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Abstract

Data augmentation is a widely used trick when training deep neural networks: in addition
to the original data, properly transformed data are also added to the training set. However,
to the best of our knowledge, a clear mathematical framework to explain the performance
benefits of data augmentation is not available. In this paper, we develop such a theoretical
framework. We show data augmentation is equivalent to an averaging operation over the
orbits of a certain group that keeps the data distribution approximately invariant. We
prove that it leads to variance reduction. We study empirical risk minimization, and the
examples of exponential families, linear regression, and certain two-layer neural networks.
We also discuss how data augmentation could be used in problems with symmetry where
other approaches are prevalent, such as in cryo-electron microscopy (cryo-EM).

Keywords: Data Augmentation, Deep Learning, Empirical Risk Minimization, Invari-
ance, Variance Reduction

1. Introduction

Deep learning algorithms such as convolutional neural networks (CNNs) are successful in
part because they exploit natural symmetry in the data. For instance, image identity is
roughly invariant to translations and rotations: so a slightly translated cat is still a cat. Such
invariances are present in many datasets, including image, text and speech data. Standard
architectures are invariant to some, but not all transforms. For instance, CNNs induce an
approximate equivariance to translations, but not to rotations. This is an inductive bias of
CNNs, and the idea dates back at least to the neocognitron (Fukushima, 1980).

To make models invariant to arbitrary transforms beyond the ones built into the archi-
tecture, data augmentation is commonly used. Roughly speaking, the model is trained not
just with the original data, but also with transformed data. Data augmentation is a crucial
component of modern deep learning pipelines, and it is typically needed to achieve state of
the art performance. It has been used, e.g., in AlexNet (Krizhevsky et al., 2012), and other
pioneering works (Cireşan et al., 2010). The state-of-the-art results on aggregator websites
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Figure 1: Benefits of data augmentation: A comparison of test accuracy across training
epochs of ResNet18 (He et al., 2016) (1) without data augmentation, (2) horizon-
tally flipping the image with 0.5 probability, and (3) a composition of randomly
cropping a 32× 32 portion of the image and random horizontal flip. The experi-
ment is repeated 15 times, with the dotted lines showing the average test accuracy
and the shaded regions representing 1 standard deviation around the mean. The
left graph shows results from training on the full CIFAR10 training data and the
right uses half of the training data as that of the left. Data augmentation leads
to increased performance, especially with limited data.

such as https://paperswithcode.com/sota often crucially rely on effective new ways of
data augmentation. See Figure 1 for a small experiment (see Appendix D for details).

Equivariant or invariant architectures (such as CNNs) are attractive for tackling invari-
ance. However, in many cases, datasets have symmetries that are naturally described in a
generative form: we can specify generators of the group of symmetries (e.g., rotations and
scalings). In contrast, computing the equivariant features requires designing new architec-
tures. Thus, data augmentation is a universally applicable, generative, and algorithmic way
to exploit invariances.

However, a general framework for understanding data augmentation is missing. Such a
framework would enable us to reason clearly about the benefits offered by augmentation,
in comparison to invariant features. Moreover, such a framework could also shed light on
questions such as: How can we improve the performance of our models by simply adding
transformed versions of the training data? Under what conditions can we see benefits?
Developing such a framework is challenging for several reasons: first, it is unclear what
mathematical approach to use, and second, it is unclear how to demonstrate that data
augmentation “helps”.

In this paper, we propose such a general framework. We use group theory as a mathe-
matical language, and model invariances as “approximate equality” in distribution under a
group action. We show that data augmentation can be viewed as invariant learning by aver-
aging over the group action. We then demonstrate that data augmentation leads to sample
efficient learning, both in the non-asymptotic setting (relying on results from stochastic
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convex optimization and Rademacher complexity), as well as in the asymptotic setting (by
using asymptotic statistical theory for empirical risk minimizers/M-estimators).

We show how to apply data augmentation beyond deep learning, to other problems
in statistics and machine learning that have invariances. In addition, we explain the con-
nections to several other important notions from statistics and machine learning, including
sufficiency, invariant representations, equivariance, variance reduction in Monte Carlo meth-
ods, and regularization.

We can summarize our main contributions as follows:

1. We study data augmentation in a group-theoretic formulation, where there is a group
acting on the data, and the distribution of the data is equal (which we refer to as
exact invariance), or does not change too much (which we refer to as approximate
invariance) under the action. We explain that in empirical risk minimization (ERM),
this leads to minimizing an augmented loss, which is the average of the original loss
under the group action (Section 3.1). In the special case of maximum likelihood
estimation (MLE), we discuss several variants of MLE that may potentially exploit
invariance (Section 3.2). We also propose to extend data augmentation beyond ERM,
using the “augmentation distribution” (Section 3.3).

2. We provide several theoretical results to support the benefits of data augmentation.
When the data is exactly invariant in distribution (exact invariance), we show that av-
eraging over the group orbit (e.g., all rotations) reduces the variance of any function.
We can immediately conclude that estimators based on the “augmentation distri-
bution” gain efficiency and augmentation reduces the mean squared error (MSE) of
general estimators (Section 4.1).

3. Specializing the variance reduction to the loss and the gradients of the loss, we show
that the empirical risk minimizer with data augmentation enjoys favorable properties
in a non-asymptotic setup. Specifically, “loss-averaging” implies that data augmenta-
tion reduces the Rademacher complexity of a loss class (Section 4.2.1), which further
suggests that the augmented model may generalize better. On the other hand, we
show that “gradient-averaging” reduces the variance of the ERM when the loss is
strongly-convex, using a recent result from stochastic convex optimization (Section
4.2.2).

4. Moving to the asymptotic case, we characterize the precise variance reduction obtained
by data augmentation under exact invariance. We show that this depends on the
covariance of the loss gradients along the group orbit (Section 4.2.3). This implies
that data augmentation can improve upon the Fisher information of the un-augmented
maximum likelihood estimator (MLE) (Section 4.2.4). For MLE, we further study the
special case when the subspace of parameters with invariance is a low-dimensional
manifold. We connect this to geometry showing that the projection of the gradient
onto the tangent space is always invariant; however, it does not always capture all
invariance. As a result, the augmented MLE cannot always be as efficient as the
“constrained MLE”, where the invariance is achieved by constrained optimization.

5. We work out several examples of our theory under exact invariance: exponential fami-
lies (Section 5.1), least-squares regression (Section 5.2) and least squares classification
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(Section 5.3). As a notable example, we work out the efficiency gain for two-layer neu-
ral networks with circular shift data augmentation in the heavily underparametrized
regime (where most of our results concern quadratic activations). We also provide
an example of “augmentation distribution”, in the context of linear regression with
general linear group actions (Section 5.4).

6. We extend most of the results to the approximate invariance case, where the distri-
bution of the data is close, but not exactly equal to its transformed copy (Section 6).
Using optimal transport theory, we characterize an intriguing bias-variance tradeoff:
while the orbit averaging operation reduces variance, a certain level of bias is created
because of the non-exact-invariance. This tradeoff suggests that in practice where ex-
act invariance does not hold, data augmentation may not always be beneficial, and its
performance is governed by both the variability of the group and a specific Wasserstein
distance between the data and its transformed copy.

7. We illustrate the bias-variance tradeoff by studying the generalization error of over-
parameterized two-layer networks trained by gradient descent (Section 7), using recent
results on Neural Tangent Kernel (see, e.g., Jacot et al. 2018; Arora et al. 2019; Ji
and Telgarsky 2019; Chen et al. 2019).

8. We also describe a few important problems where symmetries occur, but where other
approaches—not data augmentation—are currently used (Section 8): cryo-electron
microscopy (cryo-EM), spherically invariant data, and random effects models. These
problems may be especially promising for using data augmentation.

2. Some related work

In this section, we discuss some related works, in addition to those that are mentioned in
other places.

Data augmentation methodology in deep learning. There is a great deal of work
in developing efficient methods for data augmentation in deep learning. Here we briefly
mention a few works. Data augmentation has a long history, and related ideas date back
at least to Baird (1992), who built a “pseudo-random image generator”, that “given an
image and a set of model parameters, computes a degraded image”. This is recounted in
Schmidhuber (2015).

Conditional generative adversarial networks (cGAN) are a method for learning to gener-
ate from the class-conditional distributions in a classification problem (Mirza and Osindero,
2014). This has direct applications to data augmentation. Data augmentation GANs (DA-
GAN) (Antoniou et al., 2017) are a related approach that train a GAN to discriminate
between x, xg, and x, x′, where xg is generated as xg = f(x, z), and x′ is an independent
copy. This learns the conditional distribution x′|x, where x′, x are sampled “independently”
from the training set. Here the training data is viewed as non-independent and they learn
the dependence structure.

Hauberg et al. (2016) construct class-dependent distributions over diffeomorphisms for
learned data augmentation. Ratner et al. (2017) learn data augmentation policies using

4



Theory for Data Augmentation

reinforcement learning, starting with a known set of valid transforms. Tran et al. (2017)
propose a Bayesian approach. RenderGAN (Sixt et al., 2018) combines a 3D model with
GANs for image generation. DeVries and Taylor (2017a) propose to perform data augmen-
tation in feature space. AutoAugment (Cubuk et al., 2018) is another approach for learning
augmentation policies based on reinforcement learning, which is one of the state of the art
approaches. RandAugment (Cubuk et al., 2019) proposes a strategy to reduce the search
space of augmentation policies, which also achieves state of the art performance on Ima-
geNet classification tasks. Hoffer et al. (2019) argues that replicating instances of samples
within the same batch with different data augmentations can act as an accelerator and a
regularizer when appropriately tuning the hyperparameters, increasing both the speed of
training and the generalization performance.

Neural net architecture design. There is a parallel line of work designing invariant
and equivariant neural net architectures. A key celebrated example is convolutions, dating
back at least to the neocognitron (Fukushima, 1980), see also LeCun et al. (1989). More
recently, group equivariant Convolutional Neural Networks (G-CNNs), have been proposed,
using G-convolutions to exploit symmetry (Cohen and Welling, 2016a). That work designs
concrete architectures for groups of translations, rotations by 90 degrees around any center
of rotation in a square grid, and reflections. Dieleman et al. (2016) designed architectures
for cyclic symmetry.

Worrall et al. (2017) introduces Harmonic Networks or H-Nets, which induce equivari-
ance to patch-wise translation and 360 degree rotation. They rely on circular harmonics as
invariant features. Cohen and Welling (2016b) propose steerable CNNs and Cohen et al.
(2018a) develop a more general approach. There are several works on SO(3) equivariance,
see Cohen et al. (2018b); Esteves et al. (2018a,b, 2019).

Gens and Domingos (2014) introduces deep symmetry networks (symnets), that form
feature maps over arbitrary symmetry groups via kernel-based interpolation to pool over
symmetry spaces. See also Ravanbakhsh et al. (2017); Kondor and Trivedi (2018); Weiler
et al. (2018); Kondor et al. (2018). There are also many examples of data augmentation
methods developed in various application areas, e.g., Jaitly and Hinton (2013); Xie et al.
(2019); Park et al. (2019); Ho et al. (2019), etc.

Data augmentation as a form of regularization. There is also a line of work
proposing to add random or adversarial noise to the data when training neural networks.
The heuristic behind this approach is that the addition of noise-perturbed data should
produce a classifier that is robust to random or adversarial corruption.

For example, DeVries and Taylor (2017b) proposes to randomly mask out square regions
of input images and fill the regions with pure gray color; Zhong et al. (2017) and Lopes
et al. (2019) propose to randomly select a patch within an image and replace its pixels with
random values; Bendory et al. (2018) proposes to add Perlin noise (Perlin, 1985) to medical
images; Zhang et al. (2017) proposes to train with convex combinations of two images as
well as their labels. The experiments done by those papers show that augmenting with
noise-perturbed data can lead to lower generalization error and better robustness against
corruption.
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Szegedy et al. (2013) and Cohen et al. (2019) demonstrate that training with adversarial
examples can lead to some form of regularization. Hernández-Garćıa and König (2018a) has
argued that data augmentation can sometimes even replace other regularization mechanisms
such as weight decay, while Hernández-Garćıa and König (2018b) has argued that this can
be less sensitive to hyperparameter choices than other forms of regularization. While this
approach is also called data augmentation in the literature, it is fundamentally different
from what we consider. We study a way to exploit invariance in the data, while those
works focus on smoothing effects (adding noise cannot possibly lead to exactly invariant
distributions).

More related to our approach, Maaten et al. (2013) propose to train the model by mini-
mizing the expected value of the loss function under the “corrupting distribution” and show
such a strategy improves generalization. Chao et al. (2017); Mazaheri et al. (2019) aim to
reduce the variance and enhance stability by “functional integration” inspired averaging
over a large number of different representations of the same data. However, our quantita-
tive approaches differ. Lyle et al. (2019) study the effect of invariance on generalization
in neural networks. They study feature averaging, which agrees with our augmentation
distribution defined later. They mention variance reduction, but we can, in fact, prove it.

Other works connected to data augmentation. There is a tremendous amount of
other work connected to data augmentation. On the empirical end, Bengio et al. (2011) has
argued that the benefit of data augmentation goes up with depth. On the theoretical end,
Rajput et al. (2019) investigate if gaussian data augmentation leads to a positive margin,
with some negative results. Connecting to adversarial examples, Engstrom et al. (2017)
shows that adversarially chosen group transforms such as rotations can already be enough
to fool neural network classifiers. Javadi et al. (2019) shows that data augmentation can
reduce a certain Hessian-based complexity of neural networks. Liu et al. (2019) show that
data augmentation can significantly improve the optimization landscape of neural networks,
so that SGD avoids bad local minima and leads to much more accurate trained networks.
Hernández-Garćıa et al. (2018) has shown that it also leads to better biological plausibility
in some cases.

Dao et al. (2019) also seek to establish a theoretical framework for understanding data
augmentation, but focus on the connection between data augmentation and kernel classifiers.
Dao et al. (2019) study k-NN and kernel methods. They show how data augmentation with
a kernel classifier yields approximations which look like feature averaging and variance
regularization, but do not explicitly quantify how this improves classification. One of the
most related works by Bloem-Reddy and Teh (2019) use similar probabilistic models, but
without focusing on data augmentation.

We also note that data augmentation has another meaning in Bayesian statistics, namely
the introduction of auxiliary variables to help compute the posterior (see e.g., Tanner and
Wong, 1987). The naming clash is unfortunate. However, since the term “data augmenta-
tion” is well established in deep learning, we decided to keep it in our current work.

Group invariance in statistical inference. There has been significant work on
group invariance in statistical inference (e.g., Giri, 1996). However, the questions investi-
gated there are different from the ones that we study. Among other contributions, Helland
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(2004) argues that group invariance can form natural non-informative priors for the param-
eters of the model, and introduces permissible sub-parameters as those upon which group
actions can be defined.

Physical invariances. There is a long history of studying invariance and symmetry in
physics. Invariances lead to conservation laws, such as conservation of mass and momentum.
In addition, invariances in Hamiltonians of physical systems lead to reductions in the number
of parameters of probability distributions governing the systems. This has been among the
explanations proposed of why deep learning works (Lin et al., 2017).

3. Methodology for data augmentation

3.1 ERM

We start by explaining our framework in the context of empirical risk minimization (ERM).
Consider observations X1, . . . , Xn ∈ X (e.g., images along with their labels) sampled

i.i.d. from a probability distribution P on the sample space X . Since data augmentation is a
way of “teaching invariance to the model”, we need to assume our data is invariant to certain
transformations. Consider thus a group G of transforms (e.g., the set of all rotations of
images), which acts on the sample space: there is a function φ : G×X → X , (g, x) 7→ φ(g, x),
such that φ(e, x) = x for the identity element e ∈ G, and φ(gh, x) = φ(g, φ(h, x)) for any
g, h ∈ G. For notational simplicity, we write φ(g, x) ≡ gx then there is no ambiguity. To
model invariance, we assume that for any group element g ∈ G and almost any X ∼ P, we
have an “approximate equality” in distribution:

X ≈d gX. (1)

For ease of exposition, we start with exact invariance X =d gX in Section 4, and we handle
approximate invariance in Section 6.

For supervised learning applications, Xi = (Zi, Yi) contains both the features Zi and
the outcome Yi. The assumption (1) means that the probability of an image being a bird
is (either exactly or approximately) the same as the probability for a rotated image.

As an aside, the invariance in distribution (1) arises naturally in many familiar statistical
settings, including permutation tests, time series analysis. See Section 3.4.

In the current context, data augmentation corresponds to “adding all datapoints gXi,
g ∈ G, i = 1, . . . , n” to the dataset. When the group is finite, this can effectively be
implemented by enlarging the data size. However, many important groups are infinite, and
to understand data augmentation in that setting, it is most clear if we argue from first
principles.

In practice, data augmentation is performed via the following approach. To start, we
consider a loss function L(θ,X), and attempt to minimize the empirical risk

Rn(θ) :=
1

n

n∑

i=1

L(θ,Xi). (2)

We iterative over time t = 1, 2, . . . using stochastic gradient descent (SGD) or variants (see
Algorithm 1). At each step t, a minibatch of Xi’s (say with indices St) is chosen. In data
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Algorithm 1: Augmented SGD

Input : Data Xi, i = 1, . . . , n; Method to compute gradients ∇L(θ,X) of the loss;
Method to sample augmentations g ∈ G, g ∼ Q; Learning rates ηt; Batch sizes
|St|; Initial parameters θ0; Stopping criterion.

Output: Final parameters.
Set t = 0
While stopping criterion is not met
Sample random minibatch St ⊂ {1, . . . , n}
Sample random augmentation gi,t ∼ Q for each batch element
Update parameters

θt+1 ← θt −
ηt
|St|

∑

i∈St

∇L(θ, gi,tXi)

t← t+ 1
return θ

augmentation, a random transform gi,t ∈ G is sampled and applied to each data point in
the minibatch. Then, the parameter is updated as

θt+1 = θt −
ηt
|St|

∑

i∈St

∇L(θ, gi,tXi). (3)

Here we need a probability distribution Q on the group G, from which gi,t is sampled.
For a finite G, one usually takes Q to be the uniform distribution. However, care must be
taken if G is infinite. We assume G is a compact topological group, and we take Q to be
the Haar probability measure.1 Hence, for any g ∈ G and measurable S ⊆ G, the following
translation invariant property holds: Q(gS) = Q(S),Q(Sg) = Q(S).

A key observation is that the update rule (3) corresponds to SGD on an augmented
empirical risk, where we take an average over all augmentations according to the measure
Q:

min
θ

R̄n(θ) :=
1

n

n∑

i=1

∫

G

L(θ, gXi)dQ(g). (4)

To be precise, ∇L(θ, gi,tXi) is an unbiased stochastic gradient for the augmented loss func-
tion

L̄(θ,X) :=

∫

G

L(θ, gX)dQ(g), (5)

and hence we can view the resulting estimator as an empirical risk minimizer of R̄n =
n−1

∑n
i=1 L̄(θ,Xi).

This can be viewed as Rao-Blackwellizing the loss, meaning taking a conditional expec-
tation of the loss over the conditional distribution of x belonging to a certain group orbit.
See Lemma 1 for a precise statement and Section 3.4 for more discussion.

1. Haar measures are used for convenience. Most of our results hold for more general measures with slightly

more lengthy proofs.
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3.2 Variants of MLE under invariance

The maximum likelihood estimation (MLE) is a special case of ERM when there is an
underlying parametric model. The usual approach goes as follows. One starts with a
parametric statistical model (i.e., a collection of probability measures) {Pθ : θ ∈ Θ}, where
Θ is some parameter space. Let pθ be the density of Pθ, and we define the log-likelihood
function as `θ(x) = log pθ(x). We then define the MLE as any solution of the following
problem:

θ̂MLE,n ∈ argmax
θ∈Θ

1

n

∑

i∈[n]

`θ(Xi). (6)

The invariance assumption (1) is only imposed on the “true” parameter θ0, so that for
Pθ0-a.e. x and Q-a.e. g, we have

pθ0(gx) · | det Jac(x→ gx)| = pθ0(x), (7)

where Jac(x→ gx) is the Jacobian of the transform x 7→ gx.
There are multiple ways to adapt the likelihood function to the invariance structure

(with data augmentation being one of them), and we detail some of them below.

Constrained MLE. The invariance structure is a constraint on the density function.
Hence we obtain a natural constrained (or restricted) maximum likelihood estimation prob-
lem. Define the invariant subspace as

ΘG = {θ ∈ Θ : X =d gX, ∀g ∈ G}. (8)

Then the constrained MLE is

θ̂cMLE,n ∈ arg max
θ∈ΘG

∑

i∈[n]

`θ(Xi). (9)

In general, this can be much more sample-efficient than the original MLE. For instance,
suppose we are trying to estimate a normal mean based on one sample: X ∼ N (θ, 1). Let
the group be negation, i.e., G = ({±1}, ·) = Z2. Then ΘG = {0}, because the only normal
density symmetric around zero is the one with zero mean. Hence, the invariance condition
uniquely identifies the parameter, showing that the constrained MLE perfectly recovers the
parameter.

However, in general, optimizing over the restricted parameter set may be computation-
ally more difficult. This is indeed the case in the applications we have in mind. For instance,
in deep learning, G may correspond to the set of all translations, rotations, scalings, shear-
ings, color shifts, etc. And it’s not clear how to obtain information on ΘG (for example,
how to compute the projection operator onto ΘG).

Augmented MLE. A particular example of the augmented ERM is augmented max-
imum likelihood estimation. Here the loss is the negative log-likelihood, L(θ, x) = −`θ(x).
Then the augmented ERM program (4) becomes

θ̂aMLE,n ∈ argmax
θ

∑

i∈[n]

∫

G

`θ(gXi)dQ(g). (10)
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Table 1: Optimization objectives

Method Sample Objective Population Objective

ERM/MLE min
θ∈Θ

1
n

∑
i∈[n] L(θ,Xi) min

θ∈Θ
Eθ0L(θ,X)

Constrained ERM/MLE min
θ∈ΘG

1
n

∑
i∈[n] L(θ,Xi) min

θ∈ΘG

Eθ0L(θ,X)

Augmented ERM/MLE min
θ∈Θ

1
n

∑
i∈[n]

∫
L(θ, gXi)dQ(g) min

θ∈Θ
Eθ0

∫
L(θ, gX)dQ(g)

Invariant ERM/MLE min
θ∈Θ

1
n

∑
i∈[n] L(θ, T (Xi)), T (x) = T (gx) min

θ∈Θ
Eθ0L(θ, T (X))

Marginal MLE max
θ∈Θ

1
n

∑
i∈[n] log

(∫
pθ(gXi)dQ(g)

)
max
θ∈Θ

Eθ0 log
(∫

pθ(gX)dQ(g)
)

Invariant MLE. Another perspective to exploit invariance is that of invariant repre-
sentations, i.e., learning over representations T (x) of the data such that T (gx) = T (x) (see
also Section 3.4). However, it turns out that in some natural examples, the invariant MLE
does not gain over the usual MLE (see Appendix C for a specific example). Thus we will
not consider this in much detail.

Marginal MLE. There is a natural additional method to estimate the parameters,
the marginal MLE. Under exact invariance, our original local invariance assumption (7) is
equivalent to the following latent variable model. Under the true parameter θ0, we sample
a random group element g ∼ Q, and a random datapoint X̃ ∼ Pθ0 , i.e.,

X̃ ∼ Pθ0 , g ∼ Q. (11)

Then, we observe X = gX̃. We repeat this independently over all datapoints to obtain all
Xi. Since gX =d X under θ0, this sampling process is exactly equivalent to the original
model, under θ0.

Suppose that instead of fitting the model (11), we attempt to fit the relaxed model
X̃ ∼ Pθ, g ∼ Q, observing X = gX̃. The only change is that we assume that the invariance
holds for all parameter values. This model is mis-specified, nonetheless, it may be easier
to fit computationally. Moreover, its MLE may still retain consistency for the original true
parameter. Now the maximum marginal likelihood estimator (ignoring terms constant with
respect to θ) can be written as:

θ̂mMLE,n = argmax
θ

∑

i∈[n]

log

(∫

G

pθ(gXi)dQ(g)

)
. (12)

We emphasize that this is not the same as the augmented MLE estimator considered above.
This estimator has the log(·) terms outside the G-integral, while the augmented one effec-
tively has the log(·) terms inside.

Summary of methods. Thus we now have several estimators for the original problem:
MLE, constrained MLE, augmented MLE, invariant MLE, and marginal MLE. We note that
the former four methods are general in the ERM context, whereas the last one is specific
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to likelihood-based models. See Table 1 for a summary. Can we understand them? In the
next few sections, we will develop theoretical results to address this question.

3.3 Beyond ERM

The above ideas apply to empirical risk minimization. However, there are many popular
algorithms and methods that are not most naturally expressed as plain ERM. For instance:

1. Regularized ERM, e.g., Ridge regression and Lasso

2. Shrinkage estimators, e.g., Stein shrinkage

3. Nearest neighbors, e.g., k-NN classification and regression

4. Heuristic algorithms like Forward stepwise (stagewise, streamwise) regression, and
backward stepwise. While these may be associated with an objective function, there
may be no known computationally efficient methods for finding global solutions.

To apply data augmentation for those methods, let us consider a general estimator θ̂(x)
based on data x. The simplest idea would be to try to compute the estimator on all the
data, including the actual and transformed sets. Following the previous logic, if we have
the invariance X ≈d gX for all g ∈ G, then after observing data x, we should “augment”
our data with gx, for all g ∈ G. Finally, we should run our method on this data. How-
ever, this idea can be impractical, as the entire data can be too large to work with directly.
Therefore, we will take a more principled approach and work through the logic step by step,
considering all possibilities. We will eventually recover the above estimator as well.

Augmentation distribution & General augmentations. We define the augmen-
tation distribution as the set of values

θ̂(gx), g ∈ G. (13)

We think of x = (x1, . . . , xn) as the entire dataset, and of g ∈ G being a group element
summarizing the action on every data point. The augmentation distribution is simply the
collection of values of the estimator we would get if we were to apply all group transforms
to the data. It has a special role, because we think of each transform as equally informative,
and thus each value of the augmentation distribution is an equally valid estimator.

We can also make (13) a proper probability distribution by taking a random g ∼ Q. Then
we can construct a final estimator by computing a summary statistic on this distribution,
for instance, the mean

θ̂G(x) = Eg∼Qθ̂(gx). (14)

It is worth noticing that this summary statistic is exactly invariant, so that θ̂G(x) =
θ̂G(gx). Moreover, this estimator can be approximated in the natural way in practice via
sampling gi ∼ Q independently:

θ̂k(x) =
1

k

k∑

i=1

θ̂(gix). (15)

11
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Connection to previous approach. To see how this connects to the previous ideas,
let us consider X = (X1, . . . , Xn), and let θ̂ be the ERM with loss function L(θ, ·). Consider
the group Gn = G× . . .×G acting on X elementwise. Then, the augmentation distribution
is the set of values

θ̂(X1, . . . , Xn; g1, . . . , gn) := argmin
θ

1

n

∑

i∈[n]

L(θ, giXi),

where we range g ∈ G. Then, the final estimator, according to (14), would be

θ̂G(X1, . . . , Xn) := Eg1,...,gn∼Q argmin
θ

1

n

∑

i∈[n]

L(θ, giXi).

Compared to the previous augmented ERM estimator, the current one changes the order of
averaging over G and minimization. Specifically, the previous one is argminEgRn(θ; gX),
while the current one is Eg argminRn(θ; gX). If we know that the estimator is obtained
from minimizing a loss function, then we can average that loss function; but in general we
can only average the estimator, which justifies the current approach.

The two approaches above are closer than one may think. We can view the SGD itera-
tion (3) as an online optimization approach to minimize a randomized objective of the form∑

i∈[n] L(θ, giXi). This holds exactly if we take one pass over the data in a deterministic
way, which is known as a type of incremental gradient method. In this case, minimizing the
augmented ERM has a resemblance to minimizing the mean of the augmentation distribu-
tion. However, in practice, people take multiple passes over the data, so this interpretation
is not exact.

Augmentation in sequence of estimators. In the above generalization of data aug-
mentation beyond ERM, we assumed only the bare minimum, meaning that the estimator
θ̂(x) exists. Suppose now that we have slightly more structure, and the estimator is part
of a sequence of estimators θ̂n, defined for all n. This is a mild assumption, as in general
estimators can be embedded into sequences defined for all data sizes. Then we can directly
augment our dataset X1, . . . , Xn by adding new datapoints. We can define augmented es-
timators in several ways. For instance, for any fixed m, we can compute the estimator on
a uniformly resampled set of size m from the data, applying uniform random transforms:

θ̂m(g1Xi1 , g2Xi2 , . . . , , gmXim)

ik ∼ Unif([n]), gk ∼ Q.

This implicitly assumes a form of symmetry of the estimator with respect to its arguments.
There are many variations: e.g., we may insist that m should be a multiple of n, or we can
include all datapoints. This leads us to a “completely augmented” estimator which includes
all data and all transforms (assuming |G| is finite)

θ̂n|G|({gjXi}i∈[n],j∈[|G|]).

The advantage of the above reasoning is that it allows us to design augmented/invariant
learning procedures extremely generally.

12
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3.4 Connections and perspectives

Our approach has connections to many important and well-known concepts in statistics and
machine learning. Here we elaborate on those connections, which should help deepen our
understanding of the problems under study.

Sufficiency. The notion of sufficiency, due to Ronald A Fisher, is a fundamental concept
in statistics. Given an observation (datapoint) X from a statistical model X ∼ P, a statistic
T := T (X) is said to be sufficient for a parameter θ := θ(P) if the conditional distribution
of X|T = t does not depend on θ for almost any t. Effectively, we can reduce the data X to
the statistic T without any loss of information about θ. A statistic T is said to be minimal
sufficient if any other sufficient statistic is a function of it.

In our setup, assuming the invariance X =d gX, on the invariant subspace ΘG, the
orbits G · x := {gx|g ∈ G} are minimal sufficient for θ. More generally, the local invariance
condition (where invariance only holds for a subset of the parameter space) implies that
the group orbits are a locally sufficient statistic for our model. From the perspective of
statistical theory, this suggests that we should work with the orbits. However, this can only
be practical under the following conditions:

1. We can conveniently compute the orbits, or we can conveniently find representatives;

2. We can compute the distribution induced by the model on the orbits;

3. We can compute estimators/learning rules defined on the orbits in a convenient way.

This is possible in many cases (Lehmann and Casella, 1998; Lehmann and Romano,
2005), but in complex cases such as deep learning, some or all of these steps can be im-
practical. For instance, the set of transforms may include translations, rotations, scalings,
shearings, color shifts, etc. How can we compute the orbit of an image? It appears that an
explicit description would be hard to find.

Invariant representations. The notions of invariant representations and features are
closely connected to our approach. Given an observation x, and a group of transforms G
acting on X , a feature F : X → Y is invariant if F (x) = F (gx) for all x, g. This definition
does not require a probabilistic model. By design, convolutional filters are trained to look
for spatially localized features, such as edges, whose pixel-wise representation is invariant
to location. In our setup, we have a group acting on the data. In that case, it is again easy
to see that the orbits G · x := {gx|g ∈ G} are the maximal invariant representations.

Related work by Mallat, Bölcskei and others (e.g., Mallat, 2012; Bruna and Mallat,
2013; Wiatowski and Bölcskei, 2018; Anselmi et al., 2019) tries to explain how CNNs ex-
tract features, using ideas from harmonic analysis. They show that the features of certain
models of neural networks (Deep Scattering Networks for Mallat) are increasingly invariant
with respect to depth.

Equivariance. The notion of equivariance is also key in statistics (e.g., Lehmann and
Casella, 1998). A statistical model is called equivariant with respect to a group G acting
on the sample space if there is an induced group G∗ acting on the parameter space Θ such

13
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that for any X ∼ Pθ, and any g ∈ G, there is a g∗ ∈ G∗ such that gX ∼ Pg∗θ. Under
equivariance, it is customary to restrict to equivariant estimators, i.e., those that satisfy
θ̂(gx) = g∗θ̂(x). Under some conditions, there are Uniformly Minimum Risk Equivariant
(UMRE) estimators.

Our invariance condition can be viewed as having a “trivial” induced group G∗, which
always acts as the identity. Then the equivariant estimators are those for which θ̂(gx) =
θ̂(x). Thus, equivariant estimators are invariant on the orbits.

The above mentioned UMRE results crucially use that the induced group has large or-
bits on the parameter space (or in the extreme case, is transitive), so that many parameter
values are equivalent. In contrast, we have the complete opposite setting, where the orbits
are singletons. Thus our setting is very different from classical equivariance.

Exact invariance in some statistical models. The exact invariance in distribution
X =d gX arises naturally in many familiar statistical settings. In permutation tests, we are
testing a null hypothesis H0, under which the distribution of the observed data X1, . . . , Xn

is invariant to some permutations. For instance, in two-sample tests against a mean shift
alternative, we are interested to test the null of no significant difference between two sam-
ples. Under the null, the data is invariant to all permutations, and this can be the basis of
statistical inference (e.g., Lehmann and Romano, 2005). In this case, the group is the sym-
metric group of all permutations, and this falls under our invariance assumption. However,
the goals in permutation testing are very different from our ones.

In time series analysis, we have observations X = (. . . , X1, X2, . . . , Xt, . . .) measured
over time. Here, the classical notion of strict stationarity is the same as invariance under
shifts, i.e., (. . . , Xt, Xt+1, . . .) =d (. . . , Xt+1, Xt+2, . . .) (e.g., Brockwell and Davis 2009).
Thus, our invariance in distribution can capture an important existing notion in time series
analysis. Moreover, data augmentation corresponds to adding all shifts of the time series
to the data. Hence, it is connected to auto-regressive methods.

We discuss other connections, e.g., to nonparametric density estimation under symme-
try constraints, and U-statistics, in other places of this paper.

Variance reduction in Monte Carlo. Variance reduction techniques are widely used
in Monte Carlo methods (Robert and Casella, 2013). Data augmentation can be viewed as
a type of variance reduction, and is connected to other known techniques. For instance,
f(gX) can be viewed as control variates for the random variable f(X). The reason is that
f(gX) has the same marginal distribution, and hence the same mean as f(X). Taking
averages can be viewed as a suboptimal, but universal way to combine control variates.

We briefly mention that under a reflection symmetry assumption, data augmentation
can also be viewed as a special case of the method of antithetic variates.

Connection to data augmentation. We can summarize the connections to the areas
mentioned above. Data augmentation is computationally feasible approach to approximately
learn on the orbits (which are both the minimal sufficient statistics and maximal invariant
features). The computational efficiency is partly because we never explicitly compute or
store the orbits and invariant features.
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G · x

x

g · x

g̃ · x

f̄(x)

f̄(g · x)

f̄(g̃ · x)
f(x)

f(g · x)

f(g̃ · x)

Figure 2: A pictorial illustration of orbit averaging. The circle represents the orbit G · x =
{gx : g ∈ G}, and x, gx, g̃x are three different points on this orbit. Although
f(x), f(gx), f(g̃x) may be different, after orbit averaging, f̄(x), f̄(gx), f̄(g̃x) all
take the same value.

4. Theoretical results under exact invariance

In this section, we present our theoretical results for data augmentation under the assump-
tion of exact invariance: gX =d X for almost all g ∼ Q and x ∼ P.

4.1 General estimators

We start with some general results on variance reduction. The following lemma characterizes
the bias and variance of a general estimator under augmentation:

Lemma 1 (Invariance lemma) Let f be an arbitrary function s.t. the map (X, g) 7→
f(gX) is in L2(P × Q). Assume exact invariance holds for Q-almost all g ∈ G. Let
f̄(x) := Eg∼Qf(gx) be the “orbit average” of f . Then:

1. For any x, f̄(x) is the conditional expectation of f(X), conditional on the orbit:
f̄(x) = E[f(X)|X ∈ Gx], where Gx := {gx : g ∈ G};

2. Therefore, by the law of total expectation, the mean of f̄(X) and f(X) coincide:
EX∼Pf(X) = EX∼Pf̄(X);

3. By the law of total covariance, the covariance of f(X) can be decomposed as

CovX∼Pf(X) = CovX∼Pf̄(X) + EX∼PCovg∼Qf(gX);

4. Let ϕ be any real-valued convex function. Then EX∼P[ϕ(f(X))] ≥ EX∼P[ϕ(f̄(X))].

Proof See Appendix A.1.

Figure 2 gives an illustration of orbit averaging.

Augmentation leads to variance reduction. This lemma immediately implies that
data augmentation has favorable variance reduction properties. For general estimators, we
obtain a direct consequence:
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Proposition 2 (Augmentation decreases MSE of general estimators) Assume ex-
act invariance holds. Consider an estimator θ̂(X) of θ0, and its augmented version θ̂G(X) =
Eg∼Qθ̂(gX). The bias of the augmented estimator is the same as the bias of the original
estimator, and the covariance matrix decreases in the Loewner order:

Cov
[
θ̂G(X)

]
� Cov

[
θ̂(X)

]
.

Hence, the mean-squared erro (MSE) decreases by augmentation. Moreover, for any convex
loss function L(θ0, ·), we have

EL(θ0, θ̂(X)) ≥ EL(θ0, θ̂G(X)).

The estimator θ̂G(X) is an instance of data augmentation via augmentation distribution
(14). We see that the augmented estimator is no worse than the original estimator according
to any convex loss. In some cases, using such a strategy gives an unexpectedly large efficiency
gain (See Section 5.4 for an example).

For ERM and MLE, the claim implies that the variance of the augmented loss, log-
likelihood, and score functions all decreases. For other estimators based on the augmen-
tation distribution, such as the median, one can show that other measures of error, such
as the mean absolute error decrease. This shows how data augmentation can be viewed as
a form of algorithmic regularization. Indeed, the mean behavior of loss/log-likelihood, etc
are all unchanged, but the variance decreases. This indeed shows that augmentation is a
natural form of regularization.

Connection to Rao-Blackwell theorem. Lemma 1 has the same flavor as the cel-
ebrated Rao-Blackwell theorem, where a “better” estimator is constructed from a prelimi-
nary estimator by conditioning on a sufficient statistic. In fact, the orbit GX is a sufficient
statistic in many cases and we provide a classical example below to illustrate this point:

Example 1 (U-statistic as an augmented estimator) Consider data X1, ..., Xn sam-
pled i.i.d. from some distribution P. We are interested in estimating some functional θ of
P. Suppose we have a crude preliminary estimator θ̂(X1, ..., Xr), which takes r ≤ n argu-
ments. Let G be the group acting on (X1, ..., Xn) by randomly selecting r samples without
replacement. Then the augmented estimator is

Eg∼Q[θ̂(g(X1, ..., Xn))] =
1(
n
r

)
∑

i1 6=i2 6=···6=ir

θ̂(Xi1 , ..., Xir),

where the summation is taken over the set of all unordered subsets {i1, ..., ir} of r different
integers chosen from [n]. This is the U-statistic of order r with kernel θ̂. The statistical
properties of the U-statistic are better than its non-augmented counterpart, which does not
use all the data. There are well-known explicit formulas for the variance reduction (e.g.,
Van der Vaart, 1998).

Beyond groups. Some of our conclusions hold without requiring a group structure on
the set of transforms. Instead, it is enough to consider a set (i.e., a semigroup, because
the identity always makes sense to include) of transforms T : X → X , with a probability
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measure Q on them. This is more realistic in some applications, e.g., in deep learning where
we also consider transforms such as cropping images, which are not invertible. Then we
still get the variance reduction as in Lemma 1 (specifically, part 2, 3, and 4 still hold).
Therefore, under appropriate regularity conditions, we also get improved performance for
augmented ERM, as stated previously, as well as in the next sections. However, some of
the results and interpretations do not hold in this more general setting. Specifically, the
orbits are not necessarily defined anymore, and so we cannot view the augmented estimators
as conditional expectations over orbits. The semigroup extension may allow us to handle
methods such as subsampling or the bootstrap in a unified framework.

4.2 ERM / M-estimators

We now move on to present our results on the behavior of ERM. Recall our setup from
Section 3.1, namely that

θ0 ∈ argmin
θ∈Θ

EL(θ,X), θG ∈ argmin
θ∈Θ

EL̄(θ,X),

θ̂n ∈ argmin
θ∈Θ

1

n

n∑

i=1

L(θ,Xi), θ̂n,G ∈ argmin
θ∈Θ

1

n

n∑

i=1

L̄(θ,Xi),

where Θ is some parameter space. Under exact invariance, it is easy to see that EL(θ,X) =
EL̄(θ,X), and hence there is a one-to-one correspondence between θ0 and θG. To evaluate
an estimator θ̂, we may want

1. small generalization error: we want EL(θ̂, X)− EL(θ0, X) to be small;

2. small parameter estimation error: we want ‖θ̂ − θ0‖2 to be small.

Comparing θ̂n with θ̂n,G, we will see in Section 4.2.1 that the reduction in generalization
error can be quantified by averaging the loss function over the orbit, whereas in Section
4.2.2, it is shown that the reduction in parameter estimation error can be quantified by
averaging the gradient over the orbit.

4.2.1 Effect of loss-averaging

To obtain a bound on the generalization error, we first present what can be deduced quite
directly from known results on Rademacher complexity. The point of this section is mainly
pedagogical, i.e., to remind readers of some basic definitions, and to set a baseline for the
more sophisticated results to follow. We recall the classical approach of decomposing the
generalization error into terms that can be bounded via concentration and Rademacher
complexity (Bartlett and Mendelson, 2002; Shalev-Shwartz and Ben-David, 2014):

EL(θ̂n, X)− EL(θ0, X) = EL(θ̂n, X)− 1

n

n∑

i=1

L(θ̂n, Xi) +
1

n

n∑

i=1

L(θ̂n, Xi)− EL(θ0, X).

The second half of the RHS above can be bounded as

1

n

n∑

i=1

L(θ̂n, Xi)− EL(θ0, X) ≤ 1

n

n∑

i=1

L(θ0, Xi)− EL(θ0, X),
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because θ̂n is a minimizer of the empirical risk. Hence we arrive at

EL(θ̂n, X)− EL(θ0, X) ≤ EL(θ̂n, X)− 1

n

n∑

i=1

L(θ̂n, Xi) +
1

n

n∑

i=1

L(θ0, Xi)− EL(θ0, X)

≤ sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣+
(
1

n

n∑

i=1

L(θ0, Xi)− EL(θ0, X)

)
.

Using exact invariance, a similar computation gives

EL(θ̂n,G, X)−EL(θ0, X) ≤ sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L̄(θ,Xi)−EL̄(θ,X)

∣∣∣∣+
(
1

n

n∑

i=1

L̄(θ0, Xi)−EL̄(θ0, X)

)
.

To control the two terms in the RHS, we need to show that both n−1
∑n

i=1 L(θ,Xi) and
n−1

∑n
i=1 L̄(θ,Xi) concentrate around their means, respectively, uniformly for all θ ∈ Θ.

Intuitively, as L̄ is an averaged version of L, we would expect that the concentration of L̄
happens at a faster rate than that of L, hence giving a tighter generalization bound. We
will make this intuition rigorous in the following theorem:

Theorem 3 (Rademacher bounds under exact invariance) Assume the loss L(·, ·) ∈
[0, 1] and assume exact invariance holds. Then with probability at least 1− δ over the draw
of X1, ..., Xn, we have

EL(θ̂n, X)− EL(θ0, X) ≤ 2Rn(L ◦Θ) +

√
2 log 2/δ

n
(Classical Rademacher bound)

EL(θ̂n,G, X)− EL(θ0, X) ≤ 2Rn(L̄ ◦Θ) +

√
2 log 2/δ

n
, (Implication for data augmentation)

where Rn(L ◦ Θ) and Rn(L̄ ◦ Θ) are the Rademacher complexity of the original loss class
and the augmented loss class, repectively, defined as

Rn(L ◦Θ) = E sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

εiL(θ,Xi)

∣∣∣∣, Rn(L̄ ◦Θ) = E sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

εiL̄(θ,Xi)

∣∣∣∣,

εi
i.i.d.∼ Rademacher, {εi}ni=1 ⊥⊥ {Xi}ni=1,

where the expectation is taken over both {εi}n1 and {Xi}n1 . Moreover, augmentation de-
creases the Rademacher complexity of the loss class:

Rn(L̄ ◦Θ) ≤ Rn(L ◦Θ).

Proof This is a special case of Theorem 17. We refer the readers to Appendix B.3 for a
proof.

The first generalization bound is a standard result. It can be viewed as an intermediate
between Theorems 26.3 and Theorem 26.5 of Shalev-Shwartz and Ben-David (2014), part
3, because it is a high-probability bound (like 26.5) for expected generalization error (like
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26.3). The second bound simply applies the first one to data augmentation, and the point
is that we obtain a sharper result.

We also note that the decrease of the Rademacher complexity under augmentation fits
into the “Rademacher calculus” Shalev-Shwartz and Ben-David (2014), along with results
such as bounds on the Rademacher complexity under convex combinations and Lipschitz
transforms. The current claim holds by inspection.

4.2.2 Effect of gradient-averaging

Just as the averaged loss function concentrates faster around its mean, the averaged gradient
also concentrates faster. Specifically, an application of Lemma 1 gives

Cov∇L(θ,X) = Cov∇L̄(θ,X) + EX∼PCovg∼Q∇L(θ, gX).

If we assume the loss function is strongly convex w.r.t. the parameter, then this observa-
tion, along with a recent result from Foster et al. (2019), gives a bound of the parameter
estimation error for both θ̂n and θ̂n,G:

Theorem 4 (Data augmentation reduces variance in ERM) Assume the loss L(·, x)
is λ-strongly convex and assume exact invariance holds. Then

E‖θ̂n − θ0‖22 ≤
4

λ2n
tr

(
Cov∇L(θ0, X)

)
(Classical ERM bound)

E‖θ̂n,G − θ0‖22 ≤
4

λ2n
tr

(
Cov∇L(θ0, X)− EXCovg∇L(θ, gX)

)

(Implication for data augmentation).

Proof The proof is simply a matter of checking the conditions required by Theorem 7
of Foster et al. (2019). It is not hard to see that the strong convexity is preserved under
averaging, and so the strong convexity constant of θ → L̄(θ, x) is at least as large as that
of θ → L(θ, x). Then invoking part 3 of Lemma 1 gives the desired result.

The above result is similar to Theorem 3 in that it gives a sharper upper bound on the
estimation error.

4.2.3 Asymptotic results

The finite sample results in Theorem 3 and 4 do not precisely tell us how much we gain.
This motivates us to consider an asymptotic regime where we can characterize precisely
how much we gain by data augmentation.

We assume the sample space X ⊆ Rd and the parameter space Θ ⊆ Rp. We will consider
the classical under-parameterized regime, where both d and p are fixed and n → ∞. The
over-parameterized regime will be handled in Section 7. Under weak regularity conditions, it
is a well-known result that θ̂n is asymptotically normal with covariance given by the inverse
Fisher information (see, e.g, Van der Vaart 1998). We will see that a similar asymptotic
normality result holds for θ̂n,G and its asymptotic covariance is explicitly computable. This
requires some standard assumptions, and we state them for completeness below.
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Assumption A (Regularity of the population risk minimizer) The minimizer θ0 of
the population risk is well separated: for any ε > 0, we have

sup
θ:‖θ−θ0‖≥ε

EL(θ,X) > EL(θ0, X).

Assumption B (Regularity of the loss function) For the loss function L(θ, x), we as-
sume that

1. uniform weak law of large number holds:

sup
θ∈Θ
| 1
n

n∑

i=1

L(θ,Xi)− EL(θ,X)| p→ 0;

2. for each θ ∈ Θ, the map x 7→ L(θ, x) is measurable;

3. the map θ 7→ L(θ, x) is differentiable at θ0 for almost every x;

4. there exists a L2(P) function L̇ s.t. for almost every x and for every θ1, θ2 in a
neighborhood of θ0, we have

|L(θ1, x)− L(θ2, x)| ≤ L̇(x)‖θ1 − θ2‖;

5. the map θ 7→ EL(θ,X) admits a second-order Taylor expansion at θ0 with non-singular
second derivative matrix Vθ0.

Note that the two assumptions above can be defined in a similar fashion for the pair
(θG, L̄). The lemma below says that such a re-definition is unnecessary under exact invari-
ance.

Lemma 5 (Regularity of the augmented loss) For each θ ∈ Θ, assume the map (X, g) 7→
L(θ, gX) is in L1(P × Q). Assume exact invariance holds. If the pair (θ0, L) satisfies As-
sumption A and B, then the two assumptions also hold for the pair (θG, L̄).

Proof See Appendix A.2.

By the above lemma, we conclude that θ̂n,G is also asymptotically normal, and a co-
variance calculation gives the following theorem. We present the classical results for M-
estimators in parallel for clarity.

Theorem 6 (Asymptotic normality for the augmented estimator) Assume Θ is open
and the conditions in Lemma 5 hold. Then θ̂n and θ̂n,G admit the following Bahadur rep-
resentation:

√
n(θ̂n − θ0) =

1√
n
V −1
θ0

n∑

i=1

∇L(θ0, Xi) + op(1) (Classical representation for M-estimators)

√
n(θ̂n,G − θ0) =

1√
n
V −1
θ0

n∑

i=1

∇L̄(θ0, Xi) + op(1). (Representation for augmented M-estimators)

20



Theory for Data Augmentation

x
g · x

rL(θ0, g · x)
rL(θ0, x)

Covg∼Q(rL(θ0, gx))CovgáQ(rL(θ0, gx
0))

rL(θ0, x
0)

x
0

g · x
0

rL(θ0, g · x
0)

EX∼PCovg∼Q(rL(θ0, gX))

Figure 3: A pictorial illustration on computing the average covariance EXCovg∇L(θ0, gX)
of the gradient of the loss over an orbit.

Therefore, both θ̂n and θ̂n,G are asymptotically normal:

√
n(θ̂n − θ0) ⇒ N (0,Σ0),

√
n(θ̂n,G − θ0) ⇒ N (0,ΣG),

where the covariance is given by

Σ0 = V −1
θ0

EX [∇L(θ0, X)∇L(θ0, X)>]V −1
θ0

(Classical covariance)

ΣG = Σ0 − V −1
θ0

EX [Covg∇L(θ0, gX)]V −1
θ0

. (Augmented covariance)

As a consequence, the asymptotic relative efficiency of θ̂n,G compared to θ̂n is RE = tr(Σ0)
tr(ΣG) ≥

1.

Proof See Appendix A.3.

Interpretation. The reduction in covariance is governed by EXCovg∇L(θ0, gX). This
is the average covariance of the gradient ∇L along the orbits Gx. If the gradient varies a
lot along the orbits, then augmentation gains a lot of efficiency. This makes sense, because
this procedure effectively denoises the gradient, making it more stable. See Figure 3 for an
illustration.

Alternatively, the covariance of the augmented estimator can also be written as V −1
θ0

CovXEg∇L(θ0, gX) V −1
θ0

. The inner term is the covariance matrix of the orbit-average gra-
dient, and similar to above, augmentation effectively denoises and reduces it.

Understanding the Bahadur representation. It is worthwhile to understand the
form of the Bahadur representations. For the ERM, we sum the terms f(Xi) := ∇L(θ0, Xi),
while for the augmented ERM, we sum the terms f̄(Xi) = ∇L̄(θ0, gXi). Thus, even in the
Bahadur representation, we can see clearly that the effect of data augmentation is to aver-
age the gradients over the orbits.
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Statistical inference. It follows automatically from our theory that statistical infer-
ence for θ can be performed in the usual way. Specifically, assuming that θ 7→ L(θ, x) is
twice differentiable at θ0 on a set of full measure, we will have that Vθ0 = E∇2Lθ0(X). We
can then compute the plug-in estimator of Vθ0 :

V̂θ0 =
1

n

n∑

i=1

∇2L(θ̂n,G, Xi).

Let us also define the plug-in estimator of the gradient covariance:

̂̄Iθ0 =
1

n

n∑

i=1

∇L(θ̂n,G, Xi)∇L(θ̂n,G, Xi)
>.

We can then define the plug-in covariance estimator

Σ̂G = V̂ −1
θ0

̂̄Iθ0 V̂ −1
θ0

.

This leads to the following corollary, whose proof is quite direct and we omit it for brevity.

Corollary 7 (Statistical inference with the augmented estimator) Assume the same
conditions as Theorem 6. Assume in addition that θ → L(θ, x) is twice differentiable
at θ0 on a set of full x-measure, and that each entry of the Hessian ∇2L(θ0, ·) is in
L1(P). Assume that for both of the functions Fi, i = 1, 2 F1(θ, x) = ∇2L(θ, x) and
F1(θ, x) = ∇L(θ, x)∇L(θ, x)> there exist L1(P) functions Li such that for every θ1, θ2 in a
neighborhood of θ0, we have

‖Fi(θ1, x)− Fi(θ2, x)‖ ≤ Li(x)‖θ1 − θ2‖.

Then we have:

Σ̂G
p→ ΣG.

Therefore, we have the asymptotic normality

√
nΣ̂

−1/2
G (θ̂n,G − θ0) ⇒ N

(
0, Ip

)
.

Hence, statistical inference for θ0 can be performed in the usual way, constructing normal
confidence intervals and tests based on the asymptotic pivot.

ERM in high dimensions. We conclude this subsection by noting that asymptotic
covariance formula can hold in some high-dimensional ERM problems, where the dimension
of the parameter space can diverge as n → ∞. Specifically, if we assume θ0 is sparse
and we are able to perform variable selection in a consistent way, then the original (high-
dimensional) problem can be reduced to a low-dimensional one, and the same asymptotic
variance formulas hold (see, e.g., Wainwright 2019). Then augmentation will lead to benefits
as above.
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4.2.4 Implications for MLE

Now we consider the special case of maximum likelihood estimation in a model {Pθ : θ ∈ Θ}.
Recall the setup from Section 3.2:

θ̂MLE ∈ argmax
θ∈Θ

1

n

n∑

i=1

`θ(Xi), θ̂aMLE ∈ argmax
θ∈Θ

1

n

n∑

i=1

¯̀
θ(Xi),

where ¯̀
θ(x) = Eg∼Q`θ(gx) is the averaged version of the log-likelihood.

In the context of ERM, we have L(θ, x) = −`θ(x). Hence, if the conditions in Theorem
6 hold, we have

√
n(θ̂MLE − θ0) ⇒ N (0, I−1

θ0
)

√
n(θ̂aMLE − θ0) ⇒ N

(
0, I−1

θ0

(
Iθ0 − Eθ0Covg∇`θ0(gX)

)
I−1
θ0

)
,

where Iθ0 = Eθ0∇`θ0∇`>θ0 is the Fisher information at θ0.

Invariance on a submanifold. Note that the gain in efficiency is again determined
by the term

Eθ0Covg∇`θ0(gX).

We will see that the magnitude of this quantity is closely related to the geometric structure of
the parameter space. To be clear, let us recall the invariant subspace ΘG defined in Equation
(8). If this subspace is “small”, we expect augmentation to be very efficient. Continuing to
assume that the whole parameter set Θ is an open subset of Rp, we additionally suppose
that we can identify ΘG ⊆ Θ with a smooth submanifold of Rp. If we assume G acts linearly
on X , then every g ∈ G can be represented as a matrix, and thus the Jacobian of x 7→ gx is
simply the matrix representation of g. As a result, for every θ ∈ ΘG, Equation (7) becomes

pθ(x) = pθ(g
−1x)/| det(g)|.

As a result, we have

`θ(gx) + log | det(g)| = `θ(x), ∀θ ∈ ΘG, g ∈ G. (16)

It is temping to differentiate both sides at θ0 and obtain an identity. However, it is important
to note that in general, for the score function,

∇`θ0(gx) 6= ∇`θ0(x).

To be clear, this is because the differentiation operation at θ0 may not be valid. Indeed,
Equation (16) does not necessarily hold in an open neighborhood of θ0. If it holds in an
open neighborhood, we can differentiate and get the identity for the score. However, it
may only hold in a lower dimensional submanifold locally around θ0, in which case the
desired equation for the score function only holds in the tangential direction at θ0. Figure 4
provides an illustration of this intuition, and this intuition is made rigorous by the following
proposition:
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ΘΘG

θ0

PGr`θ0(x)

r`θ0(x)

Figure 4: A pictorial illustration of projection onto local tangent space of ΘG at the point
θ0.

Proposition 8 (MLE under invariance on a submanifold) Let the conditions of The-
orem 6 hold with L(θ, x) = −`θ(x). Assume G acts linearly on the sample space X . Let
PG be the orthogonal projection operator onto the tangent space of the manifold ΘG at the
point θ0, and let P⊥

G = Id− PG. Then we can decompose

∇`θ0(gx) = PG∇`θ0(gx) + P⊥
G∇`θ0(gx),

and the tangential part is invariant:

PG∇`θ0(gx) = PG∇`θ0(x), ∀g ∈ G.

Moreover, we have that the covariance of the gradient is the covariance of the projection
“out” of the tangent space:

Eθ0Covg(∇`θ0(gX)) = Eθ0Covg(P
⊥
G∇`θ0(gX)).

Proof See Appendix A.4.

The above proposition sends a clear message on the magnitude of Eθ0Covg(∇`θ0(gX)):

The larger the tangential part is, the less we gain from augmentation.

At one extreme, if ΘG contains an open neighborhood of θ0, then PG = Id, so that
Eθ0CovG(∇`θ0(gX)) = 0. This means augmentation does not gain us anything. At an-
other extreme, if ΘG is a singleton, then P⊥

G = Id, and so augmentation leads to a great
variance reduction.

Orbit averaging and tangential projection. We now have two operators that
“capture the invariance”. The first one is the orbit averaging operator, defined by EG :
∇`θ0(x) 7→ Eg∼Q∇`θ0(gx). The second one is the tangential projection operator PG, which
projects ∇`θ0(x) to the tangent space of the manifold ΘG at the point θ0. How does
EG relate to PG? In the current notation, recall that the inner term of the asymptotic
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covariance ΣG can be written as Covθ0EG∇`θ0 . Proposition 8 allows us to do the following
decomposition:

Covθ0EG∇`θ0 = Covθ0PG∇`θ0(X) + Covθ0EGP
⊥
G∇`θ0 , (17)

which relates the two operators. An interesting question now is whether the two operators
are equivalent. A careful analysis shows that this is not true in general.

Let us consider a special case, where θ = (θ1, θ2), and the invariant set ΘG is character-
ized by θ2 = 0. In this special case, the tangent space is exactly {(θ1, θ2) : θ2 = 0}, and so

PG∇`θ0 =

[
∇1`θ0
0

]
, P⊥

G∇`θ0 =

[
0

∇2`θ0

]
, (18)

where ∇1 and ∇2 denote the gradient w.r.t. the first and the second component of the
parameter, respectively. Now, since EG is a conditional expectation (see Lemma 1), we
know EG∇`θ and ∇`θ−EG∇`θ are uncorrelated. Hence, if EG = PG, then ∇1`θ0 and ∇2`θ0
are uncorrelated. If we write the Fisher information in a block matrix:

Iθ0 = Eθ0∇`θ0∇`>θ0 = Eθ0

[∇1`θ0 · ∇1`
>
θ0

∇1`θ0 · ∇2`
>
θ0

∇2`θ0 · ∇1`
>
θ0

∇2`θ0 · ∇2`
>
θ0

]
=

[
I11(θ0) I12(θ0)
I21(θ0) I22(θ0)

]
,

then we would have I12(θ0) = 0. This shows that if EG = PG, then the two parameter
blocks are orthogonal, i.e., I12(θ0) = 0, which does not hold in general.

aMLE vs cMLE. Recall that another method that exploits the invariance structure is
the constrained MLE, defined by

θ̂cMLE ∈ argmax
θ∈ΘG

1

n

n∑

i=1

`θ(Xi),

where we seek the minimizer over the invariant subspace ΘG. How does it compare to the
augmented MLE? If ΘG is open, and if the true parameter belongs to the interior of the
invariant subspace, θ0 ∈ intΘG, then by an application of Theorem 6 (with Θ replaced
by ΘG) and Proposition 8, it is clear that all three estimators – θ̂MLE, θ̂aMLE, and θ̂cMLE

– share the same asymptotic behavior. At the other extreme, if ΘG is a singleton, then
the constrained MLE, provided it can be solved, gives the exact answer θ̂cMLE = θ0. In
comparison, the augmented MLE gains some efficiency but in general will not recover θ0
exactly.

What happens to constrained MLE when the manifold dimension of ΘG is somewhere
between 0 and p? We provide an answer to this question in an simplified setup, where we
again assume that θ = (θ1, θ2) and that ΘG can be characterized by {(θ1, θ2) : θ2 = 0}. We
first recall the known behavior of cMLE in this case, which has asymptotic covariance matrix
(I11(θ0))

−1 (see e.g., Van der Vaart, 1998). By an application of the Schur complement
formula, we have

(I11(θ0))
−1 � [I−1

θ0
]11 = [I11(θ0)− I12(θ0)(I22(θ0))

−1I21(θ0)]
−1,

which says that the cMLE is more efficient than the MLE–which has has asymptotic co-
variance matrix I−1

θ0
. A further computation gives the following result:
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Proposition 9 (Relation between aMLE and cMLE in parametric models that decompose)
Suppose that the parameter has two blocks, θ = (θ1, θ2), and the constrained set ΘG is char-
acterized by θ2 = 0. Denote by Ī(θ) := CovEg∇`θ(gX) the covariance of the average
gradient. Define

Mθ =

[
(I11(θ))

−1 (I−1
θ )1•

(I−1
θ )•1 (Ī(θ))−1

]

where the notation (I−1)1• refers to the submatrix of I−1 corresponding to the rows indexed
by the coordinates of θ1. Then the aMLE is asymptotically more efficient than the cMLE
in estimating θ1 if and only if Mθ0 is p.s.d.

Proof See Appendix A.5.

In general, it seems that the two are not easy to compare, and the required condition would
have to be checked on a case by case basis.

4.3 Finite augmentations

The augmented estimator considered in above sections involves integrals over G, which are
in general intractable if G is infinite. As we have seen in Section 3, in practice, one usually
randomly samples some finite number of elements in G at each iteration. Therefore, it is of
interest to understand the behavior of the augmented estimator in the presence of such a
“finite approximation”. It turns out that we can repeat the above arguments with minimal
changes. Specifically, given a function f(x), we can define f̄k(x) = k−1

∑k
j=1 f(gjx), where

gj are arbitrary elements of G. Similarly to before, we find that the mean is preserved,
while the variance is reduced, in the following way:

1. Ef(X) = Ef̄k(X);

2. Covf(X) = Covf̄k(X) + EX∼PVark[f(g1X), . . . , f(gkX)], where Vark(a1, . . . , ak) is
the variance of the k numbers ai.

The above arguments suggest that for ERM problems, the efficiency gain is governed
by the expected variance of k vectors ∇L(θ0, giX), where i = 1, ..., k. The general principle
for practitioners is that the augmented estimator performs better if we choose gi to “vary
a lot” in the appropriate variance metric.

5. Examples

In this section, we give several examples of models where exact invariance occurs. We char-
acterize how much efficiency we can gain by doing data augmentation and compare it with
various other estimators. Some examples are simple enough to give a finite-sample charac-
terization, whereas others are calculated according to the asymptotic theory developed in
the previous section.

5.1 Exponential families

We start with exponential families, which are a fundamental class of models in statistics
(e.g., Lehmann and Casella, 1998; Lehmann and Romano, 2005). Suppose X ∼ Pθ is
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distributed according to an exponential family, so that the log-likelihood can be written as

`θ(X) = θ>T (X)−A(θ),

where T (X) is the sufficient statistic, θ is the natural parameter, A(θ) is the log-partition
function. The densities of Pθ are assumed to exist with respect to some common dominating
σ-finite measure. Then the score function and the Fisher information is given by

∇`θ(X) = T (X)−∇A(θ), Iθ = Cov [T (X)] = ∇2A(θ).

Given invariance with respect to a group G, by Theorem 6, the asymptotic covariance
matrix of the aMLE equals I−1

θ JθI
−1
θ , where Jθ is the covariance of the orbit-averaged

sufficient statistic Jθ = CovXEgT (gX).
Assuming a linear action by the group G, by Equation (16), the invariant parameter

space ΘG consists of those parameters θ for which

θ>[T (gx)− T (x)] + v(g) = 0, ∀g, x,

where v(g) = log | det g| is the log-determinant. This is a set of linear equations in θ.
Moreover, the log-likelihood is concave, and hence the constrained MLE estimator can in
principle be computed as the solution to the following convex optimization problem:

θ̂cMLE ∈ argmax
θ

θ>T (X)−A(θ)

s.t. θ>[T (gx)− T (x)] + v(g) = 0, ∀g ∈ G, x ∈ X .

Assume that Θ = Rp, so that the exponential family is well defined for all natural parame-
ters, and that ∇A is invertible on the range of EgT (gX). The KKT conditions of the above
convex program is given by

θ̂cMLE ∈ [∇A]−1(T (X) + span{T (gz)− T (z) : z ∈ Rd, g ∈ G})
s.t. θ>[T (gx)− T (x)] + v(g) = 0, ∀g, x.

Meanwhile, augmented MLE is the solution of the optimization problem where we re-
place the sufficient statistic T (x) by T̄ (x) = EgT (gx):

θ̂aMLE ∈ argmax
θ

θ>EgT (gX)−A(θ).

We then have θ̂aMLE = [∇A]−1EgT (gX). Therefore, for exponential families we were able
to give more concrete expressions for the augmented and constrained MLEs.

Gaussian mean. Consider now the important special case of Gaussian mean estima-
tion. Suppose that X is a standard Gaussian random variable, so that A(θ) = ‖θ‖2/2, and
T (x) = x. Assume for simplicity that G acts orthogonally. Then we have ΘG = {v : g>v =
v, ∀g ∈ G}. Recall that maximizing the Gaussian likelihood is equivalent to minimizing the
distance ‖θ −X‖22. Hence, the constrained MLE, by definition of the projection, takes the
following form:

θ̂cMLE = PGX,
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where we recall that PG is the orthogonal projection operator onto the tangent space of ΘG

at θ. However, since ΘG is a linear space in our case, PG is simply the orthogonal projection
operator onto ΘG. On the other hand, we have

θ̂aMLE = Eg∼Q[g]X.

In fact, under the current setup, the augmented MLE equals the constrained MLE:

Proposition 10 Assume G acts linearly and orthogonally. If X is d-dimensional standard
Gaussian, then PG = Eg∼Q[g], so that both the aMLE and cMLE are equal to the projection
onto the invariant subspace ΘG. In particular, their risk equals dimΘG.

Proof See Appendix A.6.

For instance, suppose G = ({±1}, ·) acting by flipping the signs. Then it is clear that
ΘG = {0}, and so both the cMLE and aMLE are identically equal to zero.

On the other hand, the marginal MLE (12) is a different object, even in the one-
dimensional case. Suppose that X ∼ N (θ, 1), and we consider the reflection group G =
{1,−1}. The marginal distribution of the data is a Gaussian mixture model

Z ∼ 1

2
[N (θ, 1) +N (−θ, 1)].

So the mMLE fits a mixture model, solving

θ̂mMLE ∈ argmax
θ

∑

i∈[n]
log

(∫

G
pθ(gXi)dQ(g)

)

= argmax
θ

∑

i∈[n]
log

(
1

2
[pθ(Xi) + pθ(−Xi)]

)

= argmax
θ

∑

i∈[n]
log

(
exp[−(Xi − θ)2/2] + exp[−(−Xi − θ)2/2]

)

The solution to this is not necessarily identically equal to zero, and in particular it does not
agree with the cMLE and aMLE.

Numerical results. We present some numerical results to support our theory. We
consider X ∼ N (µ, Id), and invariance to the reflection group that reverses the order of the
vector. This is a stylized model of invariance, which occurs for instance in objects like faces.

In Figure 5, we show the results of two experiments. On the left figure, we show the
histograms of the mean squared errors (normalized by dimension) of the MLE and the
augmented MLE on a d = 100 dimensional Gaussian problem. We repeat the experiment
nMC = 100 times. We see that the MLE has average MSE roughly equal to unity, while
the augmented MLE has average MSE roughly equal to one half. Thus, data augmentation
reduces the MSE two-fold. This confirms our theory.

On the right figure, we change the model to each coordinate Xi of X being sampled
independently as Xi ∼ Poisson(λ). We show that the relative efficiency (the relative
decrease in MSE) of the MLE and the augmented MLE is roughly equal to two regardless
of λ. This again confirms our theory.
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Figure 5: Plots of the increase in efficiency achieved by data augmentation in a flip sym-
metry model.

5.2 Parametric regression models

We consider a regression problem where we observe an iid random sample {(X1, Y1), . . . ,
(Xn, Yn)} ⊆ Rd × R from the law of a random vector (X,Y ). This follows the model:

Y = f(θ0, X) + ε, ε ⊥⊥ X, Eε = 0,

where θ0 ∈ Rp. We have a group G acting on Rd × R only through X:

g(X,Y ) = (gX, Y ),

and the invariance is characterized by

(gX, Y ) =d (X,Y ).

In regression or classification problems in deep learning, we typically apply the augmen-
tations conditionally on the outcome or class label. This corresponds to the conditional
invariance

(gX|Y = y) =d (X|Y = y).

The conditional invariance can be deduced from (gX, Y ) =d (X,Y ) by conditioning on
Y = y. Conversely, if it holds conditionally for each y, we deduce that it also holds
jointly, i.e., (gX, Y ) =d (X,Y ). Thus, conditional and joint invariance are equivalent.
Moreover, each of them clearly implies marginal invariance of the features, i.e., gX =d X.
By conditional invariance, E(Y |X = x) = E(Y |X = gx), hence

f(θ0, gx) = f(θ0, x) (19)

for every non-random x and any g ∈ G. This is what we would expect in the applications
we have in mind: the label should be preserved provided there is no random error.
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5.2.1 Non-linear least squares regression

We now focus on the least squares loss:

L(θ,X, Y ) = (Y − f(θ,X))2. (20)

The population risk is

ELθ(X,Y ) = E(Y − f(θ0, X) + f(θ0, X)− f(θ,X))2 = E(f(θ0, X)− f(θ,X))2 + γ2,

where γ2 is the variance of the error ε. Under standard assumptions, the minimizer θ̂ERM

of θ 7→ ∑n
i=1 L(θ,Xi, Yi) is consistent (see e.g., Example 5.27 of Van der Vaart 1998).

Similarly, under standard smoothness conditions, we have

EL(θ,X, Y ) = γ2︸︷︷︸
=EL(θ0,X,Y )

+
1

2
E

[
(θ−θ0)

>
(
2∇f(θ0, X)∇f(θ0, X)>

)
(θ−θ0)

]
+o(‖θ−θ0‖2),

where ∇f(θ,X) is the gradient w.r.t. θ. This suggests that we can apply Theorem 6
with Vθ0 = 2E∇f(θ0, X)∇f(θ0, X)> and ∇L(θ0, X, Y ) = −2(Y − f(θ0, X))∇f(θ0, X) =
−2ε∇f(θ0, X), which gives (with the Fisher information Iθ = E∇f(θ,X)∇f(θ,X)>)

√
n(θ̂ERM − θ0) ⇒ N

(
0, V −1

θ0
E

[
4ε2∇f(θ0, X)∇f(θ0, X)>

]
V −1
θ0

)
=d N

(
0, γ2I−1

θ0

)
. (21)

On the other hand, the augmented ERM estimator is the minimizer θ̂aERM of θ 7→ ∑n
i=1

EgL(θ, gXi, Yi). Now applying Theorem 6 gives
√
n(θ̂aERM − θ0) ⇒ N (0,ΣaERM), (22)

with the asymptotic covariance being

ΣaERM = γ2I−1
θ0

− V −1
θ0

E

[
Covg∇L(θ0, gX, Y )

]
V −1
θ0

= γ2I−1
θ0

− I−1
θ0

E

[
Covg(Y − f(θ0, gX))∇f(θ0, gX)

]
I−1
θ0

= γ2I−1
θ0

− I−1
θ0

E

[
ε2Covg∇f(θ0, gX)

]
I−1
θ0

= γ2 ·
(
I−1
θ0

− I−1
θ0

E

[
Covg∇f(θ0, gX)

]
I−1
θ0

)
,

where we used f(θ0, gx) = f(θ0, x) in the second to last line. Using Lemma 1, we can also
write

ΣaERM = γ2I−1
θ0

(
Iθ0 − E

[
CovG∇f(θ0, gX)

])
I−1
θ0

= γ2I−1
θ0

(
CovX∇f(θ0, X)− E

[
CovG∇f(θ0, gX)

])
I−1
θ0

= γ2I−1
θ0

Īθ0I
−1
θ0

,

where Īθ0 is the “averaged Fisher information”, defined as

Īθ0 = CovX [Eg∇f(θ0, gX)] = EX

[(
Eg∇f(θ0, gX)

)(
Eg∇f(θ0, gX)

)>]
.
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5.2.2 Two-layer neural network for regression tasks

As an example, consider a two-layer neural network

f(θ, x) = a>σ(Wx).

Here x is a d-dimensional input, W is a p × d weight matrix, σ is a nonlinearity applied
elementwise to the preactivations Wx. The overall parameters are θ = (a,W ). For sim-
plicity, let us focus on the case where a = 1p is the all ones vector. This will simplify the
expressions for the gradient. We can then write

f(W,x) = 1>σ(Wx). (23)

Let IW = E∇f(W,X)∇f(W,X)> be the fisher information, and denote its averaged
version as

ĪW = EX

[(
Eg∇f(W, gX)

)(
Eg∇f(W, gX)

)>]
.

Recall Equation (21) and (22):

√
n(ŴERM −W ) ⇒ N

(
0, σ2I−1

W

)

√
n(ŴaERM −W ) ⇒ N

(
0, σ2I−1

W ĪW I−1
W

)
.

Therefore, the efficiency of the ERM and aERM estimators is determined by the mag-
nitude of IW and ĪW . In general, those are difficult to calculate. However, an exact
calculation is possible under a natural example of translation invariance. Let the group
G = {g0, g1, ..., gp−1}, where gi acts by shifting a vector circularly by i units:

(gix)j+i mod p = xj . (24)

We equip G with a uniform distribution. Under such a setup, we have the following result:

Theorem 11 (Circular shift data augmentation in two-layer networks) Consider the
two-layer neural network model (23) trained using the least squared loss (20). Then:

1. The Fisher information matrix IW can be viewed as a tensor

IW = E(σ′(WX)⊗ σ′(WX)) · (X ⊗X)>.

If, furthermore, the activation function is quadratic, η(x) = x2/2, then IW can be
written as the product of a p2 × d2 tensor and a d2 × d2 tensor:

IW = (W ⊗W ) · E(XX> ⊗XX>).

2. Assume the activation function is quadratic. Let Cv be the circulant matrix associated
with the vector v, with entries Cv(i, j) = vi−j+1. Then ĪW can be written as

ĪW = (W ⊗W ) · d−2E(CXC>
X ⊗ CXC>

X).
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Figure 6: Plot of the increase in efficiency achieved by data augmentation in a circular
symmetry model.

If furthermore the distribution of X is normal, X ∼ N (0, Id), then we have

ĪW = (W ⊗W ) · F ∗
2 · (F 2

2 �M) · F ∗
2 .

Here F2 = F ⊗ F , where F is the d × d DFT matrix, M is the d2 × d2 tensor with
entries

Miji′j′ = F>
i Fj · F>

i′ Fj′ + F>
i Fj′ · F>

i′ Fj + F>
i Fi′ · F>

i Fj′ ,

and F ∗
2 is the complex conjugate of F2.

Proof See Appedix A.7.

This theorem shows in a precise quantitative sense how much we gain from data augmen-
tation in a two-layer neural network. To get a sense of the magnitude of improvement, we
will attempt to understand how much “smaller” ĪW is compared to IW by calculating their
MSEs. For simplicity, we will impose a priorW ∼ N (0, Ip⊗Id), and the MSE is calculated by
taking expectation w.r.t. this prior. First we have E tr IW = E‖WXX>‖2Fr. Let S = XX>.
Now W ∼ N (0, Ip ⊗ Id). So conditional on X, we have WS ∼ N (0, Ip ⊗ S2). Hence,
E‖WS‖2Fr = pE trS2 = pE tr(XX>)2. Similarly, we find E tr ĪW = pE tr(CXC>

X)2/d2.

Numerical results. In Figure 6, we show the results of an experiment where we
randomly generate the input as X ∼ N (0, Id). For a fixed X, we compute the values of
E tr IW = p tr(XX>)2 and E tr ĪW = p tr(CXC>

X)2/d2, and record their ratio. We repeat
the experiment nMC = 100 times. We then show the relative efficiency of aMLE with
respect to MLE as a function of the input dimension d. We find that the relative efficiency
scales as RE(d) ∼ d/2. Thus, for the efficiency gain increases as a function of the input
dimension. However, the efficiency gain does not depend on the output dimension p. This
makes sense, as circular invariance affects and reduces only the input dimension.
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5.3 Parametric classification models

Similar calculations as in the previous subsection carry over to the classification problems.
We now have a random sample {(X1, Y1), ..., (Xn, Yn)} ⊆ Rd × {0, 1} from the law of a
random vector (X,Y ), which follows the model:

P(Y = 1 | X) = η(f(θ0, X)),

where θ0 ∈ Rp, η : R → [0, 1] is an increasing activation function, and f(θ0, ·) is a real-valued
function. For example, the sigmoid η(x) = 1/(1 + e−x) gives the logistic regression model,
using features extracted by f(θ0, ·). As in the regression case, we have a group G acting on
Rd × {0, 1} via

g(X,Y ) = (gX, Y ),

and the invariance is
(gX, Y ) =d (X,Y ).

The interpretation of the invariance relation is again two-fold. On the one hand, we
have gX =d X. On the other hand, for almost every (w.r.t. the law of X) x, we have

P(Y = 1 | gX = x) = P(Y = 1 | X = x).

The LHS is η(f(θ0, g
−1x)), whereas the RHS is η(f(θ0, x)). This shows that for any (non-

random) g ∈ G and x, we have

η(f(θ0, gx)) = η(f(θ0, x)).

For image classification, the invariance relation says that the class probabilities stay the
same if we transform the image by the group action. Moreover, since we assume η is
monotonically strictly increasing, applying its inverse gives

f(θ0, gx) = f(θ0, x).

5.3.1 Non-linear least squares classification

We consider using the least square loss to train the classifier:

L(θ,X, Y ) = (Y − η(f(θ,X)))2. (25)

Though this is not the most popular loss, in some cases it can be empirically superior to
the default choices, e.g., logistic loss and hinge loss (Wu and Liu, 2007; Nguyen and Sanner,
2013). The loss function has a bias-variance decomposition:

EL(θ,X, Y ) = E[Y − η(f(θ0, X)) + η(f(θ0, X))− η(f(θ,X))]2

= E[Y − η(f(θ0, X))]2︸ ︷︷ ︸
EL(θ0,X,Y )

+E[η(f(θ0, X))− η(f(θ,X))]2,

where the cross-term vanishes because η(f(θ0, X)) = E[Y |X]. Note that

E[Y − η(f(θ0, X))]2 = E[(Y − E[Y |X])2] = E

[
E[(Y − E[Y |X])2 | X]

]

= EVar(Y |X) = EVar[Bernoulli(η(f(θ0, X)))] = Eη(f(θ0, X))(1− η(f(θ0, X))).
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Meanwhile, since ∇η(f(θ,X)) = η′(f(θ,X))∇f(θ,X), for sufficiently smooth η, we have a
second-order expansion of the population risk:

EL(θ,X, Y ) = EL(θ0, X, Y )+
1

2
(θ−θ0)

>E[2η′(f(θ0, X))2∇f(θ0, X)∇f(θ0, X)>](θ−θ0)+o(‖θ−θ0‖2).

This suggests that we can apply Theorem 6 with Vθ0 = E[2η′(f(θ0, X))2∇f(θ0, X)∇f(θ0, X)>]
and ∇L(θ,X, Y ) = −2(Y − η(f(θ,X)))η′(f(θ,X))∇f(θ,X), which gives

√
n(θ̂ERM − θ0) ⇒ N (0,ΣERM), (26)

where the asymptotic covariance is

ΣERM = E[Uθ0(X)]−1E[vθ0(X)Uθ0(X)]E[Uθ0(X)]−1 (27)

vθ0(X) = η(f(θ0, X)) · (1− η(f(θ0, X)))

Uθ0(X) = η′(f(θ0, X))2∇f(θ0, X)∇f(θ0, X)>.

Here vθ0(X) can be viewed as the noise level, which corresponds Eε2 in the regression
case. Also, Uθ0(X) is the information, which corresponds to E∇f(θ0, X)∇f(θ0, X)> in the
regression case. The classification problem is a bit more involved, because the noise and
the information do not decouple (they both depend on X). In a sense, the asymptotics of
classification correspond to a regression problem with heteroskedastic noise, whose variance
depends on the mean signal level.

In contrast, applying Theorem 6 for the augmented loss gives

√
n(θ̂aERM − θ0) ⇒ N (0,ΣaERM), (28)

where

ΣERM − ΣERM = V −1
θ0

ECovg∇L(θ0, gX)V −1
θ0

.

We now compute the gain in efficiency:

ECovg∇L(θ0, gX) = ECovg

(
2(Y − η(f(θ0, gX)))η′(f(θ0, gX))∇f(θ0, gX)

)

= 4E

[
(Y − η(f(θ0, X)))2Covg

(
η′(f(θ0, gX))∇f(θ0, gX)

)]

= 4E

[
vθ0(X)Covg

(
η′(f(θ0, gX))∇f(θ0, gX)

)]
.

In summary, the covariance of ERM is larger than the covariance of augmented ERM by

ΣERM − ΣaERM = E[Uθ0(X)]−1E

[
vθ0(X)Covg

(
η′(f(θ0, gX))∇f(θ0, gX)

)]
E[Uθ0(X)]−1.

(29)
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5.3.2 Two-layer neural network for classification tasks

We consider the two-layer neural network (23) here. Most of the computations for the
regression case carry over to the classification case. Recall that in the current setup, the
model (23) becomes

P(Y = 1 | X) = η(f(W,X)) := η(1>σ(WX)), (30)

where W ∈ Rp×d and η is a nonlinearity applied elementwise. We then have an analog of
Theorem 11:

Corollary 12 Consider the two-layer neural network model (23) trained using the least
squares loss (25). Assume the activation function is quadratic: σ(x) = x2/2. Let UW , vW
be defined as in (27). Then

ΣERM = E[UW (X)]−1E[vW (X)UX(X)]E[UW (X)]−1,

where

EUW (X) = (W ⊗W ) · E[η′(f(W,X))2 ·XX> ⊗XX>]

E[vW (X)UW (X)] = (W ⊗W )E[vW (X)η′(f(W,X))2 ·XX> ⊗XX>].

If we further assume that the group G acts by cirlular shift (24) and Q is the uniform
distribution on G, then

EUW (X)ΣaERMEUW (X) = (W ⊗W ) · d−2E[vW (X)η′(f(W,X))2 · CXC>
X ⊗ CXC>

X ].

Thus, the gain by augmentation is characterized by

E[UW (X)](ΣERM − ΣaERM)E[UW (X)]

= (W ⊗W )E

[
vW (X)η′(f(W,X))2

(
XX> ⊗XX> − CXC>

X ⊗ CXC>
X

)]
.

Proof See Appendix A.8.

5.4 Improving linear regression by augmentation distribution

In this section, we provide an example on how to use the “augmentation distribution”,
described in Section 3.3, to improve the performance of ordinary least squares estimator
in linear regression. We will see that, perhaps unexpectedly, the idea of augmentation
distribution gives an estimator nearly as efficient as the constrained ERM in many cases.

We consider the classical linear regression model

Y = X>β + ε, β ∈ Rp.

We again let γ2 = Eε2. We will assume that the action is linear, so that g can be represented
as a p× p matrix. If we augment by a single fixed g, we get

argmin ‖y −Xg>β‖22 = ((Xg>)>Xg>)−1(Xg>)>y.
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Following the ideas on augmentation distribution, we can then average the above estimator
over g ∼ Q to obtain

β̂aDIST = Eg∼Q

[
((Xg>)>Xg>)−1(Xg>)>y

]
.

On the other hand, let us consider the estimator arising from constrained ERM. By
Equation (19), we have

x>β = (gx)>β

for PX -a.e. x and Q-a.e. g. This is a set of linear constraints on the regression coefficient
β. Formally, supposing that x can take any value (i.e., PX has mass on the entire Rp), we
conclude that β is constrained to be in the invariant parameter subspace ΘG, which is a
linear subspace defined by

ΘG = {v : g>v = v, ∀g ∈ G}.
If x can only take values in a smaller subset of Rp, then we get fewer constraints. So the
constrained ERM, defined as

β̂cERM = argmin
β

‖y −Xβ‖22 s.t. (g> − Ip)β = 0 ∀g ∈ G,

can in principle, be solved via convex optimization.
Intuitively, we expect both β̂aDIST and β̂cERM to be better than the vanilla ERM

β̂ERM = argmin
β

‖y −Xβ‖22,

Let rERM, raDIST, rcERM be the mean squared errors of the three estimators. We summarize
the relationship between the three estimators in the following proposition:

Proposition 13 (Comparison between ERM, aDIST and cERM in linear regression)
Let the action of G be linear. Then:

1. Denote vj ∈ Rp as the j-th eigenvector of XTX and d2j as the corresponding eigen-
value. We have

rERM = γ2 tr[X>X]−1 = γ2
p∑

j=1

d−2
j , raDIST = γ2

p∑

j=1

d−2
j ‖G>vj‖22,

where G = Eg∼Q[g].

2. If G acts orthogonally, then raDIST ≤ rERM.

3. If G is the permutation group over {1, ..., p}, then

raDIST = γ2p−11>p (X
>X)−11p, rcERM = γ2p(1>p X

>X1p)
−1.

Furthermore, if X is an orthogonal design so that X>X = Ip, we have

rERM = pγ2, raDIST = rcERM = γ2.
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Proof See Appendix A.9.

In general, constrained ERM can be even more efficient than the estimator obtained
by the augmention distribution. However, by the third point in the above proposition, in
the special case where G is the permutation group, we have raDIST = rcERM � rERM when
the dimension p is large. A direct extension of the above proposition shows that such a
phenomenon occurs when G is the permutation group on a subset of {1, . . . , p}. There are
several other subgroups of interest of the permutation group, including the group of cyclic
permutations and the group that contains the identity and the operation that “flips” or
reverses each vector.

We note briefly that the above results apply mutatis mutandis to logistic regression.
There, the outcome Y ∈ {−1, 1} is binary, and P (Y = 1|X = x) = σ(x>β), where σ(z) =
1/(1 + exp(−x)) is the sigmoid function. The invariance condition reduces to the same as
for linear regression. We omit the details.

6. Extension to approximate invariance

In this section, we develop extensions of the results in Section 4 without assuming exact
invariance. We only require approximate invariance gX ≈d X in an appropriate sense.
We start by recalling the notion of distance between probability distributions based on
transporting the mass from one distribution to another (see, e.g., Villani 2003 and references
therein):

Definition 14 (Wasserstein metric) Let X be a Polish space. Let d be a lower semi-
continuous metric on X . For two probability distributions µ, ν on X , we define

Wd(µ, ν) = inf
π∈Π(µ,ν)

∫

X×X
d(x, y)dπ(x, y),

where Π(µ, ν) are all couplings whose marginals agree with µ and ν. When X is a Eu-
clidean space and d is the Euclidean distance, we denote W`2 ≡ W1 and refer to it as the
Wasserstein-1 distance.

6.1 General estimators

Since we no longer have gX =d X, the equation Ef = Ef̄ cannot hold in general. However,
we still expect some variance reduction by averaging a function over the orbit. Hence,
we should see a bias-variance tradeoff, which is made clear in the following lemma. For
symmetric matrices A,B,C, we will use the notation A ∈ [B,C] to mean that B � A � C
in the Loewner order.

Lemma 15 (Approximate invariance lemma) Assume the conditions in Lemma 1 hold,
but gX 6=d X. Let ‖f‖∞ = sup ‖f(x)‖2 (which can be ∞). Then:

1. The expectations satisfy ‖EX f̄(X)− EXf(X)‖2 ≤ EgW1(f(gX), f(X));
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2. The covariances satisfy CovX f̄(X) = Cov(X,g)f(gX)−EXCovgf(gX), and according
to the Loewner order, we have

CovX f̄(X)− CovXf(X) ∈
[
− EXCovgf(gX)± 4‖f‖∞EgW1(f(gX), f(X)) · I

]
,

where I is the identity matrix;

3. Let ϕ be any real-valued convex function, and let ϕ ◦ f(x) = Egϕ ◦ f(gx). Then

EXϕ(f̄(X))−EXϕ(f(X)) ∈
[(

EXϕ(f̄(X))−EXϕ ◦ f(X)

)
±‖ϕ‖LipEgW1(f(gX), f(X))

]
,

where ‖ϕ‖Lip is the (possibly infinite) Lipschitz constant of ϕ. We recall from our
prior results that EXϕ(f̄(X))− EXϕ ◦ f(X) ≤ 0.

Proof See Appendix B.1.

The above lemma reduces to Lemma 1 under exact invariance. With this lemma at hand,
we prove an analog of Proposition 2 below, which characterizes the mean squared error if
we think of f as a general estimator:

Proposition 16 (MSE of general estimators under approximate invariance) Under
the setup of Lemma 15, consider the estimator θ̂(X) of θ0, and its augmented version
θ̂G(X) = Eg∼Qθ̂(gX). Then we have

MSE(θ̂G)−MSE(θ̂) ∈
[
− EX tr(Covg θ̂(gX))±∆

]
,

where

∆ = EgW1(θ̂(gX), θ̂(X)) ·
[
EgW1(θ̂(gX), θ̂(X)) + 2‖Bias(θ̂(X))‖2 + 4‖θ̂‖∞

]
.

Proof See Appendix B.2.

Compared with exact invariance , apart from the variance reduction term EX tr(Covg θ̂(gX)),
we have an additional “bias” term ∆ as a result of approximate invariance. This bias
has three components in the present form. We need the following to be small: (1) the
Wasserstein-1 distance EgW1(θ̂(gX), θ̂(X)) (which is small if the invariance is close to be-

ing exact), (2) the bias of the original estimator Bias(θ̂(X)) is small (which is a minor
requirement, because otherwise there is no point in using this estimator), and (3) the sup-
norm ‖θ̂‖∞ is small (which is reasonable, because we can always standardize the estimating
target θ0).

6.2 ERM / M-estimators

We now extend the results on the behavior of ERM. Recall that θ0 and θG are minimizers
of the population risks EL(θ,X) and EL̄(θ,X), respectively. Meanwhile, θ̂n and θ̂n,G are
minimizers of the empirical risks n−1

∑n
i=1 L(θ,Xi) and n−1

∑n
i=1 L̄(θ,Xi), respectively.
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Under regularity conditions, it is clear that θ̂n,G is an asymptotically unbiased estimator for
θG. However, under approximate invariance, some quantities, for example, θ0 and θG, may
not coincide exactly, introducing an additional bias. As a result, there is a bias-variance
tradeoff, similar to that observed in Proposition 16.

We first illustrate this tradeoff for the generalization error, in an extension of Theorem
3:

Theorem 17 (Rademacher bounds under approximate invariance) Let L(θ, ·) be Lip-
schitz uniformly over θ ∈ Θ, with a (potentially infinite) Lipschitz constant ‖L‖Lip. Assume
L(·, ·) ∈ [0, 1]. Then with probability at least 1− δ over the draw of X1, . . . , Xn, we have

EL(θ̂n, X)− EL(θ0, X) ≤ 2Rn(L ◦Θ) +

√
2 log 2/δ

n
(Classical Rademacher bound)

EL(θ̂n,G, X)− EL(θ0, X) ≤ 2Rn(L̄ ◦Θ) +

√
2 log 2/δ

n
+ 2‖L‖Lip · Eg∼QW1(X, gX).

(Bound for augmentation under approx invariance)

Moreover, the Rademacher complexity of the augmented loss class can further be bounded
as

Rn(L̄ ◦Θ)−Rn(L ◦Θ) ≤ ∆+ ‖L‖Lip · Eg∼QW1(X, gX),

where

∆ = E sup
θ

| 1
n

n∑

i=1

εiEgL(θ, gXi)| − EEg sup
θ∈Θ

| 1
n
εiL(θ, gXi)| ≤ 0

is the “variance reduction” term.

Proof See Appendix B.3.

Compared to Theorem 3, we see that there is an additional bias term 2‖L‖Lip ·EgWd(X, gX)
due to approximate invariance. The bound ∆ ≤ 0 can be loose, and this variance reduction
term can be much smaller than zero. Consequently, as long as EgW1(X, gX) is small, the

above theorem can potentially yield a tighter bound for the augmented estimator θ̂n,G.
We now illustrate the bias-variance tradeoff in the asymptotic regime. The next theorem

is analogous to Theorem 6:

Theorem 18 (Asymptotic normality under approximate invariance) Assume Θ is
open. Let Assumption A and B hold for both pairs (θ0, L) and (θG, L̄). Let V0, VG be the Hes-
sian of θ 7→ EL(θ,X) and θ 7→ EL̄(θ,X), respectively. Let M0(X) = ∇L(θ0, X)∇L(θ0, X)>

and MG(X) = ∇L(θG, X)∇L(θG, X)>. Then we have

n(MSE(θ̂n,G)−MSE(θ̂n)) → n‖θG − θ0‖22 + EgEX

〈
MG(gX)−MG(X), V −2

G

〉

+ EX

〈
MG(X)−M0(X), V −2

G

〉
+ 〈CovX∇L(θ0, X), V −2

G − V −2
0 〉

− 〈EXCovg(∇L(θG, gX)), V −2
G 〉.
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Proof See Appendix B.4.

From the above theorem, we see that the the variance reduction is determined by the term

EXCovg(∇L(θG, gX)),

whereas we have three extra bias terms on the RHS due to approximate invariance. Indeed,
if gX and X are close in the W1 metric, one can check that the three additional bias terms
are small. For example, by the dual representation of Wasserstein metric, we have

EgEX

〈
MG(gX)−MG(X), V −2

G

〉
≤ EgW1

(
〈MG(gX), V −2

G 〉, 〈MG(X), V −2
G 〉

)

EX

〈
MG(X)−M0(X), V −2

G

〉
≤ W1

(
〈MG(X), V −2

G 〉, 〈M0(X), V −2
G 〉

)
,

and the upper bound goes to zero as we approach exact invariance. Hence we can see an
efficiency gain by data augmentation.

7. A Case Study on Over-Parameterized Two-Layer Nets

The result on two-layer nets in Section 5 has three major limitations. First, we only con-
sidered quadratic activations, whereas in practice rectified linear units (ReLU) are usually
used. Also, the entire result concerns the under-parameterized regime, whereas in practice,
neural nets are often over-parameterized. Finally, we assumed that we can optimize the
weights of the neural network to consistently estimate the true weights, which can be a
hard nonconvex optimization problem with only partially known solutions.

In this section, we present an example that addresses the above three limitations: we
consider a ReLU network; we allow the input dimension and the number of neurons to scale
with n; we use gradient descent for training.

Consider a binary classification problem, where the data points {Xi, Yi}n1 ⊆ Sn−1×{±1}
are sampled i.i.d. from some data distribution. For technical convenience, we assume
|G| < ∞, and gX ∈ Sd−1 for all g ∈ G and almost every X from the feature distribution.
We again consider a two-layer net f(x;W,a) = 1√

m
a>σ(Wx), where W ∈ Rm×d, a ∈ Rm

are the weights and σ(x) = max(x, 0) is the ReLU activation. We consider the following
initialization: Wij ∼ N (0, 1), as ∼ unif({±1}). Such a setup is common in recent literature
on Neural Tangent Kernel.

In the training process, we fix a and only train W . We use the logistic loss `(z) =
log(1 + e−z). In our previous notation, we have L(θ,X, Y ) = `(Y f(X;W,a)). The weight
is then trained by gradient descent: Wt+1 = Wt − ηt∇R̄n(Wt), where R̄n is the augmented
empirical risk (4).

To facilitate the analysis, we impose a margin condition below, similar to that in Ji and
Telgarsky (2019).

Assumption C (Margin condition) Let H be the space of functions v : Rd → Rd s.t.∫
‖v(z)‖22dµ(z) < ∞, where µ is the d-dimensional standard Gaussian probability measure.

Assume there exists v̄ ∈ H and γ > 0, s.t. the Euclidean norm satisfies ‖v̄(z)‖2 ≤ 1 for any
z ∈ Rd, and that

Y

∫
〈v̄(z), gX〉1{〈z, gX〉 > 0}dµ(z) ≥ γ
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for all g ∈ G and amost all (X,Y ) from the data distribution.

This says that there is a classifier that can distinguish the (augmented) data with positive
margin.

We need a few notations. For ρ > 0, we define Wρ := {W ∈ Rm×d : ‖ws − ws,0‖2 ≤
ρ for any s ∈ [m]}, where ws, ws,0 is the s-th row of W,W0, respectively. We let

Rn := E sup
W∈Wρ

| 1
n
εi[−`′(yif(Xi;W,a))]|

be the Rademacher complexity of the non-augmented gradient, where the expectation is
taken over both {εi}n1 and {Xi, Yi}n1 . Similarly, writing fi,g(W ) = f(gXi;W,a), we define

R̄n := E sup
W∈Wρ

| 1
n
εiEg[−`′(Yifi,g(W ))]|

to be the Rademacher complexity of the augmented gradient. The following theorem char-
acterizes the performance gain by data augmentation in this example:

Theorem 19 (Benefits of data augmentation for two-layer ReLU nets) Under As-
sumption C, take any ε ∈ (0, 1) and δ ∈ (0, 1/5). Let

λ =

√
2 log(4n|G|/δ) + log(4/ε)

γ/4
,M =

4096λ2

γ6
,

and let ρ = 4λ/(γ
√
m). Let k be the best iteration (with the lowest empirical risk) in the

first d2λ2/nεe steps. Let α = 16[
√

2 log(4n|G|/δ)+ log(4/ε)]/γ2+
√
md+

√
2 log(1/δ). For

any m ≥ M and any constant step size η ≤ 1, with probability at least 1 − 5δ over the
random initialization and i.i.d. draws of the data points, we have

P(Y f(X;Wk, a) ≤ 0) ≤ 2ε+ [

√
2 log 2/δ

n
+ 4R̄n] +

1

2
EY EgW1(X|Y, gX|Y ) · α.

The three terms bound the optimization error, generalization error, and the bias due to
approximate invariance. Moreover, with probability at least 1 − δ over the random initial-
ization, we have

R̄n −Rn ≤ ∆+
1

4
EY EgW1(X|Y, gX|Y ) · α,

where

∆ = E sup
W∈Wρ

| 1
n
εiEg[−`′(yifi,g(W ))]| − EEg sup

W∈Wρ

| 1
n
εi[−`′(yifi,g(W ))]| ≤ 0

is the “variance reduction” term.

Proof See Appendix B.5.

The proof idea is largely based on results in Ji and Telgarsky (2019). We decompose the
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overall error into optimization error and generalization error. The optimization error is
taken care of by a corollary of Theorem 2.2 in Ji and Telgarsky (2019). The generalization
error is dealt with by adapting several arguments in Theorem 3.2 of Ji and Telgarsky (2019)
and using some arguments in the proof of Theorem 17.

Again, we see a bias-variance tradeoff in this example due to approximate invariance.
We conclude this section by noting that the term Rn can be further bounded by invoking
Rademacher calculus and the Rademacher complexity bound for linear classifiers. We refer
readers to Section 3 of Ji and Telgarsky (2019) for details.

8. Potential applications

8.1 Cryo-EM and related problems

In this section, we describe several important problems in the biological and chemical sci-
ences, and how data augmentation may be useful. Cryo-Electron Microscopy (Cryo-EM) is
a revolutionary technique in structural biology, allowing us to determine the structure of
molecules to an unprecedented resolution (e.g., Frank, 2006). The technique was awarded
the Nobel Prize in Chemistry in 2017.

The data generated by Cryo-EM poses significant data analytic (mathematical, statisti-
cal, and computational) challenges (Singer, 2018). In particular, the data possesses several
invariance properties that can be exploited to improve the accuracy of molecular structure
determination. However, exploiting these invariance properties is highly nontrivial, because
of the massive volume of the data, and due to the high levels of noise. In particular, ex-
ploiting the invariance is an active area of research (Kam, 1980; Frank, 2006; Zhao et al.,
2016; Bandeira et al., 2017; Bendory et al., 2018). Classical and recent approaches involve
mainly (1) latent variable models for the unknown symmetries, and (2) invariant feature
approaches. Here we will explain the problem, and how data augmentation may help.

In the imaging process, many copies of the molecule of interest are frozen in a thin layer
of ice, and then 2D images are taken via an electron beam. A 3D molecule is represented
by an electron density map φ : R3 → R. Each molecule is randomly rotated, via a rotation
that can be represented by a 3D orthogonal rotation matrix Ri ∈ O(3). Then we observe
the noisy line integral

Yi =

∫

z
φ(Ri[x, y, z]

>)dz + εi.

We observe several iid copies, and the goal is to estimate the density map φ. Clearly the
model is invariant under rotations of φ. Existing approaches mainly work by fitting sta-
tistical methods for latent variable models, such as the expectation maximization (EM)
algorithm. Data augmentation is a different approach, where we add the data transformed
according to the symmetries. It is interesting, but beyond our scope, to investigate if this
can improve the estimation accuracy.

Invariant denoising. A related problem is invariant denoising, where we want to de-
noise images subject to an invariance of their distribution, say according to rotations (see
e.g., Vonesch et al., 2015; Zhao et al., 2016, 2018). This area is well studied, and popular
approaches rely on invariant features. It is known how to do it for rotations. However,
capturing translation-invariance poses complications to the invariant features approach. In
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principle, data augmentation could be used as a more general approach.

XFEL. Another related technique, X-ray free electron lasers (XFEL), is a rapidly
developing and increasingly popular experimental method for understanding the three-
dimensional structure of molecules (e.g., Favre-Nicolin et al., 2015; Maia and Hajdu, 2016;
Bergmann et al., 2017). Single molecule XFEL imaging collects two-dimensional diffraction
patterns of single particles at random orientations. A key advantage is that XFEL uses
extremely short femtosecond X-ray pulses, during which the molecule does not change its
structure. On the other hand, we only capture one diffraction pattern per particle and the
particle orientations are unknown, so it is challenging to reconstruct the 3D structure at
a low signal-to-noise ratio. The images obtained are very noisy due to the low number of
photons that are typical for single particles (Pande et al., 2015).

A promising approach for 3-D structure reconstruction is Kam’s method (Kam, 1977,
1980; Saldin et al., 2009), which requires estimating the covariance matrix of the noiseless
2-D images. This is extremely difficult due to low photon counts, and motivated prior work
to develop improved methods for PCA and covariance estimation such as ePCA (Liu et al.,
2018), as well as the steerable ePCA method Zhao et al. (2018) that builds in invariances.
As above, it would be interesting to investigate if we can use data augmentation as another
approach for rotation-invariance.

8.2 Spherically invariant data

Here we discuss models for spherically invariant data, and how data augmentation may be
used. See for instance Fisher et al. (1993) for more general models of spherical data. In the
invariant model, the data X ∈ Rp is such that X =d OX for any orthogonal matrix O. One
can see that the Euclidean norms ‖X‖ are sufficient statistics. There are several problems
of interest:

• Estimating the radial density. By taking the norms of the data, this reduces to
estimating their 1D density.

• Estimating the marginal density f of a single coordinate. Here it is less obvious how
to exploit spherical invariance. However, data augmentation provides an approach.

A naive estimator for the marginal density is any density estimator applied to the first
coordinates of the data, X1(1), . . . , Xn(1). Since Xi(1) ∼iid f , we can use any estima-
tor, f̂(X) = f̂(X1(1), . . . , Xn(1)) for instance a kernel density estimator. However, this is
inefficient, because it does not use information in all coordinates.

In data augmentation we rotate our data uniformly, leading to

f̂a(X) =

∫
f̂(gX)dQ(g) = EO1,...,Op∼O(p)f([O1X1](1), . . . , [OpXp](1)).

Note that if O ∼ O(p), then for any vector x, [Ox](1) =d ‖x‖Z(1)/‖Z‖, where Z ∼
N (0, Ip). Hence the expectation can be rewritten in terms of Gaussian integrals. It is also
possible to write it as a 2-dimensional integral, in terms of Z(1), ‖Z(2 : p)‖2, which have
independent normal and Chi-squared distributions. However, in general, it may be hard to
compute exactly.
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When the density estimator decouples into a sum of terms over the datapoints, then this
expression simplifies. This is the case for kernel density estimators: f̂(x) = (nhp)−1

∑n
i=1 k([x−

xi(1)]/h). More generally, if f̂(x) =
∑n

i=1 T (x− xi(1)), then we only need to calculate

T̃ (x) = EOT (x− [Oy](1))

= EZ∼N (0,Ip)T

(
x− ‖y‖Z(1)

‖Z‖

)
.

This is significantly simpler than the previous expression. It can also be viewed as a form
of convolution of a kernel with T , which is already a kernel typically. Therefore, we have
shown how data augmentation can be used to estimate the marginal density of coordinates
for spherically uniform data.

8.3 Random effects models

Data augmentation may have applications to certain random effect models (Searle et al.,
2009). Consider the one-way layout Xij = µ + Ai + Bij , i = 1 . . . , s, j = 1, . . . , ni, where
Ai ∼ N (0, σ2

A), Bij ∼ N (0, σ2
B) independently. We want to estimate the global mean µ

and the variance components σ2
A, σ

2
B. If the layout is unbalanced, that is the number of

replications is not equal, this can be somewhat challenging. Two general approaches for
estimation are the restricted maximum likelihood (REML), and minimum norm quadratic
estimation (MINQUE) methods.

Here is how one may use data augmentation. Consider a simple estimator of σ2
B such

as σ̂2
B = s−1

∑n
i=1 E(Xi1 − Xi2)

2/2 (we assume that ni ≥ 2 for all i). This is a heuristic
plug-in estimator, which is convenient to write down and compute in a closed form. It is
also unbiased. However, it clearly does not use all samples, and therefore, it should be
possible to improve it.

Now let us denote by Xi the block of i-th observations. These have a joint normal
distribution Xi ∼ N (µ1ni

, σ2
A1ni

1>ni
+ σ2

BIni
). The model is invariant under the operations

Xi → OiXi,

for any orthogonal matrix Oi of size ni for which Oi1ni
= 1ni

, i.e., a matrix that has the
vector of all ones 1ni

as an eigenvector. Let Gi be the group of such matrices. Then
the overall model is invariant under the action of the direct product G1 × G2 × . . . × Gs.
Therefore, any estimator that is not invariant with respect to this group can be improved
by data augmentation.

Going back to the estimator σ̂2
B, to find its augmented version, we need to compute

the quantity E([Ox]1 − [Ox]2)
2, where x ∈ Rk is fixed and O is uniformly random from

the group of orthogonal matrices such that O1k = 1k. Write x = x̄1k + r, where x̄ is the
mean of the entries of x. Then Ox = x̄1k + Or, and [Ox]j = x̄ + [Or]j . Thus we need
E([Or]1 − [Or]2)

2. This can be done by using that Or is uniformly distributed on the k− 1
dimensional orthocomplement of the 1k vector, and we omit the details.
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Appendix A. Proofs for results under exact invariance

A.1 Proof of Lemma 1

We first prove part 1. Let x be fixed. Let A = {X ∈ Gx}. It suffices to show
∫

A
Egf(gx)dP(X) =

∫

A
f(X)dP(X).

For an arbitrary g ∈ G, the RHS above is equal to
∫

A
f(X)dP(X) =

∫
f(gX)1{gX ∈ Gx}dP(X)

=

∫
f(gX)1{X ∈ Gx}dP(X),

where the first equality is by the exact invariance, and the second equality is by the definition
of the orbit. Taking expectation w.r.t. Q, we get

∫

A
f(X)dP(X) =

∫

G

∫
f(gX)1{X ∈ Gx}dP(X)dQ(g).

On the event A, there exists g∗X , potentially depending on X, s.t. X = g∗Xx. Hence, we
have

∫

A
f(X)dP(X) =

∫

G

∫
f(g ◦ g∗Xx)1{X ∈ Gx}dP(X)dQ(g)

=

∫ ∫

G
f(g ◦ g∗Xx)dQ(g)1{X ∈ Gx}dP(X)

=

∫ ∫

G
f(gx)dQ(g)1{X ∈ Gx}dP(X)

=

∫

A
Egf(gx)dP(X),

where the second equality is by Fubini’s theorem, and the third inequality is due to the
translation invariant property of the Haar measure.

Part 2 follows by law of total expectation along with the above point.
Part 3 follows directly from part 1 and the law of the total covariance applied to the

random variable f(gX), where g ∼ Q, X ∼ P.
Part 4 follows from Jensen’s inequality.
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A.2 Proof of Lemma 5

By exact invariance and Fubuni’s theorem, it is clear that EL̄(θ,X) = EL(θ,X) for any
θ ∈ Θ. Hence θG = θ0 and Assumption A is verified for (θG, L̄). We now verify the five
parts of Assumption B.

For part 1, we have

sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

EL̄(θ,Xi)− EL̄(θ,X)

∣∣∣∣ = sup
θ∈Θ

∣∣∣∣Eg[
1

n

n∑

i=1

L(θ, gXi)− EL(θ, gX)]

∣∣∣∣

≤ sup
θ∈Θ

Eg

∣∣∣∣
1

n

n∑

i=1

L(θ, gXi)− EL(θ, gX)

∣∣∣∣

≤ Eg sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ, gXi)− EL(θ, gX)

∣∣∣∣

= op(1),

where the two inequalities is by Jensen’s inequality, and the convergence statement is true
because of the exact invariance and the fact that the original loss satisfies part 1 of As-
sumption B.

Part 2 is true because we have assumed that the action x 7→ gx is continuous.
For part 3, since (θ0, L) satisfies this assumption, we know that on an event with full

probability, we have

lim
δ→0

∣∣∣∣L(θ0 + δ, gX)− L(θ0, gX)− δ>∇L(θ0, gX)

∣∣∣∣
‖δ‖ = 0.

Now we have
∣∣∣∣EgL(θ0 + δ, gX)− EgL(θ0, gX)− δ>Eg∇L(θ0, gX)

∣∣∣∣
‖δ‖

≤
Eg

∣∣∣∣L(θ0 + δ, gX)− L(θ0, gX)− δ>∇L(θ0, gX)

∣∣∣∣
‖δ‖

≤ Eg[L̇(gX) + ‖∇L(θ0, gX)‖],

where the first inequality is by Jensen’s inequality, and the second inequality is by part 4
applied to (θ0, L). We have assumed that E[L̇(X)2] < ∞, and hence so does E[L̇(X)]. By
exact invariance, we have

EXEg[L̇(gX)] = EgEX [L̇(gX)] = E[L̇(X)] < ∞,

which implies Eg[L̇(gx)] < ∞ for P-a.e. x. On the other hand, part 5 applied to (θ0, L)
implies the existence of E∇L(θ0, X)∇L(θ0, X)>, and hence E‖∇L(θ0, X)‖2 < ∞ and so
does E‖∇L(θ0, X)‖. Now a similar argument shows that under exact invariance, we have

Eg‖∇L(θ0, gx)‖ < ∞.
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for P-a.e. x. Hence we can apply dominated convergence theorem to conclude that

lim
δ→0

∣∣∣∣EgL(θ0 + δ, gX)− EgL(θ0, gX)− δ>Eg∇L(θ0, gX)

∣∣∣∣
‖δ‖

≤ Eg lim
δ→0

∣∣∣∣L(θ0 + δ, gX)− L(θ0, gX)− δ>∇L(θ0, gX)

∣∣∣∣
‖δ‖

= 0,

which implies that θ 7→ L̄(θ, x) is indeed differentiable at θ0.

For part 4, by assumption, we have

|L(θ1, gx)− L(θ2, gx)| ≤ L̇(gx)‖θ1 − θ2‖

for almost every x and every θ1, θ2 in a neighborhood of θ0 = θG. Taking expectation w.r.t.
g ∼ Q, we get

|L̄(θ1, x)− L̄(θ2, x)| ≤ Eg|L(θ1, gx)− L(θ2, gx)|
≤ EgL̇(gx)‖θ1 − θ2‖.

Now it suffices to show x 7→ EgL̇(gx) is in L2(P). This is true by an application of Jensen’s
inequality and exact invariance:

EX [(EgL̇(gX))2] ≤ EXEg[(L̇(gX))2]

= EgEX [(L̇(gX))2]

= EgEL̇
2

= EL̇2

< ∞.

Part 5 is true because under exact invariance, we have EL(θ,X) = EL̄(θ,X).

A.3 Proof of Theorem 6

The results concerning θ̂n is classical (see, e.g., Theorem 5.23 of Van der Vaart 1998). By
Lemma 3.4, we can apply Theorem 5.23 of Van der Vaart (1998) to the pair (θG = θ0, L̄) to
conclude the Bahadur representation. Hence the asymptotic normality of θ̂n,G follows and
we have

ΣG = V −1
θ0

E[L̄(θ0, X)L̄(θ0, X)>]V −1
θ0

.

The final representation of ΣG follows from part 3 of Lemma 1.

A.4 Proof of Proposition 8

Let TpM be the tangent space of M at the point p. The inclusion map from ΘG to Rp is
an immersion. So we can decompose Tθ0R

p = Tθ0ΘG ⊕ (Tθ0ΘG)
⊥, i.e., the direct sum of
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the tangent space of ΘG at θ0 and its orthogonal complement. Hence the decomposition is
valid. Now as `θ(gx) + log det g = `θ(x) for any θ ∈ ΘG, it is clear that the gradient of `θ0
w.r.t. ΘG is invariant.

Using PG∇`θ0(gX) = PG∇`θ0(X), we have

Eθ0Covg(∇`θ0(gX)) = Eθ0Covg(PG∇`θ0(gX) + P⊥
G∇`θ0(gX))

= Eθ0Covg(PG∇`θ0(X) + P⊥
G∇`θ0(gX))

= Eθ0Covg(P
⊥
G∇`θ0(gX)),

which concludes the proof.

A.5 Proof of Proposition 9

From our theory we know that the asymptotic covariance matrix of cMLE for estimating
parameters θ = (θ1, θ2) is I−1ĪI−1, while that of aMLE for estimating θ1 is I−1

11 . Thus
aMLE is asymptotically more efficient than the cMLE if and only if

I−1
11 � [I−1ĪI−1]11.

Denoting K := (I−1)1•, this is equivalent to

I−1
11 � KĪK>,

by Equation (17) and (18), Using the Schur complement formula, this is equivalent to the
statement that the Shur complement of the matrix I−1

G in the matrix Mθ is PSD, where Mθ

equals

Mθ =

[
I−1
11 K
K> Ī−1

]
.

Now, the top left block of this matrix, I−1
11 , is PSD. Thus, from the properties of Schur

complements, the entire matrix Mθ is also PSD. Therefore, the condition is equivalent to
the matrix Mθ being PSD.

A.6 Proof of Proposition 10

Let C = Eg∼Q[g]. By orthogonality, for each g we have that g> = g−1 is also in G. Along
with the fact that Q is Haar, we conclude that the matrix C is symmetric. Then for any
v ∈ ΘG, we have Cv = Eg∼Q[gv] = Eg∼Q[g

>v] = Eg∼Q[v] = v. Moreover, for any w ∈ Θ⊥
G,

we have Cw = Eg∼Q[gw] = Eg∼Q[g
>w] = Eg∼Q[0] = 0. Hence, C is exactly the orthogonal

projection into the subspace ΘG, which finishes the proof.

A.7 Proof of Theorem 11

In the following proof, we will use θ and W interchangeably when there is no ambiguity.

For part 1 of the theorem, we have

∇f(W,x) = σ′(Wx) · x> ∈ Rp×d.
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We then have

∇f(W,x) = σ′(Wx) · x> ∈ Rp×d.

We can think of the Fisher information matrix Iθ = E∇f(θ,X)∇f(θ,X)> as a tensor, i.e,

IW = E(σ′(WX) ·X>)⊗ (σ′(WX) ·X>)

= E(σ′(WX)⊗ σ′(WX)) · (X ⊗X)>.

The i, j, i′, j′-th entries of this tensor are

IW (i, j, i′, j′) = Eσ′(W>
i X)σ′(W>

i′ X) ·XjXj′ .

For a quadratic activation function, σ(x) = x2/2, we can get more detailed results. We
then have

IW = E(WXX>)⊗ (WXX>)

= (W ⊗W ) · E(XX> ⊗XX>).

The group acts by gx = Tgx, where Tg is an operator that shifts a vector circularly by
g units. We can then write the neural network f(W,x) =

∑p
i=1 h(Wi;x) as a sum, where

h(a, x) = σ(a>x). Therefore, the invariant function corresponding to fW can also be written
in terms of the corresponding invariant functions corresponding to the h-s:

f̄(W,x) =
1

d

d∑

g=1

f(W,Tgx) =

p∑

i=1

h̄(Wi;x).

where h̄(a;x) = 1
d

∑d
g=1 h(a;Tgx). We can use this representation to calculate the gradient.

We first notice ∇h(a;x) = σ′(a>x)x. Thus,

∇h̄(a;x) =
1

d

d∑

g=1

∇h(a;Tgx) =
1

d

d∑

g=1

σ′(a>Tgx)Tgx

=
1

d
Cx · σ′(C>

x a).

Here Cx is the circulant matrix

Cx = [x, T1x, . . . , Td−1x] =




x1, xd, . . . , xd−1

x2, x1, . . . , xd
. . .

xd, xd−1, . . . , x1


 .

Hence the gradient of the invariant neural network f̄(W,x) as a matrix-vector product

∇f̄(W,x) =



∇h̄(W1;x)

>

. . .
∇h̄(Wp;x)

>


 =

1

d



σ′(W>

1 Cx) · C>
x

. . .
σ′(W>

p Cx) · C>
x


 =

1

d
σ′(WCx) · C>

x .
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So the Fisher information can also expressed in terms of matrix products

ĪW = E(σ′(WCX) · C>
X)⊗ (σ′(WCX) · C>

X)

= E(σ′(WCX)⊗ σ′(WCX)) · (CX ⊗ CX)>.

For quadratic activation functions, we have

ĪW =
1

d2
E(WCXC>

X)⊗ (WCXC>
X)

= (W ⊗W ) · 1

d2
E(CXC>

X ⊗ CXC>
X)

= (W ⊗W ) · 1

d2
E(CX ⊗ CX) · (CX ⊗ CX)>.

Therefore, the efficiency gain can be characterized by the move from the 4th moment tensor
of X to that of 1√

d
CX .

Finally, if we assume X ∼ N (0, Id), then we can express our results in a simpler form
using the discrete Fourier transform. Let F be the d×d Discrete Fourier Transform (DFT)
matrix, with entries Fj,k = d−1/2 exp(−2πi/d · (j − 1)(k − 1)). Then Fx is called the DFT
of the vector x, and F−1y = F ∗y is called the inverse DFT. The DFT matrix is a unitary
matrix with FF ∗ = F ∗F = Id. Thus F−1 = F ∗. It is also a symmetric matrix with
F> = F . Then the circular matrix can be diagonalized as

1√
d
Cx = F ∗ diag(Fx)F.

The eigenvalues of d−1/2Cx are the entries of Fx, with eigenvectors the corresponding
columns of F .

So we can write, with D := diag(FX),

d−1CX ⊗ CX = F ∗DF ⊗ F ∗DF

= (F ⊗ F )∗ · (D ⊗D) · (F ⊗ F ) = F ∗
2D2F2,

where F2 = F ⊗ F , and D2 = D ⊗D is a diagonal matrix. So

d−2E(CX ⊗ CX) · (CX ⊗ CX)> = EF ∗
2D2F2 · (F ∗

2D2F2)
>

= EF ∗
2D2F2 · F>

2 D2F
∗,T
2

= F ∗
2 · ED2F

2
2D2 · F ∗

2 .

Here we used that F = F>, hence F>
2 = (F ⊗ F )> = F> ⊗ F> = F2.

Now, D2 can be viewed as a d2×d2 matrix, with diagonal entries D2(i, j, i, j) = DiDj =
F>
i X ·F>

j X, where Fi are the rows (which are also equal to the columns) of the DFT. Thus
the inner expectation can be written as an elementwise product (also known as Hadamard
or odot product)

ED2F
2
2D2 = F 2

2 � ED2D
>
2 .

So we only need to calculate the 4th order moment tensor M of the Fourier transform FX,

Miji′j′ = EF>
i X · F>

j X · F>
i′ X · F>

j′ X.
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Let us write r := FX. Then by Wick’s formula,

Efifjfi′fj′ = Efifj · Efi′fj′ + Efifj′ · Efi′fj + Efifi′ · Efifj′ .
Now

Efifj = EF>
i X · F>

j X = F>
i · EXX> · Fj = F>

i Fj .

Hence

Miji′j′ = F>
i Fj · F>

i′ Fj′ + F>
i Fj′ · F>

i′ Fj + F>
i Fi′ · F>

i Fj′ .

This leads to a completely explicit expression for the average information. Recall F2 =
F ⊗ F , and M is the d2 × d2 tensor with entries given above. Then

ĪW = (W ⊗W ) · F ∗
2 · (F 2

2 �M) · F ∗
2 .

A.8 Proof of Corollary 12

For notational simplicity, for a generic matrix A, we will use A⊗2 to denote the tensor
product A⊗A. Recalling the definitions in (27), we have

EUW (X) = E[η′(f(W,X))2(σ′(WX)⊗ σ′(WX)) · (X ⊗X)>],

and similarly,

E[UW (X)]ΣERME[UW (X)] = E[vW (X)UW (X)]

= E[vW (X)η′(f(W,X))2(σ′(WX)⊗ σ′(WX)) · (X ⊗X)>].

On the other hand, under the circular symmetry model (24), for the augmented estimator,
by Theorem 6, we can directly compute

E[UW (X)]ΣaERME[UW (X)] = E

[(
EG[(Y − η(f(W, gX)))η′(f(W, gX))∇f(W, gX)]

)⊗2]

= E

[
(Y − η(f(W,X)))2η′(f(W,X))2(EG∇f(W, gX))⊗2

]

= E

[
vW (X)η′(f(W,X))2(σ′(WCX))⊗2(C⊗2

X )>
]
,

where in the second line we used f(W,x) = f(W, gx), and the last equality is by a similar
computation as in the proof of Theorem 11. Then it is clear that

E[UW (X)](ΣERM − ΣaERM)E[UW (X)]

= E

[
vW (X)η′(f(W,X))2 ×

(
(σ′(WX))⊗2(X⊗2)> − (σ′(WCX))⊗2(C⊗2

X )>
)]

.

Assuming σ(x) = x2/2, we have

E[UW (X)](ΣERM − ΣaERM)E[UW (X)]

= W⊗2E

[
vW (X)η′(f(W,X))2

(
(XX>)⊗2 − (CXC>

X)⊗2

)]
,

which concludes the proof.
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A.9 Proof of Proposition 13

For part 1, we have

β̂aDIST = Eg

[
((Xg>)>Xg>)−1(Xg>)>y

]

= Eg

[
(gX>Xg>)−1gX>(Xg>β + ε)

]

= β + Eg

[
(gX>Xg>)−1gX>ε

]

= β + Eg

[
g−1(X>X)−1g−1gX>ε

]

= β + Eg[g
−1](X>X)−1X>ε

= β + G>(X>X)−1X>ε.

Let X = UDV > be a SVD of X, where V ∈ Rp×p is unitary. Note that β̂aDIST is unbiased,
so its `2 risk is

raDIST = γ2 tr(Var(β̂aDIST)) = γ2 tr(G>(X>X)−1G)
= γ2 tr(G>V D−2V >G) = γ2 tr(D−2V >GG>V )

= γ2
p∑

j=1

d−2
j e>j V

>GG>V ej = γ2
p∑

j=1

d−2
j ‖G>vj‖22,

where vj ∈ Rp is j-th eigenvector of X>X and d2j is j-th eigenvalue of X>X. As a compar-
ison, for the usual ERM, we have

β̂ERM = (X>X)−1X>y = β + (X>X)−1X>ε,

so its `2 risk is

rERM = γ2 tr((X>X)−1) = γ2
p∑

j=1

d−2
j .

So part 1 is proved.
We now prove part 2. For raDIST ≤ rERM we need to show

tr((X>X)−1GG>) ≤ tr((X>X)−1).

A sufficient condition is that, in the partial ordering of positive semidefinite matrices,

GG> ≤ Ip.

This is equivalent to the claim that for all v ‖Egg
>v‖2 ≤ ‖v‖2. However, by Jensen’s

inequality, ‖Egg
>v‖2 ≤ EG‖g>v‖2. Since G is a subgroup of the orthogonal group, we have

‖g>v‖2 = ‖v‖2, which finishes the proof for part 2.
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We finally prove part 3. We assume G is the permutation group. This group is clearly
a subgroup of the orthogonal group. Note that invariance w.r.t. G implies that the true
parameter is a multiple of the all ones vector: β = 1pb. So we have

β̂cERM = 1pb̂, b̂ = argmin ‖y −X1pb‖22.

Solving the least-squares equation gives

b̂ =
1>X>y

1>p X>X1p
.

The risk of estimating b is then γ2(1>p X
>X1p)

−1, so that the risk of estimating β by 1pb̂ is

rcERM = γ2p(1>p X
>X1p)

−1.

Finally, we have

raDIST =
γ2

p2
tr(1p1

>
p (X

>X)−11p1
>
p ) =

γ2

p
1>p (X

>X)−11p,

which is equal to rcERM if X>X = Ip.

Appendix B. Proofs for results under approximate invariance

B.1 Proof of Lemma 15

For part 1, we have

‖EXEgf(gX)− EXf(X)‖2 = sup
‖v‖2≤1

EgEX〈v, f(gX)− EXf(X)〉

≤ sup
‖v‖2≤1

Eg‖v‖2W1(f(gX), f(X))

= EgW1(f(gX), f(X)),

where the inequality is due to Kantorovich-Rubinstein theorem, i.e., the dual representation
of the W1 metric (see. e.g., Villani 2003).

For part 2, by law of total variance, we have

CovX f̄(X)− CovXf(X) = −EXCovgf(gX) + ∆1 +∆2,

where

∆1 = E(X,g)f(gX)f(gX)> − EXf(X)f(X)>

∆2 = EXf(X)EXf(X)> − E(X,g)f(gX)E(X,g)f(gX)>

For any non-zero vector v, we have

|v>∆1v| =
∣∣∣∣EgEX

[
〈v, f(gX)〉2 − 〈v, f(X)〉2

]∣∣∣∣

≤ Eg

∣∣∣∣EX

[
〈v, f(gX)〉2 − 〈v, f(X)〉2

]∣∣∣∣.
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The Lipschitz constant for the function w 7→ 〈v, w〉2, where w ∈ Range(f), is bounded
above by 2‖v‖22‖f‖∞. Invoking Kantorovich-Rubinstein theorem again, we have

|v>∆1v| ≤ 2‖v‖22‖f‖∞EgW1(f(gX), f(X)).

Similarly, we have

|v>∆2v| =
∣∣∣∣
(
EX〈v, f(X)〉

)2

−
(
E(X,g)〈v, f(gX)〉

)2∣∣∣∣

≤ 2‖f‖∞
∣∣∣∣EgEX

[
〈v, f(X)〉 − 〈v, f(gX)〉

]∣∣∣∣

≤ 2‖f‖∞Eg

∣∣∣∣EX

[
〈v, f(X)〉 − 〈v, f(gX)〉

]∣∣∣∣
≤ 2‖v‖22‖f‖∞EgW1(f(gX), f(X)).

Part 2 is then proved by recalling the definition of the Loewner order.
For part 3, we have

EXϕ(f̄(X))− EXϕ(f(X)) = EXϕ(f̄(X))− EX
¯ϕ ◦ f(X) + EgEXϕ ◦ f(gX)− EXϕ(f(X)).

We finish the proof by noting that
∣∣∣∣EgEXϕ ◦ f(gX)− EXϕ(f(X))

∣∣∣∣ ≤ ‖ϕ‖LipW1(f(gX), f(X)).

B.2 Proof of Proposition 16

For notational simplicity, we let f̄ = θ̂G and f = θ̂. Then using bias-variance decomposition,
we have

MSE(f̄)−MSE(f) = B + V,

where

B = ‖Bias(f̄)‖22 − ‖Bias(f)‖22
V = tr(CovX f̄(X))− tr(CovXf(X)).

We first analyze the bias term. Note that by Lemma 15, we have
∣∣∣∣‖Bias(f̄)‖2 − ‖Bias(f)‖2

∣∣∣∣ ≤ ‖EX f̄(X)− EXf(X)‖2

≤ EgW1(f(gX), f(X)).

Hence

|B| ≤
(
‖Bias(f̄)‖2 + ‖Bias(f)‖2

)∣∣∣∣‖Bias(f̄)‖2 − ‖Bias(f)‖2
∣∣∣∣

≤
(
‖EX f̄(X)− EXf(X)‖2 + 2‖Bias(f)‖2

)
· ‖EX f̄(X)− EXf(X)‖2

≤
(
EGW1(f(gX), f(X)) + 2‖Bias(f)‖2

)
· EgW1(f(gX), f(X)).
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The variance term V can be bounded by the following arguments. We have

| tr(∆1)| =
∣∣∣∣EgEX

[
‖f(gX)‖22 − ‖f(X)‖22

]∣∣∣∣

≤ 2‖f‖∞Eg

∣∣∣∣EX

[
‖f(gX)‖2 − ‖f(X)‖2

]∣∣∣∣
≤ 2‖f‖∞EgW1(f(gX), f(X)).

Similarly, we have

| tr(∆2)| =
∣∣∣∣‖EXf(X)‖22 − ‖EX,gf(gX)‖22

∣∣∣∣

≤ 2‖f‖∞
∣∣∣∣‖EXf(X)‖2 − ‖EX,gf(gX)‖2

∣∣∣∣
≤ 2‖f‖∞‖EXf(X)− EX f̄(X)‖2
≤ 2‖f‖∞EgW1(f(gX), f(X)),

where the last inequality is due to Lemma 15.

Combining the bound for B and V gives the desired result.

B.3 Proof of Theorem 17

We first prove a useful lemma.

Lemma 20 (Triangle inequality/Tensorization) For two random vectors (X1, ..., Xn),
(Y1, ..., Yn) ∈ X n, we denote the joint laws as µn, νn respectively, and the marginal laws as
{µi}n1 , {νi}n1 respectively. We have

Wdn(µ
n, νn) ≤

∑

i

Wd(µi, νi).

Proof By Kantorovich duality (see, e.g., Villani 2003), for each coordinate, we can choose
optimal couplings (X∗

i , Y
∗
i ) ∈ Π(µi, νi) s.t. Wd(Xi, Yi) = Ed(X∗

i , Y
∗
i ). We then conclude

that proof by noting that ({X∗
i }n1 , {Y ∗

i }n1 ) ∈ Π(µn, νn).

Now we are ready to give the proof. We will do the proof for a general metric d. The
desired result is a special case when d is the Euclidean metric.

The results concerning θ̂n is classical. We present a proof here for completeness. We
recall the classical approach of decomposing the generalization error into terms that can
be bounded via concentration and Rademacher complexity (Bartlett and Mendelson, 2002;
Shalev-Shwartz and Ben-David, 2014):

EL(θ̂n, X)− EL(θ0, X) = EL(θ̂n, X)− 1

n

n∑

i=1

L(θ̂n, Xi) +
1

n

n∑

i=1

L(θ̂n, Xi)− EL(θ0, X).
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Hence we arrive at

EL(θ̂n, X)− EL(θ0, X) ≤ EL(θ̂n, X)− 1

n

n∑

i=1

L(θ̂n, Xi) +
1

n

n∑

i=1

L(θ0, Xi)− EL(θ0, X)

≤ sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣+
(
1

n

n∑

i=1

L(θ0, Xi)− EL(θ0, X)

)
,

where the first inequality is because θ̂n is a minimizer of the empirical risk. By McDiarmid’s
inequality, we have

P(
1

n

n∑

i=1

L(θ0, Xi)− EL(θ0, X) > t) ≤ exp{−2nt2}.

So w.p. at least 1− δ/2, we have

1

n

n∑

i=1

L(θ0, Xi)− EL(θ0, X) ≤
√

log 2/δ

2n
.

It remains to control

sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣.

We bound the above quantity using Rademacher complexity. The arguments are standard
and can be found in many textbooks (see, e.g., Shalev-Shwartz and Ben-David 2014). Since
we’ve assumed L(θ, x) ∈ [0, 1], for two data sets {Xi}n1 and {X̃i}n1 which only differ in the
i-th coordinate, we have

sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣− sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ, X̃i)− EL(θ,X)

∣∣∣∣

≤ 1

n
sup
θ∈Θ

|L(θ,Xi)− L(θ, X̃i)| ≤
1

n
.

By McDiarmid’s inequality, we have

P

(
sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣− E

[
sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣
]
≥ t

)

≤ exp{−2nt2}.

It follows that w.p. 1− δ/2, we have

sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣− E

[
sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣
]
≤

√
log 2/δ

2n
.

A standard symmetrization argument then shows that

E

[
sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

L(θ,Xi)− EL(θ,X)

∣∣∣∣
]
≤ 2Rn(L ◦Θ),
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where the Rademacher complexity of the function class L ◦ Θ = {x 7→ L(θ, x) : θ ∈ Θ} is
defined as

Rn(L ◦Θ) = E sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

εiL(θ,Xi)

∣∣∣∣,

where the expectation is taken over both the data and IID Rademacher random variables
εi, which are independent of the data. Summarizing the above computations (along with a
union bound) finishes the proof for θ̂n.

Now we consider the results for θ̂n,G under approximate invariance. We start by doing
a similar decomposition

EL(θ̂G, X)− EL(θ0, X) = I + II + III + IV + V,

where

I = EL(θ̂G, X)− EEGL(θ̂G, gX)

II = EEGL(θ̂G, gX)− 1

n

n∑

i=1

EGL(θ̂G, gXi)

III =
1

n

n∑

i=1

EGL(θ̂G, gXi)−
1

n

n∑

i=1

EGL(θ0, gXi)

IV =
1

n

n∑

i=1

EGL(θ0, gXi)− EEGL(θ0, gX)

V = EEGL(θ0, gX)− EL(θ0, X).

By construction, we have III ≤ 0 and

II ≤ sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

EGL(θ, gXi)− EEGL(θ, gX)

∣∣∣∣.

Moreover, we have

I + V ≤ 2 sup
θ∈Θ

∣∣∣∣EL(θ,X)− EEGL(θ, gX)

∣∣∣∣,

which is equal to zero under exact invariance gX =d X.

The term II+ IV is taken care of by essentially the same arguments as the proof for θ̂n.
One uses concentration to bound IV and uses Rademacher complexity to bound II. These
arguments give

II + IV ≤ 2Rn(L̄ ◦Θ) +

√
2 log 2/δ

n

w.p. at least 1− δ, where

Rn(L̄ ◦Θ) = E sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

εiEGL(θ, gXi)

∣∣∣∣.
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Now we have

Rn(L̄ ◦Θ)−Rn(L ◦Θ) ≤ ∆+ Eg

[
E sup

θ∈Θ

∣∣∣∣
1

n

n∑

i=1

εiL(θ, gXi)

∣∣∣∣− E sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

εiL(θ,Xi)

∣∣∣∣
]
,

where we recall

∆ = E sup
θ

| 1
n

n∑

i=1

εiEgL(θ, gXi)| − EEg sup
θ∈Θ

| 1
n
εiL(θ, gXi)| ≤ 0

by Jensen’s inequality.
By our assumption, for any x, x̃ ∈ X , θ ∈ Θ, we have

L(θ, x)− L(θ, x̃) ≤ ‖L‖Lip · d(x, x̃)

for some constant ‖L‖Lip. For a fixed vector (ε1, ..., εn), consider the function

h : (x1, ..., xn) 7→ sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

εiL(θ, xi)

∣∣∣∣.

We have

|h(x1, ..., xn)− h(y1, ..., yn)| ≤
1

n
sup
θ∈Θ

∣∣∣∣
n∑

i=1

εiL(θ, xi)− εiL(θ, yi)

∣∣∣∣

≤ 1

n
‖L‖Lip ·

∑

i

d(xi, yi).

That is, the function h : X n → R is (‖L‖Lip/n)-Lipschitz w.r.t. the l.s.c. metric dn, defined
by dn({xi}n1 , {yi}n1 ) =

∑
i d(xi, yi). Applying the tensorization lemma and Kantorovich-

Rubinstein theorem, for arbitrary random vectors (X1, ..., Xn) and (Y1, ..., Yn), we have

|Eh(X1, ..., Xn)− h(Y1, ..., Yn)| ≤
1

n
‖L‖Lip · Wdn(µ

n, νn)

≤ 1

n
‖L‖Lip ·

n∑

i=1

Wd(Xi, Yi).

Hence we arrive at

Rn(L̄ ◦Θ)−Rn(L ◦Θ) ≤ ∆+ ‖L‖Lip ·
1

n

∑

i

EgWd(Xi, gXi)

= ‖L‖Lip · EgWd(X, gX).

Summarizing the above computations, we have

II + IV ≤ 2Rn(L ◦Θ) + 2‖L‖Lip · EGWd(X, gX) +

√
2 log 2/δ

n

w.p. at least 1− δ.
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We now bound I + V. We have

I + V ≤ 2 sup
θ∈Θ

∣∣∣∣EL(θ,X)− EEGL(θ, gX)

∣∣∣∣

≤ 2 sup
θ∈Θ

EG

∣∣∣∣EL(θ,X)− EL(θ, gX)

∣∣∣∣

≤ 2‖L‖Lip · Wd(X, gX).

Combining the bounds for the five terms gives the desired result.

B.4 Proof of Theorem 18

Recall that
θG = argmin

θ∈Θ
EEgL(θ, gX).

By our assumptions, we can apply Theorem 5.23 of Van der Vaart (1998) to obtain the
Bahadur representation:

√
n(θ̂G − θG) =

1√
n
V −1
G

n∑

i=1

∇EGL(θ0, gXi) + op(1),

so that we get

√
n(θ̂G − θG) ⇒ N

(
0, V −1

G E

[
∇EGL(θG, gX)(EG∇L(θG, gX))>

]
V −1
G

)
.

To simplify notations, we let

C0 = CovX(∇L(θ0, X)), CG = CovX(∇EgL(θG, gX)).

By bias-variance decomposition, we have

MSE0 = n−1 tr(V −1
0 C0V

−1
0 )

MSEG = n−1 tr(V −1
G CGV

−1
G ) + ‖θG − θ0‖2.

We have

tr(V −1
G CGV

−1
G )− tr(V −1

0 C0V
−1
0 ) = 〈CG, V

−2
G 〉 − 〈C0, V

−2
0 〉

= 〈CG − C0 + C0, V
−2
G 〉 − 〈C0, V

−2
0 〉

= 〈CG − C0, V
−2
G 〉+ 〈C0, V

−2
G − V −2

0 〉.

We let M0(X) = ∇L(θ0, X)∇L(θ0, X)> and MG(X) = ∇L(θG, X)∇L(θG, X)>. Then we
have

CG − C0 = CG − EXMG(X) + EXMG(X)− C0

=

(
CG − EXEgMG(gX)

)
+ EgEX

[
MG(gX)−MG(X)

]
+ EX

[
MG(X)−M0(X)

]

= −EXCovg(∇L(θG, gX)) + EgEX

[
MG(gX)−MG(X)

]
+ EX

[
MG(X)−M0(X)

]
.
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Hence we arrive at

n(MSEG −MSE0) = −
〈
EXCovG(∇L(θG, gX)), V −2

G

〉
+ I + II + III + IV,

where

I = n‖θG − θ0‖2

II = EgEX

〈
MG(gX)−MG(X), V −2

G

〉

III = EX

〈
MG(X)−M0(X), V −2

G

〉

IV = 〈C0, V
−2
G − V −2

0 〉,

and this is the desired result.

B.5 Proof of Theorem 19

We seek to control the misclassification error of the two-layer net at step k. By Markov’s
inequality, for a new sample (X,Y ) from the data distribution, we have

P(Y f(x;Wk, a) ≤ 0) = P

(
1

1 + eY f(X;Wk,a)
≥ 1

2

)

≤ 2E

[
− `′(Y f(X;Wk, a))

]
.

The population quantity in the RHS is decomposed by

E

[
− `′(Y f(X;Wk, a))

]
= I + II,

where

I =
1

n

∑

i∈[n]
Eg

[
− `′(Yifi,g(Wk))

]

and

II = E

[
− `′(Y f(X;Wk, a))

]
− 1

n

∑

i∈[n]
Eg

[
− `′(Yifi,g(Wk))

]

The first term (optimization error) is controlled by calculations based on the Neural
Tangent Kernel. The second term (generalization error) is controlled via Rademacher com-
plexity.

We first control the first term (optimization error). In fact, everything is set up so
that we can directly invoke Theorem 2.2 of Ji and Telgarsky (2019). We note that their
result holds for any fixed dataset and there is no independence assumption. This gives the
following result:
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Proposition 21 Given ε ∈ (0, 1), δ ∈ (0, 1/3). Let

λ =

√
2 log(4n|G|/δ) + log(4/ε)

γ/4
, M =

4096λ2

γ6
.

For any m ≥ M and any constant step size η ≤ 1, w.p. 1−3δ over the random initialization,
we have

1

T

∑

t<T

R̄n(Wt) ≤ ε, T = d2λ2/(nε)e.

Moreover, for any 0 ≤ t < T and any 1 ≤ s ≤ m, we have

‖ws,t − ws,0‖2 ≤
4λ

γ
√
m
,

where ws,t is the s-th row of the weight matrix at step t.

Proof This is a direct corollary of Theorem 2.2 in Ji and Telgarsky (2019).

Assume the above event happens. Since we’ve chosen k to be the best iteration (with the
lowest empirical loss) in the first T steps. Then with the same probability as above, we
have R̄n(Wk) ≤ ε. Now, let us note that the logistic loss satisfies the following fundamental
self-consistency bound: −`′ ≤ `. This shows that if the loss is small, then the magnitude
of the derivative is also small. Thus on the same event, we have that the term I is also
bounded,

I ≤ R̄n(Wk) ≤ ε.

We then control the second term (generalization error). The calculations below are
similar to the proof of Theorem 4.4. We begin by decomposing

II = II.1 + II.2,

where

II.1 = E

[
− `′(Y f(X;Wk, a))

]
− EEg

[
− `′(Y f(gX;Wk, a))

]

and

II.2 = EEg

[
− `′(Y f(gX;Wk, a))

]
− 1

n

∑

i∈[n]
Eg

[
− `′(Yif(gXi;Wk, a))

]
.

We control term II.1 by exploiting the closedness between the distribution of (X,Y ) and
that of (gX, Y ). Note that the Lipschitz constant of the map x 7→ −`′(yf(x;Wk, a)) (w.r.t.
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the Euclidean metric on Rd) can be computed by:

|`′(yf(x;Wk, a))− `′(yf(x̃;Wk, a))| ≤
1

4
|f(x;Wk, a)− f(x̃;Wk, a)|

=
1

4

∣∣∣∣
1√
m

∑

s∈[m]

σ(w>
s,kx)−

1√
m

∑

s∈[m]

σ(w>
s,kx̃)

∣∣∣∣

≤ 1

4

1√
m

∑

s∈[m]

|w>
s,k(x− x̃)|

≤ 1

4

1√
m

∑

s∈[m]

‖ws,k‖2‖x− x̃‖2

≤ 1

4

1√
m

∑

s∈[m]

(‖ws,0‖2 + ‖ws,0 − ws,k‖2)‖x− x̃‖2

≤ 1

4

(
ρ
√
m+

1√
m

∑

s∈[m]

‖ws,0‖2
)
‖x− x̃‖2,

where ρ = 4λ
γ
√
m

and the last inequality is by Proposition 21. Note that each ‖ws,0‖2
is 1-subgaussian as a 1-Lipschitz function of a Gaussian random vector (for example, by
Theorem 2.1.12 of Tao 2012), so that

P

(
1√
m

∑

s∈[m]

‖ws,0‖2 − E

[
1√
m

∑

s∈[m]

‖ws,0‖2
]
≥ t

)
≤ e−t2/2.

Hence w.p. at least 1− δ, we have

1√
m

∑

s∈[m]

‖ws,0‖2 ≤ E

[
1√
m

∑

s∈[m]

‖ws,0‖2
]
+

√
2 log

1

δ

≤ 1√
m

∑

s∈[m]

√
E‖ws,0‖22 +

√
2 log

1

δ

=
√
md+

√
2 log 1/δ.

So w.p. at least 1− δ, the Lipschitz constant of the map x 7→ −`′(yf(x;Wk, a)) is bounded
above by

1

4

(
4λ

γ
+
√
md+

√
2 log 1/δ

)
.

Assume the above event happens (along with the previous event, the overall event happens
w.p. at least 1− 4δ). This information allows us to exploit the closeness between X|Y and
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gX|Y . We have

II.1 = EY Eg∼Q

[
EX|Y [−`′(Y f(X;Wk, a))]− EgX|Y [−`′(Y f(gX;Wk, a))]

]

≤ EY Eg∼Q

[
1

4

(
4λ

γ
+
√
md+

√
2 log 1/δ

)
· W1(X|Y, gX|Y )

]

=
1

4

(
4λ

γ
+
√
md+

√
2 log 1/δ

)
· EY Eg∼QW1(X|Y, gX|Y ),

where we let X|Y to denote the conditional distribution of X given Y , and the inequality is
by the dual representation of the Wasserstein distance. Note that under exact invariance,
II.1 = 0.

The term II.2 is controlled by standard results on Rademacher complexity. Indeed, by
the same arguments as in the proof of Theorem 6.4 of the main manuscript, w.p. at least
1− δ, we have

II.2 ≤ 2R̄n +

√
log 2/δ

2n
.

Taking a union bound (now w.p. at least 1 − 5δ), we have proved the generalization error
bound.

Finally, we prove the bound on R̄n − Rn. Under exact invariance, Jensen’s inequality
gives R̄n ≤ Rn. However, under approximate invariance, we have an extra bias term. We
have

R̄n −Rn = ∆+ EEg sup
W∈Wρ

∣∣∣∣
1

n
εi

[
− `′(Yifi,g(W ))

]∣∣∣∣−Rn.

where

∆ = E sup
W∈Wρ

∣∣∣∣
1

n
εiEg

[
− `′(Yifi,g(W ))

]∣∣∣∣− EEg sup
W∈Wρ

∣∣∣∣
1

n
εi

[
− `′(Yifi,g(W ))

]∣∣∣∣ ≤ 0

by Jensen’s inequality. Now by the computations when bounding term II.1 and the argu-
ments in the proof of Theorem 4.4, we have

EEg sup
W∈Wρ

∣∣∣∣
1

n
εi

[
− `′(Yifi,g(W ))

]∣∣∣∣−Rn ≤ 1

4

(
4λ

γ
+
√
md+

√
2 log 1/δ

)

· EY Eg∼QW1(X|Y, gX|Y )

w.p. at least 1− δ. Combining the above bounds finishes the proof.

Appendix C. Invariant MLE

Another perspective to exploit invariance is that of invariant representations. The natural
question is, how can we work with invariant representations, and what are the limits of
information we can extract from them?

Suppose therefore that in our model it is possible to choose a representation T (x) such
that (T (x), 0m) ∈ G · x for all x(where 0m is the zero vector with m entries). Thus, T
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chooses a representative from each orbit. This is equivalent to (T (x), 0m) = g0(x) · x, for
some specific g0(x) ∈ G. Suppose T (·), g(·) satisfy sufficient regularity conditions, such
as smoothness. For example, when G is the orthogonal rotation group O(d), we can take
T (x) := ‖x‖2, and g any orthogonal rotation such that g0(x) = (‖x‖2, 0d−1).

How can we estimate the parameters θ based on this representation? A natural approach
is to construct the MLE based on the data T (X1), . . . , T (Xn). We can also construct
invariant ERM using the same principle, but we will focus on MLE first. Let therefore Qθ

be the induced distribution of T (X), when X ∼ Pθ, and assume it has a density qθ with
respect to Lebesgue measure on a potentially lower dimensional Euclidean subspace (say d′

dimensional, where d is original dimension and m = d−d′). We can construct the invariant
MLE (iMLE):

θ̂iMLE,n = argmax
θ

∑

i∈[n]
log qθ(T (Xi)).

How does this compare to the previous approaches? It turns out that in general this is
not better than the un-augmented MLE. Suppose that the group G is discrete. Then we
have

qT (t) =
∑

g∈G
pX(g · (t, 0)) = |G| · pX((t, 0)).

Therefore, in this case the iMLE equals the MLE. Therefore, the invariant MLE does not
actually gain anything over the usual MLE, and in particular augmented MLE is better.

Appendix D. Experiment details

Our code is available at https://github.com/dobriban/data_aug. Our experiment to
generate Figure 1 is standard: We train ResNet18 (He et al., 2016) on CIFAR10 (Krizhevsky,
2009) for 200 epochs, based on the code of https://github.com/kuangliu/pytorch-cifar.
The CIFAR10 dataset is standard and can be downloaded from https://www.cs.toronto.

edu/~kriz/cifar.html. We use the default settings from that code, including the SGD
optimizer with a learning rate of 0.1, momentum 0.9, weight decay 5 · 10−4, and batch size
of 128. We train three models: (1) without data augmentation, (2) horizontally flipping the
image with 0.5 probability, and (3) a composition of randomly cropping a 32× 32 portion
of the image and random horizontal flip; besides the data augmentation, all other hyperpa-
rameters and settings are kept the same. We repeat this experiment 15 times and plot the
average test accuracy for each number of training epochs. The shaded regions represent 1
standard deviation around the average test accuracy. We train both on the full CIFAR10
training data, as well as a randomly chosen half of the training data. We do this to evaluate
the behavior of data augmentation in the limited data regime, because there it may to lead
to higher benefits. This experiment was done on a p3.2xlarge (GPU) instance on Amazon
Web Services (AWS).
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A. Hernández-Garćıa and P. König. Data augmentation instead of explicit regularization.
arXiv preprint arXiv:1806.03852, 2018a.
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A. Hernández-Garćıa, J. Mehrer, N. Kriegeskorte, P. König, and T. C. Kietzmann. Deep
neural networks trained with heavier data augmentation learn features closer to repre-
sentations in hit. In Conference on Cognitive Computational Neuroscience, 2018.

D. Ho, E. Liang, I. Stoica, P. Abbeel, and X. Chen. Population based augmentation:
Efficient learning of augmentation policy schedules. arXiv preprint arXiv:1905.05393,
2019.

E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and D. Soudry. Augment your
batch: better training with larger batches. arXiv preprint arXiv:1901.09335, 2019.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pages 8571–
8580, 2018.

67



Chen, Dobriban and Lee

N. Jaitly and G. E. Hinton. Vocal tract length perturbation (vtlp) improves speech recog-
nition. In Proc. ICML Workshop on Deep Learning for Audio, Speech and Language,
volume 117, 2013.

H. Javadi, R. Balestriero, and R. Baraniuk. A hessian based complexity measure for deep
networks. arXiv preprint arXiv:1905.11639, 2019.

Z. Ji and M. Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292,
2019.

Z. Kam. Determination of macromolecular structure in solution by spatial correlation of
scattering fluctuations. Macromolecules, 10(5):927–934, 1977.

Z. Kam. The reconstruction of structure from electron micrographs of randomly oriented
particles. Journal of Theoretical Biology, 82(1):15–39, 1980.

R. Kondor and S. Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. arXiv preprint arXiv:1802.03690, 2018.

R. Kondor, Z. Lin, and S. Trivedi. Clebsch–gordan nets: a fully fourier space spherical
convolutional neural network. In Advances in Neural Information Processing Systems,
pages 10117–10126, 2018.

A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural computa-
tion, 1(4):541–551, 1989.

E. Lehmann and G. Casella. Theory of point estimation. Springer Texts in Statistics, 1998.

E. L. Lehmann and J. P. Romano. Testing statistical hypotheses. Springer Science &
Business Media, 2005.

H. W. Lin, M. Tegmark, and D. Rolnick. Why does deep and cheap learning work so well?
Journal of Statistical Physics, 168(6):1223–1247, 2017.

L. T. Liu, E. Dobriban, and A. Singer. e pca: High dimensional exponential family pca.
The Annals of Applied Statistics, 12(4):2121–2150, 2018.

S. Liu, D. Papailiopoulos, and D. Achlioptas. Bad global minima exist and sgd can reach
them. arXiv preprint arXiv:1906.02613, 2019.

R. G. Lopes, D. Yin, B. Poole, J. Gilmer, and E. D. Cubuk. Improving robustness without
sacrificing accuracy with patch gaussian augmentation. arXiv preprint arXiv:1906.02611,
2019.

68



Theory for Data Augmentation

C. Lyle, M. Kwiatkowksa, and Y. Gal. An analysis of the effect of invariance on generaliza-
tion in neural networks. In International conference on machine learning Workshop on
Understanding and Improving Generalization in Deep Learning, 2019.

L. Maaten, M. Chen, S. Tyree, and K. Weinberger. Learning with marginalized corrupted
features. In International Conference on Machine Learning, pages 410–418, 2013.

F. R. Maia and J. Hajdu. The trickle before the torrent—diffraction data from X-ray lasers.
Scientific Data, 3, 2016.

S. Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics,
65(10):1331–1398, 2012.

T. Mazaheri, B. Sun, J. Scher-Zagier, A. Thind, D. Magee, P. Ronhovde, T. Lookman,
R. Mishra, and Z. Nussinov. Stochastic replica voting machine prediction of stable cubic
and double perovskite materials and binary alloys. Physical Review Materials, 3(6):
063802, 2019.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

T. Nguyen and S. Sanner. Algorithms for direct 0–1 loss optimization in binary classification.
In International Conference on Machine Learning, pages 1085–1093, 2013.

K. Pande, M. Schmidt, P. Schwander, and D. Saldin. Simulations on time-resolved structure
determination of uncrystallized biomolecules in the presence of shot noise. Structural
Dynamics, 2(2):024103, 2015.

D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le. Specaug-
ment: A simple data augmentation method for automatic speech recognition. arXiv
preprint arXiv:1904.08779, 2019.

K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–296, 1985.

S. Rajput, Z. Feng, Z. Charles, P.-L. Loh, and D. Papailiopoulos. Does data augmentation
lead to positive margin? arXiv preprint arXiv:1905.03177, 2019.

A. J. Ratner, H. Ehrenberg, Z. Hussain, J. Dunnmon, and C. Ré. Learning to compose
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