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Abstract

As learning solutions reach critical applications in social, industrial, and medical
domains, the need to curtail their behavior has become paramount. There is now
ample evidence that without explicit tailoring, learning can lead to biased, unsafe,
and prejudiced solutions. To tackle these problems, we develop a generalization
theory of constrained learning based on the probably approximately correct (PAC)
learning framework. In particular, we show that imposing requirements does not
make a learning problem harder in the sense that any PAC learnable class is also
PAC constrained learnable using a constrained counterpart of the empirical risk
minimization (ERM) rule. For typical parametrized models, however, this learner
involves solving a constrained non-convex optimization program for which even
obtaining a feasible solution is challenging. To overcome this issue, we prove that
under mild conditions the empirical dual problem of constrained learning is also a
PAC constrained learner that now leads to a practical constrained learning algorithm
based solely on solving unconstrained problems. We analyze the generalization
properties of this solution and use it to illustrate how constrained learning can
address problems in fair and robust classification.

1 Introduction

Learning has become a core component of the modern information systems we increasingly rely upon
to select job candidates, analyze medical data, and control “smart” applications (home, grid, city). As
these systems become ubiquitous, so does the need to curtail their behavior. Left untethered, they
can fail catastrophically as evidenced by the growing number of reports involving biased, prejudiced
models or systems prone to tampering (e.g., adversarial examples), unsafe behaviors, and deadly
accidents [1–6]. Typically, learning is constrained by using domain expert knowledge to either
construct models that embed the required properties (see, e.g., [7–13]) or tune the training objective
so as to promote them (see, e.g., [14–17]). The latter approach, known as regularization, is ubiquitous
in practice even though it need not yield feasible solutions [18]. In fact, existing results from classical
learning theory guarantee generalization with respect to the regularized objective, which says nothing
about meeting the requirements it may describe [19, 20]. While the former approach guarantees
that the solution satisfies the requirements, the scale and opacity of modern machine learning (ML)
systems render this model design impractical.

Since ML models are often trained using empirical risk minimization (ERM), an alternative solution
is to explicitly add constraints to these optimization problems. Since requirements are often expressed
as constraints in the first place, this approach overcomes the need to tune regularization parameters.
What it more, any solution automatically satisfies the requirements. Nevertheless, this approach
suffers from two fundamental drawbacks. First, its involves solving a constrained optimization
problem that is non-convex for typical parametrizations (e.g., neural networks). Though gradient
descent can often be used to obtain good minimizers for differentiable models, it does not guarantee
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constraint satisfaction. Indeed, there is typically no straightforward way to project onto the feasibility
set (e.g., the set of fair classifiers) and strong duality need not hold for non-convex programs [18].
Second, even if we could solve this constrained ERM, the issue remains of how its solutions generalize
since classical learning theory is involved only with unconstrained problems [19, 20].

In this work, we address these issues in two steps. We begin by formalizing the concept of constrained
learning using the probably approximately correct (PAC) framework. We prove that any hypothesis
class that is unconstrained learnable is constrained learnable and that the constrained counterpart
of the ERM rule is a PAC constrained learner. Hence, we establish that, from a learning theoretic
perspective, constrained learning is as hard as unconstrained (classical) learning. This, however,
does not resolve the practical issue of learning under requirements due to the non-convexity of the
constrained ERM problem. To do so, we proceed by deriving an empirical saddle-point problem
that is a (representation-independent) PAC constrained learner. We show that its approximation
error depends on the richness of the parametrization and the difficulty of satisfying the learning
constraints. Finally, we put forward practical constrained learning algorithm that we use to illustrate
how constrained learning can address problems involving fairness and robustness.

2 Related work

Central to ML is the concept of ERM in which statistical quantities are replaced by their empirical
counterparts, thus allowing learning problems to be solved from data, without prior knowledge of
its underlying distributions. The set of conditions under which this is a sensible approach is known
in learning theory as (agnostic) PAC learnability. More generally, the PAC framework formalizes
what it means to solve a statistical learning problem and studies when it can be done [19–22]. While
different learning models, such as structured complexity and PAC-Bayes, have been proposed, they
are beyond the scope of this work.

The objects studied in (PAC) learning theory, however, are unconstrained statistical learning problem.
Yet, there is a growing need to enable learning under constraints to tackle problems in fairness [23–
29], robustness [30–32], safety [33–37], and semi-supervised learning [38–40], to name a few. While
constraints have been used in statistics since Neyman-Pearson [41], generalization guarantees for
constrained learning have been studied only in specific contexts, e.g., for coherence constraints or
rate-constrained learning [23, 25, 29, 42]. Additionally, due to the non-convexity of typical learning
problems, many of these results hold for randomized solutions, e.g., [23, 25, 27, 29]. In contrast,
this work puts forward a formal constrained learning framework in which generalization results are
derived for deterministic learners. A first step in that direction was taken in [43], albeit from an
optimization perspective. This work also accounts for pointwise constraints, fundamental in the
context of fairness, and provides a practical, guaranteed constrained learning algorithm (Sec. 5.2).

Due to these challenges, learning under requirements is often tackled using regularization, i.e.,
by integrating a fixed cost for violating the constraints into the training objective (see, e.g., [15–
17, 31, 44, 45]). Selecting these costs, however, can be challenging, especially as the number
of constraints grows. In fact, their values often depend on the problem instance, the objective
value, and can interact in non-trivial ways [46–50]. In the case of convex optimization problems, a
straightforward relation between constraints and regularization costs can be obtained due to strong
duality. A myriad of primal-dual methods can then be used to obtain optimal, feasible solutions [51].
However, most modern parametrizations (e.g., CNNs) lead to non-convex programs for which a
regularized formulation need not yield feasible solutions, all the more so good ones [18]. While
primal-dual algorithms have been used in practice, no guarantees can be given for their outcome in
general [30, 32, 52, 53].

3 Constrained Learning

Let Di, i = 0, . . . ,m+q, denote unknown probability distributions over the space of data pairs (x, y),
with x ∈ X ⊂ R

d and y ∈ Y ⊂ R. For a hypothesis class H of functions φ : X → R
k, define the
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generic constrained statistical learning (CSL) problem as

P ? = min
φ∈H

E(x,y)∼D0

[
`0
(
φ(x), y

)]

subject to E(x,y)∼Di

[
`i
(
φ(x), y

)]
≤ ci, i = 1, . . . ,m,

`j
(
φ(x), y

)
≤ cj Dj-a.e., j = m+ 1, . . . ,m+ q,

(P-CSL)

where `i : R
k × Y → R are performance metrics. In general, we think of D0 as a nominal

joint distribution over data pairs (x, y) corresponding to feature vectors x and responses y. The
additional Di can be used to model different conditional distributions over which requirements are
imposed either on average, through the losses `i, i ≤ m, or pointwise, through the losses `j , j > m.
Note that the unconstrained version of (P-CSL), namely

P ?
U = min

φ∈H
E(x,y)∼D0

[
`0
(
φ(x), y

)]
, (PI)

is at the core of virtually all of modern ML [20, 54].

Before tackling if and how we can learn under constraints, i.e., whether we can solve (P-CSL), we
illustrate what constrained learning can enable. To make the discussion concrete, we present two
constrained formulations of the learning problems we solve in Section 6.

Invariance and fair learning. Constrained learning is a natural way to formulate learning problems
in which invariance is required. Consider a model φ whose output is a discrete distribution over k
possible classes. Then, (P-CSL) can be used to write

minimize
φ∈H

E(x,y)∼D

[
`0
(
φ(x), y

)]

subject to E(x,y)∼D

[
DKL

(
φ(x) ‖φ

(
ρ(x)

))]
≤ c,

(PII)

where ρ is an input transformation we wish the model to be invariant to and c > 0 determines the
sensitivity level. Formulation (PII) can be extended trivially to multiple transformations (see Sec. 6).
When the average invariance in (PII) is not enough, a stricter, pointwise requirement can be imposed,
by using

DKL

(
φ(x) ‖φ

(
ρ(x)

))
≤ c D-a.e.. (1)

For instance, fairness can be seen as a form of invariance in which ρ induces an alternative distribution
of a certain protected variable (e.g., a gender change) [23–26, 28, 29]. In this case, the constraint
in (PII) is related to the average causal effect (ACE) and (1) to counterfactual fairness [24]. While
fairness goes beyond invariance, our goal is not to litigate the merit of any fairness metrics, but to
show how constrained learning may provide a natural way to encode them.

Robust learning. Another issue affecting ML models, especially CNNs, is robustness. It is straight-
forward to construct small input perturbations that lead to misclassification and there are now
numerous methods to do so. While adversarial training has empirically been shown to improve
robustness, it often results in classifiers with poor nominal performance [30, 31, 44, 52, 53, 55].
In [32], a constrained formulation involving an upper bound on the worst-case error was used to
tackle this issue. Similarly, we can address this compromise using (P-CSL) by writing

minimize
φ∈H

E(x,y)∼D

[
`0
(
φ(x), y

)]

subject to E(x,y)∼A

[
`0
(
φ(x), y

)]
≤ c

(PIII)

where A is an adversarial data distributions. What is more, we can soften the worst-case requirements
of robust optimization by taking A | ε to be a distribution of adversarials with perturbation at most ε
and pose a prior on ε (e.g., an exponential). This results in classifiers whose performance degrades
smoothly with the perturbation magnitude. The theory and algorithms developed in this work give
generalization guarantees on solutions of this problem obtained using samples of A, which can be
accessed based on, e.g., adversarial attacks (Sec. 6). In other words, it establishes conditions under
which a classifier that is accurate and robust during training is also accurate and robust during testing.
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4 Probably Approximately Correct Constrained Learning

While (P-CSL) clearly addresses many of the issues discussed in Sec. 1, we cannot expect to solve it
exactly without access to the Di against which expectations are evaluated. Additionally, solving the
variational (P-CSL) is challenging unless H is finite. In this section, we address the first matter by
settling, as in classical learning theory, on obtaining a good enough solution (Sec. 4.1). We then show
that these solutions are not “harder” to get in constrained learning than they were in unconstrained
learning (Sec. 4.2). We then proceed to tackle the algorithmic challenges by deriving and analyzing a
practical constrained learning algorithm (Sec. 5.2).

4.1 From PAC to PACC

Let us begin by defining what it means to learn under constraints. To do so, we start by looking at the
unconstrained case, which is addressed in learning theory under the PAC framework [19–22].

Definition 1 (PAC learnability). A hypothesis class H is (agnostic) probably approximately cor-
rect (PAC) learnable if for every ε, δ ∈ (0, 1) and every distribution D0, a φ† ∈ H can be obtained

from N ≥ NH(ε, δ) samples of D0 such that E
[
`0
(
φ†(x), y

)]
≤ P ?

U + ε with probability 1− δ.

A classical result states that H is PAC learnable if and only if it has finite VC dimension and that
the φ† from Def. 1 can be obtained by solving an ERM problem [19, 20]. This is, however, not
enough to enable constrained learning since a PAC φ† may not be feasible for (P-CSL). In fact,
feasibility often takes priority over performance in constrained learning problems. For instance,
regardless of how good a fair classifier is, it serves no “fair” purpose in practice unless it meets
fairness requirements [see, e.g., (PII)]. These observations lead us to the following definition.

Definition 2 (PACC learnability). A hypothesis class H is probably approximately correct con-
strained (PACC) learnable if for every ε, δ ∈ (0, 1) and every distribution Di, i = 0, . . . ,m + q,

a φ† ∈ H can be obtained based N ≥ NH(ε, δ) samples from each Di such that it is, with probabil-
ity 1− δ,

1) approximately optimal, i.e.,

E(x,y)∼D0

[
`0
(
φ†(x), y

)]
≤ P ? + ε and (2)

2) approximately feasible, i.e.,

E(x,y)∼Di

[
`i
(
φ†(x), y

)]
≤ bi + ε, i = 1, . . . ,m, (3a)

`j
(
φ†(x), y

)
≤ bj , for all (x, y) ∈ Kj , j = m+ 1, . . . ,m+ q, (3b)

where Kj ⊆ X × Y are sets of Dj measure at least 1− ε.

Note that every PACC learnable class is also PAC learnable since it satisfies (2). However, a PACC
learner must also meet the probably approximate feasibility conditions in (3). The additional “C” in
PACC is used to remind ourselves of this fact. Next, we show that the converse is also true, i.e., that
PAC and PACC learning are equivalent problems.

4.2 PACC Learning is as Hard as PAC Learning

Having formalized what we mean by constrained learning (Sec. 4.1), we turn to the issue of when
it can be done. To do so, we follow the unconstrained learning lead and put forward an empirical
constrained risk minimization (ECRM) rule using Ni samples (xni

, yni
) ∼ Di, namely

P̂ ? = min
φ∈H

1

N0

N0∑

n0=1

`0
(
φ(xn0

), yn0

)

subject to
1

Ni

Ni∑

ni=1

`i
(
φ(xni

), yni

)
≤ ci, i = 1, . . . ,m

`j
(
φ(xnj

), ynj

)
≤ cj , for all nj , j = m+ 1, . . . ,m+ q.

(P-ECRM)

Notice that (P-ECRM) is a constrained version of the classical ERM problem that is ubiquitous in
the solution of unconstrained learning problems [20, 54]. The next theorem shows that, under mild
assumptions on the losses, if H is PAC learnable, then it is PACC learnable using (P-ECRM).
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Theorem 1. Let the `i, i = 0, . . . ,m + q, be bounded on X . The hypothesis class H is PACC
learnable if and only if it is PAC learnable and (P-ECRM) is a PACC learner of H. Explicitly,
let dH < ∞ be the VC dimension of H. If Ni ≥ Cζ−1(ε, δ, dH), i = 0, . . . ,m+ q, for an absolute
constant C and

ζ−1(ε, δ, d) =
d+ log(1/δ)

ε2
, (4)

then any solution φ̂? of (P-ECRM) is a PACC solution of (P-CSL).

Proof. See Appendix A in the extended version [56].

Theorem 1 shows that, from a learning theoretic point-of-view, constrained learning is as hard as
unconstrained learning. Not only that, but notice the sample complexity of constrained described
by (4) matches that of PAC learning [19, 20]. It is therefore not surprising that a constrained version of
ERM is a PACC learner. A similar result appeared in [26] for a particular rate constraint and not in the
context of PACC learning. Still, solving (P-ECRM) remains challenging. Indeed, while it addresses
the statistical issue of (P-CSL), it remains, in most practical cases, an infinite dimensional (functional)
problem. This issue is often addressed by leveraging a finite dimensional parametrization of (a subset
of) H, such as a kernel model or a (C)NN. Explicitly, we associate to each parameter vector θ ∈ R

p

a function fθ ∈ H, replacing (P-ECRM) by

P̂ ?
θ = min

θ∈Rp

1

N0

N0∑

n0=1

`0
(
fθ(xn0

), yn0

)

subject to
1

Ni

Ni∑

ni=1

`i
(
fθ(xni

), yni

)
≤ ci, i = 1, . . . ,m

`j
(
fθ(xnj

), ynj

)
≤ cj , for all nj , j = m+ 1, . . . ,m+ q.

(PIV)

Even if (P-ECRM) is a convex program in φ, (PIV) typically is not a convex program in θ (except,
e.g., if the losses are convex and fθ is linear in θ). This issue also arises in unconstrained learning
problems, but is exacerbated by the presence of constraints. Though it is sometimes possible to find
good approximate minimizers of `0 using, e.g., gradient descent rules [57–61], even obtaining a
feasible θ may be challenging. Indeed, although good CNN classifiers can be trained using gradient
descent, obtaining a good fair/robust classifier is considerably harder. Regularized formulations are
often used to sidestep this issue by incorporating a linear combination of the constraints into the
objective and solving the resulting unconstrained problem [15–17, 31, 44, 45]. Nevertheless, whereas
the generalization guarantees of classical learning theory apply to this modified objective, they say
nothing of the requirements it describes. Since strong duality need not hold for the non-convex (PIV),
this procedure need not be PACC (Def. 2) and may lead to solutions that are either infeasible or
whose performance is unacceptably poor [18].

While no formal connection can be drawn between (PIV) and its regularized formulation (due to
the lack of strong duality [18]), its dual problem turns out to be related to (P-CSL). In the sequel,
we prove that it provides (near-)PACC solutions for (P-CSL) with an approximation error in (2) that
depends on the richness of the parametrization and how strict the learning constraints are (Sec. 5.1).
In fact, we show that it is a (near-)PACC learner even if the parametrization is PAC learnable but H is
not. Based on this result, we obtain a practical constrained learning algorithm (Sec. 5.2) that we use
to solve the problems formulated in Sec. 3.

5 A (Near-)PACC Learning Algorithm

In this section, we derive a practical constrained learning algorithm by first analyzing the dual problem
of (PIV) (Sec. 5.1) and then proposing an algorithm to solve it (Sec. 5.2). Although we know this dual
problem is not related to (PIV), we prove that it is related directly to the original constrained learning
problem (P-CSL) by showing it is a PACC learner except for an approximation error determined by
the quality of the parametrization. We formalize this concept as follows:

Definition 3 (Near-PACC learnability). A class H is (near-)PACC learnable through a class P if
there exists an ε0 > 0 such that for every ε, δ ∈ (0, 1) and every distribution Di, i = 0, . . . ,m+ q,
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an approximately feasible φ† ∈ P [viz. (3)] can be obtained with probability 1− δ based on N ≥
NP(ε, δ) samples from each Di and E(x,y)∼D0

[
`0
(
φ†(x), y

)]
≤ P ? + ε0 + ε

In Def. 3, ε0 characterizes the approximation error. In contrast to unconstrained learning, however,
this error cannot be separated from the learning problem due to the constraints. Still, it is fixed, i.e.,
it is independent of the sample set, and affects neither the sample complexity nor the constraint
satisfaction. Hence, the parametrized constrained learner sacrifices optimality, but not feasibility,
which remains dependent only on the number of samples N (Def. 2). Finally, observe that the
sample complexity does not depend on the original hypothesis class H, but on the parametrized P .
Near-PACC is therefore related to representation-independent learning [20].

5.1 The Empirical Dual Problem of (P-CSL)

We begin by analyzing the gap between (P-CSL) and its (parametrized) empirical dual problem.
Define the (parametrized) empirical Lagrangian of (P-CSL) as

L̂(θ,µ,λj) =
1

N0

N0∑

n0=1

`0
(
fθ(xn0

), yn0

)
+

m∑

i=1

µi

[
1

Ni

Ni∑

ni=1

`i
(
fθ(xni

), yni

)
− ci

]

+

m+q∑

j=m+1


 1

Nj

Nj∑

nj=1

λj,nj

(
`j
(
fθ(xnj

), ynj

)
− cj

)

 ,

(5)

where µ ∈ R
m
+ collects the dual variables µi relative to the average constraints and λj ∈ R

Nj

+
collects the dual variables λj,nj

relative to the j-th pointwise constraint. The empirical dual problem
of (P-CSL) is then written as

D̂? = max
µ∈R

m
+ , λj∈R

Nj

+

min
θ∈Rp

L̂(θ,µ,λj), (D̂-CSL)

Note that (D̂-CSL) is the dual problem of the parametrized ECRM (PIV). However, due to its

non-convexity, its holds only that D̂? ≤ P̂ ?
θ and, in general, a saddle-point of (D̂-CSL) is not related

to a solution of (PIV) [18]. Still, (D̂-CSL) can be related directly to (P-CSL), which is why we refer
to it as its empirical dual. This relation obtains under the following assumptions:

Assumption 1. The losses `i(·, y), i = 0, . . . ,m + q, are [0, B]-valued, M -Lipschitz, convex
functions for all y ∈ Y . The loss `0 is additionally strongly convex.

Assumption 2. The hypothesis class H is convex, the parametrized P = {fθ | θ ∈ R
p} ⊆ H

is PAC learnable, and there is ν > 0 such that for each φ ∈ H there exists fθ ∈ P for
which supx∈X |fθ(x)− φ(x)| ≤ ν.

Assumption 3. There exists θ′ ∈ R
p such that fθ′ is strictly feasible for (P-CSL) with constraints ci−

Mν and cj −Mν and for each datasets S =
{
(xni

, yni
)
}
i=0,...,m+q

there exists a θ′′ that is strictly

feasible for (PIV).

In contrast to the unconstrained learning setting or the ECRM result in Theorem 1, we require that the

losses `i and the hypothesis class H be convex. This, however, does not imply that (D̂-CSL) or (PIV)
are convex problems since `i(fθ(x), y) need not be convex in θ. Additionally, only the parametrized
class P is required to be PAC learnable. Hence, H can be the space of continuous functions or a
reproducing kernel Hilbert space (RKHS) and fθ can be a neural network [62–64] or a finite linear
combinations of kernels [65, 66], both of which meet the uniform approximation assumption. This
assumption can also be relaxed in the absence of pointwise constraints (Remark 1). Assumption 3
guarantees that the problem is well-posed, i.e., a feasible solution for (P-CSL) can be found in P .

The main result of this section is collected in the following theorem.

Theorem 2. Let dP be the VC dimension of P . Under Assumptions 1–3, (D̂-CSL) is a near-PACC
learner of H with NP = Cζ−1(ε, δ, dP), for an absolute constant C and ζ−1 as in (4), and

ε0 =
(
1 +

∥∥µ?
p

∥∥
1
+
∥∥λ?

p

∥∥
L1

)
Mν, (6)

where (µ?
p,λ

?
p) are dual variables of (P-CSL) with constraints ci −Mν for i = 1, . . . ,m+ q.
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Algorithm 1 Primal-dual near-PACC learner

1: Initialize: θ(0) = 0, µ(0) = 1, λ
(0)
j = 1

2: for t = 1, . . . , T

3: Obtain θ(t−1) such that L̂
(
θ(t−1),µ(t−1),λ

(t−1)
j

)
≤ min

θ∈Rp
L̂
(
θ,µ(t−1),λ

(t−1)
j

)
+ ρ

4: Update dual variables

µ
(t)
i =

[
µ
(t−1)
i + η

(
1

Ni

Ni∑

ni=1

`i
(
fθ(t−1)(xni

), yni

)
− ci

)]

+

λ
(t)
j,nj

=
[
λ
(t−1)
j,nj

+
η

Nj

(
`j
(
fθ(t−1)(xnj

), ynj

)
− cj

)]
+

5: end

Proof. See Appendix B in the extended version [56].

Thus, the approximation error incurred by using the parametrization fθ is affected by (i) the difficulty
of the learning problem and (ii) the richness of the parametrization. Indeed, under Assumptions 1–3,
(P-CSL) is a strongly dual functional problem whose dual variables have a well-known sensitivity
interpretation [67, Sec. 5.6]. So the bracketed quantity in (6) quantifies how stringent the learning
constraints are in terms of how much performance could be gained by relaxing them. In addition, ε0
is affected by the approximation capability ν of the parametrization. Since better parametrizations
typically involve more parameters, which in turn affects the VC dimension of P , a typical compromise
between the approximation error and complexity arises. For small sample sets, the generalization
error in Def. 3 is dominated by the estimation error ε, which improves for lower complexity classes.
If there is abundance of data or the learning requirements are particularly stringent, the approximation
error ε0 dominates and more accurate, even if more complex, parametrizations should be used.

Note that the dual variables (µ?
p,λ

?
p) may be hard to evaluate since they are related to a version of

the statistical problem (P-CSL). While their norms can be estimated using classical results from
optimization theory (see, e.g., [18, 68]), they often lead to loose, uninformative bounds. Notice,
however, that only ε depends on the sample size.

Remark 1. When the constrained learning problem has no pointwise constraints [q = 0 in (P-CSL)],
Assumption 2 can be relaxed from a uniform to a total variation approximation. Explicitly, Theorem 1
holds if for each φ ∈ H there exist θ ∈ R

p such that E(x,y)∼Di

[
|fθ(x)− φ(x)|

]
≤ ν for all i.

5.2 A Primal-Dual near-PACC Learner

We now proceed to introduce a practical algorithm to solve (D̂-CSL) based on a (sub)gradient
primal-dual method. To do so, start by noting that the outer maximization is a convex optimization

program. Indeed, the dual function d̂(µ,λj) = minθ L̂(θ,µ,λj) is the pointwise minimum of a set
of affine functions and is therefore always concave [18]. Additionally, its (sub)gradients can be easily

computed by evaluating the constraint slacks at the minimizer of L̂ [51, Ch. 3]. Hence, the main

challenge in (D̂-CSL) is the inner minimization.

Despite the Lagrangian (5) often being non-convex in θ, (D̂-CSL) is an unconstrained optimization
problem. Hence, contrary to (PIV), it is often the case that good minimizers can be found, especially
for differentiable losses and parametrizations (i.e., most common ML models). For instance, there
is ample empirical and theoretical evidence that gradient descent can learn to good parameters for
(C)NNs [57–61]. In that vein, we thus assume that we have access to the following oracle:

Assumption 4. There exists an oracle θ†(µ,λj) and ρ > 0 such that L̂
(
θ†(µ,λj),µ,λj

)
≤

minθ L̂
(
θ,µ,λj

)
+ ρ for all µ ∈ R

m
+ and λj ∈ R

Nj

+ , j = m+ 1, . . . ,m+ q.

Assumption 4 essentially states that we are able to (approximately) train regularized unconstrained
learners using the parametrization fθ . We can alternate between minimizing the Lagrangian (5) with
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Figure 1: Fair classification (Adult dataset): (a) classifier sensitivity and (b) prevalence of different
groups among the 20% training set examples with largest dual variables.

respect to θ for fixed (µ,λj) and updating the dual variables using the resulting minimizer. This
procedure is summarized in Algorithm 1 and analyzed in the following theorem:

Theorem 3. Fix β > 0 and consider Algorithm 1 with at least Cζ−1(ε, δ, dP) samples from each Dj ,

where C is an absolute constant, ζ−1 is as in (4), and dP is the VC dimension of P . Under
Assumptions 1–4, Algorithm 1 converges to the neighborhood

P ? − ρ− β − ηS − ε ≤ L̂
(
θ(T ),µ(T ),λ

(T )
j

)
≤ P ? + ρ+ ε0 + ε (7)

with probability 1− δ after at most T = O(1/β) for ε0 as in (6) and S = O
(
B2
)
.

Proof. See Appendix C in the extended version [56].

Theorem 3 bounds the suboptimality of Algorithm 1 with respect to the original learning prob-
lem (P-CSL). The size of this neighborhood depends polynomially on ε0, ε, the oracle quality ρ,
and the step size η. The number of iterations needed to reach this neighborhood is inversely pro-
portional to the desired accuracy β. It is worth noting that this result applies to the deterministic

outputs (θ(T ),µ(T ),λ
(T )
j ) of Algorithm 1 after convergence and not to a randomized solution ob-

tained by sampling from (θ(t),µ(t),λ
(t)
j ), t = 0, . . . , T as in [23, 25, 29].

Underlying the oracle in Assumption 4 is often an iterative procedure, e.g., gradient descent, and
the cost of running this procedure until convergence to obtain an approximate minimizer can be

prohibitive. A common option then is to alternately update the primal variable θ(t) and the dual

variables (µ(t),λ
(t)
j ). This primal-dual method leads in fact to a classical convex optimization

algorithm [69]. While the convergence guarantee of Theorem 3 no longer holds in this case, we
observe good results by performing the primal and dual updates at different timescales, e.g., by
performing step 3 once per epoch. This is exactly what we do in the next section where we illustrate
the usefulness of this constrained learner.

6 Numerical experiments

Due to space constraints, we only provide highlights of the results obtained for the problems from
Section 3. For more details and additional experiments, see Appendix D in the extended version [56].

Invariance and fair learning. In the Adult dataset [70], our goal is to predict whether an individual
makes more than US$ 50,000.00 while being insensitive to gender. If left unconstrained, a small,
one-hidden layer NN would change predictions on around 8% of the test samples had their genders
been reversed (Fig. 1a). For step 3 of Algorithm 1, we use ADAM [71] with batch size 128 and
learning rate 0.1. All other parameters were kept as in the original paper. After each epoch, we update
the dual variables (step 4), also using ADAM with a step size of 0.01. All classifiers were trained
over 300 epochs.
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Figure 2: Robust constrained learning (FMNIST): (a) Accuracy of classifiers under the PGD attack
for different perturbation magnitudes and (b) distribution of ε used during training.

When constrained using the pointwise (1), the classifier becomes insensitive to the protected variable
in over 99% of the test set. In such simple cases, invariant classifiers can be easily obtained by
masking the training samples, although it can bring fairness issues of its own [26, 72]. But Algorithm 1
provides more than an invariant classifier. Due to the bound on the duality gap between (P-CSL)

and (D̂-CSL), the dual variables have a sensitivity interpretation: the larger their value, the harder
the constraint is to satisfy [18]. If we analyze the 20% of individuals with largest λn (Fig. 1b), we
find that a significantly higher prevalence of non-white, non-US natives, married individuals. Clearly,
while attempting to control for gender invariance, the constrained learner also had to overcome other
prejudices correlated to sexism, a well-known challenge in fair classification [27]. Similar results can
be derived when controlling for racial bias in the COMPAS dataset.

Robust learning. In this illustration, we use Algorithm 1 to train a ResNet18 [73] to classify images
from the FMNIST dataset [74]. As in the previous example, we once again use the ADAM optimizer
with the settings from [71]. The best accuracy over the validation set is achieved after 67 epochs,
yielding a solution with test accuracy of 93.5% (Figure 2a). However, it fails to classify any of
the test images when perturbed using a PGD attack with perturbation magnitude (`∞-norm of the
perturbation) as low as ε = 0.04 [30]. The attack uses a step size of ε/30 for 50 iterations and we
show the worst result over 10 restarts.

To overcome this issue, we use PGD to sample from a hypothetical “adversarial distribution” A and
constrain the performance of the solution against A as in (PIII). To accelerate training, we use a
much weaker attack running PGD without restarts for only 5 steps with step size ε/3. Notice that,
as we increase ε, the model becomes increasingly more robust at the cost of nominal performance.
Still, the performance degradation remains abrupt. As we argued before, smoother degradation can
be obtained by training against a distribution of magnitudes, e.g., the one in Figure 2b. Doing so not
only yields better performances under perturbation as well as a small loss of nominal accuracy.

7 Conclusion

We put forward a theory of learning under requirements by extending the PAC framework to con-
strained learning. We then prove that unconstrained and constrained learnability are equivalent by
showing that a constrained version of the classical ERM rule is a PACC learner. To overcome the
challenges in solving the optimization problem underlying this learner, we derive an alternative
learner based on a parametrized empirical dual problem. We show that its approximation error
is related to the richness of the parametrization as well as the difficulty of meeting the learning
constraint and use it to propose a practical algorithm to learn under requirements. We expect that
these generalization results can be used to theoretically ground techniques used in practice to address
constrained learning problems beyond fairness and robustness. In particular, similar arguments can
be used to develop a constrained theory for reinforcement learning [75]. We also believe that these
results can be extended to non-convex losses using recent results on the strong duality of certain
non-convex variational problems [68].
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Broader Impact

As learning becomes an ubiquitous technological solution and begins to affect real societal impact,
its shortcomings become more evident. A growing number of reports show that its solutions can
be prejudiced and prone to tampering or unsafe behaviors [1–6]. Constrained learning allows
requirements to be imposed during learning, so that the models and solutions obtained are guaranteed
to behave in the desired way despite being learned fully from data. This work provides a framework
under which to study learning under requirements and shows how and when it can be done. By
providing generalization guarantees on the solutions, it enables learning to be used in critical
applications in which there is little tolerance for failure. Naturally, solutions learned under constraints
are not necessarily safe or fair. How the learning problem is formulated, i.e., which constraints are
imposed, play a definite role on these outcomes and policies determining such requirements can
be (and indeed are [76–78]) important sources of biases.
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