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Abstract

We introduce a unified framework for group equiv-

ariant networks on homogeneous spaces derived

from a Fourier perspective. We consider tensor-

valued feature fields, before and after a convo-

lutional layer. We present a unified derivation

of kernels via the Fourier domain by leveraging

the sparsity of Fourier coefficients of the lifted

feature fields. The sparsity emerges when the

stabilizer subgroup of the homogeneous space

is a compact Lie group. We further introduce a

nonlinear activation, via an elementwise nonlin-

earity on the regular representation after lifting

and projecting back to the field through an equiv-

ariant convolution. We show that other methods

treating features as the Fourier coefficients in the

stabilizer subgroup are special cases of our acti-

vation. Experiments on SO(3) and SE(3) show

state-of-the-art performance in spherical vector

field regression, point cloud classification, and

molecular completion.

1 Introduction

Following the success of convolutional neural networks

(CNNs) (Fukushima, 1980; LeCun et al., 1989), researchers

made great strides in designing equivariant networks for

groups beyond the standard translation operation. Equivari-

ance preserves symmetries and drastically reduces sample

complexity, making data augmentation unnecessary and

consequently reducing training and testing time.
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The standard approach for equivariance by design is group-

convolutional networks (G-CNNs), specified by convolu-

tion kernels (Cohen & Welling, 2016). Kondor & Trivedi

(2018) prove that such group convolutions are both suffi-

cient and necessary for linear layers to be equivariant to

the action of compact groups. Existing group convolutional

nets construct equivariant kernels in a case by case fash-

ion; for example, Cohen et al. (2018a) present a general

constraint for the kernel of G-CNNs with features on a ho-

mogeneous space that is solved algebraically, while Finzi

et al. (2021) solve for kernels numerically based on a similar

finite-dimensional constraint.

We propose a unified recipe for kernel design. We lift the

feature fields from the initial homogeneous space to the

corresponding Mackey functions on the acting group, as in-

troduced in (Cohen et al., 2018a). Since a Mackey function

satisfies a well-known constraint, it has redundant informa-

tion. Specifically, when the irreducible representation of

the stabilizer subgroup is trivial, Kondor & Trivedi (2018)

proves that the Fourier Transform of the Mackey function

has a certain block sparsity pattern. This naturally leads to

the question whether the Fourier transform of Mackey func-

tions for nontrivial irreducible representations over more

general groups may have a similar property. We prove that

when the stabilizer subgroup is a compact Lie group, the

Fourier coefficients are sparse and nonzero for specific field

types, as stated in proposition 3.2. This spectral sparsity,

appearing in both the input and the output of the convolu-

tion, implies that the kernel itself can be taken as sparse.

This enables us to characterize the space of kernels with-

out using the classical equivariance constraints and lays the

foundation of our framework for linear layer design.

Regarding the nonlinearity, most existing group convolution

methods on homogeneous spaces (Cohen et al., 2018a) ap-

ply norms or gated nonlinearities. The exceptions are works

applying the Clebsch-Gordan decomposition of tensor prod-

ucts (Kondor et al., 2018) or interpreting the features as

Fourier coefficients (De Haan et al., 2020; Poulenard &

Guibas, 2021), since the feature vectors are in the vector

space under the irreducible representation of the stabilizer

subgroup. We propose a general formulation for nonlinear

layers that consists of lifting the fields to the Mackey func-
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tions on the group, applying an elementwise nonlinearity,

and finally projecting back to a field on the homogeneous

space through a convolution. We prove the equivariance of

this activation, and that the recently proposed equivariant

nonlinearity in Poulenard & Guibas (2021) is a special case.

In summary, our contributions are:

1. We provide a unifying Fourier view of group convolu-

tion on homogeneous spaces dealing with different field

types, and we prove that the input, output, and the kernel

of the convolution are block-sparse in the Fourier domain

when the stabilizer subgroup is a compact Lie group. Given

the irreducible representations of the group, this harmonic

view leads to an efficient method for designing linear group

convolution layers.

2. We present a novel approach to equivariant nonlinearities

by applying elementwise nonlinearities to the feature fields

lifted to Mackey functions on the group. We propose and

implement a general approach for projecting functions on

the group to fields on the homogeneous space in the final

step of the nonlinearity.

The main goal and novelty of the paper is to use the Fourier

coefficients for a unified derivation of kernels and nonlin-

earities. We reach state-of-the-art results in standard equiv-

ariance benchmarks in 3D shape classification, molecular

completion, and spherical vector field regression.

2 Related Work

Equivariant Networks The most common method to de-

sign equivariant networks is via group convolution, on the

group or on the homogeneous space where the features lie.

Existing work constructs group convolutional networks on

images (Cohen & Welling, 2016; Worrall et al., 2017),

point clouds (Thomas et al., 2018; Chen et al., 2021), voxel

grid (Weiler et al., 2018; Worrall & Brostow, 2018), graphs

(Maron et al., 2018; Keriven & Peyré, 2019), spherical im-

ages (Cohen et al., 2018b; Esteves et al., 2018; 2020; Cobb

et al., 2020) and sets (Maron et al., 2020; Esteves et al.,

2019). The above works that perform the group convolution

directly on the homogeneous space implicitly lift the func-

tion to the group before the convolution, and project back

to the homogeneous space after the convolution.

Another way to achieve equivariance is through averaging

over the group orbits (Puny et al., 2021; Atzmon et al.,

2021). Finzi et al. (2020) proposed a general method for

any Lie group with a surjective exponential map. For regular

groups, Bekkers (2019); Sosnovik et al. (2019) propose a

direct construction for group convolution. Recently, equiv-

ariance was introduced for attention networks (Fuchs et al.,

2020; Romero & Cordonnier, 2020; Hutchinson et al., 2021;

Satorras et al., 2021). Cohen et al. (2018a) and Kondor &

Trivedi (2018) showed for homogeneous spaces and com-

pact groups, respectively, that an equivariant map can always

be written as a convolution. Finzi et al. (2021) introduced

a numerical algorithm for equivariant linear layers based

on solving linear systems involving the generators of the

Lie algebra. We provide a general spectral approach for the

theoretical analysis, and efficient implementations of those

works.

Equivariance and Fourier Transform Several works use

the relationship between group convolutional networks and

the Fourier Transform. Kondor & Trivedi (2018) provide

a Fourier view of the group convolution for a scalar field

on the quotient space, or on the whole group. Cohen et al.

(2018b) and Esteves et al. (2018) apply group convolutions

on the Fourier transform of SO(3) and the spherical har-

monics, respectively, while Kondor et al. (2018) directly

convolve and apply a non-linear activation in the spectral do-

main through the Clebsch-Gordan decomposition, using the

compactness of SO(3). Finally, Esteves et al. (2020) deals

with both vector and scalar signals on the sphere through

the spectral domain, and is a special case of our general

framework.

Equivariant Nonlinearity It is nontrivial to design an ex-

pressive and equivariant nonlinear layer, since an equivariant

activation has to commute with the group action. Several

works (Cohen & Welling, 2016; Cohen et al., 2018b; Wor-

rall & Brostow, 2018) lift the signals from the homogeneous

space to the group, and apply an elementwise activation

to the group function. However, these methods deal with

scalar fields and obtain the invariant features through global

pooling without projecting back to the homogeneous space.

In (Thomas et al., 2018; Weiler et al., 2018; Worrall et al.,

2017; Esteves et al., 2020) a nonlinearity is applied over

invariant features such as norms. Because the direction

of the tensor field remains unchanged, such a nonlinearity

is not expressive enough, as explained in (Poulenard &

Guibas, 2021). Kondor et al. (2018) and Anderson et al.

(2019) apply a polynomial activation that can result in train-

ing instability, as mentioned in (Anderson et al., 2019).

Weiler & Cesa (2019) introduce nonlinearities with respect

to various representations of E(2), while Deng et al. (2021)

generalize the classical ReLU activation to vectors (i.e.,

order-one tensors) by truncating an equivariant projection

of the vector—a combination of a gated activation and a

linear layer. De Haan et al. (2020) and Poulenard & Guibas

(2021) treat the features as Fourier coefficients, applying

the Inverse Fourier Transform to functions on the stabilizer

subgroup, and projecting back to the features by the Fourier

Transform. We prove that such a nonlinearity is a special

case of our method.

The works most closely related to ours are (Cohen et al.,

2018a) and (Kondor & Trivedi, 2018). The main differ-



Unified Fourier Perspective on Equivariant Networks

ence is that we provide a Fourier perspective for the group

convolution on the homogeneous space, enabling efficient

kernel design. Moreover, we provide a new nonlinearity

and—to our knowledge, for the first time—implement a

general equivariant linear map from the regular represen-

tation to the induced representation. Kondor & Trivedi

(2018) analyze G-CNNs through Fourier analysis, but only

focus on scalar fields. In contrast, we consider all field types

(scalars, vectors, tensors) and our conclusion is consistent

with (Kondor & Trivedi, 2018) for the special case of scalar

fields.

3 Method

We give in App. A.1 the basic definitions that we need for

a group acting on a homogeneous space, as well as the

definitions of cosets, bundles, fibers, and twist functions.

In App. A.2 we describe irreducible representations, and

leave here only the tools we need for modeling features as

tensor fields (Sec. 3.1) and the Fourier Transform (Sec. 3.2).

Our work proposes two components for equivariant neural

networks: the linear group convolution layer (Sec. 3.3) and

the nonlinear activation layer (Sec. 3.4).

3.1 Induced representation and Mackey Functions

For a feature (or field) f : G/H → V over the homoge-

neous space G/H taking values in the vector space V , its

type (scalar, vector or higher order tensor) is determined by

an irreducible representation of the stabilizer subgroup H .

We use Ä to denote the unitary irreducible representation of

H . Then g ∈ G acts on the field as

(Lgf)(x) = Ä(h(g−1, x)−1)f(g−1x) (1)

where h is the twist function introduced in App. A.1. For

example, for G = SE(2), where H = SO(2), the stabilizer

subgroup has irreducible representations Äm : SO(2) 7→ C

for m ∈ Z, given by Äm(¹) = eim¹, for ¹ ∈ SO(2). For

scalar fields, we have Ä(¹) = Ä0(¹) = 1; for vector fields,

we have Ä(¹) = Ä1(¹) = ei¹; and for a physical quantity

like momentum of inertia over R2, we have Ä(¹) = Ä2(¹) =
e2i¹. In general, equation (1) describes the action of G on

fields and L is called the induced representation, denoted as

L = IndGHÄ.

The field f : G/H −→ V can be lifted to a function f↑G:
G −→ V on the group G through an isomorphism Λ, via

f↑G (g) = (Λf)(g) = Ä(h(g)−1)f(gH)

and projected back via Λ−1

f(x) = f(s(x)H) = (Λ−1(f↑G))(s(x)H) = f↑G (s(x)),

where h is the twist function and s is the section map

(App. A.1). For the lifting in Kondor & Trivedi (2018),

Ä is a trivial representation, since only the scalar field is

considered. The action L′ = ÄGreg of G on f ↑G is a regu-

lar representation (L′
g(f↑

G))(k) = f↑G (g−1k) ( Folland

(2016), Ch. 3).

The lifting operation commutes with the group action, so

ÄGreg ◦ Λ = Λ ◦ IndGHÄ, which justifies calling the lifting

an isomorphism. The function f↑G: G −→ V lifted from

the field f : G/H −→ V is called a Mackey function,

satisfying f↑G (gh) = Ä(h−1)f↑G (g).

3.2 Fourier Transform

It is known that the Fourier Transform exists for most groups

of interest for equivariance: finite groups, compact groups,

separable unimodular locally compact groups of Type I

(see Gross (1978), Folland (2016), Ch. 7, and App. A.3

for definitions), and certain semidirect product groups with

an Abelian normal subgroup, like SE(n) (Gauthier et al.,

1991). In these cases, there is a uniform (Haar) measure on

the group G that is both a left and a right Haar measure;

we will denote its differential by dg. Let U(·, p) be the

unitary irreducible representation for each element p ∈ Ĝ,

where Ĝ is the dual of the group G, the set of equivalence

classes of unitary irreducible representations of G (Folland

(2016), Ch. 7, Chirikjian et al. (2001), Ch. 8). In the cases

of interest, there is also a Haar measure ¿ on Ĝ. For any

function f : G → C that is square integrable with respect

to the measure, the Fourier Transform of f is defined as

f̂(p) = F(f)(p) =

∫

G

f(g)U(g, p)dg

while the inverse Fourier Transform reads

f(g) =

∫

Ĝ

tr(f̂(p)TU(g, p))d¿(p)

and the convolution and Parseval theorems both hold for

f ∈ L2(G). For vector valued functions, we apply both

transforms component-wise.

3.3 Unified Kernel Derivation

As described in Cohen et al. (2018a), an equivariant linear

layer, consisting of a convolution with a kernel, can be

realized in three steps: 1) lifting the input field (feature map)

fin : G/H → V to the corresponding Mackey function

fin↑
G: G → V on the group; 2) applying group convolution

to the lifted function fin↑
G with the kernel » to find the

output Mackey function fout↑
G; 3) projecting fout↑

G back

to the homogeneous space to obtain the output field (feature

map) fout. These three steps can be summarized as the

following linear map yielding

fout(x) = (Λ−1
2 (» ∗ (Λ1fin)))(x)

=

∫

G

»(g−1s(x))(Λ1fin)(g)dg,
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Figure 1. Convolution layer: (a). Lifting the input field fin : G/H → V to the Mackey function fin↑
G: G → V . (b). Convolution with

designed kernel to find a new Mackey function fout↑
G: G → V of order lout. (c). Projection to the homogeneous space to find fout. We

highlight the sparsity in the spectral domain of the input, kernel and output.

where Λ1 and Λ2 are the lifting isomorphisms for the input

and output fields, respectively, and » : G → Hom(V1, V2).
When G is a semidirect product, convolution simplifies to

(Λ−1
2 (» ∗ (Λ1f)))(x) =

∫

G/H

»′(s(x)−1y)f(y)dy,

where »′(x) = »(s(x)). Previous work (Cohen et al.,

2018a) derives the constraints for the kernel » when the

input and output are Mackey functions by working in the

spatial domain. In contrast, we analyze and design the linear

layer from the spectral perspective. In section 3.3.1, we will

prove that the Fourier coefficients of a Mackey function

obey certain sparsity patterns, which also imply the sparsity

of the kernel ». Moreover, in certain cases our proposition

leads to a more efficient implementation of convolutions in

the spectral domain (compared to the spatial domain), as

shown in Figure 1.

3.3.1 Sparsity of Mackey functions in the Fourier do-

main

In this section we prove that the Fourier transform of a

Mackey function f↑G lifted from the field f has a certain

sparsity pattern. To prove this proposition, we first need to

introduce a lemma about unitary irreducible representations

of G.

Lemma 3.1. Let G be a unimodular group, and its stabi-

lizer subgroup H be a compact Lie group. For any p ∈ Ĝ,

the dual group, the restricted representation for the unitary

irreducible representation U(·, p), U(·, p)|H , can be decom-

posed as the direct sum ·i∈Q(p)Ä
i(h(g)), for an index set

Q(p) parametrized by p ∈ Ĝ, where Äi are the irreducible

representations of H .

See App. B.1 for the proof. Using Lemma 3.1 we can now

describe the sparsity of Mackey functions in the Fourier

domain.

Proposition 3.2. Assume G is a unimodular group and its

stabilizer subgroup is a compact Lie group. A Mackey func-

tion f↑G: G → V lifted via f↑G (g) = Ä(h(g)−1)f(gH)
from a field f : G/H → V has the following sparsity pat-

tern in the Fourier domain:
[
f̂↑G

]
(p)⋆,j is nonzero only if

the block at column j in the decomposition of U(·, p)|H is

equivalent to the dual representation of Ä.

See App. B.2 for the proof. Next, we show that this sparsity

carries on to the convolution, ensuring that the spectrum of

the kernel is also sparse.

Corollary 3.3. Let f1↑
G and f2↑

G be Mackey functions

lifted from the fields f1 and f2, and Ä1 and Ä2 be the

irreducible representations that determine the field type

of f1 and f2. For any group convolution f2 ↑
G (g) =∫

G
»(¿−1g)f1↑

G (¿)d¿, without loss of generality, the ker-

nel » has the following sparsity pattern on its Fourier co-

efficients: [»̂] (p)i,j is zero when the block at row i in the

decomposition of U(·, p)|H is not equivalent to the dual rep-

resentation of Ä1, or the block at column j in the decomposi-

tion of U(·, p)|H is not equivalent to the dual representation

of Ä2.

See App. B.4 for the proof. In particular, when Ä is the

trivial representation, i.e., the field is scalar-valued, and G is

compact, proposition 3.2 recovers the conclusion of (Kondor

& Trivedi, 2018). In summary, we proved that the spectrum

of the Mackey function and the corresponding kernel are

sparse. This sparsity enables us to directly and analytically

design kernels and implement the group convolution.

Meanwhile, we state that our design gives a complete char-

acterization of the space of kernels for equivariant convolu-

tions. Given an appropriate unitary irreducible representa-

tion, the block sparsity stated in Prop. 3.2 can be simplified

to column sparsity. The Fourier coefficients of elements of

vector functions are related. The converse also holds, hence

the Fourier coefficients of a function f have such sparsity

and related values if and only if f is a Mackey function.

Further, with the convolution theorem, we find the sparsity

in the spectrum of the kernel », and the relation of Fourier

coefficients for every element in the matrix function. Finally,

we prove that there is a bijection between the kernel space

{» : G → Hom(V1, V2)}, where »(gh) = Äout(h
−1)»(g)

and »(hg) = »(g)Ä(h−1) for any g ∈ G, h ∈ H , and the

kernel space with such a spectrum. See App. B.5 for de-

tails. To help the reader, now explain the sparsity pattern for

SO(3) and SE(2).



Unified Fourier Perspective on Equivariant Networks

Sparsity in the SO(3)-spectrum Consider the group

G = SO(3), with the stabilizer subgroup SO(2) and the

homogeneous space S2. A rotation matrix R ∈ SO(3) can

be parametrized by the Euler Z-Y-Z angles (³, ´, µ). The

unitary irreducible representations of SO(3) are indexed by

integers l and have the form

Dl
mn(R) = Dl

mn(³, ´, µ) = e−im³dlmn(´)e
−inµ ,

where m,n are row and column indices, and dlmn are the

elements of Wigner’s small d-matrices. The lifting process

and its inverse take the form

f↑G (R) = f↑G (³, ´, µ) = e−ikµf(³, ´),

f(³, ´) = f↑G (³, ´, 0),

where k is the corresponding order of the irreducible repre-

sentation of the field. The Fourier Transform f̂↑G
l

mn (see

App. C.2 for details) becomes:
∫

(³,´)∈S2

f(³, ´)eim³dlmn(´)d³ sin(´)d´ ∗ 2Ã¶(k − n),

where ¶(x) is the Kronecker delta function, which is

zero except at x = 0, where it equals unity. The

convolution on SO(3) takes the form (l1 ∗ l2)(g) =∫
k∈G

l1(¿
−1g)l2(¿)d¿ and the convolution theorem states

F(» ∗ f)lmn =
∑

j f̂
l
mj »̂

l
jn. When the output field corre-

sponds to an m2-th order irrep of SO(2) and the input field

to an m1-th order irrep, as shown in Figure 2(a), we find the

following sparsity structure of »

»̂l
mn = »̂l

mn¶(m−m1)¶(n−m2).

By applying the inverse Fourier Transform, we find the

kernel »(R) to be:

∞∑

l=0

clDl
m1m2

(R) = e−im1³
∞∑

l=0

cldlm1m2
(´) e−im2µ .

Projecting the output Mackey function to the output field

leads to (App. C.2)

fout(³, ´) = C

∫

S2

e−im2h(R−1(³′,´′,0)R(³,´,0))

»′(Ry(−´′)Rz(−³′)x³,´)fin(³
′, ´′)d³′sin(´′)d´′,

where »′ is a function on the sphere and »′(³, ´) =
»(³, ´, 0), x³,´ is point on the sphere and C is a constant.

When we apply the convolution on the homogeneous space

S2, the twist e−im2h(R−1(³′,´′,0)R(³,´,0)) appears, which is

consistent with the correlation on the homogeneous space

derived in (Cohen et al., 2018a) for non-semidirect product

groups. This shows the difficulty of implementing con-

volution on the homogeneous space directly in the spatial

domain. Therefore, it is more efficient to implement the

convolution in the spectral domain. When the input and

the output are scalar fields, the filter is isotropic, which is

consistent with the results in (Esteves et al., 2017).

Sparsity in the SE(2)-spectrum Consider the group

G = SE(2) = R2 ì SO(2), where the homogeneous

space is R2 and stabilizer subgroup is SO(2). Any g ∈ G
can be parameterized as (x, ¹) = (a, ϕ, ¹), where we iden-

tify x ∈ R2 with its action tx, etc; and where a = |x|
is the modulus of x, and for nonzero a > 0, x/a = ei¹,

for ¹ ∈ [0, 2Ã). The unitary irreducible representations of

SE(2) are indexed by integers v and p ∈ R+, and with Jv
denoting the v-th order Bessel function of the first kind, they

have the form

Umn(g, p) = in−me−i(n¹+(m−n)ϕ)Jn−m(pa).

The lifting process and its inverse is:

f↑G (a, ϕ, ¹) = e−im¹f(a, ϕ)

f(a, ϕ) = f↑G (a, ϕ, 0),

where m is the corresponding order of the irreducible rep-

resentation of the field. Then the Fourier Transform of a

Mackey function f↑G∈ L2(G) is

f̂↑Gmn =

∫

g∈G

f↑G (g)Umn(g, p)dg

=

∫

g∈G

e−ik¹f(a, ϕ)im−nei(n¹+(m−n)ϕ)Jn−m(pa)dg

=

∫

(a,ϕ)∈G/H

f(a, ϕ)im−nJn−m(pa)ei(m−n)ϕ

∫

H

e−ik¹ein¹d¹.

Further, f̂↑Gmn equals

∫

(a,ϕ)∈G/H

f(a, ϕ)im−nJm−n(pa)e
i(m−n)ϕ ∗ 2Ã¶(n− k).

The convolution on SE(2) has the form (l1 ∗ l2)(g) =∫
k∈G

l1(k
−1g)l2(k)dk. The convolution theorem for

SE(2) states that F(l1 ∗ l2)(p) = l̂2(p)l̂1(p), which can

be viewed as the multiplication of two infinite dimensional

matrices.

As shown in figure 2(b), when the input and output of the

convolution are Mackey functions, the Fourier coefficients

are nonzero on the m1-th column and m2-th column There-

fore, we obtain the kernel

F(»)(p)mn = »̂(p)mn¶(m−m1)¶(n−m2).

By applying the inverse Fourier Transform, we find the

kernel to be:

»(g) =

∫ ∞

0

cpi
m2−m1e−i(m2¹+(m1−m2)ϕ)Jm2−m1

(pa)pdp.
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(a) SO(3) (b) SE(2)

Figure 2. Convolution on SO(3) and SE(3) in the spectral domain. We illustrate the sparsity of the Fourier coefficients of the input,

output and kernel.

Mackey functions can be projected to R2 to find

»′(x) =

∫ ∞

0

cpi
m2−m1e−i(m1−m2)ϕJm2−m1

(pa)pdp

= ei(m2−m1)ϕR(a),

where cp is a constant, and R is a radial function. This

exactly recovers the form of the kernel in harmonic networks

(Worrall et al., 2017).

In App. C.3, we provide another example, SE(3); we have

a similar analysis and conclusion. The block sparsity stated

in Prop. 3.2 and Cor. 3.3 also exist in the SE(3)-spectrum

for Mackey functions and the corresponding kernels. The

derived kernels are consistent with the form of tensor field

networks in Thomas et al. (2018) and 3D steerable CNNS

in Weiler et al. (2018).

3.4 Equivariant nonlinearity

The whole feature map consists of fields of different types,

i.e., it can be written as f(x) =
⊕

i f
li(x) where li is

the type of the field. Therefore, the group action on a fea-

ture map is the direct sum of the associated induced rep-

resentations,
⊕

i IndGHÄli . For an equivariant nonlinearity

Ã : V in → V out, we need
⊕

j

IndGHÄloutj ◦ Ã = Ã ◦
⊕

i

IndG
HÄlini . (2)

The most common strategy to obtain equivariant nonlinear

maps in modern deep learning is to apply a fixed nonlinear

function À elementwise to each coordinate of the feature

f in some fixed basis. In general, this does not satisfy

equivariance. However, this nonlinearity is equivariant for

the regular representation, i.e., ÄGreg(g) ◦ À = À ◦ ÄGreg(g), as

mentioned in Cohen & Welling (2016):

[
ÄGreg(g) ◦ À(l)

]
(k) = [À(l)] (g−1k) = À(l(g−1k))

= À(
[
ÄGreg(g)(l)

]
(k)) =

[
À ◦ ÄGreg(g)(l)

]
(k),

where l : G → V . Therefore, we can leverage the lifting iso-

morphism Λ, which satisfies that ÄGreg◦Λ = Λ◦IndGHÄ, to lift

the features to the corresponding Mackey functions. When

there are multiple types of features
{
f li : G/H → V

}
, we

simply apply the sum of these Mackey functions. We de-

note the composition of the lifting isomorphism and sum

operation by Λ, so that

l(g) =
[
Λ(

⊕
f li)

]
(g) =

∑

i

[
Λi(f

li)
]
(g)

=
∑

i

f li↑G(g) =
∑

i

Äli(h(g)−1)f li(gH), (3)

where Λi is the lifting isomorphism for the field f li . Clearly,

ÄGreg ◦ Λ = Λ ◦
⊕

i IndGHÄli . In general, l is not a Mackey

function, only a sum of different Mackey functions. Its

spectral domain is shown in Figure 3.

After applying an elementwise nonlinearity to the group

function, we need to project the group function to the homo-

geneous space. The signal may be any function on the group

and its Fourier coefficients may be nonsparse, as shown in

Figure 3. To maintain equivariance, we propose to convolve

with a designed kernel as shown in Figure 3 to find a Mackey

function, and then project to the homogeneous space via

f(x) =

∫
»(g−1s(x))l(g)dg.

In Figure 3, we know that the kernel » is also a Mackey

function, satisfying »(gh) = Ä(h−1)»(g). Therefore

»(g) can be expressed as »(g) = Ä(h(g)−1)»(s(gH)) =
Ä(h(g)−1)»′(gH), for »′ = » ◦ s. Then the convolution

becomes:

f(x) =

∫
Ä(h(g−1s(x))−1)»′(g−1x)l(g)dg,

where Ä is the irreducible representation corresponding to

the field f . Let us denote this projection by P». The convo-

lution is equivariant, i.e., IndGHÄ ◦ P» = P» ◦ ÄGreg .

Therefore, the nonlinearity Ã is the composition of lifting,

elementwise nonlinearity and projection. We prove the
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Figure 3. Activation layer: (a). Lifting inputs
{

f lini : G/H → Vlini

}

of different orders to the Mackey functions
{

f lini↑G: G → Vlini

}

and summing them up to find l : G → V . (b). Element-wise activation on l. (c). Convolution with the

designed kernel to find Mackey functions
{

f louti↑G: G → Vlouti

}

of different orders. (d). Projection to the homogeneous space to find

fields
{

f louti : G/H → Vlouti

}

of different orders.

equivariance of Ã:

Ã ◦
⊕

i

IndGHÄlini = (
⊕

j

P»outj ) ◦ À ◦ Λ ◦
⊕

i

IndGHÄlini

= (
⊕

j

P»outj ) ◦ À ◦ ÄGreg ◦ Λ = (
⊕

j

P»outj ) ◦ ÄGreg ◦ À ◦ Λ

=
⊕

j

IndGHÄloutj ◦ (
⊕

j

P»outj ) ◦ À ◦ Λ

=
⊕

j

IndGHÄloutj ◦ Ã,

where »outj is the constrained kernel corresponding to

IndGHÄloutj .

This is exactly the general form of non-linearity which treats

the tensor fields on the homogeneous space as the Fourier

coefficients. Taking SE(3) as an example, suppose G =
SE(3) and H = SO(3). We use the real form of the

Wigner D-matrix. Lifting multiple fields
{
f l : R3 → V

}

to the function on the group has the form

ln(x,R) =

lmax∑

l=0

l∑

m=−l

Dl
nm(R−1)f l

m(x),

where Dl is the Wigner D-matrix, the irreducible represen-

tation for the field f l.

When we take the 0-th element of l : SE(3) → V , we find

l0(x,R) =

lmax∑

l=0

l∑

m=−l

Dl
0m(R−1)f l

m(x)

=

lmax∑

l=0

l∑

m=−l

Dl
m0(R)f l

m(x) =

lmax∑

l=0

l∑

m=−l

Dl
m0(r)f

l
m(x)

=

lmax∑

l=0

l∑

m=−l

Y l
m(r)f l

m(x) = F+(f(x))(r),

where R = (³, ´, µ) ∈ G and r = (³, ´) ∈ S2. This is

exactly the form of the signals on the sphere obtained in

(Poulenard & Guibas, 2021) through the inverse Spherical

Harmonics Transform (iSHT).

On the other hand, when we take »(x)ij = ¶(i)¶(j)¶(x),
the projection is equivalent to the Spherical Harmonics

Transform (SHT) in (Poulenard & Guibas, 2021), as

f li
m(x) =

∑

n,j

∫
Dl

mn(h(g
−1s(x))−1)»nj(g

−1x)À(lj(g))dg

=C1

∫
Dl

m0(R)À(l0(x,R))dR

=C2

∫
Y l
m(r)À(F+(f(x))(r))dr,

where C1 and C2 are constants. The second equality holds

because »nj can be nonzero only when gH = x, n = 0 and

j = 0.

To keep the network simple, we do not use trainable weights

for the kernel. Instead, we take »(x)ij = ¶(x)¶(i − j),
where the first ¶ is the Dirac delta function and the second

is the Kronecker delta function as used previously. Then

the projection becomes fi(x) =
∫
H

∑
j Äij(h)lj(s(x)h)dh.

Weiler & Cesa (2019) describe such a nonlinearity when

the stabilizer subgroup H is O(2). In the spectral domain,

we can extract the corresponding column from the Fourier

matrix of l(g) for simplicity.

4 Implementation and Results

4.1 SO(3): Vector field prediction on the sphere

We experimentally study equivariant vector field prediction

on the spherical vector field MNIST (SVMNIST), a dataset

proposed in (Esteves et al., 2020). We build a U-Net struc-

ture which takes the grayscale spherical image as input, and

outputs a vector field on the sphere. The prediction target

corresponds to the image gradients of the MNIST characters
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when they are mapped to a sphere as shown in Figure 4.

We now explain the key components (convolution layer and

activation layer) of our U-Net.

Figure 4. The input, output, and ground truth of the vector field

prediction task.

Figure 5. Direction change of nonzero-order features in the activa-

tion layer. The intensity in the figure reflects the angle difference

before and after the activation.

Convolution Layer: We implement convolution in the spec-

tral domain and parameterize the kernel via its Fourier co-

efficients. As illustrated in Section 3.3.1, we implement

a fast Fourier Transform that integrates over S2. For any

hidden layers in the U-Net, we use features of 0th and 1st

order, both with the same number of channels, to increase

expressivity. This is different from spherical convolution

methods that only process features of order 0 (Cohen et al.,

2018b), and computationally more efficient than convolu-

tion directly on SO(3) (Cohen et al., 2018b). Esteves et al.

(2020) define and implement convolution in the spectral

domain through spin-weighted spherical harmonics, which

is equivalent to the linear part in our method. In our paper,

this method is a natural implication of the spectral sparsity,

shown for all groups where a Fourier transform exists, and

not just for SO(3).

Activation Layer: We first lift the fields to the Mackey

function through f↑G (³, ´, µ) = e−imµf(³, ´). Then, we

sum up the Mackey functions corresponding to different

fields. These two steps reduce the computation compared

to (Cohen et al., 2018b) due to the sparsity in the Fourier

coefficients. The element-wise nonlinearity on features is

implemented over SO(3). The activated group function can

then be projected back to the homogeneous space by con-

volution over the Fourier domain, as shown in the spectral

part of figure 3, bringing expressivity. Alternatively, we can

pick a specific column to output for the Fourier transform,

which reduces computation. In the U-Net, we always take

the latter approach for better efficiency.

We report the vector prediction mean-squared errors (Es-

teves et al., 2020) weighted by the spherical map sampling

area. Our U-Net uses a number of parameters similar to the

baselines. The comparison is shown in Table 1. Our net-

work outperforms the state-of-the-art equivariant networks,

especially when the input has no rotation augmentation and

the testing data is rotated (NR/R). In addition to being equiv-

ariant for different feature types, our model also has a more

expressive nonlinearity layer. The novel nonlinearity en-

tangles different fields and directional information, and can

change the direction of the nonzero-order tensor in the ac-

tivated output, making it more expressive than performing

nonlinearity over the invariant norm (Esteves et al., 2020).

Figure 5 shows the angle difference of the vector (order-

one) feature maps before and after activation in a hidden

layer. Please see App. D.1 for more details.

Method NR/NR R/R NR/R

Planar (Esteves et al., 2020) 0.3 5.0 9.3

SphCNN (Esteves et al., 2018) 9.7 31.0 45.6

SWSCNN (Esteves et al., 2020) 2.9 3.4 4.3

Ours 2.9 3.2 3.8

Table 1. Results of spherical scalar to vector prediction. We report

the mean-squared error ×103 (lower is better). The baseline meth-

ods are planar (convolutional 2D CNNs), SphCNN (Esteves et al.,

2018) and SWSCNN (Esteves et al., 2020). NR/NR is nonrotated

train and test set; NR/R is nonrotated train set and rotated test set;

R/R is rotated train and test set.

4.2 SE(3) Prediction

Designing SE(3) equivariant networks for point sets is an

important problem in many application areas, like chemistry

and computer vision The standard method in the current

literature is Tensor Field Networks (TFN) (Thomas et al.,

2018). Following our theory, we enhance TFN with a novel

non-linearity that can capture the directional information

of higher order features. We verify its effectiveness on two

tasks: (i) QM9 (Ramakrishnan et al., 2014) missing atom

prediction and (ii) ModelNet40 (Wu et al., 2015) point cloud

shape classification.

Convolution Layer: For SE(3), the homogeneous space

is R3. Since SE(3) has a semidirect product structure, and

the Fourier Transform is computationally expansive, we an-

alytically derive the kernel for the convolution in the spatial

domain, and implement convolution on the homogeneous

space R3. As proved in the sparsity of the SE(3)-spectrum,

the derived kernel is equivalent to that from (Thomas et al.,

2018) and (Weiler et al., 2018); thus, we use the convolution

in TFN as implemented in (Geiger et al., 2020)).

Activation Layer: The main difference between our ex-
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tended model and the original TFN (Thomas et al., 2018)

is the nonlinearity. After lifting the field from R3 to SE(3),
we project it to S2 attached to every point (using band-

width 8) to save memory, while keeping equivariance (see

App. D.2 for details). To obtain more expressivity, we ap-

ply a small per-point MLP to the group function following

(Poulenard & Guibas, 2021), which also maintains equiv-

ariance. Finally, our implementation of the projection from

SE(3) to R3 is equivalent to that in (Poulenard & Guibas,

2021), as shown in Sec. 3.4.

4.2.1 SE(3): Molecular Structure Completion

To show advantages beyond scalar field prediction, we con-

duct experiments to predict missing atoms in molecules.

Here, positional prediction requires equivariant vector pre-

diction. The setup of the experiment follows (Thomas et al.,

2018). During training, we randomly remove an atom from

the molecule, and use our model to predict the atom type

(order-0) and position (order-1) of the atom. During test-

ing, we iteratively remove all atoms one at a time for every

molecule. We use two metrics for evaluation. The distance

error is the average error of the predicted position from the

ground truth atom position; the accuracy is the proportion

of the instances correctly predicted and with a distance error

less than 0.5Å. More details are in App. D.3.

We report the accuracy and distance MAE in Table 2. Since

rotations exist naturally in molecule structures, the result

illustrates the equivariance of our model. Our model gen-

eralizes well to test datasets of molecules with different

numbers of atoms, and outperforms tensor field networks

on every test dataset, which shows the effectiveness of our

activation compared to the norm activation in the TFN.

Accuracy↑(%) Distance↓(Å)

Atoms TFN Ours TFN Ours

19 93.9 98.0 0.14 0.06

23 96.5 97.1 0.13 0.10

25-29 97.3 98.3 0.16 0.10

Table 2. Results for missing atom prediction. We have three test

datasets with 5-18, 23 and 25-29 atoms in one molecule, respec-

tively. Every dataset has 1000 molecules.

4.2.2 SE(3): ModelNet40 classification

Using our novel activation, we build a point cloud classi-

fication network based on the approaches in (Poulenard &

Guibas, 2021; Thomas et al., 2018). We report the classifi-

cation accuracy in Table 3. The dataset we use for the 3D

object shape recognition is Modelnet40 (Wu et al., 2015),

and it consists of 12311 3D shapes (9843 for training and

2468 for test) over 40 categories. Please see App. D.4 for

more details. Our method has performance similarly to

state-of-the-art methods.

Methods z/z z/SO(3) SO(3)/SO(3)

Spherical-CNN 88.9 76.7 86.9

a3S-CNN 89.6 87.9 88.7

SFCNN 91.4 84.8 90.1

TFN 88.5 85.3 87.6

RI-Conv 86.5 86.4 86.4

SPHNet 87.7 86.6 87.6

ClusterNet 87.1 87.1 87.1

GC-Conv 89.0 89.1 89.2

RI-Framework 89.4 89.4 89.3

VN-PointNet 77.5 77.5 77.2

VN-DGCNN 89.5 89.5 90.2

TFN[mlp]-P 89.7 89.7 89.7

Ours 89.7 89.7 89.3

Table 3. Classification accuracy in three train/test setups. Here z
stands for aligned data augmented by random rotations around the

vertical axis and SO(3) indicates augmentation by random rota-

tions. The quantitative results of previous methods are from (Deng

et al., 2021). Please see Table 4 for the source of each method.

5 Limitation and Discussion

This paper provides a unified perspective and practical tech-

niques for designing the linear and activation layers for

equivariant networks. Several interesting directions remain

for future exploration. Although our theory covers many

groups of interest for a wide range of applications, groups

with trivial stabilizers, among others, and groups without

Fourier transforms, remain unexplored. The input and out-

put homogeneous spaces of each layer in this paper are the

same, and the setting with different homogeneous spaces

(different stabilizer groups) needs further study. Another

future direction is to use our unified architecture for other

groups, for example, the Lorentz group and finite permuta-

tion groups.

6 Conclusions

This paper provides a Fourier perspective for group con-

volutional neural networks on homogeneous spaces. We

discovered a form of spectral sparsity and used it in design-

ing the kernel and the nonlinearity in a unified way. Our

networks showed their effectiveness in several tasks.
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A Preliminary

A.1 Group actions and homogeneous spaces

Consider a group G acting on the homogeneous space X , and let x0 be the origin of X inducing the set of group elements

H = {h ∈ G|hx0 = x0} that leaves x0 unchanged, i.e., the stabilizer subgroup H of x0 in G. The set of left cosets

gH := {gh|h ∈ H} is called the left quotient space G/H , and is isomorphic to the homogeneous space X . Take G = SE(2)
as the acting group and X = R2 as its homogeneous space. Any element in g ∈ SE(2) can be denoted as g = (tx, r¹),
where tx is the translation by the vector x ∈ R2, and r¹ is the rotation by the angle ¹ ∈ [0, 2Ã). Any rotation r¹ leaves

the point x0 = (0, 0) ∈ X unchanged, and these rotations compose the stabilizer subgroup H = SO(2). For any element

g = (tx, r¹) ∈ SE(2), gH = {(tx, r¹r¹′))|r¹′ ∈ SO(2)} = {(tx, ⋆)} and all elements in the left coset gH map x0 to x.

The left quotient space G/H =
{
x ∈ R2 : (tx, ⋆)

}
is isomorphic to the homogeneous space R2.

The group G can be viewed as a principal bundle through the partition of the group into cosets. The base space is G/H ,

and the canonical fiber is H , with the projection map p : G → G/H , p(g) = gH = x and the section s : G/H → G
such that p ◦ s = idG/H , the identity map on G/H . The action of G induces a twist of the fibers as gs(x) = s(gx)h(g, x)
where h : G × G/H → H is the twist function. For simplicity, we denote h(g, eH) as h(g). When the group G is a

semidirect product group G/H ìH , h does not depend on the choice of x in the homogeneous space and can be simplified

to h(g, x) = h(g). We use SE(2) as an example to illustrate the bundle structure where the base space is R2 and the fiber is

SO(2). Then the projection map p : SE(2) → R2 is p((tx, r¹)) = x and the section s : R2 → SE(2) is s(x) = (tx, r0).
For any g = (tx, r¹) ∈ SE(2) and any x′ ∈ R2, we have (tx, r¹)(tx′ , r0) = (tx+rθx′ , r0)(0, r¹), therefore the twist

function h : SE(2)× R2 → SO(2) is h((tx, r¹), x
′) = h((tx, r¹)) = r¹.

A.2 Irreducible Representations

Let V be a vector space over a field K. A representation of a group G on V is a homomorphism Ä : G → GL(V ), i.e., for

any g1, g2 ∈ G, Ä(g1g2) = Ä(g1)Ä(g2), where GL(V ) is the general linear group over V .

If the subspace W of V is invariant under the action of all group elements, that is, for any g ∈ G and any w ∈ W , we have

Ä(g)w ∈ W , we call it a sub-representation of Ä. If Ä has only two sub-representations, the whole space V and {0} ¢ V ,

then Ä is called an irreducible representation. If for any g ∈ G, Ä(g−1) = Ä(g)¦, the representation Ä is called a unitary

representation. Every locally compact group has a unitary representation.

Let us denote by U a unitary irreducible representation. In any particular basis, we can view this as a matrix, and denote

by Uij its entry in row i and column j. Irreducible representations satisfy the group orthogonality theorem; any two

unitary irreducible representations U l1 and U l2 satisfy
〈
U l1
m1n1

, U l2
m2n2

〉
= ¶(l1 − l2)¶(m1 − m2)¶(n1 − n2), where〈

U l1
m1n1

, U l2
m2n2

〉
is the inner product:

∫
G
U l1
m1n1

(g)U l2
m2n2

(g)dg.

Two representations Ä1 and Ä2 are equivalent when there exists an invertible matrix Q such that for any g ∈ G, Q−1Ä1(g)Q =
Ä2(g). For a compact group or a semisimple Lie group, any representation U on a Hilbert space (thus any finite-dimensional

representation) is equivalent to the direct sum of unitary irreducible representations, that is, there exists an invertible matrix Q
such that U = Q−1

⊕
i U

iQ, where (U i)i∈I are irreducible representations of G (indexed by some set I that is suppressed

for brevity) and
⊕

i U
i is a block diagonal matrix with blocks U i, i ∈ I . For details, we refer to (Folland (2016), Ch. 3).

For a group G and a subgroup H , and for any representation Ä : G → GL(V ) of G, a restricted representation Ä|H : H →
GL(V ) is the restriction of Ä to H , namely Ä|H(h) = Ä(h). Even when Ä is irreducible, Ä|H may still be reducible.

Given a representation Ä of the group G, the dual representation Ä is defined by Ä(g) = (Ä(g−1))¦. When Ä is a unitary

representation, Ä is the complex conjugate of Ä. The dual representation Ä may not be equivalent to the the representation

Ä. For example, for SO(2) the representation ¹ 7→ eim¹ is not equivalent to ¹ 7→ e−im¹ unless m = 0. However, the

irreducible representations are self-dual for some groups, including SO(3) and the special unitary group of order two, SU(2)
(consisting of two-by-two complex-valued unitary matrices having unit determinant, with the multiplication operation)

(Fulton & Harris (2013), Ch. 8).
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A.3 Unimodular Separable Locally Compact Groups of Type I

A group G is a unimodular group if its left Haar measure is also a right Haar measure (Folland (2016) Ch. 2). A topological

group is separable (second countable) if its topology has a countable base (Halmos (2013), Ch. 0). If the underlying topology

of the group is locally compact and Hausdorff, we call the group locally compact (Stroppel (2006), Ch. 2). A group is said

to be of Type I if each of its primary representations (factor representations) is a direct sum of copies of some irreducible

representation (Folland (2016), Ch. 7). Following (Gross (1978), Folland (2016), Ch. 7), the Fourier Transform is well

defined for any unimodular separable locally compact group of Type I.

A.4 Clebsch-Gordan Decomposition

The dual group Ĝ is finite or countable for finite or compact G, respectively. For such groups, since

Um1n1
(g, p1)Um2n2

(g, p2) ∈ L2(G) for any p1, p2 ∈ Ĝ, we can apply the Inverse Fourier Transform to express

Um1n1
(g, p1)Um2n2

(g, p2) =
∑

p∈Ĝ,m,n

Cp,m,n
p1,p2,m1,m2,n1,n2

Umn(g, p)

where m1,m2, n1, n2,m, n are the appropriate row and column indices. The Clebsch-Gordan coefficients

Cp,m,n
p1,p2,m1,m2,n1,n2

are the Fourier coefficients F (Um1n1
(·, p1)Um2n2

(·, p2))mn (p). This so-called Clebsch-Gordan decom-

position describes the decomposition of the tensor product of two irreducible representations. For SO(3) and SU(2), it

can be shown (Chirikjian et al. (2001), Ch. 10). that Cp,m,n
p1,p2,m1,m2,n1,n2

= Cp,m
p1,m1,p2,m2

Cp,n
p1,n1,p2,n2

,where Cp,m
p1,m1,p2,m2

and

Cp,m
p1,m1,p2,m2

are the Clebsch-Gordan coefficients as they appear in (Kondor et al., 2018).

B Details and Proofs

B.1 Proof of Lemma 3.1

Since H is the subgroup of G, U(·, p)|H is a representation of H , but not necessarily an irreducible one. Because H
is a compact Lie group, there is an invertible Q such that Q−1U(h, p)Q = ·i∈Q(p)Ä

i(h), where {Äi(h)}i∈Q(p)are the

irreducible representations of H . Since Q−1U(·, p)Q is a unitary irreducible representation of G, for simplicity, we will use

U(·, p) to denote Q−1U(·, p)Q. A unitary irreducible representation of G can be expressed as U(g, p) = U(s(gH)h(g), p)
where s is the section map and h is the twist function defined in App. A.1. Since U(·, p) is a representation, based on

the previous properties, U(g, p) = U(s(gH), p) · U(h(g), p). Thus, the unitary irreducible representation U(·, p) can be

decomposed as:

U(g, p) = U(s(gH), p) · ·i∈Q(p)Ä
i(h(g)). (4)

B.2 Proof of Proposition 3.2

We know that Ä is an unitary irreducible representation of the stabilizer subgroup H . Denote its type as i, writing Ä = Äi.
Writing the definition of a Mackey function in a block form, we have (f↑G)k(g) =

∑
t Ä

i
kt(h(g)

−1)ft(gH). Using also

(4), and decomposing the integral over G into integrals over G/H and H , the Fourier Transform of the k-th element of the

vector function f↑G can be calculated as follows:

((̂f↑G)k)mn(p) =

∫

G

(f↑G)k(g)Umn(g, p)dg =
∑

t,j

∫
Äikt(h(g)

−1)ft(gH)Umj(s(gH), p)Ujn(h(g), p)dg

=
∑

t,j

∫

G/H

ft(x)Umj(s(x), p)dx

∫

H

Äikt(h
−1)Ujn(h, p)dh.

We refer Theorem 2.49 in (Folland, 2016) for the measures used in the above equation. Since U(h, p) = ·o∈Q(p)Ä
o(h(g)),

we known that Ujn is either zero or belongs to a nonzero block of U(h, p). When Ujn is zero, then Äikt(h
−1)Ujn(h, p)dh is

zero. Else, suppose that Ujn is an element of the irreducible representation Äf
p
1
(j,n), where fp

1 is a function parametrized by

p—i.e., the block Ujn belongs to can depend on j, n and p. For the same reason, we have Ujn(h, p) = Ä
fp
1
(j,n)

fp
2
(j)fp

3
(n)

(h).

The second integral thus becomes
∫
H
Äitk(h)Ä

fp
1
(j,n)

fp
2
(j)fp

3
(n)

(h)dh.
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As mentioned in App. A.4, the compact group H has the Clebsch-Gordan decomposition

Äl1m1n1
Äl2m2n2

=
∑

l,m,n

Cl,m,n
l1,m1,n1,l2,m2,n2

Älmn.

Since
〈
Älmn, Ä

0
00

〉
= ¶(l)¶(m)¶(n), the integral

∫
H
Ältk(h)Ä

fp
1
(j,n)

fp
2
(j)fp

3
(n)

(h)dh can only be nonzero when the decomposition

of Ältk(h)Ä
fp
1
(j,n)

fp
2
(j)fp

3
(n)

includes the trivial representation Ä000.

Since H is a compact Lie group, by calculating the character of the tensor product of the two irreducible representations Äi

and Äf
p
1
(j,n) (see App. B.3), C00

l1,m1,n1,l2,m2,n2
is nonzero only when Äf

p
1
(j,n) is equivalent to the dual representation of Äi.

This finishes the proof.

B.3 Character of the Tensor Product of Two Irreducible Representations

Suppose Ä′ and Ä′′ are two unitary irreducible representations (irreps) of a compact group G. The character of the tensor

product of these two irreps is XÄ′
⊗

Ä′′ = tr(Ä′
⊗

Ä′′) = tr(Ä′)tr(Ä) = XÄ′XÄ′′ .

From the Inverse Fourier Transform and the properties of compact groups, we have Ä′
⊗

Ä′′ = Q−1(
⊕

Ä)Q, where Q is an

invertible matrix. Then XÄ′XÄ′′ =
∑

Ä c
Ä
Ä′,Ä′′XÄ, where cÄÄ′,Ä′′ are positive integers.

The trivial representation is contained in Ä
⊗

Ä′′ only when Ä and Ä′′ are dual representations. This is because cÄ
0

Ä′,Ä′′ =
∫
XÄ′XÄ′′ =

∫
XÄ′XÄ′′ =

〈
XÄ′ ,XÄ′′

〉
. The integral can be nonzero only when Ä′′ and Ä are equivalent, where Ä′′ is the

dual representation of the unitary irreducible representaion Ä′′.

B.4 Proof of Corollary 3.3

Due to the convolution theorem (Chirikjian et al. (2001), Ch.8), we have f̂2↑G(p) = f̂1↑G(p)»̂(p). The sparsity pattern

exists in f̂1↑G(p) and f̂2↑G(p) due to Proposition 3.2. Suppose f̂1↑G(p) has zeroes in columns A1, and f2↑
G(p) has zeroes

columns columns A2. Then the equation f̂2↑G(p) = f̂1↑G(p)»̂(p) can be reduced by taking the subsets of rows in the

complement of A1 and columns in the complement of A2. It is easy to see that the entries of »̂ outside of these indices do

not enter the calculation. Thus, they can be taken to be anything, and in particular as zeroes. This proves the desired claim.

B.5 Discussion of completeness

Revisiting
∫
H
Äl1m1n1

(h)Äl2m2n2
(h)dh, if the integral is nonzero, then Äl2 is equivalent to Äl1 . Supposing Äl2 = QÄl1Q−1,

we have
∫

H

Äl1m1n1
(h)Äl2m2n2

(h)dh =

∫ ∑

a,b

Äl1m1n1
Qm2aÄ

l1
abQ

−1
bn2

dh

=
∑

a,b

Qm2aQn2b

∫

H

Äl1m1n1
Äl1abdh = Qm2m1

Qn2n1
.

Therefore, the value of the integral is related to Q. We can choose a unitary representation of G, and a basis of the underlying

vector space, such that Äl2 is the dual representation of Äl1 . This holds because the representation of compact Lie groups can

split into an orthogonal direct sum of irreducible finite-dimensional unitary representations (according to the Peter-Weyl

Theorem) and the dual representation of a finite-dimensional representation is irreducible.

In this case, when (̂f↑G) is a Mackey function lifted via f↑G (g) = Ä(h(g)−1)f(gH) from a field f , (̂f↑G)k is nonzero

only on the k-th column in the corresponding block and (̂f↑G)kmn = ̂(f↑G)k+1m(n+1) for any k,m, n. The converse also

stands.

For the convolution (fout ↑
G)a(g) =

∫
G

∑
b »(¿

−1g)ab(fin ↑
G)b(¿), in the Fourier domain we have ̂(fout↑G)amn =

∑
b,t

̂(fin↑G)bmt»̂abtn. Now, fout obeys the above property and fin is arbitrary, therefore, we have »̂abmn = »̂(a+1)bm(n+1)
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for any a, b,m, n. Meanwhile, the nonzero columns in »̂ab and ̂(fout↑G)a have the same indices, which implies that

»(gh) = Äout(h
−1)»(g).

On the other hand, ̂(fin↑G) is also a Mackey function, and the relation between its Fourier coefficients can help us simplify

»̂. For any » with the above constraint, we can design a kernel »∗ that satisfies the following constraints:

1. »̂∗
abmn

= »̂∗
a(b+1)(m+1)n

for any a, b,m, n;

2. the nonzero rows in »̂∗
ab and the nonzero columns in ̂(fin↑G)b have the same indices;

3. the nonzero columns in »̂∗
ab and ̂(fout↑G)a have the same indices, and »̂∗

abmn
= »̂∗

(a+1)bm(n+1)
for any a, b,m, n.

such that
∫
G
»(¿−1g)(fin↑

G)(¿) =
∫
G
»∗(¿−1g)(fin↑

G)(¿). Meanwhile, from the Fourier domain, we know that when

»∗
1 ̸= »∗

2, then
∫
G
»∗
1(¿

−1g)(fin↑
G)(¿) ̸=

∫
G
»∗
2(¿

−1g)(fin↑
G)(¿). Therefore we find a complete characterization of the

equivariant linear map {»∗}.

In spatial domain, since
∫
»st(g)Umn(g)dg =

∫
»¦
ts(g

−1)Unm(g)dg, we know that f(g) = »¦(g−1) is also a Mackey

function, satisfying f(gh) = Äin(h
−1)f(g). Therefore, we have »∗(hg) = »∗(g)Äin(h

−1). This is equivalent to the space

of kernels such that »∗(h1gh2) = Ä(h−1
2 )»∗Ä(h−1

1 ), from (Weiler & Cesa, 2019). (Weiler & Cesa, 2019) proves that these

are all equivariant kernels, which finishes our proof

C Details and Proofs for the Examples

C.1 SE(3)

Consider the group SE(3), with the stabilizer subgroup SO(3) and the homogeneous space R3. For any element (x,R) ∈
SE(3), where x ∈ R3 and R ∈ SO(3), the unitary irreducible representations of SE(3) have the form, for p ∈ R+ and an

integer s,

Us
l′,m′;l,m(x,R; p) =

l∑

j=−l

[l′,m′|p, s|l, j](x)Ũ l
jm(R), (5)

where

[l′,m′|p, s|l, j](x) = (4π)
1

2

l′+l
∑

k=|l′−l|

ik

√

(2l′ + 1)(2k + 1)

(2l + 1)
Jk(pa),

C(k, 0; l′, s|l, s)C(k.m−m′; l′,m′|l,m)Y m−m′

k (θ, φ),

and Ũ l
mn = (−1)n−mDl

mn, where Dl
mn is the l-th order Wigner D-matrix—an unitary irreducible representation of

SO(3), C is a Clebsch-Gordan coefficient, Yk is a k-th order spherical harmonic, Jk is the k-th order spherical Bessel

function, a is the length of x, and ¹, ϕ are the spherical coordinates of the unit vector x̂.

The lifting process takes the form

f↑G (g) = f↑G (x,R) = Dl(R¦)f(x).

The Fourier Transform ( ̂f↑G (x,R)k)
s
l,m;l′,m′(p) (see App. C.3 for details) is

∑

j

∫

R3

(−1)−k−jf−j(x, I)Us
l,m;l′,j

(x, I; p)dxδ(l′ − t)δ(k +m′),

where I is the identity matrix, the identity element in SO(3).

The convolution on SE(3) takes the form

(» ∗ l)i(g) =
∑

j

∫

¿∈G

»ij(¿
−1g)lj(¿)d¿.
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The Fourier transform F((» ∗ l)i)
s
l′,m′;l,m(p) becomes

∑

j

∞∑

a=|s|

a∑

b=−a

(l̂j)
s
l′,m′;a,b(p)(»̂ij)

s
a,b;l,m(p).

Assume that the order of the input field is l1, and the order of the output field is l2. Then »ij only has nonzero Fourier

coefficients at »̂ij
s
l1,−j;l2,−i(p). Meanwhile, we can prove that »̂ij

s
l1,−j;l2,−i(p) has the form (−1)j−ic, where c is a constant

over i, j, for direct convolution on R3 (see AppC.4). Then we can project » to the homogeneous space R3, obtaining

»′
ij(x) = »ij(x, I) as

1

2Ã2

min(l1,l2)∑

s=−min(l1,l2)

∫ ∞

0

(−1)j−ics(p)Us
l1,−j;l2,−i(x, I; p)p

2dp =

¦∑

m=−t

l1+l2∑

t=|l1−l2|

Ct(∥x∥)C
l2,i
t,m,l1,j

Y m
t .

We see that » is in the span of a fixed basis, and the weight function Ct of ∥x∥ is arbitrary and thus learnable. This result is

consistent with the form of tensor field networks in Thomas et al. (2018) and 3D steerable CNNS in Weiler et al. (2018).

Figure 6. Fourier matrix multiplication for SE(3)

C.2 Details for SO(3)

The Fourier Transform becomes:

f̂↑G
l

mn =

∫

R∈SO(3)

f↑G (R)Dl
mn(R)dR =

∫

(³,´,µ)∈SO(3)

e−ikµf(³, ´)eim³dlmn(´)e
inµd³ sin(´)d´dµ

=

∫

(³,´)∈S2

f(³, ´)eim³dlmn(´)d³ sin(´)d´

∫

µ∈SO(2)

e−ikµeinµdµ.

This further equals
∫

(³,´)∈S2

f(³, ´)eim³dlmn(´)d³ sin(´)d´ · 2Ã¶(k − n).

Projecting fout↑
G to fout takes the form

fout(³, ´) = fout↑
G (³, ´, 0) =

∫

G

»(R−1
g R³,´,0)fin↑

G (g)dg

=

∫

G

»(R−1
³′,´′,µ′R³,´,0)fin↑

G (³′, ´′, µ′)d³′ sin(´′)d´′dµ′

=

∫

G

»(Rz(−µ′)Ry(−´′)Rz(−³′)Rz(³)Ry(´))e
−imµ′

fin(³
′, ´′)d³′ sin(´′)d´′dµ′

=

∫

G

eim1µ
′

»(Ry(−´′)Rz(−³′)Rz(³)Ry(´))e
−im1µ

′

fin(³
′, ´′)d³′ sin(´′)d´′dµ′

= C

∫

S2

»(Ry(−´′)Rz(−³′)Rz(³)Ry(´))fin(³
′, ´′)d³′ sin(´′)d´′

= C

∫

S2

e−im2h(R−1(³′,´′,0)R(³,´,0))»′(Ry(−´′)Rz(−³′)x³,´)fin(³
′, ´′)d³′ sin(´′)d´′.

This completes the details for SO(3).
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C.3 Fourier Transform over SE(3)

The Fourier Transform has the form

( ̂f↑G (x,R)k)
s
l,m;l′,m′(p) =

∫

SE(3)

f↑G (x,R)k(x,R)Us
l,m;l′,m′(x,R; p)dRdx

=
∑

g,l′,j

∫

SE(3)

D¦
kg(R

¦)fg(x, I)Us
l,m;l′,j(x, I, p)Ũ

l′
jm′(R)dRdx

=
∑

g,l′,j

∫

R3

fg(x, I)Us
l,m;l′,j(x, I; p)dx

∫

SO(3)

(−1)m
′−jD¦

gk(R)Dl′
jm′(R)dR.

Due to the fact that Clebsch–Gordan coefficients C00
l1,m1,l2,m2

= ¶(l1 − l2)¶(m1 + m2), the decomposition of

D¦
gk(R)Dl′

jm′(R) includes the trivial representation only when t = l′, g = −j and k = −m′. Therefore, the Fourier matrix

has sparsity pattern

( ̂f↑G (x,R)k)
s
l,m;l′,m′(p) =

∑

j

∫

R3

(−1)−k−jf−j(x, I)Us
l,m;l′,j(x, I; p)dx ¶(l′ − t)¶(k +m′).

C.4 Kernel Property for SE(3)

From the Fourier transform, we know that f̂out↑Gi
s

l′,m′;l1,−i(p) has the form (−1)−iC, where C does not depend on i,

and f̂in↑Gj
s

l′,m′;l1,−j
(p) has the form (−1)−jC ′, where C ′ does not depend on j. Thus,

∑
j »̂ij

s
l1,−j;l2,−i(p) has the form

(−1)−iCj , where Cj does not depend on i. Therefore, we find the kernel »ij whose Fourier matrix is shown in Figure 6,

and »ij(g) is

1

2Ã2

min(l1,l2)∑

s=−min(l1,l2)

∫ ∞

0

(−1)−icsl1,−j;l2,−i(p)U
s
l1,−j;l2,−i(x,R; p)

where
∑

j c
s
l1,−j;l2,−i does not depend on i.

To directly apply the convolution on a homogeneous space acted on by a semidirect product, csl1,−j;l2,−i(p) should have the

form (−1)j−ic, where c is does not depend on i or j. This is because » and the function p : G → V , where p(g−1) = »¦(g)
for any g ∈ G, should both be Mackey functions.

D Experiment Details

D.1 Details of Spherical U-Net in Sec. 4.1

The input field to the U-Net has one order-0 feature and the output of the U-Net is one order-1 feature. The overall network

has six layers of widths [32, 16, 16, 16, 16, 32]. The hidden features have [8, 12, 16, 12, 8] channels, respectively, for each

type of field. The types in hidden features are order-0 and order-1. The loss is the same as (Esteves et al., 2020), the

mean-squared error weighted by the spherical map sampling area. The whole network is trained end-to-end from scratch

using the Adam optimizer with an initial learning rate of 1× 10−3. The learning rate decays by a factor of 0.2 at epochs 10
and 15.

D.2 Nonlinearity in the SE(3) experiment (Sec. 4.2)

When we only take the −1-st, 0-th and 1-st element of the vector-valued function l on SE(3), the 0-th element l0(∗, x), of l

is a Mackey function on SO(3) at every point x. This is shown in the section 3.4. We observe that x 7→

(
l−1(∗, x)
l1(∗, x)

)
is

a Mackey function on SO(3) corresponding to the irreducible representation ¹ 7→

(
cos(¹) − sin(¹)
sin(¹) cos(¹)

)
of SO(2), using
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the real form of the Wigner-D matrix. Therefore we can project x 7→

(
l−1(R, x)
l1(R, x)

)
to the sphere by taking

(
l−1(r, x)
l1(r, x)

)

and using its norm. For l0(R, x), we only need to take l0(r, x). Through the above method, we can project the signal from

SO(3) to the sphere and keep the equivariance.

D.3 Details of Molecular Completion in Sec. 4.2.1

Our network contains five convolution activation layers using 0, 1, 2-order fields as hidden features with corresponding

hidden channel dimensions [32, 32, 32, 32]. In the last layer, we output six scalars for every existing atom (one for probability

and five for one-hot atom type prediction for the missing atom) and one vector (relative position to the missing atom). The

losses are the same as described in (Thomas et al., 2018) and the network is trained using the Adam optimizer with the

initial learning rate 1× 10−3. The learning rate is decreased by a factor 0.3 at epoch 2500.

D.4 Details of Shape Classification in Sec. 4.2.2

Our network follows (Poulenard & Guibas, 2021; Poulenard et al., 2019) to perform PCA aligned KD-Tree pooling. It

contains six convolution activation layers before global pooling, with KD-Tree pooling depth factors of [0, 2, 0, 2, 0, 2],
leading to [1024, 1024, 256, 256, 64, 64, 16] points starting from the input point cloud. Global pooling is applied to the

function lifted to the group as in (Poulenard & Guibas, 2021). Since in this task the translation equivariance can be trivially

addressed via subtracting the center of mass, following (Poulenard & Guibas, 2021; Dym & Maron, 2020) we concatenate

the global xyz coordinates as an order-1 feature to each layer’s input. We use the standard cross entropy loss. The network

is trained via the Adam optimizer with a starting learning rate of 1× 10−3. The learning rate is decayed by a factor of 0.3 at

epochs [100, 150, 200, 250, 300].

D.5 Table 3 with references

Methods z/z z/SO(3) SO(3)/SO(3)

Spherical-CNN (Esteves et al., 2018) 88.9 76.7 86.9

a3S-CNN (Liu et al., 2018) 89.6 87.9 88.7

SFCNN (Rao et al., 2019) 91.4 84.8 90.1

TFN (Thomas et al., 2018) 88.5 85.3 87.6

RI-Conv (Zhang et al., 2019) 86.5 86.4 86.4

SPHNet (Poulenard et al., 2019) 87.7 86.6 87.6

ClusterNet (Chen et al., 2019) 87.1 87.1 87.1

GC-Conv (Zhang et al., 2020) 89.0 89.1 89.2

RI-Framework (Li et al., 2020) 89.4 89.4 89.3

VN-PointNet (Deng et al., 2021) 77.5 77.5 77.2

VN-DGCNN (Deng et al., 2021) 89.5 89.5 90.2

TFN[mlp]-P (Poulenard & Guibas, 2021) 89.7 89.7 89.7

Ours 89.7 89.7 89.3

Table 4. Due to the page limit, we provide the references for the methods in Table 3 here.


