

STOC ’23, June 20–23, 2023, Orlando, FL, USA Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri

The deep insight of these theorems comes from sophisticated ways

of measuring boundary size, involving both the vertex and edge

boundary. A directed isoperimetric theorem is an analog where

we only measure “up-boundary” formed by monotonicity viola-

tions. Rather surprisingly, in the directed case, one can replace the

variance as a measure of volume by the distance to monotonicity.

In Table 1, we list some classic isoperimetric results and their di-

rected analogues for the hypercube. For a point x, �5 (x) is the num-

ber of sensitive edges incident to x. We use �5 to denote Ex [�5 (x)],
the total influence of 5 , which the number of sensitive edges in 5 di-

vided by the domain size 23 . The quantity Γ5 is the vertex boundary

size divided by 23 . The directed analogues of these, �−
5
, Γ−

5
, �−
5
(x),

only consider sensitive edges that violate monotonicity.

Observe the remarkable parallel between the standard isoperi-

metric results and their directed versions. The Talagrand inequal-

ity is the strongest statement, and implies all other bounds. The

directed versions imply the undirected versions, using standard

inequalities regarding monotone functions. The [33] $̃Y (
√
3)-query

tester is based on the directed Talagrand inequality.

The story for hypergrids is much more complicated. From an

isoperimetric perspective, a common approach is to consider the

augmented hypergrid, wherein we add edges between pairs in the

same line. The dimension reduction technique in [24] used to

prove the $̃Y (3) testers can be thought of as establishing a directed

Poincaré inequality . In previous work [8], the authors proved a

directed Margulis inequality, which led to the $̃Y (35/6) query tester.
Another motivating question for our work is:

Can the directed Talagrand inequality be generalized beyond the

hypercube?

1.1 Main Results

We answer both questions mentioned above in the affirmative. To

state our results more formally, we begin with some notation. For

any 8 ∈ [3], we use e8 to denote the 3-dimensional vector which has

1 on the 8th coordinate and zero everywhere else. For a dimension

8 , a pair (x, y) is called 8-aligned if x and y only differ on their

8-coordinate. An 8-line is a 1D line of = points obtained by fixing all

but the 8th coordinate.

We define a notion of directed influence of Boolean functions on

hypergrids, which generalizes the notion for Boolean functions on

hypercubes. In plain English, for a point x we count the number

of dimensions in which x takes part in a violation. We call this the

thresholded negative influence of x. Note that x could participate

in multiple violations along the same dimension. Throughout this

paper, we will be only talking about negative influences of functions

on the hypergrid, and thus will often refer to the above as just

thresholded influence, and for brevity’s sake we also don’t use the

superscript “−” in the notation below to denote the negative aspect.

Definition 1.1 (Thresholded Influence). Fix 5 : [=]3 →
{0, 1} and a dimension 8 ∈ [3]. Fix a point x ∈ [=]3 . The thresholded
influence of x along coordinate 8 is denoted Φ5 (x; 8), and has value 1
if there exists an 8-aligned violation (x, y). The thresholded influence
of x is Φ5 (x) =

∑3
8=1 Φ5 (x; 8).

Note that the thresholded influence coincides with the hyper-

cube directed influence when = = 2. Also note that for any x,

Φ5 (x) ∈ {0, 1, . . . , 3} and is independent of =. We prove the follow-

ing theorem, a directed Talagrand theorem for hypergrids, which

generalizes the [33] result.

Theorem 1.2. Let 5 : [=]3 → {0, 1} be Y-far from monotone.

Ex∈[=]3
[√

Φ5 (x)
]
= Ω

(
Y

log=

)

Robust isoperimetric theorems and monotonicity testing. For the

application to monotonicity testing, as [33] showed, a significant

strengthening of Theorem 1.2 is required. The weakness of Theo-

rem 1.2, as stated, is that the same violation/influence is “double-

counted" at both its endpoints. The LHS can significantly vary

depending on whether we choose to only “count" influences at zero-

valued or one-valued points, and this is true even on the hypercube.

As a simple illustration, consider the function 5 that is 1 at the all ze-

ros point and 0 everywhere else. Suppose we only count influences

at one-valued points. Then the only vertex with any �−
5
(x) is the

all 0’s point, and this value is 3 . Therefore, the Talagrand objective

is
√
3

23
. On the other hand, if we count influences at zero-valued

points, then �−
5
(x) = 1 for the 3 points e1 to e3 , and 0 everywhere

else. The Talagrand objective counted from zero-valued points is

now much larger: 3
23
. Therefore, depending on how we count, one

can potentially reduce the Talagrand objective, Ex [
√
�−
5
(x)].

[33] define a general way of deciding which endpoint “pays” for

a violated edge. Consider a coloring1 j : � → {0, 1} of every edge

(x, y) ∈ � of the hypercube to either 0 or 1. Now, given a violated

edge (x, y), we use this coloring to decide whose influence this

edge contributes towards. More precisely, given this coloring j , the

colored directed influence �−
5 ,j

(x) of x is defined as the number of

violated edges (x, y) incident on x which have the same color as

5 (x). Given a coloring, the colorful Talagrand objective equals the

expected root colored directed influence. What [33] prove is that

no matter what coloring j one chooses, the Talagrand objective is

still large, and in particular Ex

[√
�−
5 ,j

(x)
]
= Ω(Y5

log3
).

We define the robust/colorful generalizations of the thresholded

negative influence on hypergrids. Consider the fully augmented

hypergrid, where we put the edge (x, y) if x and y differ on only

one coordinate. Let � be the set of edges in the fully augmented

hypergrid.

Definition 1.3 (Colorful Thresholded Influence). Fix 5 :

[=]3 → {0, 1} and j : � → {0, 1}. Fix a dimension 8 ∈ [3] and
a point x ∈ [=]3 . The colorful thresholded negative influence of x

along coordinate 8 is denoted Φ5 ,j (x; 8), and has value 1 if there

exists an 8-aligned violation (x, y) such that j (x, y) = 5 (x), and has
value 0 otherwise. The colorful thresholded negative influence of x is

Φ5 ,j (x) =
∑3
8=1 Φ5 ,j (x; 8).

The main result of our paper is a robust directed Talagrand

isoperimetry theorem for Boolean functions on the hypergrid. It is a

strict generalization of the KMS Talagrand theorem for hypercubes.

Theorem 1.4. Let 5 : [=]3 → {0, 1} be Y-far from monotone,

and let j : � → {0, 1} be an arbitrary coloring of the edges of the

1[33] considered the colorings to be red/blue, but we find the 0, 1-coloringmore natural.

234

Directed Isoperimetric Theorems for Boolean Functions on the Hypergrid... STOC ’23, June 20–23, 2023, Orlando, FL, USA

Table 1: Boolean hypercube isoperimetry results and their directed analogues. Pallavoor, Raskhodnikova, and Waingarten [37]

removed the log3-dependence in the directed Talagrand inequality.

Undirected Isoperimetry Directed Isoperimetry

�5 ≥ Ω(var(5)) (Poincaré inequality, Folklore) �−
5
≥ Ω(Y5) (Goldreich et al.[29])

�5 · Γ5 ≥ Ω(var(5)2) (Margulis [35]) �−
5
· Γ−

5
≥ Ω(Y2

5
) (Chakrabarty, Seshadhri [18])

Ex

[√
�5 (x)

]
≥ Ω(var(5)) (Talagrand [41]) Ex

[√
�−
5
(x)

]
= Ω(Y5

log3
) (Khot, Minzer, Safra [33])

augmented hypergrid.

Ex∈[=]3
[√

Φ5 ,j (x)
]
= Ω

(
Y

log=

)

As a consequence of this theorem, we can (up to log factors)

resolve the question of non-adaptive monotonicity testing on hy-

pergrids with constant =. We note that the best bound for any

= > 2 was $̃ (35/6). Even for the simplest non-hypercube case of

= = 3, it was open whether the optimal non-adaptive complexity of

monotonicity testing is
√
3 .

Theorem 1.5. Consider Boolean functions over the hypergrid,

5 : [=]3 → {0, 1}. There is a one-sided, non-adaptive tester for

monotonicity that makes $ (Y−2=
√
3 log5 (=3)) queries.

The Importance of Being Robust. We briefly explain why the ro-

bust Talagrand version is central to the monotonicity testing appli-

cation. All testers that have a > (3)-query complexity are versions

of a path tester, which can be thought of as querying endpoints of

a directed random walk in the hypercube. Consider a function 5 as

the indicator for a set 15 , where the violating edges form the “up-

boundary" between 15 and its complement. To analyze the random

walk, we would like to lower bound the probability that a random

walk starts in 15 , crosses over the boundary, and stays in 15 , that is,

the set of 0’s. To analyze this, one needs some structural properties

in the graph induced by the boundary edges, which [33] express

via their notion of a “good subgraph”. In particular, one needs that

there be a large number of edges, but also that they are regularly

spread out among the vertices. It doesn’t seem that the “uncolored”

Talagrand versions (like Theorem 1.2) are strong enough to prove

this regularity, but the robust version can “weed out” high-degree

vertices via a definition of a suitable coloring function j . In short,

the robust version of the Talagrand-style isoperimetric theorem is

much more expressive. Indeed, these style of robust results have

found other applications in distribution testing [15] as well.

The Dependence on =. Given Theorem 1.5, it is natural to ask

whether the dependence on = is necessary. Previous domain re-

duction theorems have shown that one can reduce = to poly(3)
in a black box manner [9, 32]. The monotonicity tester based on

the directed Margulis inequality for hypergrids has a logarithmic

dependence on = [8]. Combining with domain reduction, we get a

$̃ (poly(Y−1)35/6)-query tester. It is an outstanding open problem

to remove the dependence on = from Theorem 1.5.

Independent Results by [13]. Independent of our work, Braver-

man, Kindler, Khot, and Minzer recently give an $̃ (Y−2poly(=)
√
3)-

query one-sided, non-adaptive Boolean monotonicity tester for

hypergrids [13]. Their approach is different, and goes via monotone

embeddings of hypergrids into hypercubes. This embedding (lo-

cally) constructs a hypercube function that has the same distance

to monotonicity as the original hypergrid function. The hypercube

function has dimension poly(=)3 , on which the KMS tester/result

can be applied. Their final tester has query complexity $̃ (Y−2=3
√
3).

They also use monotone embeddings to prove a directed isoperi-

metric inequality for hypergrid functions. They prove a version of

Theorem 1.2, but the RHS has an =3 loss.

1.2 Challenges

We explain the challenges faced in proving Theorem 1.4 and The-

orem 1.5. The KMS proof of the directed Talagrand inequality for

the hypercube is a tour-de-force [33], and there are many parts of

their proof that do not generalize for = > 2. We begin by giving an

overview of the KMS proof for the hypercube case.

For the time being, let us focus on the uncolored case. For con-

venience, let) (5) = Ex [
√
�−
5
(x)] denote the hypercube directed

Talagrand objective for a 5 : {0, 1}3 → {0, 1} . To lower bound

) (5), [33] transform the function 5 to a function6 using a sequence

of what they call split operators. The 8th split operator applied to

5 replaces the 8th coordinate/dimension by two new coordinates

(8, +) and (8,−). One way to think of the split operator is that takes

the ((0, x−8), (1, x−8)) edge and converts it into a square. (Here,

x−8 denotes the collection of coordinates in x skipping x8 .) The

“bottom" and “top" corners of the square store the original values

of the edge, while the “diagonal" corners store the min and max

values (of the edge). The definition of this remarkably ingenious

operator ensures that the split function is monotone in (8, +) and
anti-monotone in (8,−). The final function 6 : {0, 1}23 → {0, 1}
obtained by splitting on all coordinates has the property that it

is either monotone or anti-monotone on all coordinates. That is,

6 is unate (or pure, as [33] call them), and for such functions the

directed Talagrand inequality can be proved via a short reduction

to the undirected case.

The utility of the split operator comes from the main technical

contribution of [33] (Section 3.4), where it is shown that splitting

cannot increase the directed Talagrand objective. This is a “roll-

your-sleeve-and-calculate” argument that follows a case-by-case

analysis. So, we can lower bound) (5) ≥) (6). Since 6 is unate,

235

STOC ’23, June 20–23, 2023, Orlando, FL, USA Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri

one can prove) (6) = Ω(Y6) (the distance of 6 to monotonicity).

But how does one handle Y6 , or 6 more generally? This is done by

relating splitting to the classic switch operator in monotonicity test-

ing, introduced in [29]. The switch operator for the 8th coordinate

can be thought of as modifying the edges along the 8-dimension:

for any 8-edge violation (x, y), this operator switches the values,
thereby fixing the violation. The switching operator has the re-

markable property of never increasing monotonicity violations in

other dimensions; hence, switching in all dimensions leads to a

monotone function. [33] observe that the function 6 basically “em-

beds" disjoint variations of 5 , wherein each variation is obtained

by performing a distinct sequence of switches on 5 . The function

6 contains all possible such variations of 5 , stored cleverly so that

6 is unate. One can then use properties of the switch operators to

relate Y6 to Y5 . (The truth is more complicated; we will come back

to this point later.)

Challenge #1, Splitting on Hypergrids? The biggest challenge

in trying to generalize the [33] argument is to generalize the split

operator. One natural starting point would be to consider the sort

operator, defined in [24], which generalizes the switch operator:

the sort operator in the 8th coordinate sorts the function along all

8-lines. But it is not at all clear how to split the 8th coordinate into

a set of coordinates that contains the information about the sort

operator thereby leading to a pure/unate function. In short, sorting

is a much more complicated operation than switching, and it is

not clear how to succinctly encode this information using a single

operator.

We address this challenge by a reorientation of the KMS proof.

Instead of looking at operators on dimensions to understand effects

of switching/sorting, we do this via what we call “tracker functions”

which are =3 different Boolean functions tracking the changes in 5 .

We discuss this more in Section 1.3.

Challenge #2, the Case Analysis for Decreasing Talagrand

Objective. As mentioned earlier, the central calculation of KMS is

in showing that splitting does not increase the directed Talagrand

objective. This is related (not quite, but close enough) to showing

that the switch operator does not increase the Talagrand objective.

A statement like this is proven in KMS by case analysis; there are

4 cases, for the possible values a Boolean function takes on an

edge. One immediately sees that such an approach cannot scale

for general =, since the number of possible Boolean functions on a

line is 2= . Even with our new idea of tracking functions, we cannot

escape this complexity of arguing how the Talagrand-style objective

decreases upon a sorting operation, and a case-by-case analysis

depending on the values of the function is infeasible.

We address this challenge by a connection to the theory of ma-

jorization. We show that the sort operator is (roughly) a majorizing

operator on the vector of influences. The concavity of the square

root function implies that sorting along lines cannot increase the

Talagrand objective. More details are given in the next section.

Challenge #3, the Colorings. Even if we circumvented the above

issues, the robust colored Talagrand objective brings a new set

of issues. Roughly speaking, colorings decide which points “pay"

for violations of the Talagrand objective, the switching/sorting

operator move points around by changing values, and the high-

level argument to prove) (5) drops is showing that these violations

“pay” for the moves. In the hypercube, a switch either changes the

values on all the points of the edge or none of the points, and

this binary nature makes the handling of colors in the KMS proof

fairly easy, merely introducing a few extra cases in their argument.

Sorting, on the other hand, can change an arbitrary set of points,

and in particular, even in the case of = = 3, a point participating in

a violation may not change value in a sort.

To address this challenge, as we apply the sort operators to obtain

a handle on our function, we also need to recolor the edges such

that we obtain the drop in the) -objective. Once again, the theory

of majorization is the guide. This part of the proof is perhaps the

most technical portion of our paper.

Other Challenges: The Telescoping Argument and Tester

Analysis. The issues detailed here are not really conceptual chal-

lenges, but they do require some work to handle the richer hyper-

grid domain.

Recall that the KMS analysis proves the chain of inequalities,

) (5) ≥) (6) = Ω(Y6). Unfortunately, it can happen that Y6 ≪ Y5 .

In this case, KMS observe that one could redo the entire argument

on random restrictions of 5 to half the coordinates. If the corre-

sponding Y6 is still too small, then one restricts on one-fourth of

the coordinates, so on and so forth. One can prove that somewhere

along these log3 restrictions, one must have Y6 = Ω(Y5). Pallavoor,
Raskhodnikova, and Waingarten [37] improve this analysis to re-

move a log3 loss from the final bound. We face the same problems

in our analysis, and have to adapt the analysis to our setting.

Finally, the tester analysis of KMS for the hypercube can be

ported to the hypergrid path tester, with some suitable adaptations

of their argument. It is convenient to think of the fully augmented

hypergrid, where all pairs that lie along a line are connected by an

edge. We can essentially view the hypergrid tester as sampling a

random hypercube from the fully augmented hypergrid, and then

performing a directed random walk on this hypercube. We can then

piggyback on various tools from KMS for the hypercube tester, to

bound the rejection probability of the path tester for hypergrids.

1.3 Main Ideas

We sketch some key ideas needed to prove Theorem 1.4 and address

the challenges detailed earlier. We begin with a key conceptual con-

tribution of this paper. Given a function 5 : [=]3 → {0, 1} , we
define a collection of Boolean functions on the hypercube called

tracker functions. We will lower bound the directed Talagrand ob-

jective on the hypergrid by the undirected Talagrand objective on

these tracker functions. Indeed, the inspiration of these tracker

functions arose out of understanding the analysis in [33], in partic-

ular, the intermediate “6” function in their Section 4. As an homage,

we also denote our tracker functions with the same Roman letter,

even though it is different from their function.

1.3.1 Tracker Functions 6x for all x ∈ [=]3 . Let us begin with the

sort operator discussed earlier. Without loss of generality, fix the

ordering of coordinates in [3] to be (1, 2, . . . , 3). The operator sort8
for 8 ∈ [3] sorts the function on every 8-line. Given a subset (⊆ [3]
of coordinates, the function ((◦ 5) is obtained by sorting 5 on the

coordinates in (in that order.

Sorting along any dimension cannot increase the number of

violations along any other dimension, and therefore upon sorting

236

Directed Isoperimetric Theorems for Boolean Functions on the Hypergrid... STOC ’23, June 20–23, 2023, Orlando, FL, USA

on all dimensions, the result is a monotone function [24]. Suppose 5

is Y-far from monotone. Clearly, the total number of points changed

by sorting along all dimensions must be at least Y=3 . While this is

not obvious here, it will be useful to to track how the function value

changes when we sort along a certain subset (of coordinates. The

intuitive idea is: if the function value changes for most such partial

sortings, then perhaps the function is far from being monotone. To

this end, for every point x ∈ [=]3 , we define a Boolean function

6x : 2[3] → {0, 1} that tracks how the function value 5 changes as

we apply the sort operator a subset (of the coordinates. It is best

to think of the domain of 6x as subsets (⊆ [3].

Definition 1.6 (Tracker Functions 6x). Fix an x ∈ [=]3 . The
tracker function 6x : {0, 1}3 → {0, 1} is defined as

∀(⊆ [3], 6x (() := ((◦ 5) (x)

We provide an illustration of this definition in Figure 1.

Note that when 5 is a monotone function, all the functions 6x are

constants. Sorting does not change any values, so 6x (() is always
5 (x). On the other hand, if 5 is not monotone along dimension 8 ,

then there are points such that 6x ({8}) ≠ 5 (x). Indeed, one would
expect the typical variance of these 6x functions to be related to the

distance to monotonicity of 5 (technically not true, but we come to

this point later).

The tracker functions help us lower bound the (colorful) Tala-

grand objective for thresholded influence, in particular, the LHS

in Theorem 1.4. Recall that the Talagrand objective is the expected

square root of the colorful thresholded influences on the hyper-

grid function 5 . We lower bound this quantity by the expected

Talagrand objective on the undirected (colorful, however) influence

of the various 6x functions. Note that 6x functions are defined on

hypercubes. So we reduce the robust directed Talagrand inequality

on hypergrids to robust undirected Talagrand inequalities on hy-

percubes. This is the main technical contribution of our paper. Let

us define the (colored) influences of these 6x functions.

Definition 1.7 (Influence of the Tracking Functions). Fix

a x ∈ [=]3 and consider the tracking function 6x : {0, 1}3 → {0, 1}.
Fix a coordinate 9 ∈ [3]. The influence of 6x at a subset (along the

9 th coordinate is defined as

�
=9
6x (() = 1 iff 6x (() ≠ 6x ((⊕ 9) that is ((◦ 5) (x) ≠ ((⊕ 9 ◦ 5) (x)

In plain English, the influence of the 9th coordinate at a subset (is

1 if the function value (the hypergrid function) changes when we

include the dimension 9 to be sorted. Once again, note that the same

sensitive edge ((, (⊕ 9) is contributing towards both �
=9
6x (() and

�
=9
6x ((⊕ 9). We define a robust, colored version of these influences.

Definition 1.8 (Colorful Influence of the Tracking Func-

tions). Fix a x ∈ [=]3 and consider the tracking function 6x :

{0, 1}3 → {0, 1}. Fix any arbitrary coloring bx : � (2[3]) → {0, 1} of
the Boolean hypercube. Fix a coordinate 9 ∈ [3]. The influence of 6x
at a subset (along the 9 th coordinate is defined as

�
=9

6x,bx
(() = 1 iff 6x (() ≠ 6x ((⊕ 9) and 6x (() = bx ((, (⊕ 9)

The colorful total influence at the point (in 6x is defined as

�6x,bx (() :=
3∑

9=1

�
=9

6x,bx
(()

As before, for a sensitive edge ((, (⊕ 9) of6x, we count it towards the
influence of the endpoint whose value equals the color bx ((, (⊕ 9).
The main technical contribution of this paper is proving that for

any function 5 : [=]3 → {0, 1} and any arbitrary coloring j : � →
{0, 1} of the hypergrid edges, for every x ∈ [=]3 there exists a

coloring bx : � (2[3]) → {0, 1} of the Boolean hypercube edges,

such that

)Φj
(5) := Ex∈[=]3

[√
Φ5 ,j (x)

]
⪆ Ex∈[=]3E(⊆[3] [

√
�6x,bx (()]

(H1)

We explain the ≈ in the above inequality in the next subsection.

Why is a statement like (H1) useful? Because the RHS terms are

Talagrand objectives on colored influences on the usual undirected

hypercube. Therefore, we can apply undirected Talagrand bounds

known from [33] to get an upper bound on the variance.

Corollary 1.9 (Corollary of Theorem 1.8 in [33]). Fix 5 :

[=]3 → {0, 1}. Fix an x ∈ [=]3 and consider the tracking function6x :

{0, 1}3 → {0, 1}. Consider any arbitrary coloring bx : � (2[3]) →
{0, 1} of the Boolean hypercube. Then, for every x ∈ [=]3 , we have

E(⊆[3] [
√
�6x,bx (()] = Ω(var(6x))

The final piece of the puzzle connects var(6x)’s with the distance

to monotonicity. Ideally, we would have liked to have a statement

such as the following true.

Ex∈[=]3 [var(6x)] ≈ Ω(Y5) (H2)

We now see that (H1), Corollary 1.9, and (H2) together implies The-

orem 1.4 (indeed without the log=).

1.3.2 High Level Description of our Approaches.

Addressing the ≈ in (H1) via Semisorting. As stated, we do not

know if (H1) is true. However, we establish (H1) for semisorted

functions 5 : [=]3 → {0, 1}. A function 5 is semisorted if on any

line ℓ , the restriction of the function on the first half is sorted and

the restriction on the second half is sorted. This may seem like

a simple subclass of functions, but note that all functions on the

Boolean hypercube (= = 2) are vacuously semisorted. Thus, proving

Theorem 1.4 on semi-sorted functions is already a generalization

of the [33] result.

We reduce Theorem 1.4 on general functions to the same bound

for semisorted functions. Consider semisorting 5 , which means

we sort 5 on each half of every line. Suppose the Talagrand ob-

jective did not increase and the distance to monotonicity did not

decrease. Then Theorem 1.4 on the semisorted version of 5 implies

Theorem 1.4 on 5 . What we can prove is that: given the semisorted

function, one can find a recoloring of the hypergrid edges such

that the Talagrand objective doesn’t increase. We comment on our

techniques to prove such a statement in a later paragraph.

Although semisorting can’t increase the Talagrand objective, it

can clearly reduce the distance to monotonicity. However, a rela-

tively simple inductive argument proves Theorem 1.4 with a log=

237

Directed Isoperimetric Theorems for Boolean Functions on the Hypergrid... STOC ’23, June 20–23, 2023, Orlando, FL, USA

dominates (ie, for every x) when we move from '8−1 (() to '8 (().
Thus, '8−1 (() ≥ '8 (().

The other inequality '8−1 (() ≥ '8 ((+ 8), however, is much

trickier to establish. In '8 ((+ 8), the second summation under the

square-root, the Φ terms, are actually on a different function. The

Φ(◦5 (x; 9) terms in '8−1 (() are the thresholded influences of the

function after sorting on coordinates in (. But in '8 ((+ 8), these
terms are Φ((+8)◦5 (x; 9), the thresholded influences of x for the

function after sorting on (+ 8 . Although, it is true that sorting on
more coordinates cannot increase the total number of violations

along any dimension, this fact is not true point-wise. So, a point-

wise argument as in the previous inequality is not possible.

The argument for this inequality proceeds line-by-line. One fixes

an 8-line ℓ and considers the vector of “hybrid function” values on

this line. We then consider this vector when moving from '8−1 (()
to '8 ((+ 8), and we need to show that the sum of square roots can

get only smaller. This is where one of our key insights comes in: the

theory of majorization can be used to assert these bounds. Roughly

speaking, a vector a (weakly) majorizes a vector b if the sum of

the :-largest coordinates of a dominates the sum of the :-largest

coordinates of b, for every : . A less balanced vector majorizes a

more balanced vector. If the ℓ1-norms of these vectors are the same,

then the sum of square roots of the entries of a is at most the sum

of square roots of that of b. This follows from concavity of the

square-root function.

Our overarching mantra throughout this paper is this: whenever

we perform an operation and the hybrid-influence-vector induced

by a line changes, the new vector majorizes the old vector. Specifi-

cally, these vectors are generated by look at the terms of '8−1 (()
and '8 ((+ 8) restricted to 8-lines.

To prove this vector-after-operation majorizes vector-before-

operation, we need some structural assumptions on the function.

Otherwise, it’s not hard to construct examples where this just fails.

The structure we need is precisely the semisortedness of 5 . When a

function is semisorted, the majorization argument goes through. At

a high level, when 5 is semisorted, the vector of influences (along a

line) satisfy various monotonicity properties. In particular, when

we (fully) sort on some coordinate 8 , we can show the points losing

violations had low violations to begin with. That is, the vector of

violations becomes less balanced, and the majorization follows.

The above discussion disregarded the colors. With colors, the

situation is noticeably more difficult. Although the function 5 is

assumed to be semisorted, the coloring j : � → {0, 1} is adversarial.
So even though the vector of influences may have monotonicity

properties, the colored influences may not have this structure. So

a point with high influence could have much lower colored influ-

ence. Note that the sort operator is insensitive to the coloring. So

the majorization argument discussed above might not hold when

looking at colored influences.

With colors, (Hybrid) is replaced by the “colored version” of the

same. To carry out the majorization argument, we need to construct

a family of colorings bx on the =3 different hypercubes. We also

need 23 many different auxiliary colorings j(of the hypergrid,

constructed after every sort operation. The argument is highly

technical. But all colorings are chosen to follow our mantra: vector

after operation should majorize vector before operation. The same

principle is also used to prove the previous claim that semisort-

ing an interval can only decrease the Talagrand objective, after a

recoloring.

Addressing the ≈ in (H2) via Random Sorts. To finally complete

the argument, we need (H2) that relates the average variance of

the 6x functions to the distance to monotonicity of 5 . As discussed

earlier, (H2) is false, even for the case of hypercubes. Nevertheless,

one can use (H1) and Corollary 1.9 to prove a lower bound on

)Φj
(5) with respect to Y5 . This is the telescoping argument of

KMS, refined in [37]. We describe the main ideas below. The first

observation is that Ex∈[=]3 [var(6x)] is roughly E([Δ((◦ 5 , (◦ 5]
where (is a uniform random subset of coordinates. The distance to

monotonicity Y5 is approximated by Δ

(
5 , (◦ (◦ 5

)
which, by the

triangle inequality, is at most Δ(5 , (◦ 5) +Δ((◦ 5 , (◦ 5). Thus, we
get a relation between Y5 , the expected var(6x), and the distance

between 5 and a “random sort” of 5 . Therefore, if (H2) is not true,

then a random sort of 5 must be still far from being monotone,

and then one can repeat the whole argument on just this random

sort itself. In one of these log3 “repetitions”, the (H2) must be true

since in the end we get a monotone function (which can’t be far

from being monotone). And this suffices to establish Theorem 1.4.

We re-assert that the main ideas are already present in [33, 37].

However, we require a more general presentation to make things

work for hypergrids.

1.4 Full Version

The implementation and discussion of the above ideas take some

space to describe and won’t fit in the space provided for the ex-

tended abstract. We refer the reader to the full version of this pa-

per [7] for the detailed explanation of the ideas above.

1.5 Related Work

Monotonicity testing has seen much activity since its introduction

around 25 years ago [1–6, 8–12, 14, 16–18, 21–34, 38–40].

We have already covered much of the previous work on Boolean

monotonicity testing over the hypercube, but give a short recap.

For convenience of presentation, in some results, we subsume Y-

dependencies using the notation $Y . The problem was introduced

by Goldreich et al. [29] and Raskhodnikova [38], who described an

$ (3/Y)-query tester. Chakrabarty and Seshadhri [18] achieved the

first sublinear in dimension query complexity of $̃Y (37/8) using
directed isoperimetric inequalities. Chen, Servedio, and Tan [22] im-

proved the analysis to $̃Y (35/6) queries. Fischer et al. [28] had first

shown an Ω(
√
3)-query lower bound for non-adaptive, one-sided

testers, by a short and neat construction. The non-adaptive, two-

sided Ω̃(
√
3) lower bound is much harder to attain, and was done by

Chen,Waingarten, and Xie [23], improving on the Ω(31/2−2) bound
from [21], which itself improved on the Ω̃(31/5) bound of [22]. [33]
gave an $̃Y (

√
3)-query tester, via the robust directed Talagrand

inequality.

While this resolves the non-adaptive testing complexity (up to

poly(Y−1 log3) factors) for the hypercube, the adaptive complexity

is still open. The first polynomial lower bound of Ω̃(31/4) for adap-
tive testers was given by Belovs and Blais [3] and has since been im-

proved to Ω̃(31/3) by Chen, Waingarten, and Xie [23]. Chakrabarty

239

STOC ’23, June 20–23, 2023, Orlando, FL, USA Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri

and Seshadhri [20] gave an adaptive $̃Y (�5)-query tester, thereby

showing that adaptivity can help in monotonicity testing. The 31/3

vs
√
3 query complexity gap is an outstanding open question in

property testing.

There has been work on approximating the distance to mono-

tonicity in poly(3, Y5)-queries. Fattal and Ron [26] gave the first

non-trivial result of an$ (3)-approximation, and Pallavoor, Raskhod-

nikova, andWaingarten [37] gave a non-adaptive$ (
√
3)-approximation

(all running in poly(3, Y5) time). They also show that non-adaptive

poly(3)-time algorithms cannot beat this approximation factor.

The above discussion is only for Boolean valued functions on

the hypercube. For arbitrary ranges, the original results on mono-

tonicity testing gave an$ (32/Y)-query tester [24, 29]. Chakrabarty

and Seshadhri [17] proved that $ (3/Y)-queries suffices for mono-

tonicity testing, matching the lower bound of Ω(3) of Blais, Brody,
and Matulef [11]. The latter bound holds even when the range

size is
√
3 . A recent result of Black, Kalemaj, and Raskhodnikova

showed a smooth trade-off between the
√
3 bound for the Boolean

range and the 3 bound for arbitrary ranges ([10]). Consider func-

tions 5 : {0, 1}3 → [A]. They gave a tester with query complexity

$̃Y (A
√
3), achieved by extending the directed Talagrand inequality

to arbitrary range functions. Their techniques are quite black-box

and carry over to other posets. We note that their techniques can

also be ported to our setting, so we can get an $̃Y (A=
√
3)-query

monotonicity tester for functions 5 : [=]3 → [A].
We now discuss monotonicity testing on the hypergrid. We dis-

cuss more about the Y-dependencies, since there have been in-

teresting relevant discoveries. As mentioned above, [24] gives a

non-adaptive, one-sided $ ((3/Y) log2 (3/Y))-query tester. This was

improved to $ ((3/Y) log(3/Y)) by Berman, Raskhodnikova, and

Yaroslavtsev [4]. This paper also showed an interesting adaptivity

gap for 2D functions 5 : [=]2 → {0, 1} : there exists an $ (1/Y)-
query adaptive tester (in fact, for any constant dimension 3), and

they show an Ω(log(1/Y)/Y) lower bound for non-adaptive testers.

Previous work [8] by the authors gave an $̃Y (35/6 log=)-query
tester, by proving a directed Margulis inequality on augmented

hypergrids. Another work [9] of the authors, and subsequently

a work [32] by Harms and Yoshida, designed domain reduction

methods for monotonicity testing, showing how = can be reduced

to poly(Y−1, 3) by subsampling the hypergrid.

For hypergrid functions with arbitrary ranges, the optimal com-

plexity is known to be Θ(3 log=) [17, 19]. When the range is [A]
and 3 = 1, one can get $ (log A)-query testers [36].

ACKNOWLEDGMENTS

Hadley Black was supported by NSF award AF:Small 2007682,

NSF Award: Collaborative Research Encore 2217033. Deeparnab

Chakrabarty was supported by NSF-CAREER award 2041920. C. Se-

shadhri was supported byNSFDMS-2023495, CCF-1740850, 1839317,

1813165, 1908384, 1909790, and ARO Award W911NF1910294.

REFERENCES
[1] Nir Ailon and Bernard Chazelle. 2006. Information Theory in Property Testing

and Monotonicity Testing in Higher Dimension. Information and Computation
204, 11 (2006), 1704–1717.

[2] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. 2007. Estimating
the distance to a monotone function. Random Structures Algorithms 31, 3 (2007),

371–383. Prelim. version in Proc., RANDOM 2004.
[3] Aleksandrs Belovs and Eric Blais. 2021. A Polynomial Lower Bound for Testing

Monotonicity. SIAM Journal on Computing (SICOMP) 50, 3 (2021), 406–433. Prelim.
version in Proc., STOC 2016.

[4] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. 2014. !? -testing.
In Proceedings, ACM Symposium on Theory of Computing (STOC).

[5] Arnab Bhattacharyya. 2008. A note on the distance to monotonicity of boolean func-
tions. Technical Report 012. Electronic Colloquium on Computational Complexity
(ECCC).

[6] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyoming Jung, Sofya
Raskhodnikova, and David Woodruff. 2012. Lower Bounds for Local Mono-
tonicity Reconstruction from Transitive-Closure Spanners. SIAM Journal on
Discrete Mathematics (SIDMA) 26, 2 (2012), 618–646. Prelim. version in Proc.,
RANDOM 2010.

[7] Hadley Blach, Deeparnab Chakrabarty, and C. Seshadhri. 2022. Directed Isoperi-

metric Theorems for Boolean Functions on the Hypergrid and an $̃ (=
√
3) Mono-

tonicity Tester. Electronic Colloquium on Computational Complexity (ECCC) 162
(2022). https://eccc.weizmann.ac.il/report/2022/162/

[8] Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. 2018. A > (3) ·
polylog(=) Monotonicity Tester for Boolean Functions over the Hypergrid [=]3 .
In Proceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA).

[9] Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. 2020. Domain Reduction:
A> (3) Tester for Boolean Functions in3-Dimensions. In Proceedings, ACM-SIAM
Symposium on Discrete Algorithms (SODA).

[10] Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova. 2020. Isoperimetric
Inequalities for Real-Valued Functions with Applications to Monotonicity Testing.
arXiv abs/2011.09441 (2020).

[11] Eric Blais, Joshua Brody, and Kevin Matulef. 2012. Property testing lower bounds
via communication complexity. Computational Complexity 21, 2 (2012), 311–358.
Prelim. version in Proc., CCC 2011.

[12] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. 2014. Lower Bounds
for Testing Properties of Functions over Hypergrid Domains. In Proceedings, IEEE
Conference on Computational Complexity (CCC).

[13] Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer. 2023. Improved
Monotonicity Testers via Hypercube Embeddings. In Proceedings, Innovations in
Theoretical Computer Science (ITCS). 25:1–25:24.

[14] Jop Briët, Sourav Chakraborty, David García Soriano, and Ari Matsliah. 2012.
Monotonicity testing and shortest-path routing on the cube. Combinatorica 32, 1
(2012), 35–53.

[15] Clément L. Canonne, Xi Chen, Gautam Kamath, Amit Levi, and Erik Waingarten.
2021. Random Restrictions of High Dimensional Distributions and Uniformity
Testing with Subcube Conditioning. In Proceedings, ACM-SIAM Symposium on
Discrete Algorithms (SODA). 321–336.

[16] Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C Seshadhri. 2017.
Property testing on product distributions: Optimal testers for bounded derivative
properties. ACM Trans. on Algorithms (TALG) 13, 2 (2017), 1–30. Prelim. version
in Proc., SODA 2015.

[17] Deeparnab Chakrabarty and C. Seshadhri. 2013. Optimal bounds for monotonicity
and Lipschitz testing over hypercubes and hypergrids. In Proceedings, ACM
Symposium on Theory of Computing (STOC).

[18] Deeparnab Chakrabarty and C. Seshadhri. 2014. An > (=) monotonicity tester
for Boolean functions over the hypercube. SIAM Journal on Computing (SICOMP)
45, 2 (2014), 461–472. Prelim. version in Proc., STOC 2013.

[19] Deeparnab Chakrabarty and C. Seshadhri. 2014. An Optimal Lower Bound for
Monotonicity Testing over Hypergrids. Theory of Computing 10 (2014), 453–464.
https://doi.org/10.4086/toc.2014.v010a017 Prelim. version in Proc., RANDOM
2013.

[20] Deeparnab Chakrabarty and C. Seshadhri. 2019. Adaptive Boolean Monotonic-
ity Testing in Total Influence Time. In Proceedings, Innovations in Theoretical
Computer Science (ITCS). 20:1–20:7.

[21] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. 2015. Boolean Func-

tion Monotonicity Testing Requires (Almost)$ (=1/2) Non-adaptive Queries. In
Proceedings, ACM Symposium on Theory of Computing (STOC).

[22] Xi Chen, Rocco A. Servedio, and Li-Yang. Tan. 2014. New Algorithms and Lower
Bounds for Monotonicity Testing. In Proceedings, IEEE Symposium on Foundations
of Computer Science (FOCS).

[23] Xi Chen, Erik Waingarten, and Jinyu Xie. 2017. Beyond Talagrand: New Lower
Bounds for Testing Monotonicity and Unateness. In Proceedings, ACM Symposium
on Theory of Computing (STOC).

[24] Yevgeny Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron,
and Alex Samorodnitsky. 1999. Improved Testing Algorithms for Monotonic-
ity. Proceedings, International Workshop on Randomization and Computation
(RANDOM) (1999).

[25] Funda Ergun, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. 2000. Spot-checkers. J. Comput. System Sci. 60, 3 (2000), 717–751.
Prelim. version in Proc., STOC 1998.

240

Directed Isoperimetric Theorems for Boolean Functions on the Hypergrid... STOC ’23, June 20–23, 2023, Orlando, FL, USA

[26] Shahar Fattal and Dana Ron. 2010. Approximating the Distance to Monotonicity
in High Dimensions. ACM Trans. on Algorithms (TALG) 6, 3 (2010).

[27] Eldar Fischer. 2004. On the strength of comparisons in property testing. Infor-
mation and Computation 189, 1 (2004), 107–116.

[28] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, and Ronitt
Rubinfeld. 2002. Monotonicity Testing over General Poset Domains. Proceedings,
ACM Symposium on Theory of Computing (STOC) (2002).

[29] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex
Samordinsky. 2000. Testing Monotonicity. Combinatorica 20 (2000), 301–337.
Prelim. version in Proc., FOCS 1998.

[30] Shirley Halevy and Eyal Kushilevitz. 2003. Distribution-free Property Testing.
Proceedings, International Workshop on Randomization and Computation (RAN-
DOM) (2003).

[31] Shirley Halevy and Eyal Kushilevitz. 2008. Testing monotonicity over graph
products. Random Structures Algorithms 33, 1 (2008), 44–67. Prelim. version in
Proc., ICALP 2004.

[32] Nathaniel Harms and Yuichi Yoshida. 2022. Downsampling for Testing and
Learning in Product Distributions. In Proceedings, International Colloquium on
Automata, Languages and Programming (ICALP), Vol. 229. 71:1–71:19.

[33] Subhash Khot, Dor Minzer, and Muli Safra. 2018. On monotonicity testing and
Boolean isoperimetric-type theorems. SIAM J. Comput. 47, 6 (2018), 2238–2276.
Prelim. version in Proc., FOCS 2015.

[34] Eric Lehman and Dana Ron. 2001. On disjoint chains of subsets. Journal of
Combinatorial Theory, Series A 94, 2 (2001), 399–404.

[35] Grigory A. Margulis. 1974. Probabilistic Characteristics of Graphs with Large
Connectivity. Problemy Peredachi Informatsii 10, 2 (1974), 101–108.

[36] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. 2018.
Parameterized Property Testing of Functions. ACM Trans. Comput. Theory 9, 4
(2018), 17:1–17:19. Prelim. version in Proc., ITCS 2017.

[37] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. 2022.
Approximating the distance to monotonicity of Boolean functions. Random
Structures Algorithms 60, 2 (2022), 233–260. Prelim. version in Proc., SODA 2020.

[38] Sofya Raskhodnikova. 1999. Monotonicity Testing. Masters Thesis, MIT (1999).
[39] Dana Ron, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and OmriWeinstein.

2012. Approximating the Influence of Monotone Boolean Functions in$ (
√
=)

Query Complexity. ACM Trans. Comput. Theory 4, 4 (2012), 11:1–11:12. Prelim.
version in Proc., RANDOM 2011.

[40] Michael E. Saks and C. Seshadhri. 2008. Parallel monotonicity reconstruction. In
Proceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA).

[41] Michel Talagrand. 1993. Isoperimetry, logarithmic Sobolev inequalities on the
discrete cube, and Margulis’ graph connectivity theorem. Geom. Func. Anal. 3, 3
(1993), 295–314.

Received 2022-11-07; accepted 2023-02-06

241

	Abstract
	1 Introduction
	1.1 Main Results
	1.2 Challenges
	1.3 Main Ideas
	1.4 Full Version
	1.5 Related Work

	Acknowledgments
	References

