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ABSTRACT

The problem of testing monotonicity for Boolean functions on the
hypergrid, f : [n]? — {0,1} is a classic topic in property testing.
When n = 2, the domain is the hypercube. For the hypercube
case, a breakthrough result of Khot-Minzer-Safra (FOCS 2015) gave
a non-adaptive, one-sided tester making O(¢~2Vd) queries. Up
to polylog d and ¢ factors, this bound matches the Q(Vd)-query
non-adaptive lower bound (Chen-De-Servedio-Tan (STOC 2015),
Chen-Waingarten-Xie (STOC 2017)). For any n > 2, the optimal
non-adaptive complexity was unknown. A previous result of the
authors achieves a O(d%/)-query upper bound (SODA 2020), quite
far from the Vd bound for the hypercube.

In this paper, we resolve the non-adaptive complexity of mono-
tonicity testing for all constant n, up to poly(e~!logd) factors.
Specifically, we give a non-adaptive, one-sided monotonicity tester
making O(e~2nVd) queries. From a technical standpoint, we prove
new directed isoperimetric theorems over the hypergrid [n] d These
results generalize the celebrated directed Talagrand inequalities
that were only known for the hypercube.
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1 INTRODUCTION

Monotonicity testing, especially over hypergrid domains, is one
of the most well studied problems in property testing. We use [n]
to denote the set {1,2,...,n}. The set [n]¢ is the d-dimensional
hypergrid where x € [n]? is a d-dimensional vector with x; € [n].
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The hypergrid is equipped with the natural partial order x <y iff
x; <y; forall i € [d]. Note that when n = 2, the hypergrid [n]¢ is
isomorphic to the hypercube {0, 1}4.

Let f : [n]?9 — {0,1} be a Boolean function defined on the
hypergrid. The function f is monotone if f(x) < f(y) whenever
x <y.The Hamming distance between two Boolean functions f and
g, denoted as A(f, g), is the fraction of points where they differ. The
distance to monotonicity of a function f : [n]4 - {0, 1} is defined
as &7 := ming monotone A(f, g). The Boolean monotonicity testing
problem on the hypergrid takes parameter ¢ and oracle access to f :
[n]? — {0, 1}. The objective is to design a randomized algorithm,
called the tester, that accepts a monotone function with probability
> 2/3 and rejects a function f with ef > ¢ with probability > 2/3. A
tester is one-sided if it accepts a monotone function with probability
1. A tester is non-adaptive if all its queries are made in one round
before seeing any responses.

There has been a rich history of results on monotonicity testing
over hypergrids, with a significant focus on hypercubes [3, 4, 8-10,
16-18, 21-24, 29, 32, 33]. We discuss the history more in Section 1.5,
but for now, we give the state of the art. For hypercubes, after a
long line of work, the breakthrough result [33] of Khot, Minzer, and
Safra gave an O, (Vd)-query non-adaptive, one-sided tester. This
result is tight due to a nearly matching Q(Vd)-query lower bound
for non-adaptive testers due to Chen, Waingarten, and Xie [23].
For general hypergrids, the best upper bound is the O, (d%/%)-query
tester of the authors [8, 9].

This Q(Vd) vs O(d5/6) gap for non-adaptive testers is a tanta-
lizing and important open question in property testing. Even for
the domain [3]9, the optimal non-adaptive monotonicity testing
bound is unknown. One of the main questions driving our work is:

Are there O (Nd)-query monotonicity testers for domains beyond the
hypercube?

Directed isoperimetric theorems. The initial seminal work on
monotonicity testing, by Goldreich, Goldwasser, Lehman, Ron, and
Samorodnitsky [29] and Dodis, Goldreich, Lehman, Ron, Raskhod-
nikova and Samorodnitsky [24] prove the existence of O (d)-query
testers. For almost a decade, it was not clear whether o(d)-query
testers were possible. In [18], the last two authors gave the first such
tester via an exciting connection with robust directed isoperimetric
theorems. Indeed, all o(d)-query testers are achieved through such
theorems.

Think of a Boolean function f as the indicator for a subset of
the domain. The variance of f, var(f), is a measure of the volume
of the indicated subset. An isoperimetric theorem for Boolean func-
tions relates the variance of f to the “boundary” of the function
which corresponds to the sensitive edges and/or their endpoints.
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The deep insight of these theorems comes from sophisticated ways
of measuring boundary size, involving both the vertex and edge
boundary. A directed isoperimetric theorem is an analog where
we only measure “up-boundary” formed by monotonicity viola-
tions. Rather surprisingly, in the directed case, one can replace the
variance as a measure of volume by the distance to monotonicity.

In Table 1, we list some classic isoperimetric results and their di-
rected analogues for the hypercube. For a point x, I (x) is the num-
ber of sensitive edges incident to x. We use I to denote Ex[I¢(x)],
the total influence of f, which the number of sensitive edges in f di-
vided by the domain size 24 The quantity I'r is the vertex boundary
size divided by 29 The directed analogues of these, I, l"f_, I]Z (%),
only consider sensitive edges that violate monotonicity.

Observe the remarkable parallel between the standard isoperi-
metric results and their directed versions. The Talagrand inequal-
ity is the strongest statement, and implies all other bounds. The
directed versions imply the undirected versions, using standard
inequalities regarding monotone functions. The [33] O (Vd)-query
tester is based on the directed Talagrand inequality.

The story for hypergrids is much more complicated. From an
isoperimetric perspective, a common approach is to consider the
augmented hypergrid, wherein we add edges between pairs in the
same line. The dimension reduction technique in [24] used to
prove the O, (d) testers can be thought of as establishing a directed
Poincaré inequality . In previous work [8], the authors proved a
directed Margulis inequality, which led to the O, (d°/%) query tester.
Another motivating question for our work is:

Can the directed Talagrand inequality be generalized beyond the
hypercube?

1.1 Main Results

We answer both questions mentioned above in the affirmative. To
state our results more formally, we begin with some notation. For
any i € [d], we use e; to denote the d-dimensional vector which has
1 on the ith coordinate and zero everywhere else. For a dimension
i, a pair (x,y) is called i-aligned if x and y only differ on their
i-coordinate. An i-line is a 1D line of n points obtained by fixing all
but the ith coordinate.

We define a notion of directed influence of Boolean functions on
hypergrids, which generalizes the notion for Boolean functions on
hypercubes. In plain English, for a point x we count the number
of dimensions in which x takes part in a violation. We call this the
thresholded negative influence of x. Note that x could participate
in multiple violations along the same dimension. Throughout this
paper, we will be only talking about negative influences of functions
on the hypergrid, and thus will often refer to the above as just
thresholded influence, and for brevity’s sake we also don’t use the
superscript “—” in the notation below to denote the negative aspect.

DEFINITION 1.1 (THRESHOLDED INFLUENCE). Fix f : [n]? —
{0, 1} and a dimension i € [d]. Fix a pointx € [n]d. The thresholded
influence of x along coordinate i is denoted ® ¢ (x; 1), and has value 1
if there exists an i-aligned violation (x,y). The thresholded influence

of xis®p(x) = XL, dp(x:i).
Note that the thresholded influence coincides with the hyper-
cube directed influence when n = 2. Also note that for any x,
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®r(x) € {0,1,...,d} and is independent of n. We prove the follow-
ing theorem, a directed Talagrand theorem for hypergrids, which
generalizes the [33] result.

THEOREM 1.2. Let f : [n]9 = {0,1} be e-far from monotone.

EXE[”]d [chf(x)] =0 (logn)

Robust isoperimetric theorems and monotonicity testing. For the
application to monotonicity testing, as [33] showed, a significant
strengthening of Theorem 1.2 is required. The weakness of Theo-
rem 1.2, as stated, is that the same violation/influence is “double-
counted" at both its endpoints. The LHS can significantly vary
depending on whether we choose to only “count” influences at zero-
valued or one-valued points, and this is true even on the hypercube.
As a simple illustration, consider the function f that is 1 at the all ze-
ros point and 0 everywhere else. Suppose we only count influences
at one-valued points. Then the only vertex with any Iji (x) is the

all 0’s point, and this value is d. Therefore, the Talagrand objective

vd

is =7. On the other hand, if we count influences at zero-valued
points, then I (x) = 1 for the d points e to ey, and 0 everywhere
else. The Talagrand objective counted from zero-valued points is
now much larger: 2%, Therefore, depending on how we count, one

can potentially reduce the Talagrand objective, Ex [ [If x)].

[33] define a general way of deciding which endpoint “pays” for
a violated edge. Consider a coloring! y : E — {0,1} of every edge
(x,y) € E of the hypercube to either 0 or 1. Now, given a violated
edge (x,y), we use this coloring to decide whose influence this
edge contributes towards. More precisely, given this coloring y, the
colored directed influence I _(x) of x is defined as the number of
violated edges (x,y) incident on x which have the same color as
f(x). Given a coloring, the colorful Talagrand objective equals the
expected root colored directed influence. What [33] prove is that
no matter what coloring y one chooses, the Talagrand objective is

still large, and in particular Ex [ ”j:,)( (x)] = Q(lg—f).

ogd
We define the robust/colorful generalizations of the thresholded
negative influence on hypergrids. Consider the fully augmented
hypergrid, where we put the edge (x,y) if x and y differ on only
one coordinate. Let E be the set of edges in the fully augmented
hypergrid.

DEFINITION 1.3 (COLORFUL THRESHOLDED INFLUENCE). Fix f :
[n]¢ - {o0,1} and y : E — {0,1}. Fix a dimension i € [d]| and
a point x € [n]?. The colorful thresholded negative influence of x
along coordinate i is denoted ®y , (x;i), and has value 1 if there
exists an i-aligned violation (x,y) such that y(x,y) = f(x), and has
value 0 otherwise. The colorful thresholded negative influence of x is

Op (%) = TL Op  (x5).

The main result of our paper is a robust directed Talagrand
isoperimetry theorem for Boolean functions on the hypergrid. Itis a
strict generalization of the KMS Talagrand theorem for hypercubes.

THEOREM 1.4. Let f : [(n]? — {0,1} be e-far from monotone,
and let y : E — {0,1} be an arbitrary coloring of the edges of the

1133] considered the colorings to be red/blue, but we find the 0, 1-coloring more natural.
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Table 1: Boolean hypercube isoperimetry results and their directed analogues. Pallavoor, Raskhodnikova, and Waingarten [37]
removed the log d-dependence in the directed Talagrand inequality.

Undirected Isoperimetry

Directed Isoperimetry

Iy > Q(var(f)) (Poincaré inequality, Folklore)

I; > Q(er) (Goldreich et al.[29])

Ip-Tp 2 Q(var(f)?) (Margulis [35]) If . l"]: > Q(E}) (Chakrabarty, Seshadhri [18])
Ex [ Hf(x)] > Q(var(f)) (Talagrand [41]) | Ex /IJZ x)| = Q(loegd) (Khot, Minzer, Safra [33])

augmented hypergrid.

Baetnid |27 (0] =Q( )

As a consequence of this theorem, we can (up to log factors)
resolve the question of non-adaptive monotonicity testing on hy-
pergrids with constant n. We note that the best bound for any

£

logn

n > 2 was O(d/®). Even for the simplest non-hypercube case of
n = 3, it was open whether the optimal non-adaptive complexity of
monotonicity testing is V.

THEOREM 1.5. Consider Boolean functions over the hypergrid,
f: [n]9 — {0,1}. There is a one-sided, non-adaptive tester for
monotonicity that makes O(e_zn\/alogs(nd)) queries.

The Importance of Being Robust. We briefly explain why the ro-
bust Talagrand version is central to the monotonicity testing appli-
cation. All testers that have a o(d)-query complexity are versions
of a path tester, which can be thought of as querying endpoints of
a directed random walk in the hypercube. Consider a function f as
the indicator for a set 1y, where the violating edges form the “up-
boundary" between 17 and its complement. To analyze the random
walk, we would like to lower bound the probability that a random
walk starts in 1 f> Crosses over the boundary, and stays in ﬁ, that is,
the set of 0’s. To analyze this, one needs some structural properties
in the graph induced by the boundary edges, which [33] express
via their notion of a “good subgraph”. In particular, one needs that
there be a large number of edges, but also that they are regularly
spread out among the vertices. It doesn’t seem that the “uncolored”
Talagrand versions (like Theorem 1.2) are strong enough to prove
this regularity, but the robust version can “weed out” high-degree
vertices via a definition of a suitable coloring function y. In short,
the robust version of the Talagrand-style isoperimetric theorem is
much more expressive. Indeed, these style of robust results have
found other applications in distribution testing [15] as well.

The Dependence on n. Given Theorem 1.5, it is natural to ask
whether the dependence on n is necessary. Previous domain re-
duction theorems have shown that one can reduce n to poly(d)
in a black box manner [9, 32]. The monotonicity tester based on
the directed Margulis inequality for hypergrids has a logarithmic
dependence on n [8]. Combining with domain reduction, we get a
O(poly(e~1)d%/6)-query tester. It is an outstanding open problem
to remove the dependence on n from Theorem 1.5.
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Independent Results by [13]. Independent of our work, Braver-
man, Kindler, Khot, and Minzer recently give an 5(£_zpoly(n) Vd)-
query one-sided, non-adaptive Boolean monotonicity tester for
hypergrids [13]. Their approach is different, and goes via monotone
embeddings of hypergrids into hypercubes. This embedding (lo-
cally) constructs a hypercube function that has the same distance
to monotonicity as the original hypergrid function. The hypercube
function has dimension poly(n)d, on which the KMS tester/result
can be applied. Their final tester has query complexity O(e~2n*Vd).
They also use monotone embeddings to prove a directed isoperi-
metric inequality for hypergrid functions. They prove a version of
Theorem 1.2, but the RHS has an n3 loss.

1.2 Challenges

We explain the challenges faced in proving Theorem 1.4 and The-
orem 1.5. The KMS proof of the directed Talagrand inequality for
the hypercube is a tour-de-force [33], and there are many parts of
their proof that do not generalize for n > 2. We begin by giving an
overview of the KMS proof for the hypercube case.

For the time being, let us focus on the uncolored case. For con-

venience, let T(f) = Ex[ HJ; (x)] denote the hypercube directed

Talagrand objective for a f : {0, l}d — {0, 1}. To lower bound
T(f), [33] transform the function f to a function g using a sequence
of what they call split operators. The ith split operator applied to
f replaces the ith coordinate/dimension by two new coordinates
(i,+) and (i, —). One way to think of the split operator is that takes
the ((0,x—;), (1,x—;)) edge and converts it into a square. (Here,
x_; denotes the collection of coordinates in x skipping x;.) The
“bottom" and “top" corners of the square store the original values
of the edge, while the “diagonal"” corners store the min and max
values (of the edge). The definition of this remarkably ingenious
operator ensures that the split function is monotone in (i, +) and
anti-monotone in (i, —). The final function g : {0, 1} - {0,1}
obtained by splitting on all coordinates has the property that it
is either monotone or anti-monotone on all coordinates. That is,
g is unate (or pure, as [33] call them), and for such functions the
directed Talagrand inequality can be proved via a short reduction
to the undirected case.

The utility of the split operator comes from the main technical
contribution of [33] (Section 3.4), where it is shown that splitting
cannot increase the directed Talagrand objective. This is a “roll-
your-sleeve-and-calculate” argument that follows a case-by-case
analysis. So, we can lower bound T(f) > T(g). Since g is unate,
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one can prove T(g) = Q(g4) (the distance of g to monotonicity).
But how does one handle ¢, or g more generally? This is done by
relating splitting to the classic switch operator in monotonicity test-
ing, introduced in [29]. The switch operator for the ith coordinate
can be thought of as modifying the edges along the i-dimension:
for any i-edge violation (x,y), this operator switches the values,
thereby fixing the violation. The switching operator has the re-
markable property of never increasing monotonicity violations in
other dimensions; hence, switching in all dimensions leads to a
monotone function. [33] observe that the function g basically “em-
beds" disjoint variations of f, wherein each variation is obtained
by performing a distinct sequence of switches on f. The function
g contains all possible such variations of f, stored cleverly so that
g is unate. One can then use properties of the switch operators to
relate ggtoef. (The truth is more complicated; we will come back
to this point later.)

Challenge #1, Splitting on Hypergrids? The biggest challenge
in trying to generalize the [33] argument is to generalize the split
operator. One natural starting point would be to consider the sort
operator, defined in [24], which generalizes the switch operator:
the sort operator in the ith coordinate sorts the function along all
i-lines. But it is not at all clear how to split the ith coordinate into
a set of coordinates that contains the information about the sort
operator thereby leading to a pure/unate function. In short, sorting
is a much more complicated operation than switching, and it is
not clear how to succinctly encode this information using a single
operator.

We address this challenge by a reorientation of the KMS proof.
Instead of looking at operators on dimensions to understand effects
of switching/sorting, we do this via what we call “tracker functions”
which are n? different Boolean functions tracking the changes in f.
We discuss this more in Section 1.3.

Challenge #2, the Case Analysis for Decreasing Talagrand
Objective. As mentioned earlier, the central calculation of KMS is
in showing that splitting does not increase the directed Talagrand
objective. This is related (not quite, but close enough) to showing
that the switch operator does not increase the Talagrand objective.
A statement like this is proven in KMS by case analysis; there are
4 cases, for the possible values a Boolean function takes on an
edge. One immediately sees that such an approach cannot scale
for general n, since the number of possible Boolean functions on a
line is 2". Even with our new idea of tracking functions, we cannot
escape this complexity of arguing how the Talagrand-style objective
decreases upon a sorting operation, and a case-by-case analysis
depending on the values of the function is infeasible.

We address this challenge by a connection to the theory of ma-
jorization. We show that the sort operator is (roughly) a majorizing
operator on the vector of influences. The concavity of the square
root function implies that sorting along lines cannot increase the
Talagrand objective. More details are given in the next section.

Challenge #3, the Colorings. Even if we circumvented the above
issues, the robust colored Talagrand objective brings a new set
of issues. Roughly speaking, colorings decide which points “pay"
for violations of the Talagrand objective, the switching/sorting
operator move points around by changing values, and the high-
level argument to prove T(f) drops is showing that these violations
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“pay” for the moves. In the hypercube, a switch either changes the
values on all the points of the edge or none of the points, and
this binary nature makes the handling of colors in the KMS proof
fairly easy, merely introducing a few extra cases in their argument.
Sorting, on the other hand, can change an arbitrary set of points,
and in particular, even in the case of n = 3, a point participating in
a violation may not change value in a sort.

To address this challenge, as we apply the sort operators to obtain
a handle on our function, we also need to recolor the edges such
that we obtain the drop in the T-objective. Once again, the theory
of majorization is the guide. This part of the proof is perhaps the
most technical portion of our paper.

Other Challenges: The Telescoping Argument and Tester
Analysis. The issues detailed here are not really conceptual chal-
lenges, but they do require some work to handle the richer hyper-
grid domain.

Recall that the KMS analysis proves the chain of inequalities,
T(f) =2 T(g) = Q(e4). Unfortunately, it can happen that ¢ < ef.
In this case, KMS observe that one could redo the entire argument
on random restrictions of f to half the coordinates. If the corre-
sponding ¢, is still too small, then one restricts on one-fourth of
the coordinates, so on and so forth. One can prove that somewhere
along these log d restrictions, one must have £ = Q(Ef). Pallavoor,
Raskhodnikova, and Waingarten [37] improve this analysis to re-
move a log d loss from the final bound. We face the same problems
in our analysis, and have to adapt the analysis to our setting.

Finally, the tester analysis of KMS for the hypercube can be
ported to the hypergrid path tester, with some suitable adaptations
of their argument. It is convenient to think of the fully augmented
hypergrid, where all pairs that lie along a line are connected by an
edge. We can essentially view the hypergrid tester as sampling a
random hypercube from the fully augmented hypergrid, and then
performing a directed random walk on this hypercube. We can then
piggyback on various tools from KMS for the hypercube tester, to
bound the rejection probability of the path tester for hypergrids.

1.3 Main Ideas

We sketch some key ideas needed to prove Theorem 1.4 and address
the challenges detailed earlier. We begin with a key conceptual con-
tribution of this paper. Given a function f : [n]? — {0,1}, we
define a collection of Boolean functions on the hypercube called
tracker functions. We will lower bound the directed Talagrand ob-
jective on the hypergrid by the undirected Talagrand objective on
these tracker functions. Indeed, the inspiration of these tracker
functions arose out of understanding the analysis in [33], in partic-
ular, the intermediate “g” function in their Section 4. As an homage,
we also denote our tracker functions with the same Roman letter,
even though it is different from their function.

1.3.1  Tracker Functions g for allx € [n]?. Let us begin with the
sort operator discussed earlier. Without loss of generality, fix the
ordering of coordinates in [d] tobe (1,2, ..., d). The operator sort;
for i € [d] sorts the function on every i-line. Given a subset S C [d]
of coordinates, the function (S o f) is obtained by sorting f on the
coordinates in S in that order.

Sorting along any dimension cannot increase the number of
violations along any other dimension, and therefore upon sorting
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on all dimensions, the result is a monotone function [24]. Suppose f
is e-far from monotone. Clearly, the total number of points changed
by sorting along all dimensions must be at least en®. While this is
not obvious here, it will be useful to to track how the function value
changes when we sort along a certain subset S of coordinates. The
intuitive idea is: if the function value changes for most such partial
sortings, then perhaps the function is far from being monotone. To

4 we define a Boolean function

this end, for every point x € [n]
Jx : 2l4] 5 {0,1} that tracks how the function value f changes as
we apply the sort operator a subset S of the coordinates. It is best

to think of the domain of gx as subsets S C [d].

DEFINITION 1.6 (TRACKER FUNCTIONS gx). Fixanx € [n]9. The
tracker function gx : {0, 139 5 {0,1} is defined as

VS € [d], gx(S) = (So f) (x)

We provide an illustration of this definition in Figure 1.

Note that when f is a monotone function, all the functions gx are
constants. Sorting does not change any values, so gx(S) is always
f(x). On the other hand, if f is not monotone along dimension i,
then there are points such that g ({i}) # f(x). Indeed, one would
expect the typical variance of these gy functions to be related to the
distance to monotonicity of f (technically not true, but we come to
this point later).

The tracker functions help us lower bound the (colorful) Tala-
grand objective for thresholded influence, in particular, the LHS
in Theorem 1.4. Recall that the Talagrand objective is the expected
square root of the colorful thresholded influences on the hyper-
grid function f. We lower bound this quantity by the expected
Talagrand objective on the undirected (colorful, however) influence
of the various gx functions. Note that gx functions are defined on
hypercubes. So we reduce the robust directed Talagrand inequality
on hypergrids to robust undirected Talagrand inequalities on hy-
percubes. This is the main technical contribution of our paper. Let
us define the (colored) influences of these gy functions.

DEFINITION 1.7 (INFLUENCE OF THE TRACKING FUNCTIONS). Fix
ax € [n]? and consider the tracking function gx : {0, 1} > {0, 1}.
Fix a coordinate j € [d]. The influence of gx at a subset S along the
Jjth coordinate is defined as

L7(S) = 1iffgx(S) # gx(S @ j) that is (So f)(x) # (S® j o f)(x)

In plain English, the influence of the jth coordinate at a subset S is
1 if the function value (the hypergrid function) changes when we
include the dimension j to be sorted. Once again, note that the same
sensitive edge (S, S @ j) is contributing towards both Ig:x] (S) and

I;( J (S @ j). We define a robust, colored version of these influences.

DEFINITION 1.8 (COLORFUL INFLUENCE OF THE TRACKING FUNC-
TI0NS). Fix a x € [n]¢ and consider the tracking function gy :
{0,1}¢ = {0,1}. Fix any arbitrary coloring & : E(2ll) > (0,1} of
the Boolean hypercube. Fix a coordinate j € [d]. The influence of gx
at a subset S along the jth coordinate is defined as

17 (8) = 1iffgx(S) # gu(S @ J) and gx(5) = &(S.5 @ )
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The colorful total influence at the point S in gx is defined as

d
I £, (9) = Z L7, ()
j=1

As before, for a sensitive edge (S, S®J) of gx, we count it towards the
influence of the endpoint whose value equals the color &(S, S & j).
The main technical contribution of this paper is proving that for
any function f : [n]¢ — {0, 1} and any arbitrary coloring y : E —
{0,1} of the hypergrid edges, for every x € [n]? there exists a
coloring & : E(2l91)y - {0,1} of the Boolean hypercube edges,
such that

T, () = Eyeaa [\@ry 0] 2 ExepmaBscia) [{lg ()]
(H1)
We explain the ~ in the above inequality in the next subsection.
Why is a statement like (H1) useful? Because the RHS terms are
Talagrand objectives on colored influences on the usual undirected
hypercube. Therefore, we can apply undirected Talagrand bounds
known from [33] to get an upper bound on the variance.

COROLLARY 1.9 (COROLLARY OF THEOREM 1.8 IN [33]). Fix f :
[n]9 = {0,1}. Fixanx € [n]? and consider the tracking function gx :
{0,1}¢ — {0, 1}. Consider any arbitrary coloring & : E(2ldy -
{0, 1} of the Boolean hypercube. Then, for every x € [n]9, we have

Escia) [1g.&(S)] = Q(var(gx))

The final piece of the puzzle connects var(gx)’s with the distance
to monotonicity. Ideally, we would have liked to have a statement
such as the following true.

Eyc[n)e [Var(gx)] =~ Q(ef) (H2)

We now see that (H1), Corollary 1.9, and (H2) together implies The-
orem 1.4 (indeed without the log n).

1.3.2  High Level Description of our Approaches.

Addressing the ~ in (H1) via Semisorting. As stated, we do not
know if (H1) is true. However, we establish (H1) for semisorted
functions f : [n]? — {0,1}. A function f is semisorted if on any
line ¢, the restriction of the function on the first half is sorted and
the restriction on the second half is sorted. This may seem like
a simple subclass of functions, but note that all functions on the
Boolean hypercube (n = 2) are vacuously semisorted. Thus, proving
Theorem 1.4 on semi-sorted functions is already a generalization
of the [33] result.

We reduce Theorem 1.4 on general functions to the same bound
for semisorted functions. Consider semisorting f, which means
we sort f on each half of every line. Suppose the Talagrand ob-
jective did not increase and the distance to monotonicity did not
decrease. Then Theorem 1.4 on the semisorted version of f implies
Theorem 1.4 on f. What we can prove is that: given the semisorted
function, one can find a recoloring of the hypergrid edges such
that the Talagrand objective doesn’t increase. We comment on our
techniques to prove such a statement in a later paragraph.

Although semisorting can’t increase the Talagrand objective, it
can clearly reduce the distance to monotonicity. However, a rela-
tively simple inductive argument proves Theorem 1.4 with a logn
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Figure 1: The blue function f : [n]¢ — {0, 1} is defined in the middle using bold, gothic characters. We have d = 2 and n = 2. For
each of the 4 points of this square, we have four different gy : {0,1}?> — {0,1} and they are described in the four green squares.
For any S C {1, 2}, if we focus on the corresponding corners of the four squares, then we get the function (S o f). For instance,
if S = {2}, then if we focus on the top left corners, then starting from gop and moving clockwise we get (0, 1,1,0). These will
precisely the function f (read clockwise from 00) after we sort along dimension 2.

loss. Any function can be turned into a completely sorted (aka
monotone) function by performing “logn semisorting steps” at
varying scales. In each scale, we consider many disjoint small hy-
pergrids, and convert a semisorted function defined over a small
hypergrid to another semisorted function over a hypergrid of dou-
ble the size (the next scale). In one of these scales, we will find a
semisorted function that has Q(e/logn) distance from its sorted
version. One can average Theorem 1.4 over all the small hypergrids
at this scale to bound the Talagrand objective of the whole function
by Q(e/logn). This is the step where we incur the log n-factor loss.

The real work happens in proving (H1) for semisorted functions.

Approach to Proving (H1) for Semisorted Functions. Recall, we
have a fixed adversarial coloring y : E — {0, 1}. The proof follows
a “hybrid argument” where we define a potential that is modified
over d + 1 rounds. At the beginning of round 0 it takes the value

Exe[n]d[ /‘Df,)((x)] which is the LHS of (H1). At the end of round

d it takes the value EyerneEscld] [\/Ig5.& (S)] which is the RHS

of (H1). The proof follows by showing that the potential decreases
in each round.

Let us describe the potential. Let us first write this without any
reference to the colorings (so no y’s and &’s), and then subse-
quently address the colorings. At stage i, fix a subset S C [i].
Define

i d
Ri(S) = Bxepnya || D 157 (5) + D @sop(xj) | (Hybrid)
j=1 j=i+l
We remind the reader that So f is the function f after the dimensions
corresponding to i € S have been sorted. Thus, R;(S) is a “hybrid"
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Talagrand objective, with two different kinds of influences being
summed. Consider point x € [n]9. On the first i coordinates, we
sum the undirected influence (along these coordinates) of S on
the function gx. On the coordinates i + 1 to d, we sum to directed
influence along these coordinates in the function So f. The potential
is Aj == Esc[;)[Ri(5)]-

To make some sense of this, consider the extreme cases of i =
0 and i = d. When i = 0, we only have the second ®g. s term.
Furthermore, S is empty since S C [i]. So A is precisely the original
directed Talagrand objective, the LHS of (H1). When i = d, we only
have the I;( J terms. Taking expectation over S C [d] to get Ag, we
deduce that A is the RHS of (H1).

We will prove Aj_; > A forall 1 < i < d. To choose a uar set
in [i], we can choose a uar subset of [i — 1] and then add i with
1/2 probability. Hence, A; = (Esc[;—1][Ri(S) +Ri(S +1)])/2, while
Ai-1 =Egc[i-1) [Ri=1(S)]. So, if we prove that R;_1(S) is at least
both R;(S) and R; (S +1i), then A;—1 > A;. The bulk of the technical
work in this paper is involved in proving these two inequalities, so
let us spend a little time explaining what proving this entails.

Let’s take the inequality R;—1(S) > R;(S).Refer again to (Hybrid).
When we go from R;—1(S) to R;(S), under the square root, the term
®sor(x; i) is replaced by Ig:xi (S). To remind the reader, the former
term is the indicator of whether x participates in a i-violation af-
ter the coordinates in S C [i — 1] have been sorted. The latter
term is whether gx (S + i) equals gx(S), that is, whether the (hyper-
grid) function value at x changes between sorting on coordinates
in S and S + i. Just by parsing the definitions, one can observe
that @5, r(x;i) = Ig:xi (S); if a point is modified on sorting in the
i-coordinate, then it must be participating in some i-violation (note
that vice-versa may not be true and thus we have an inequality
and not an equality). The quantity under the square-root point-wise
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dominates (ie, for every x) when we move from R;_1(S) to R;(S).
Thus, Ri—1(S) > R;(S).

The other inequality R;—1(S) > R;(S + i), however, is much
trickier to establish. In R; (S + i), the second summation under the
square-root, the ® terms, are actually on a different function. The
@50 (x; j) terms in R;j—1(S) are the thresholded influences of the
function after sorting on coordinates in S. But in R;(S + i), these
terms are @ (5.0 f(x; j), the thresholded influences of x for the
function after sorting on S + i. Although, it is true that sorting on
more coordinates cannot increase the total number of violations
along any dimension, this fact is not true point-wise. So, a point-
wise argument as in the previous inequality is not possible.

The argument for this inequality proceeds line-by-line. One fixes
an i-line ¢ and considers the vector of “hybrid function” values on
this line. We then consider this vector when moving from R;_1(S)
to R;(S + i), and we need to show that the sum of square roots can
get only smaller. This is where one of our key insights comes in: the
theory of majorization can be used to assert these bounds. Roughly
speaking, a vector a (weakly) majorizes a vector b if the sum of
the k-largest coordinates of a dominates the sum of the k-largest
coordinates of b, for every k. A less balanced vector majorizes a
more balanced vector. If the #;-norms of these vectors are the same,
then the sum of square roots of the entries of a is at most the sum
of square roots of that of b. This follows from concavity of the
square-root function.

Our overarching mantra throughout this paper is this: whenever
we perform an operation and the hybrid-influence-vector induced
by a line changes, the new vector majorizes the old vector. Specifi-
cally, these vectors are generated by look at the terms of R;—1(S)
and R; (S + i) restricted to i-lines.

To prove this vector-after-operation majorizes vector-before-
operation, we need some structural assumptions on the function.
Otherwise, it’s not hard to construct examples where this just fails.
The structure we need is precisely the semisortedness of f. When a
function is semisorted, the majorization argument goes through. At
a high level, when f is semisorted, the vector of influences (along a
line) satisfy various monotonicity properties. In particular, when
we (fully) sort on some coordinate i, we can show the points losing
violations had low violations to begin with. That is, the vector of
violations becomes less balanced, and the majorization follows.

The above discussion disregarded the colors. With colors, the
situation is noticeably more difficult. Although the function f is
assumed to be semisorted, the coloring y : E — {0, 1} is adversarial.
So even though the vector of influences may have monotonicity
properties, the colored influences may not have this structure. So
a point with high influence could have much lower colored influ-
ence. Note that the sort operator is insensitive to the coloring. So
the majorization argument discussed above might not hold when
looking at colored influences.

With colors, (Hybrid) is replaced by the “colored version” of the
same. To carry out the majorization argument, we need to construct
a family of colorings & on the n¢ different hypercubes. We also
need 2¢ many different auxiliary colorings ys of the hypergrid,
constructed after every sort operation. The argument is highly
technical. But all colorings are chosen to follow our mantra: vector
after operation should majorize vector before operation. The same
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principle is also used to prove the previous claim that semisort-
ing an interval can only decrease the Talagrand objective, after a
recoloring.

Addressing the ~ in (H2) via Random Sorts. To finally complete
the argument, we need (H2) that relates the average variance of
the gx functions to the distance to monotonicity of f. As discussed
earlier, (H2) is false, even for the case of hypercubes. Nevertheless,
one can use (H1) and Corollary 1.9 to prove a lower bound on
To, (f) with respect to ¢¢. This is the telescoping argument of
KMS, refined in [37]. We describe the main ideas below. The first
observation is that Exeln)d [var(gx)] is roughly Es[A(S o f§ o f]
where S is a uniform random subset of coordinates. The distance to
monotonicity 5 is approximated by A ( f.So So f ) which, by the

triangle inequality, is at most A(f,S o f) + A(So f,S o f). Thus, we
get a relation between e, the expected var(gx), and the distance
between f and a “random sort” of f. Therefore, if (H2) is not true,
then a random sort of f must be still far from being monotone,
and then one can repeat the whole argument on just this random
sort itself. In one of these log d “repetitions”, the (H2) must be true
since in the end we get a monotone function (which can’t be far
from being monotone). And this suffices to establish Theorem 1.4.
We re-assert that the main ideas are already present in [33, 37].
However, we require a more general presentation to make things
work for hypergrids.

1.4 Full Version

The implementation and discussion of the above ideas take some
space to describe and won’t fit in the space provided for the ex-
tended abstract. We refer the reader to the full version of this pa-
per [7] for the detailed explanation of the ideas above.

1.5 Related Work

Monotonicity testing has seen much activity since its introduction
around 25 years ago [1-6, 8-12, 14, 16-18, 21-34, 38-40].

We have already covered much of the previous work on Boolean
monotonicity testing over the hypercube, but give a short recap.
For convenience of presentation, in some results, we subsume ¢-
dependencies using the notation O,. The problem was introduced
by Goldreich et al. [29] and Raskhodnikova [38], who described an
O(d/¢)-query tester. Chakrabarty and Seshadhri [18] achieved the
first sublinear in dimension query complexity of O¢(d”/®) using
directed isoperimetric inequalities. Chen, Servedio, and Tan [22] im-
proved the analysis to 0, (d%/%) queries. Fischer et al. [28] had first
shown an Q(\/a)-query lower bound for non-adaptive, one-sided
testers, by a short and neat construction. The non-adaptive, two-
sided Q (\/3) lower bound is much harder to attain, and was done by
Chen, Waingarten, and Xie [23], improving on the Q (dl/ 2=¢y bound
from [21], which itself improved on the ﬁ(dl/s) bound of [22]. [33]
gave an O¢(Vd)-query tester, via the robust directed Talagrand
inequality.

While this resolves the non-adaptive testing complexity (up to
poly(¢~!log d) factors) for the hypercube, the adaptive complexity
is still open. The first polynomial lower bound of Q(d'%) for adap-
tive testers was given by Belovs and Blais [3] and has since been im-
proved to Q(d 1/3) by Chen, Waingarten, and Xie [23]. Chakrabarty
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and Seshadhri [20] gave an adaptive Oc(I £)-query tester, thereby
showing that adaptivity can help in monotonicity testing. The d 1/3
vs Vd query complexity gap is an outstanding open question in
property testing.

There has been work on approximating the distance to mono-
tonicity in poly(d, ef)-queries. Fattal and Ron [26] gave the first
non-trivial result of an O(d)-approximation, and Pallavoor, Raskhod-

nikova, and Waingarten [37] gave a non-adaptive O( \/3) -approximation

(all running in poly(d, &) time). They also show that non-adaptive
poly(d)-time algorithms cannot beat this approximation factor.

The above discussion is only for Boolean valued functions on
the hypercube. For arbitrary ranges, the original results on mono-
tonicity testing gave an O(d?/e)-query tester [24, 29]. Chakrabarty
and Seshadhri [17] proved that O(d/¢)-queries suffices for mono-
tonicity testing, matching the lower bound of Q(d) of Blais, Brody,
and Matulef [11]. The latter bound holds even when the range
size is Vd. A recent result of Black, Kalemaj, and Raskhodnikova
showed a smooth trade-off between the Vd bound for the Boolean
range and the d bound for arbitrary ranges ([10]). Consider func-
tions f : {0,1}¢ — [r]. They gave a tester with query complexity
O¢(rVd), achieved by extending the directed Talagrand inequality
to arbitrary range functions. Their techniques are quite black-box
and carry over to other posets. We note that their techniques can
also be ported to our setting, so we can get an 5g(rn\/3)-query
monotonicity tester for functions f : [n]d - [r].

We now discuss monotonicity testing on the hypergrid. We dis-
cuss more about the e-dependencies, since there have been in-
teresting relevant discoveries. As mentioned above, [24] gives a
non-adaptive, one-sided O((d/¢) log2 (d/¢€))-query tester. This was
improved to O((d/¢)log(d/¢)) by Berman, Raskhodnikova, and
Yaroslavtsev [4]. This paper also showed an interesting adaptivity
gap for 2D functions f : [n]? — {0,1}: there exists an O(1/e)-
query adaptive tester (in fact, for any constant dimension d), and
they show an Q(log(1/¢)/¢) lower bound for non-adaptive testers.
Previous work [8] by the authors gave an O, (d%/6 log n)-query
tester, by proving a directed Margulis inequality on augmented
hypergrids. Another work [9] of the authors, and subsequently
a work [32] by Harms and Yoshida, designed domain reduction
methods for monotonicity testing, showing how n can be reduced
to poly(e~!, d) by subsampling the hypergrid.

For hypergrid functions with arbitrary ranges, the optimal com-
plexity is known to be ©(dlogn) [17, 19]. When the range is [r]
and d = 1, one can get O(log r)-query testers [36].
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