixps, aqps, aq || dE,Smix ps, aqps, aqq

s.t dps, aq “ p1 ´ γqd0psq.πpa|sq ` γπpa|sq
ÿ

s1,a1

dps1, a1qpps|s1, a1q.

Using the same algebraic machinery of duality as before (Section B.1.3) to get an unconstrained
tractable optimization problem, we obtain:

max
π,dě0

min
Qps,aq

´Df pdSmixps, aq || dE,Smix ps, aqq

` β
ÿ

s,a

Qps, aq
˜

p1 ´ γqd0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq ´ dps, aq
¸

(106)

“ max
π,dě0

min
Qps,aq

βp1 ´ γqEd0psq,πpa|sqrQps, aqs

` βEs,a„d

«
γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

´Df pdSmixps, aq || dE,Smix ps, aqq (107)

“ max
π,dě0

min
Qps,aq

βp1 ´ γqEd0psq,πpa|sqrQps, aqs

` βEs,a„d

«
γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

` p1 ´ βqEs,a„dS

«
γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

´ p1 ´ βqEs,a„dS

«
γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

´Df pdSmixps, aq || dE,Smix ps, aqq

(108)

Strong duality allows us to swap the order of maxd and minQ in order to arrive at the following
result:

Imitation from Arbitrary data (dualQ)

“ max
πpa|sq

min
Qps,aq

max
dě0

βp1 ´ γqEd0psq,πpa|sqrQps, aqs

` Es,a„dS
mix

ps,aq

«
γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

´Df pdSmixps, aq || dE,Smix ps, aqq

´ p1 ´ βqEs,a„dS

«
γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

(109)

We can ignore the constraints (d ě 0) as the primal-Q is overparameterized and the constraints
uniquely determine the distribution d. Therefore, ignoring this constraint (d ě 0) results in the
following dual-optimization for imitation from arbitrary data.
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max
πpa|sq

min
Qps,aq

βp1 ´ γqEd0psq,πpa|sqrQps, aqs

` E
s,a„dE,S

mix
ps,aq

«
f˚pγ

ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqq
ff

´ p1 ´ βqEs,a„dS

«
γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq
ff

(110)

D.1 RECOIL-V

A similar derivation can be done in V -space to obtain an analogous result for ReCOIL-V, although
extra care has to be taken to ensure the non-negativity constraints similar to proof for in section B.1.4.

primal-V max
dps,aqě0

´Df pdSmixps, aq || dE,Smix ps, aqq

s.t
ř
aPA dps, aq “ p1 ´ γqd0psq ` γ

ř
ps1,a1qPSˆA

dps1, a1qpps|s1, a1q, @s P S.

(111)
The dual of primal-V form for mixture distribution matching is given by:

ReCOIL-V minV βp1 ´ γqEs„d0rV psqs ` Eps,aq„dE,S
mix

“
f˚
p pT0V ps, aq ´ V psqq

‰
´ p1 ´ βqEps,aq„dS rT0V ps, aq ´ V psqs.

(112)

D.2 SUBOPTIMALITY BOUND FOR RECOIL-V

Theorem 2 (Suboptimality Bound for Offline ReCOIL). Let SJ denote the joint support of dS

and dE . Let rps, aq “ V psq ´ T0V ps, aq be the pseudo-reward implied by ReCOIL and Rmax “
maxs,a rps, aq. Let Dδ “

 
d |Prd

`
ps, aq P SJ

˘
ě 1 ´ δ

(
be the set of visitation distributions that

have 1 ´ δ coverage of SJ . Let π˚
δ be the best policy over all policies whose visitation distribution

is in Dδ . Let gpd, V q “ p1´ γqEd0psqrV psqs `EdrT0V ps, aq ´ V psqs ´Df pdps, aq || dEps, aqq be

the imitation learning objective, and hpV q “ maxdPDδ
gpd, V q. Suppose that we can solve ReCOIL

with the constraint d P Dδ , h is κ-strongly convex in V and β Ñ 1, then the output policy pπ satisfies

that Jpπ˚
δ q ´ Jppπq ď 4

1´γ

a
2δRmax{κ.

We provide a suboptimality bound by analyzing ReCOIL-V in this section. An important note is
that we consider the setting β Ñ 1, which implies that we study the behavior of the optimization
when β is a number close to 1 and not exactly 1. This allows us to incorporate suboptimal data in
off-policy imitation learning setting.

Recall that ReCOIL-V admits a dual-V form (112). When deriving dual-V, there is one step
(Eq. (41)) where we assumed the importance sampling is exact, i.e.,

Eps,aq„drT V ps, aq ´ V psqs “ Eps,aq„dO

”
dps,aq
dOps,aq pT V ps, aq ´ V psqq

ı
. (113)

However, this assumption does not hold in general and is not practical, because dO and d might
have different support. The gap between the two terms greatly affects the performance of dual
RL approaches. We shall bound the approximation error introduced by importance sampling for
ReCOIL-V in Section D.2.1, and then bound the suboptimality of the learned policy in Section D.2.2,
under mild conditions. This analysis also results in the suboptimality bound of IV-Learn and
IQ-Learn methods.

Let SJ denote the joint support of dS and dE . Let rps, aq “ V psq´γT0V ps, aq be the pseudo-reward
implied by ReCOIL and Rmax “ maxs,a |rps, aq|. Let Dδ “

 
d |Prd

`
ps, aq P SJ

˘
ě 1 ´ δ

(
be

the set of visitation distributions that have 1 ´ δ coverage of SJ , where Prd
`
ps, aq P SJ

˘
is the

probabily that ps, aq lies in SJ when sampling ps, aq from d.

We make the following assumptions for our proof:

Assumption 1 We consider imitation learning under the constraint d P Dδ. This is similar to
pessimism assumption when learning from fixed datasets in offline RL Levine et al. [2020].

Assumption 2 The hyperparameter β for defining dSmixps, aq and d
E,S
mix ps, aq goes to 1: β Ñ 1.
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Assumption 3 The function hpV q defined in Section D.2.2 is κ-strongly convex.

For Assumption 1, ReCOIL-V is able to find a policy under the visitation constraint as a result of a
combination of implicit maximization, which prevents overestimation and thus choosing OOD action,
and weighted behavior cloning (Advantage-weighted regression), which keeps the output policy close
to the dataset policy.

D.2.1 APPROXIMATION ERROR OF THE IMITATION LEARNING OBJECTIVE

The imitation learning problem can be written in the Lagrangian form of primal-V where rps, aq “
0 everywhere:

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` EdrT0V ps, aq ´ V psqs ´Df pdps, aq || dEps, aqq, (114)

where we have a constraint d P Dδ due to Assumption 1. ReCOIL-V optimizes a surrogate objective
of Problem (114). To derive ReCOIL-V, consider the corresponding primal-V in its Lagrangian
form

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` EdrT0V ps, aq ´ V psqs ´Df pdSmixps, aq || dE,Smix ps, aqq. (115)

Rewriting the second term, we obtain

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` 1

β
Es,a„dS

mix
ps,aqrT0V ps, aq ´ V psqs

´Df pdSmixps, aq || dE,Smix ps, aqq ´ 1 ´ β

β
EdS rT0V ps, aq ´ V psqs. (116)

Now we approximate the second term via importance sampling, which leads to

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` 1

β
E
s,a„dE,S

mix
ps,aq

«
dSmixps, aq
d
E,S
mix ps, aq

pT0V ps, aq ´ V psqq
ff

´ E
d
E,S
mix

ps,aq

«
fp d

S
mixps, aq

d
E,S
mix ps, aq

q
ff

´ 1 ´ β

β
EdS rT0V ps, aq ´ V psqs. (117)

By expanding dSmixps, aq “ βdps, aq ` p1 ´ βqdSps, aq, we obtain

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` 1

β
E
s,a„dE,S

mix
ps,aq

«
dSmixps, aq
d
E,S
mix ps, aq

pT0V ps, aq ´ V psqq
ff

´ E
d
E,S
mix

ps,aq

«
f

˜
dSmixps, aq
d
E,S
mix ps, aq

¸ff
´ 1 ´ β

β
EdS rT0V ps, aq ´ V psqs, (118)

This can be further simplified to

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` E
s,a„dE,S

mix
ps,aq

«
dps, aq

d
E,S
mix ps, aq

pγT0V ps, aq ´ V psqq
ff

´ E
d
E,S
mix

ps,aq

«
f

˜
dSmixps, aq
d
E,S
mix ps, aq

¸ff
, (119)

where we used the fact

E
s,a„dE,S

mix
ps,aq

«
dSps, aq
d
E,S
mix ps, aq

pT0V ps, aq ´ V psqq
ff

“ Es,a„dS rT0V ps, aq ´ V psqs

as the support of d
E,S
mix ps, aq contains the support of dS .

Let gpd, V q and pgReCOILpd, V q be the objective functions of Problem (114) and (119). gpd, V q is
the original IL objective we want to solve, and pgReCOILpd, V q is an approximation (with importance
sampling) of gpd, V q used by ReCOIL-V. To simplify the analysis, we consider the case when
mixture ratio β Ñ 1 (Assumption 2), so that the approximation error of the objective function reduces
to the approximation error of importance sampling. That is,

|gpd, V q ´ pgReCOILpd, V q| Ñ
ˇ̌
ˇEdrT0V ps, aq ´ V psqs ´ E

d
E,S
mix

ps,aq

”
dps,aq

d
E,S
mix

ps,aq
pT0V ps, aq ´ V psqq

ıˇ̌
ˇ .

(120)
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For any visitation distribution d P Dδ , it holds thatˇ̌
ˇEdrpT0V ps, aq ´ V psqqs ´ E

d
E,S
mix

ps,aq

”
dps,aq

d
E,S
mix

ps,aq
pT0V ps, aq ´ V psqq

ıˇ̌
ˇ

ď Es,aPSdzSJ r|T0V ps, aq ´ V psq|s ď max δ |T0V ps, aq ´ V psq| ď δRmax, (121)

where Sd is the support of d, and the second inequality follows from the definition of Dδ. As a
consequence, we can bound the approximation error

ϵReCOIL “ max
dPDδ,V

ˇ̌
ˇ̌gpd, V q ´ lim

βÑ1

pgReCOILpd, V q
ˇ̌
ˇ̌ ď δRmax. (122)

Similarly, one can show that for IV-Learn, we have

|gpd, V q ´ pgIVLearnpd, V q| Ñ
ˇ̌
ˇEdrT0V ps, aq ´ V psqs ´ Es,a„dE

”
dps,aq
dEps,aq

ı
pT0V ps, aq ´ V psqq

ˇ̌
ˇ .

(123)
Let SE be the support of dE . Unlike ReCOIL-V, the objective of IVLearn suffers from the
following worst-case estimation errorˇ̌

ˇEdrpT0V ps, aq ´ V psqqs ´ EdE

”
dps,aq
dEps,aq pT0V ps, aq ´ V psqq

ıˇ̌
ˇ

ď Eps,aqPSdzSE r|T0V ps, aq ´ V psq|s ď max |T0V ps, aq ´ V psq| ď Rmax, (124)
and consequently

ϵIVLearn “ max
dPDδ,V

ˇ̌
ˇ̌gpd, V q ´ lim

βÑ1

pgIVLearnpd, V q
ˇ̌
ˇ̌ ď Rmax. (125)

We note that the same approximation error bounds hold similarly for IQLearn as that of IVLearn.
Thus ReCOIL has a smaller upper bound for the approximation error than IQLearn which we will
see in the next sections leads to a better performance guarantee than IQLearn.

D.2.2 PERFORMANCE BOUND OF THE LEARNED POLICY

Recall that ϵReCOIL denotes the approximation error of the objective function by ReCOIL-V:

ϵReCOIL “ max
dPDδ,V

ˇ̌
ˇ̌gpd, V q ´ lim

βÑ1

pgpd, V q
ˇ̌
ˇ̌ . (126)

Let hpV q “ maxdPDδ
gpd, V q and phpV q “ maxdPDδ

limβÑ1 pgpd, V q. It directly follows from
Eq. (126) that

|phpV q ´ hpV q| ď 2ϵReCOIL, @V. (127)
We note that maxd gpd, V q (without the d P Dδ constraint) is the standard dual-V form for imitation
learning, but hpV q here is defined as the same optimization under a constrained set d P Dδ .

Let pV “ argminV
phpV q and V ˚ “ argminV hpV q. We are interested in bounding the gap

hppV q ´ hpV ˚q. It holds that

hppV q ´ hpV ˚q “ hppV q ´ phppV q ` phppV q ´ hpV ˚q (128)

“ hppV q ´ phppV q ` phppV q ´ phpV ˚q ` phpV ˚q ´ hpV ˚q (129)

ď 2ϵReCOIL ` 0 ` 2ϵReCOIL (130)

“ 4ϵReCOIL, (131)

where the inequality follows from Eq. (127) and the fact pV “ argminV
phpV q.

As a consequence, we have

4ϵReCOIL ě hppV q ´ hpV ˚q (132)

ě hpV ˚q ` pV ˚ ´ pV q∇hpV ˚q ` κ

2
}V ˚ ´ pV }2F ´ hpV ˚q (133)

“ κ

2
}V ˚ ´ pV }2F , (134)

where the second inequality comes from the fact that the function hpV q is κ-strongly convex
(Assumption 3) and ∇hpV ˚q “ 0. It directly follows that

}V ˚ ´ pV }8 ď }V ˚ ´ pV }F ď 2

b
2

κ
ϵReCOIL. (135)

Let π˚
δ be the policy that acts greedily with value function V ˚, which is an optimal policy over all

policies whose visitation distribution is within Dδ. Let pπ denote the policy that acts greedily with

value function pV , i.e., the output policy of ReCOIL-V. We then use the results in Singh and Yee
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[1994] to bound the performance gap between π˚
δ and pπ:

Jπ
˚

δ ´ J pπ ď 4

1 ´ γ

c
2ϵReCOIL

κ
ď 4

1 ´ γ

c
2δRmax

κ
. (136)

The above results demonstrate that ReCOIL is able to leverage suboptimal data with an approximate
in-distribution policy improvement and results in a policy close to the best policy with visitation
almost in-support of the dataset.

D.3 RECOIL WITH χ2
DIVERGENCE

In this section, we derive the objective for ReCOIL under the chosen χ2 divergence.Starting with the
core ReCOIL objective for Q-update:

max
π

min
Q

βp1´γqEd0,πrQps, aqs`E
s,a„dE,S

mix

rf˚pT π
0
Qps, aq´Qps, aqqs´p1´βqEs,a„dS rT π

0
Qps, aq´Qps, aqs

(137)

Under the χ2 divergence (f˚ “ x2{4 ` x), we can simplify the Recoil objective as follows. Let
Qps1, πq “ Ea1„πps1qrQps1, a1qs, then:

max
π

min
Q

βp1´γqEd0,πrQps, aqs`0.25E
s,a„dE,S

mix

rpγQps1, πq´Qps, aqq2s`βEs,a„dE rpγQps1, πq´Qps, aqqs

` p1 ´ βqEs,a„dS rpγQps1, πq ´Qps, aqqs ´ p1 ´ βqEs,a„dS rpγQps1, πq ´Qps, aqqs (138)

The last term of the ReCOIL objective cancels, simplifying to:

max
π

min
Q

βp1´γqEd0,πrQps, aqs`0.25E
s,a„dE,S

mix

rpγQps1, πq´Qps, aqq2s`βEs,a„dE rpγQps1, πq´Qps, aqqs
(139)

Finally, rearranging terms we get:

max
π

min
Q

βp1´γqEd0rQps, πqs`γβEs„dE rpQps1, πqs´βEs,a„dE rQps, aqqs`0.25E
s,a„dE,S

mix

rpγQps1, πq´Qps, aqq2s
(140)

Equivalently:

max
π

min
Q

p1´γqEd0rQps, πqs`γEs„dE rpQps1, πqs´Es,a„dE rQps, aqqs`0.25

β
E
s,a„dE,S

mix

rpγQps1, πq´Qps, aqq2s
(141)

Substituting the initial distribution as the dataset distribution d0 “ dS (similar to [Kostrikov et al.,
2019] and common practice in off-policy RL), and combining the first two terms which decrease
Q values at a mixture of dataset states(offline and expert) under the current policy we obtain the
intuitive definition of ReCOIL from the paper which indicates to increase Q at expert-state actions
and decrease Q at dataset states under current policy. But this can lead to unbounded Q functions.
Finally, Eq. 141 in the practical algorithm (Algorithm 1) implements maxπ by performing an implicit
maximization.

E TAKING DUAL-RL FROM OFFLINE TO ONLINE SETTING

Imitation Learning Problem (7) naturally extends to online IL, as the suboptimal data does not
need to be static—it can be the replay buffer during online training. The corresponding algorithms
generalize as well, since their key component is estimating the Qπ function using off-policy data.
It is worth noting that dS is dynamically changing for online IL. In contrast, Eq. (6) cannot be
extended to online IL. Garg et al. [2021] uses IQLearn in the online setting where they add additional
regularization using bellman backups on dS . Our results suggest this to be unprincipled (also pointed
out by Al-Hafez et al. [2023]), as only expert data samples can be leveraged in this formulation.

Reinforcement Learning Again, all the above-discussed offline methods naturally extend to online
settings [Kostrikov et al., 2021, Garg et al., 2023, Nakamoto et al., 2023], as their off-policy nature
extends beyond the offline setup. Our analysis still holds, where the regularization distribution dO

becomes the visitation distribution of the replay buffer dR. It is worth noting that dR is dynamically
changing over the course of training.
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F IMPLEMENTATION AND EXPERIMENT DETAILS

F.1 OFFLINE IL: RECOIL ALGORITHM AND IMPLEMENTATION DETAILS

The algorithm for ReCOIL can be found in Algorithm 1. We base the ReCOIL implementation on
the official implementation of XQL [Garg et al., 2023] and IQL [Kostrikov et al., 2021]. Our network
architecture mimics theirs and uses the same data preprocessing techniques.

In our set of environments, we keep the same hyper-parameters (except λ - parameter that intuitively
controls the pessimism or the upper expectile of Q function) across tasks - locomotion, adroit
manipulation, and kitchen manipulation. For each environment, the values of λ are searched
between [2.5,5,10]. We keep a constant batch size of 256 across all environments. For all tasks
we average mean returns over 10 evaluation trajectories and 7 random seeds. We add Layer
Normalization [Lei Ba et al., 2016] to the value networks for all environments. Full hyper-parameters
we used for experiments are given in Table 5. Although there might be better alternatives for implicit
maximization, we found the implicit maximizer from [Garg et al., 2023] to be especially performant
in the imitation setting. For policy update, using Advantage weighted regression, we use the
temperature α to be 3 for MuJoCo locomotion environments and to be 0.5 for kitchen environments.
The resembles prior work [Kostrikov et al., 2021].

Numerical Stability: In practice a naive implementation of ReCOIL update for Qφ in equation 11
suffers from numerical instability to learning Q-functions that are unbounded and since our objective
maximizes Q-values at expert distribution, the Q values can be arbitrarily large without any
grounding. The equation for Q-update from ReCOIL is given by:

Lpϕq “ βpEdS ,πpa|sqrQφps, aqs ´ EdEps,aqrQφps, aqsq ` E
s,a„dE,S

mix
ps,aq

“
pγVψps1q ´Qφps, aqq2

‰
,

(142)
To avoid this numerical instability we make a small modification to the objective, that upper bounds
the Q-function regression target as follows:

Lpϕq “ βpEdS ,πpa|sqrQφps, aqs ´ EdEps,aq

“
pQφps, aq ´Qmaxq2

‰
` E

s,a„dE,S
mix

ps,aq

“
pγVψps1q ´Qφps, aqq2

‰
,

(143)
Such modifications are inspired by [Sikchi et al., 2022a, Al-Hafez et al., 2023] which have found
that bounding targets can make learning significantly more stable.

Hyperparameters for our proposed off-policy imitation learning method ReCOIL are shown in
Table 5.

Hyperparameter Value

Policy learning rate 3e-4
Value learning rate 3e-4

f -divergence χ2

max-clip (loss clipping) 7
MLP layers (256,256)
LR decay schedule cosine
Qmax 200

Table 5: Hyperparameters for ReCOIL.

F.2 OFFLINE IMITATION LEARNING EXPERIMENTS

Environments: For the offline imitation learning experiments we focus on 10 locomotion and
manipulation environments from the MuJoCo physics engine [Todorov et al., 2012]. These
environments include Hopper, Walker2d, HalfCheetah, Ant, Kitchen, Pen, Door, Hammer, and
Relocate. The MuJoCo environments used in this work are licensed under CC BY 4.0 and the
datasets used from D4RL are also licensed under Apache 2.0.

Suboptimal Datasets: For the offline imitation learning task, we utilize offline datasets consisting
of environment interactions from the D4RL framework [Fu et al., 2020]. Specifically, we construct
suboptimal datasets following the composition approach introduced in SMODICE [Ma et al., 2022].
The suboptimal datasets, denoted as ’random+expert’, ’random+few-expert’, ’medium+expert’, and
’medium+few-expert’ combine expert trajectories with low-quality trajectories obtained from the
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"random-v2" and "medium-v2" datasets, respectively. For locomotion tasks, the ’x+expert’ dataset
(where x is ’random’ or ’medium’) contains a mixture of some number of expert trajectories (ď 200)
and «1 million transitions from the "x" dataset. The ’x+few-expert’ dataset is similar to ‘x+expert,’
but with only 30 expert trajectories included. For manipulation environments we consider only 30
expert trajectories mixed with the complete ’x’ dataset of transitions obtained from D4RL.

Expert Dataset: To enable imitation learning, an offline expert dataset is required. In this work,
we use 1 expert trajectory obtained from the "expert-v2" dataset for each respective environment.

Baselines: To benchmark and analyze the performance of our proposed methods for offline imitation
learning with suboptimal data, we consider four representative baselines in this work: SMODICE
[Ma et al., 2022], RCE [Eysenbach et al., 2021], ORIL [Zolna et al., 2020], and IQLearn [Garg et al.,
2021]. We exclude DEMODICE [Kim et al., 2022b] from the comparison, as SMODICE has been
shown to be competitive [Ma et al., 2022]. SMODICE is an imitation learning method based on the
dual framework, assuming a restrictive coverage. ORIL adapts the generative adversarial imitation
learning (GAIL) [Ho and Ermon, 2016] algorithm to the offline setting, employing an offline RL
algorithm for policy optimization. The RCE baseline combines RCE, an online example-based RL
method proposed by Eysenbach et al. [2021]. RCE also uses a recursive discriminator to test the
proximity of the policy visitations to successful examples. [Eysenbach et al., 2021], with TD3-BC
[Fujimoto and Gu, 2021]. Both ORIL and RCE utilize a state-action based discriminator similar
to SMODICE, and TD3-BC serves as the offline RL algorithm. All the compared approaches only
have access to the expert state-action trajectory.

The open-source implementations of the baselines SMODICE, RCE, and ORIL provided by the
authors [Ma et al., 2022] are employed in our experiments. We use the hyperparameters provided by
the authors, which are consistent with those used in the original SMODICE paper [Ma et al., 2022],
for all the MuJoCo locomotion and manipulation environments.

F.3 CALCULATION OF f˚
p FOR f -DVL UNDER PRACTICAL CONSIDERATIONS

The main practical consideration when optimizing f˚
p is that the function is not well defined in R.

We extend the domain of f˚
p from a semi-closed interval rl,8q for certain l P R to the set of real

numbers R. Such extension and the behavior of f˚
p is described in the proof of proposition 3, but

we will discuss it in more detail in this section.

Let us start from Eq.47. Here, the domain of f˚
p is the same as f

1´1. Recall that f only admits

a domain of R` “ r0,8q. As a consequence, the function f 1´1
has a limited domain rl,8q for

certain l P R (To see this, first note that f 1 is non-decreasing as f is convex; further, since the
domain of f is bounded from below, the range of f 1 is also bounded from below.). The behavior
of f˚

p : rl,8q ÞÑ R` is then described as:

f˚
p pxq “

#
f˚pxq, if f 1´1pxq ą 0

C “ ´fp0q, otherwise

Next, we extend the domain of f˚
p to R. We use f̄˚

p to denote the extended function. A natural
choice is to take Eq 78 and extend it to R. We also note that similar extensions can be found in prior
work [Goldfeld, Picard-Weibel and Guedj, 2022b].

χ2 divergence In practice, using the definition of f˚ for χ2, we use a smoother surrogate objective
that still maintains the property of implicit maximization for Equation 76 and concisely write:

f̄˚
p “ maxpC, x2{4 ` xq. (144)

Total Variation For the special case of total variation divergence, note that the convex conjugate
f˚pyq exists and is given by f˚pyq=y if y P r´1

2
, 1
2

s otherwise 8 , even if f 1´1 does not exist.
A concise proof can be found in Example 8.1 from [Goldfeld]. The reason is basically that a
closed-form solution for convex conjugate does not exist as equation 45 in our paper no longer
follows (f 1 is not invertible). We recover f˚

p for total-variation divergence using the definition in

Eq 78 similar to χ2, as follows:

f˚
p pxq “

$
&
%

x, if 0.5 ą x ą 0

8, if x ą 0.5

C “ ´fp0q, otherwise

(145)

In practice we use a smooth extension of f˚
p for TV divergence given by maxp´fp0q, xq
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Algorithm 3: f-DVL (Under Stochastic Dynamics)

1: Initialize Qφ, Vθ, and πψ , temperature α, weight λ
2: Let D “ ps, a, r, s1q be data from πD (offline) or replay buffer (online)
3: for t “ 1..T iterations do
4: Train Qφ using minφ Lpϕq:

Lpϕq “ Es,a,s1„D

“
pQφps, aq ´ prps, aq ` V ps1qqq2

‰

5: Train Vθ using minθ J pθq

J pθq “

$
&
%

p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“
maxpQ̄φps, aq ´ Vθpsq, 0q

‰
TV

p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“
maxppQ̄φps, aq ´ Vθpsqq ` 0.5pQ̄φps, aq ´ Vθpsqq2, 0q

‰
χ2

p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“
expp

`“
Q̄φps, aq ´ Vθpsqq

‰
´ 1

˘‰
RKL/XQL

6: Update πψ via maxψMpψq:

Mpψq “ Es,a„DreαpQφps,aq´Vθpsqq log πψps|aqs. (148)

7: end for

Practical Choice ofC While Eq 78 suggests settingC dependent on the corresponding f -divergence,
we found a single value ofC “ 0 to be a robust choice across our experiments. A comparison between
using f˚

p “ t´fp0q if x ă ´4, x2{4`x otherwiseuq and f˚
p “ maxp0, x2{4`xq for χ2 divergence

can be found in Table 6 below. Choosing C “ 0 instead of ´fp0q led to performance improvements.

Dataset f -DVL (χ2, f˚
p “ maxp0, x2{4 ` xq) f -DVL (TV) f -DVL (χ2, f˚

p “ t´fp0q if x ă ´4, x2{4 ` x otherwiseuq )

halfcheetah-medium-v2 47.7 47.5 46.19
hopper-medium-v2 63.0 64.1 78.66
walker2d-medium-v2 80.0 81.5 76.85
halfcheetah-medium-replay-v2 42.9 44.7 42.91
hopper-medium-replay-v2 90.7 98.0 97.73
walker2d-medium-replay-v2 52.1 68.7 73.5
halfcheetah-medium-expert-v2 89.3 91.2 89.3
hopper-medium-expert-v2 105.8 93.3 94.5
walker2d-medium-expert-v2 110.1 109.6 106.54

kitchen-complete-v0 67.5 65.71 67.14
kitchen-partial-v0 58.8 70.0 48.2
kitchen-mixed-v0 53.75 52.5 52.4

Table 6: The normalized return of offline RL methods on D4RL tasks. Shows comparison of setting the cutoff
constant for f˚

p to be C “ ´fp0q vs C “ 0

F.4 ONLINE AND OFFLINE RL: f -DVL ALGORITHM AND IMPLEMENTATION DETAILS

Rewriting of dual-V using temperature parameter λ instead of α: We found rewriting dualV
using temperature parameter λ instead of α to be particularly useful in reducing the number of
hyperparameters to tune in order to obtain strong learning performance. We replace the temperature
parameter from α to λ. Notice that our initial dual-V formulation used the temperature parameter
α as follows:

dual-V min
V

p1 ´ γqEs„d0rV psqs ` αEps,aq„dO
“
f˚
p prT V ps, aq ´ V psqqs {αq

‰
, (146)

The temperature parameter α captures the tradeoff between the first term which seeks to minimize V
vs the second term which seeks to maximize V and set it to the maximum value possible when taking
various actions from that state onwards. Depending on different f generator functions we would
require tuning this parameter as it has a non-linear dependence on the entire optimization problem
through the function f . Instead we consider a simpler objective, that we observe to empirically
reduce hyperparameter tuning significantly by trading off linear between the first term and the second
term using parameter λ. This modification is used in all of our experiments for RL and IL.

dual-V (rewritten) min
V

p1 ´ λqEs„d0rV psqs ` λEps,aq„dO
“
f˚
p prT V ps, aq ´ V psqqsq

‰
, (147)

Offline RL: Algorithm F.4 gives the algorithm for f-DVL. This section provides additional offline
RL experimences along with complete hyper-parameter and implementation details. Figure 14 shows
learning curves for all the environments. f -DVL exhibits as fast convergence as XQL but avoids the
numerical instability of XQL with one hyperparameter across each set of environments. We base our
implementation of f -DVL off the official implementation of XQL [Garg et al., 2023] and IQL from
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Env Lambda λ Batch Size v_updates

halfcheetah-medium-v2 0.7 256 1

hopper-medium-v2 0.7 256 1

walker2d-medium-v2 0.7 256 1

halfcheetah-medium-replay-v2 0.7 256 1

hopper-medium-replay-v2 0.7 256 1

walker2d-medium-replay-v2 0.7 256 1

halfcheetah-medium-expert-v2 0.7 256 1

hopper-medium-expert-v2 0.7 256 1

walker2d-medium-expert-v2 0.7 256 1

antmaze-umaze-v0 0.8 256 1

antmaze-umaze-diverse-v0 0.8 256 1

antmaze-medium-play-v0 0.8 256 1

antmaze-medium-diverse-v0 0.8 256 1

antmaze-large-play-v0 0.8 256 1

antmaze-large-diverse-v0 0.8 256 1

kitchen-complete-v0 0.8 256 1

kitchen-partial-v0 0.8 256 1

kitchen-mixed-v0 0.8 256 1

pen-human-v0 0.8 256 1

hammer-human-v0 0.8 256 1

door-human-v0 0.8 256 1

relocate-human-v0 0.8 256 1

pen-cloned-v0 0.8 256 1

hammer-cloned-v0 0.8 256 1

door-human-v0 0.8 256 1

relocate-human-v0 0.8 256 1

Table 7: Offline RL Hyperparameters used for f -DVL. Lambda λ is the value that controls the strength of the
implicit maximizer. V-updates gives the number of value updates per Q updates.

Kostrikov et al. [2021]. Our network architecture mimics theirs and uses the same data preprocessing
techniques.

In our set of environments, we keep the same hyper-parameter across sets of tasks - locomotion,
adroit manipulation, kitchen-manipulation, and antmaze. Contrary to XQL, we find no need to
use tricks like gradient clipping to stabilize learning. For each set of environment, the values of λ
were tuned via hyper-parameter sweeps over a fixed set of values r0.65, 0.7, 0.75, 0.8, 0.9s. We keep
a constant batch size of 256 across all environments. For MuJoCo locomotion tasks we average
mean returns over 10 evaluation trajectories and 7 random seeds. For the AntMaze tasks, we average
over 1000 evaluation trajectories. We add Layer Normalization [Lei Ba et al., 2016] to the value
networks for all environments. For policy update, using Advantage weighted regression, we use the
temperature α to be 3 for MuJoCo locomotion environments and to be 0.5 for kitchen environments.
The resembles prior work [Kostrikov et al., 2021]. Full hyper-parameters we used for experiments
are given in Table 7.

F.5 ONLINE RL EXPERIMENTS WITH f-DVL

Online RL: We base the implementation of SAC on pytorch_sac and XQL [Garg et al., 2023]. Like
in offline experiments, hyper-parameters were left as default except for λ, which we tuned between
r0.6, 0.7, 0.8s and found a single value to work best across all environments. This was in contrast to
XQL’s finding which required per environment different hyperparameter. Also, as opposed to XQL we
required no clipping of the loss function. We test our method on 7 random seeds for each environment.

Compute We ran all our experiments on a machine with AMD EPYC 7J13 64-Core Processor and
NVIDIA A100 with a GPU memory consumption of <1000 MB per experiment. Our offline RL
and IL experiments for locomotion tasks take 10-20 min and the online IL experiments took around
5-6 hours for 1 million timesteps.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 WHY DUAL-RL
METHODS ARE A BETTER ALTERNATIVE TO TRADITIONAL OFF-POLICY ALGORITHMS

Our experimental evaluation aims to illustrate the benefits of the dual RL framework and analyze
our proposed method for off-policy imitation learning. In the RL setting, we first present a case
study on the failure of ADP-based methods like SAC [Haarnoja et al., 2018] to make the most when
bootstrapped with additional (helpful) data. This setting is what motivates the use of off-policy
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Hyperparameter Value

Policy updates npol 1
Policy learning rate 3e-4
Value learning rate 3e-4
MLP layers (256,256)
LR decay schedule cosine

Table 8: Common hyperparameters for f -DVL.

Hyperparameter Value

Batch Size 1024
Learning Rate 0.0001
Critic Freq 1
Actor Freq 1
Actor and Critic Arch 1024, 1024
Buffer Size 1,000,000
Actor Noise Auto-tuned
Target Noise –

Table 9: Hyperparameters for SAC.

algorithms in the first place and is invaluable in domains like robotics Uchendu et al. [2022], Nair et al.
[2020]. Our results validate the benefit of utilizing the dual RL framework for off-policy learning.

The limitations of classical off-policy algorithms: In this section, we test the sensitivity of an
ADP method (SAC [Haarnoja et al., 2018]) vs dual-RL methods in the case when we initialize the
replay buffer of both styles of off-policy algorithms with expert or human demonstrated trajectories.
At the beginning of training, each learning agent is provided with expert or human-demonstrated
trajectories for completing the task. We add 1000 transitions from this dataset to the replay buffer
for the off-policy algorithm to bootstrap from. SAC is able to leverage this helpful data and shows
improved performance in Hopper-v2, where the action dimension is small. As the action dimension
increases, the instability of SAC becomes more apparent (see SAC+off policy data and SACfD plots
in Figure 7). We hypothesize that this failure in the online RL setting is primarily due to the training
instabilities caused by TD-backups resulting in overestimation in regions where the agent’s current
policy does not visit. In Figure 8, we observe that overestimation indeed happens in environments
with larger action dimensions and these overestimations take longer to get corrected and in the
process destabilize the training.

Figure 7 shows that the dual-RL method (AlgaeDICE) is able to leverage off-policy data to increase
learning performance without any signs of destabilization. This can be attributed to the distribution
correction estimation property of dual RL methods which updates the current policy using the
corrected on-policy policy visitation [Nachum et al., 2019]. Note, that we set the temperature α
to a low value (0.001) to disentangle the effect of pessimism which is an alternate way to avoid
overestimation.

G.2 TRAINING CURVES FOR RECOIL ON MUJOCO TASKS

We show learning curves for ReCOIL in Figure 9 for locomotion tasks and Figure 10 for manipulation
tasks below. ReCOIL training curves are reasonably stable while also being performant, especially
in the manipulation setting where other methods completely fail.

G.3 DOES RECOIL ALLOW FOR BETTER ESTIMATION OF AGENT VISITATION DISTRIBUTION?

In this section, we consider the experiment of visitation estimation for a prespecified policy given
expert data and suboptimal/replay data. Our experiments are tabular, so we can have an accurate
estimate of the visitation of the policy by running rollouts in the MDP. We call this estimate the
ground-truth policy visitation. We will estimate the accuracy of dual-RL methods to estimate
visitation density by measuing MSE error against the ground truth agent/policy visitation. The
property of Dual-RL methods to implicitly estimate density ratios (eg. Eq 49) has been studied
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assumption is ill-defined in parts of state space where the expert has no support leading to poor
downstream density ratio estimation.

Our results on the 2-D gridworld environment that demonstrate the failures of a method that either do
not utilize all available suboptimal data (IQ-Learn) or relies on a coverage assumption (SMODICE).
We saw that ReCOIL is able to perfectly infer the agent’s visitation when the replay buffer covers
agent ground truth visitation perfectly (Fig 1a) and here we see that ReCOIL is able to outperform
baselines when the replay buffer has imperfect coverage over the agent’s ground truth visitation
(Fig 11). In this task, the agent starts at (0,0) which is the top-left corner. The agent can only move
in cardinal directions with deterministic dynamics. The agent has access to two sources of off-policy
data - expert visitation and replay visitation. The problem is to estimate the agent’s visitation
distribution given access to the agent’s policy using all the available transition data. IQLearn and
SMODICE predict an agent’s visitation that wildly differs from Agent’s ground truth visitation
distribution. While ReCOIL is not perfect as the coverage of the offline data is limited, we can
estimate some visitation which is qualitatively very similar to the agent’s ground truth visitation.

Imperfect Coverage

Expert visitation Agent ground truth visitationReplay visitation

Estimated agent visitation 

(ReCOIL)

Estimated agent visitation 

with expert data only 

(IQLearn)

Estimated Agent Visitation 

with coverage assumption

(SMODICE)

Figure 11: Replay buffer consists of data that visits near the initial state (0,0), a setting commonly observed
when training RL agents. We estimate the agent’s policy visitation and observe ReCOIL to outperform both
methods which rely on expert data only or use the replay data with coverage assumption

G.4 RECOIL: QUALITATIVE COMPARISON WITH A BASELINE

In Figure 12, we investigate qualitatively why other baselines fail where ReCOIL succeeds in
high-dimensional tasks. A surprising finding is that the baseline we consider ’SMODICE’ almost
learns to imitate. It follows nearly the same actions as an expert but makes small mistakes along
the way - eg. ’gripping the hammer too loose’ or ’picking up the ball at a slightly wrong location’.
SMODICE is unable to recover from such mistakes and ends up having low performance. ReCOIL,
on the other hand, learns a performant task-solving policy from the same data.

G.5 EVALUATION OF f-DVL FOR ONLINE RL

Fig 13 shows that f-DVL is competitive to performant off-policy RL methods in the online RL
benchmarks.

G.6 TRAINING CURVES FOR f-DVL ON MUJOCO TASKS (OFFLINE)

Figure 14 shows the learning curves during training for f-DVL. f-DVL is able to leverage low-order
conjugate f -divergences to give offline RL algorithms that more stable compared to XQL. XQL
frequently crashes in the antmaze environment.

G.7 f -DVL: COMPLETE OFFLINE RL RESULTS

Table 10 and Table 11 show complete results for benchmarking f-DVL on MuJoCo D4RL
environments. Here we also show the author-reported results for XQL and the reproduced results
(XQL(r)) using the metric of taking the average of the last iterate performance across seeds.
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