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—— Abstract

We present approximation algorithms for the Fault-tolerant k-Supplier with Outliers (F£SO) problem.
This is a common generalization of two known problems — k-Supplier with Outliers, and Fault-tolerant
k-Supplier — each of which generalize the well-known k-Supplier problem. In the k-Supplier problem
the goal is to serve n clients C, by opening k facilities from a set of possible facilities F'; the objective
function is the farthest that any client must travel to access an open facility. In FkSO, each client v
has a fault-tolerance £, and now desires ¢, facilities to serve it; so each client v’s contribution to the
objective function is now its distance to the £, closest open facility. Furthermore, we are allowed
to choose m clients that we will serve, and only those clients contribute to the objective function,
while the remaining n — m are considered outliers.

Our main result is a (4¢ — 1)-approximation for the FkSO problem, where ¢ is the number of
distinct values of ¢, that appear in the instance. At ¢ = 1, i.e. in the case where the £,’s are
uniformly some ¢, this yields a 3-approximation, improving upon the 11-approximation given for the
uniform case by Inamdar and Varadarajan [2020], who also introduced the problem. Our result for
the uniform case matches tight 3-approximations that exist for k-Supplier, k-Supplier with Outliers,
and Fault-tolerant k-Supplier.

Our key technical contribution is an application of the round-or-cut schema to FESO. Guided
by an LP relaxation, we reduce to a simpler optimization problem, which we can solve to obtain
distance bounds for the “round” step, and valid inequalities for the “cut” step. By varying how we
reduce to the simpler problem, we get varying distance bounds — we include a variant that gives
a (2" + 1)-approximation, which is better for ¢t € {2,3}. In addition, for t = 1, we give a more
straightforward application of round-or-cut, yielding a 3-approximation that is much simpler than
our general algorithm.
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1 Introduction

Clustering problems form a class of discrete optimization problems that appear in many
application areas ranging from operations research [28, 32, 30] to machine learning [21, 1, 31,
24]. They also have formed a sandbox where numerous algorithmic ideas, especially ideas
in approximation algorithms, have arisen and developed over the years. One of the first
clustering problems to have been studied is the k-Supplier problem [19]: in this problem,
one is given a set of points in a metric space (C' U F,d), where C' is the set of “clients” and
F is the set of “facilities”, and a number k. The objective is to “open” a collection S C F
of k centers so as to minimize the maximum distance between a client v € V' to its nearest
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open center in S, that is, minimize max,cc mingcgd(f,v). It has been known since the
mid-80’s, due to an influential paper of Hochbaum and Shmoys [19], that this problem has a
3-approximation and no better approximation is possible!.

One motivation behind the objective function above is that d(v,S) := mingeg d(f, v)
indicates how (un)desirable the client v perceives the the set of open facilities, and the
k-Supplier objective tries to take the egalitarian view of trying to minimize the unhappiest
client. However, in certain applications, a client v would perhaps be interested not only in
having one open facility in a small neighborhood but a larger number. For instance, the
client may be worried about some open facilities closing down. This leads to the fault-tolerant
versions of clustering problems. In this setting, each client v has an integer ¢, associated
with it, and the desirability of a subset S for v is not determined by the nearest facility in S,
but rather the £,*" nearest facility. That is, we sort the facilities in S in increasing order of
d(f,v) and let dy, (v, S) denote the £, distance in this order (so d(v,S) = dy(v,S)). The
Fault-tolerant k-Supplier (FkS) problem is to find S C F with |S| = k so as to minimize
maxyec de, (v,5). As far as we know, the Fault-tolerant k-Supplier problem has not been
explicitly studied in the literature?, however, as we show in Section 2, there is a simple
3-approximation based on the same scheme developed by Hochbaum and Shmoys [19].

One drawback of the k-Supplier objective is that it is extremely sensitive to outliers; since
one is trying to minimize the maximum, a single far-away client makes the optimal value large.
To allay this, people have considered the “outlier version” of the problem, k-Supplier with
Outliers (kSO). In kSO, one is given an additional integer parameter m, and the goal of the
algorithm is to open a subset S of k facilities and recognize a subset T' C C' of m-clients, so as
to minimize max,er d(v,.S). That is, all clients outside T are deemed outliers and one doesn’t
consider their distance to the solution. The outlier version is algorithmically interesting
and is not immediately captured by the Hochbaum-Shmoys technique. Nevertheless, in
2001, Charikar, Khuller, Mount, and Narsimhan [10] described a combinatorial, greedy-like
3-approximation for kSO2. Since then, outlier versions of many clustering problems have
been considered, and it has been a curious feature that the approximability of the outlier
version has been of the same order as the approximability of the original version without
outliers.

In this paper, as suggested by the title, we study the Fault-tolerant k-Supplier with
Outliers (FKSO) problem which generalizes F&S and kSO. This problem was explicitly studied
only recently by Inamdar and Varadarajan [20]; but that work only studies the uniformly
fault-tolerant case where all £,’s are the same (say, £). The main result of [20] was a “reduction”
to the “non-fault-tolerant” version of the clustering problem with outliers, and their result
is that an a-approximation for the kSO problem translates* to a (3a + 2)-approximation
for the FESO problem with uniform fault-tolerance. Setting o = 3 from the aforementioned
work [10] on kSO, one gets an 11-approximation for the uniform case of F£SO.

Howard Karloff is attributed the hardness result in [19].

although the fault-tolerant facility location and k-median have been extensively studied [22, 17, 36, 18];
more on this in Section 1.1.

A different LP-based approach was taken by Chakrabarty, Goyal, and Krishnaswamy [6] and vastly
generalized by Chakrabarty and Negahbani [7]; more on this in Sections 1.1 and 2.

4 Actually, they [20] only study the “k-Center” case when F = C, and in that case the result is (2o + 2);
their proofs do reveal that for the Supplier version, one obtains (3« + 2).
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Our Contributions

We begin by providing a simple LP-based 3-approximation for the F£ESO problem when
the fault-tolerances are uniform, that is, ¢, = ¢ for all v € C. This improves the known
11-approximation [20]. Even this special case is interesting in that when the uniform
fault-tolerance ¢ divides k, then the “natural LP” suffices to obtain a 3-approximation using a
rounding scheme similar to a prior rounding algorithm for £SO [6]. However, when ¢ doesn’t
divide k, then we need to add in valid inequalities akin to Chvatal-Gomory cuts [13, 16]
in integer programming. Nevertheless, the rounding algorithm is simple and is described
in Section 3.

Our main contribution is to the general FkSO problem, when £,’s can be different for
different clients. This problem becomes much more complex for the simple reason that
if two clients v and v’ are located very close together, but ¢, < £, then opening £,
facilities around v would still render v' unhappy — this does not happen in the uniform
case. Therefore, the Hochbaum-Shmoys procedure [19], or more precisely the LP-guided
Hochbaum-Shmoys rounding that is known for £SO [6], simply doesn’t apply under non-
uniform fault-tolerance. Indeed, the natural LP relaxation and its natural strengthening,
which give us the 3-approximation for the uniform case, has large integrality gaps even when
the £,’s take only two values; we show this in Section 3.1.

Our main result is a (4¢ — 1)-approximation for the F£SO problem when there are ¢
distinet® £,’s (that is, [{¢, : v € C}| = t). When t = 1, we recover the 3-approximation
mentioned above. This is not the most desirable result (one would hope a O(1)-approximation
for any t), but as the above integrality gap example illustrates, even when ¢ = 2, strong LPs
have bad integrality gaps. We also use the same schema to give a (2! + 1)-approximation,
which gives better approximation factors for ¢ € {2, 3}.

Our main technical contribution is to apply the round-or-cut schema introduced for
clustering problems by Chakrabarty and Negahbani [7] to FESO. In particular, this schema
uses a fractional solution {cov,}, . which indicates the extent to which each client v is an
“inlier” (that is, in the final set T' of at least m clients). Earlier works [6, 7] use this fractional
solution to guide the Hochbaum-Shmoys-style [19] rounding algorithm, creating a partition
on the set of clients and solving a simpler optimization problem on this partition. We also
use the same schemata, except that our partitioning scheme is a more general one warranted
by the non-uniform fault-tolerances; nevertheless, we show that we either obtain the desired
approximation factor (the “round” step), or we can prove that the cov,’s cannot arise as a
combination of integral solutions (the “cut” step). Once we do this, the round-or-cut schema
implies a polynomial time approximation factor. We also show that ¢ is the limiting factor in
our approach; more precisely, the diameter of the parts of the desired partition dictates the
upper bound on the approximation factor, and in Appendix B we construct an instance such
that the diameter needs to be Q(t). We leave the possibility of obtaining O(1)-approximations
for FESO, or alternatly proving a super-constant hardness, as an intriguing open problem.

5 We should point to the reader that one can’t simply solve ¢ different uniform FkSO versions and “stick
them together” to get such a result; although it is a natural idea, note that a priori we do not know
how many outliers one will obtain from each fault-tolerant class, and enumerating is infeasible.
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1.1 Related Work

The Hochbaum-Shmoys algorithm [19] gives a 3-approximation for the k-Supplier problem,
and has been extended to give approximation algorithms for multiple related problems.
Plesnik [33] gave one such extension, obtaining a 3-approximation® when each client v
has weight w(v), and this scales the client’s “unhappiness”, so that the objective function
becomes max,ec (w(v) - minges d(v, f)). In another direction, Chakrabarty, Goyal, and
Krishnaswamy [6] gave an extension to k-Supplier with Outliers, using an LP relaxation to
indicate which clients are outliers, and obtaining a Hochbaum-Shmoys-like 3-approximation.
This was vastly extended by Chakrabarty and Negahbani [7], implying a 3-approximation
for multiple problems, including kSO with knapsack constraints on the facilities. Bajpai,
Chekuri, Chakrabarty, and Negahbani [4] generalized the aforementioned weighted ver-
sion [33] to handle outliers, matroid constraints, and knapsack constraints, obtaining constant
approximation ratios for each.

In the early 2000s, Jain and Vazirani [22] introduced the notion of fault-tolerance for the
Uncapacitated Facility Location (UFL) problem. The notion has thereafter been studied for
various related problems: UFL [17, 36, 5]; UFL with multiset solutions, often called facility
placement or allocation [37, 38, 34]; k-Median [36, 27, 18]; matroid and knapsack Median [15];
and k-Center [26, 11, 25, 27]. In particular relevance to this paper, the FkSO problem was
studied by Inamdar and Varadarajan [20]. In addition, prior work also addresses alternate
notions of fault-tolerance and outlier-type constraints. In a 2020 preprint, Deng [14] combines
fault-tolerance with an outlier-type constraint requiring that the number of client-facility
connections, rather than the weight of satisfied clients, be at least some m. An altogether
different notion of fault-tolerance has also been studied [12, 29, 35|, where clients each want
just one facility, but an adversary secretly causes some k' < k of the chosen facilities to fail.

The round-or-cut schema that this paper applies, has found widespread usage in clustering
problems, including in problems related to k-Supplier. For example, the weighted version
of k-Supplier [33, 4] can be extended to impose different budgets to different weight classes
— i.e. there is no longer one k, but one k; per distinct weight w;. This version admits a
constant-factor approximation for certain special cases [8, 23] via the round-or-cut schema.
Round-or-cut has also been used for k-Supplier with covering constraints [3], and for the
Capacitated Facility Location problem [2]. In the continuous clustering realm, where facilities
can be picked from a potentially infinite-sized ambient metric space, round-or-cut has been
used to circumvent the infinitude of the instance [9].

2 Preliminaries

Before we formally define our main problem, let us set up some important notation.

» Definition 1. Given a subset S C F, a client v € C, and a € [k], let du(v,S) be the
distance of v to its a™ closest neighbor in S (breaking ties arbitrarily and consistently). So
di(v,S) =d(v,S). Also let No(v,S) C S denote the a facilities in S that are closest to v.

» Definition 2 (Fault-tolerant k-Supplier and Fault-tolerant k-Supplier with Outliers). In the
Fault-tolerant k-Supplier (FkS) problem, we are given a finite metric space (CUF,d), where C
is a set of n clients and F is a set of poly(n) facilities. We are also given a parameter k € N,
and fault-tolerances {£, € [k|} .. The goal is to open k facilities, i.e. pick S C F : [S| <k,
minimizing max,ec dg, (v,.5).

5 The work [33] studies the k-Center case, where F' = C, and gives a 2-approximation; but the proofs
imply a 3-approximation for the Supplier version.
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In the Fault-tolerant k-Supplier with Outliers (FkSO) problem, we are given an FkS
instance along with an additional parameter m € [n]. The goal is to pick S of size k as before,
along with inliers T C C : |T| > m, minimizing max,cr dg, (v,5).

In the absence of fault-tolerances and outliers, i.e. in the k-Supplier problem, the Hochbaum-
Shmoys algorithm [19] achieves a 3-approximation as follows. It starts with a guess r of the
optimum value, large enough that every client j has a facility within distance r of itself, but
otherwise arbitrary. Then it picks an arbitrary client j, opens a facility within distance r of 7,
and deletes the set of “children” of j, which is child(j) := B(j,2r)NC = {v € C : d(v, j) < 2r}.
Then it repeats this with the remaining clients, until there are no clients left. Observe that
the j’s picked over the iterations — call them the set R — has the following well-separated
property.

» Definition 3 (r-well-separated set). A set X C C is r-well-separated if for distinct x,y € X,
we have d(xz,y) > 2r. Where r is clear from context, we simply say that X is well-separated.

Since R is well-separated, it takes |R| clients to provide every j € R with a facility in B(j,r).
So if |R| > k, then the guess of r is too small — we can double r and retry the algorithm. On
the other hand, if |R| < k, then the guess is either correct or too large, so we halve r and
retry. This binary search yields the correct r, and the following guarantee: {child(j)},cx
partitions C, and for a v € child(j), since d(v,j) < 2r and we opened a facility in B(j,7),
there is a facility within distance 3r of v. This means that we have a 3-approximation.
The Hochbaum-Shmoys algorithm described above, generalizes to give a 3-approximation
for FEkS via the following modifications: instead of picking j’s into R in arbitrary order,
we pick them in decreasing order of £,’s; we also open /; facilities in each B(j,7) : j € R,
instead of just one. This guarantees that, if v € child(j), ¢, < ¢;, allowing us to extend the
Hochbaum-Shmoys [19] guarantee to FkS. We now formally state this algorithm.

Algorithm 1 Hochbaum-Shmoys [19] modified for FS.

Input: C
1: U+ C
2: R« 0
380
4: while U # () do
J ¢ argmax,cy; 4y
R+ RU{j}
i1,172,...,1g, < L arbitrary facilities in B(j,r) N F > they exist by choice of r
S SU i1, i, ... g, }
child(j) +~{v e U : d(v,j) < 2r}
10: U + U\ child(y)
Output: SC F

To show that this algorithm yields a 3-approximation, we need to argue that Vv € C,
dg,(v,S) < 3r. To see this, consider j € R : v € child(j). Algorithm 1 guarantees that
by, <4y, 80 dyg,(v,8) <dg,(v,S). By triangle inequalities, this is at most d(v, j) + dy, (4, S).
By construction of child(j), d(v, j) < 2r; and since we open ¢; facilities in Line 7, dy, (§, S) < r.
We have just shown that

» Theorem 4. The FkS problem admits a 3-approximation.

23:5
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One way to achieve a 3-approximation for the k-Supplier with Outliers problem, described
in [6], is as follows: under a guess of r as before, a linear program relaxation is used to assign
variables cov,, € [0, 1] to each client v, representing whether v is “covered”, i.e. whether there
is an open facility in B(v,r). The LP-guided Hochbaum-Shmoys algorithm considers clients
in decreasing order of these cov,’s, and we wait to pick facilities until the loop terminates.
Then, facilities are opened near those j € R that have the k largest |child(j)|. The LP
relaxation is used to ensure that > m clients are served in this way. This does not generalize
directly to FESO because the decreasing order of ¢,’s that we employed above for FES can
conflict with the decreasing order of cov,’s (indeed, one may just expect clients v with large
£,’s would be more likely to be outliers, that is, have low cov,’s). So in our algorithm for
FESO, we elect to follow the cov, order, and explicitly force ¢, < ¢; for v’s that we pick into
child(j). This choice breaks the well-separated property of R, so our techniques are devoted
to obtaining other well-separated sets that can guide our rounding; details of this can be
found in Section 4. When all the /,’s are the same, though, we can indeed use the natural
LP relaxation (with a slight strengthening to take care of divisibility issues), and we show
this in the next section.

3 3-approximation for UFKSO

In this section, we address the uniform case, where all fault-tolerances in the instance are
the same, i.e.

» Definition 5 (Uniformly Fault-tolerant k-Supplier with Outliers (UFKSO)). The Uniformly
Fault-tolerant k-Supplier with Outliers problem is a special case of the FKSO problem where,
foranf e N, Yo e C, £, ="¢.

We prove that
» Theorem 6. The UFkKSO problem admits a 3-approrimation.

Our algorithm begins by rounding a solution to the following LP relaxation, closely
mimicking the 3-approximation for kSO [6] described in the last paragraph of the previous
section. This rounding suffices when ¢ | k. When ¢ 1 k, we identify a valid inequality for the
round-or-cut framework. In the LP, the variables {cov,}, o
v € C is covered i.e. served within distance 7; and variables {z;}, ., denote whether or not a
facility ¢ € F' is open. B(v,r) is the ball of radius r around v, containing all points within
distance r of v, i.e. B(v,r):={x € CUF : d(v,z) <r}.

denote whether or not a client

Z cov, >m (WL1)

velC
S ai<k (WL2)

i€F
Yo € C, Z x; > fcov, (WL3)

1€FNB(v,r)

Yo e C :de(v,F)>r, cov,=0 (WL4)
YVweC,ie€F, 0<covy,z;<1 (WL5)

Here, (WL1) enforces that at least m clients must be covered, and (WL2) enforces that at
most k facilities can be opened. (WL3) and (WL4) connect the cov, variables with the x;
variables, ensuring that a client cannot be covered unless there are sufficient facilities opened
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within distance r of it. Finally, (WL5) enforces that a client can be covered only once, and a
facility can be opened only once. Claim 7 shows that this LP is a valid relaxation of our
problem. We defer its proof to Appendix A.

> Claim 7. An instance of UFESO is feasible iff it admits an integral solution satisfying
(WL1)-(WLS5).

Given a solution ({covy},cc, {xi};cp) satisfying (WL1)-(WL5), we round as per Al-
gorithm 2. This algorithm constructs a well-separated set of representatives R.o, C C. Each
client v that has cov, > 0 becomes the child of some representative, yielding a partition
{child(j)} € Ry of these clients. Then, facilities Scoy, € F are opened in a manner that serves
the L%J largest child(j) sets within distance 3r.

Algorithm 2 3-approximation for UFkSO.
Input: ({cov,}, .o, {@i};cr) satisfying (WL1)-(WL5)

1: Reoy < 1]

2: U+ {veC:cov, >0}

3: while U # () do > filtering
4: J < argmax, ¢y Covy,

5: Reoy ¢ Reoy U {’U}

6: child(j) <+ B(j,2r)NU

7 U « U\ child(j)

8: Scov ]

9: R+ Reoy
10: while |Scoy| < L%J ¢ do > picking facilities to open
11: J ¢ argmax ¢ p [child(j')]
12: R+ R'\ {j}
13: Scov SCOVUNg(j, F)

14: return Seo,
Output: Sy C F > open facilities

We argue that Algorithm 2 opens at most k facilities, and that if Ny(j, F) is opened, then
child(4) is served within distance 3r. Formally,

» Lemma 8. Given ({covy},cc {i}icp) satisfying (WL1)-(WL5),
[Scov| < k, and
Let R.,, be the clients j for which Ny(j, F) was added to Seoy in Line 18. Then Vj € R

cov cov’

Vo € child(5), d¢(v, Scov) < 3r.

Proof.
Line 13 adds ¢ facilities to Seoy in each iteration. So Line 10 ensures that |Scoy| < k.
Consider v € child(j), j € R.,,. By triangle inequalities, d¢(v, Scov) < d(v,j) + de(J, Scov)-

By Line 6, d(v,j) < 2r. Since N¢(j,F) C Scov, de(j, Scov) < de(j, F'); and by Line 2,
cov; > 0, i.e. by (WL4), de(j, F) < 7. <

It remains to show that . p, |child(j)| = m. We have

Z |child(j)| cov; > Z cov, = Z cov, > m, (1)

JE Ry vEC:cov, >0 veC

STACS 2024
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where the first inequality is by Line 4 and the last inequality is by (WL1). We also have

ZcowﬁZ Z %S %§%7 (2)

JEReov JERcoy iEFﬂB(j,T) ieF

where the first inequality is by (WL3); the second inequality is because Reoy is well-separated;
and the last inequality is by (WL2). So we can view the LHS in (1) as a weighted sum of
|child(j)| values, the weights being cov;’s. Since this weighted sum is > m and the weights
sum to < k/¢, the L%J largest child-sets must contain at least k% : L%J elements. Hence, if
£ | k, we are done.

In fact, we observe the following even when ¢t k: if we can replace the RHS in (2) with
L%J, then the weighted-sum argument would yield Lka . L%J = m. To achieve this, observe
that the argument in (2) applies to any well-separated set R C C, yielding > jer COV) < k/eL.
Also, for any integral solution, the RHS can be replaced by its floor. Thus the following are
valid inequalities:

. k

VR C C: R is well-separated, Z cov; < {KJ . (WLCut)

JER

We have showed that if (WLCut) holds for R = R, then we are done, i.e.

> Lemma 9. Given ({covy},cc, {@iticp) satisfying (WL1)-(WL5), if (WLCut) holds for
R = Reoy where Reoy, is constructed as per Lines 1-7, then Seoy @S a 3-approximation.

Using this, we now present our overall algorithm via a round-or-cut schema.

Proof of Theorem 6. Given ({covy},cc,{%i};cr) satisfying (WL1)-(WL5), we round as
per Lines 1-7 to obtain Re, € C. If (WLCut) holds for R = Reoy, then we continue
Algorithm 2 to obtain S., that satisfies the desired guarantees via Lemmas 8 and 9.
Otherwise, we know that the valid inequality (WLCut) for R = R, is violated. So we pass
it to the ellipsoid algorithm as a separating hyperplane, obtaining fresh cov,’s with which we
restart Algorithm 2. By the guarantees of the ellipsoid algorithm, in polynomial time, we
either round to get Scoy, or detect that the guess of r is too small. <

We conclude this section by exhibiting that the above algorithm fails for the general
problem. In particular, we exhibit an infinite integrality gap when there are just two different
fault-tolerances in the instance.

3.1 Gap example for FESO
Consider (WL3) generalized to F£SO:

Yo e C, Z Tiy > £yCOVy ; (WL3)
i€FNB(v,r)

and a similar generalization of (WLCut):

VR C C : R is well-separated, {Z évcov”—‘ <k. (WLCut’)
vER

These, along with (WL1)-(WL2) and (WL4)-(WL5), generalize the earlier LP to F£SO. We
now show an infinite integrality gap w.r.t. this LP.
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1k 1/k 1/k

Figure 1 One of the k identical gadgets in the gap example, showing LP values in red (x values)
and blue (cov values). The “edges” represent distance 1, and all other distances are determined by
making triangle inequalities tight. The fault-tolerances are £y, = £y, = -+ =¥y, =k, and £, = 1.

Consider k identical gadgets, each like in Figure 1, infinitely apart from each other. Let
m = 2k. The small client in each gadget (v in Figure 1) has fault-tolerance 1. The big
clients in each gadget (v1,va,...,v; in Figure 1) have fault-tolerance k. Within a gadget, an
integral solution only benefits from either picking one facility to serve just the small client,
or picking all facilities to serve all (k + 1) clients. So over all gadgets, an integral solution
can either pick one facility per gadget, or pick all facilities in exactly one gadget, either way
serving k < m clients. Since all facilities are within distance 1 of the clients in their gadget,
the above is true for an integral solution with any radius dilation o > 1.

But the LP can assign z; = 1/k to each of the k? facilities in the instance. This allows it
to assign cov, =1 to all the small clients, and cov,, = cov,, = ---cov,, = 1/k to all the big

clients, thus serving k-1 + k2 - % = 2k = m clients.

4 Fault-tolerant k-Supplier with Outliers

In this section, we address FESO in its full generality. We use t to denote the number of
distinct fault-tolerances in the instance, i.e. |{{, : v € C'}| = ¢t. We prove that

» Theorem 10. The FkSO problem admits a (min {4t — 1, 2" + 1})-approzimation.

4.1 Strong LP Relaxation and the Round-or-Cut Schema

To circumvent the gap example in Section 3, we adapt the following stronger linear program
idea from Chakrabarty and Negahbani [7]. As before, r is the guess of the optimal solution,
and we have the same fractional variables cov, indicating coverage. However, we assert that
these cov,’s arise as a convex combination of integral solutions. More precisely, we have
exponentially many auxilary variables {zg} SCF:|S|<k indicating possible locations of open
facilities and the fractional amount to which they are open. When such a solution is opened,
a client v is “covered” if there are ¢, facilities in an r-neighborhood. To this end, for a client
v, we define the collection F, := {S C F :|S| < kA |SNB(v,r)| > {,} of solutions which
can serve v. Therefore, the coverage cov, is simply the total fractional weight of sets in F,.
Formally, if r is a correct guess, then the following (huge) LP has a feasible solution.
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Z CoVy > M (L1)

veC
Yv e C, cov, = Z zs (L2)
SeF,
> zs<d (L3)
SCF:|S|<k
VSC F,Yve(C,0< zg,cov, <1 (L4)

(L1) enforces that at least m clients must be covered. (L2) connects the cov, and zg
variables, ensuring that a client v can only be covered via solutions in F,,. (L3)-(L4) enforce
convexity. (L4) also enforces that each client can be covered at most once.

» Observation 11. All cov, s that satisfy (L1)-(L4) also satisfy (WL1)-(WL5).

Also observe that we cannot efficiently figure out whether the above system is feasible
or not; indeed, if so we would solve the Fault-tolerant k-Supplier with Outliers problem
optimally. Nevertheless, one can use the round-or-cut schema to obtain an approrimation
algorithm. In order to do so, the first step is to use the dual of the above system to obtain
the collection of all valid inequalities on the cov,’s. Recall, a valid inequality is one that
every feasible cov, must satisfy; the lemma below from the literature [6], in some sense,
eliminates all the zg variables from the above program.

» Lemma 12 ([7, Lemma 10]). Given real numbers {\,}, . such that

VSCF, Y A<m, (A1)
veEC:SEF,
the following is a valid inequality for (L1)-(L4):
Z AyCOV, < m. (A\2)
vel
Given {\y }, ¢, one cannot easily check (A1), and thus, a priori, one cannot see the usefulness

of the above lemma. We now briefly describe its usefulness to the round-or-cut schema.
The algorithm begins with values of {0 < cov, <1} .. that satisfy (L1) — such cov is
straightforward to find. We then try to use these cov,’s to “round” and obtain a solution
where clients are covered within distance « - r for desired factor «, and if we fail, then we
find a valid inequality that “cuts” cov,, away from the above system. If we can do so, then
we can feed this separating hyperplane to the ellipsoid algorithm which would give us new
cov,’s. Repeating the above procedure a polynomial number of times, we would either obtain
an a-approximation, or prove that the above system is empty implying our guess r was
too small. For FESO, the “round” step is via the abstract concept of a “good partition’
where the “radius” of the partition dictates the approximation factor; this definition and

M

resulting rounding algorithm is described in Section 4.2. For the “cut” step, we show that if
our rounding algorithm fails, then we can use this failure to generate {\,},.’s that satisfy
(A1) but not (A2), leveraging our definition of “good partitions”. This gives our separating
hyperplane using Lemma 12, and we succeed in cutting, and thus we can run the round-or-cut
schema. Subsequently, we construct good partitions. In Section 4.3, we describe two methods
to do this: one with “radius” (4t — 1) and the other with radius (2¢ + 1). In Appendix B, we
show a limitation of our approach, via an example where this “radius” can be Q(¢).

Before proceeding, we make one simplification: at the beginning of every rounding step,
we discard any clients that have cov, = 0, and hereafter assume, without loss of generality,
that Vv € C, cov,, > 0.
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4.2 Good Partitions and Implementing Round-or-cut

Given cov,’s for every v € C, we define a notion of a “good partition”. Before formally
defining it, we explain this operationally, hopefully giving intuition for the definition. We
start with a finer partition, and the good partition P coarsens it. As in previous algorithms
discussed so far, we have R C C, a set of representatives. The finer partition is {child(j)},c g,
as motivated by our algorithms for FkS in Section 2 and UFESO in Section 3. This time,
however, we want favorable properties from both of those algorithms to coincide — we want,
for j € R and v € child(j), cov, < cov; as well as ¢, < ¢;. These desired properties of the
finer partition are formalized as Property 1.

The property above breaks the “well-separated” property of R, which was crucial in our
other algorithms in Sections 2 and 3. Therefore, instead of requiring R to be well-separated,
we coalesce the child-sets of certain representatives, to get a coarsening P of {child(j)};.r
such that representatives across different parts of P are indeed well-separated. This is
Property 2.

Our approximation ratio is then determined by the diameter of the parts P’s in the good
partition; so we impose a radius bound on each P € P, requiring that the highest-fault-
tolerance client in each P be not too far from the rest of P. This is Property 3. We are now
ready to present the formal definition.

» Definition 13 ((p, cov)-good partition). Given a parameter p € R, and {0 < cov,, <1},

satisfying (L1), a partition P of C is (p,cov)-good if there exists R C C such that the

following hold.

1. Every v € C is assigned to be the child of a j € R, forming a partition {child(j)};.r of
C that refines P. Also, Vj € R, Vv € child(j), cov; > cov, and ¢; > £,,.

2. For any two j,j’ € R that lie in different parts of P, d(j,j") > 2r.

3. For each P € P, let jp := argmax,cp{, (breaking ties arbitrarily). Then Yv € P,
d(jp,v) < pr.

Figure 2 An example of a (6, cov)-good partition P (Definition 13). The ellipses represent P,
and their subdivisions represent the child sets. All the circles are clients, with the filled-in circles
being R, and among those, the double borders indicate the jp’s. cov values are 1 on R and 1/2
elsewhere. /¢, values are indicated by the sizes of the circles. The “edges” represent distance 2r, and
all other distances are obtained by making triangle inequalities tight.

We observe here that the child-sets constructed in Section 3 are themselves a good
partition, so for UFESO, we did not need to coarsen it. This will not necessarily be the case
for child-sets that we construct in Section 4.3. We also observe that
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» Observation 14. In a (p,cov)-good partition P, by Property 1, the jp’s in Property 3 can
be chosen such that VP € P, jp € R. So we can assume, without loss of generality, that all
jp’s are in R.

We prove that a good partition suffices to achieve our desired approximation. That is,

» Theorem 15. If we have a feasible instance with a (p, cov)-good partition, then in polynomial
time, we can either obtain a (p+ 1)-approximation, or identify a valid inequality for (L1)-(L4)
that is violated by cov.

To prove Theorem 15, we solve a budgeting problem on the (p, cov)-good partition. We
want to distribute our budget of k facilities among the P € P, assigning each P € P with
kp facilities that are within distance (p + 1)r of the clients in P. Here kp must be at most
£p :={;,, because at most {p facilities are guaranteed to exist within a bounded distance
of clients in P. The payoff from assigning kp facilities to P in this way is that the clients
{ve P:{, <kp} are served within distance (p+1)r. Soif Y pcp [{v € P: 4, < kp}| >m,
we have our (p + 1)-approximation. Therefore, we want our choice of kp’s to maximize
> pep{v € P: 4, <kp}|, and this maximum to be > m. However, our analysis can only
handle clients from well-separated sets; so instead, we maximize the following lower-bound
on our desired quantity: > pcp D crnpie, <k child(j)|, where we under-count by only
considering v € child(j) served if j is served. Formally, our budgeting problem is the
following.

» Definition 16 (Budgeting over a (p,cov)-good partition). Given a (p,cov)-good parti-
tion P, let £p := maxyeply. Find {kp <Llp}pcp such that Y popkp < k, maximizing
Y pep 2jernpi;<kp |ChIA(J)[. Let opt 5 (P) denote this mazimum.

In Lemma 17, we show that if opt z(P) > m, then we can round. Then in Lemma 18, we
see that if opt 5z (P) < m, then we can cut. Lemma 19 shows that optz(P) can be found
efficiently. Together, these three lemmas yield the proof of Theorem 15.

» Lemma 17. Given a (p,cov)-good partition P, if opt g(P) > m, then we have a (p+ 1)-
approximation.

Proof. Let {kp}p.p be an optimal solution to the budgeting problem (Definition 16). Define
S := UpepNi,p(jp, F). So |S| < k. We show that S serves > m clients within distance
(p+1r.

Define T := Wpep LﬂjERﬁP:EjSkp Chl|d(j) Then |T| = ZPE’P Z]ERFTP:@J'SICP |Chl|d(])| =
opt5(P) > m. We complete this proof by showing that Yv € T, dy, (v,S5) < (p + 1)r. For
this, fix v € T'. By triangle inequalities, we have that dy, (v, S) < d(v,jp) + de, (jp,S). By
Property 3, d(v,jp) < pr, so it remains to show that dy, (jp,S) <r

By definition of T, dg,u(jp,S) < dkP(jP,S). Since Nkp(jp,F) c S, dkp(jp,S) <
dip(jp, F). By definitions of kp and fp, dp,.(jp, F) < d¢,.(jp, F) = dgjp (jp, F). But
covj, > 0; so by Observation 11 and (WL4), dy,  (jp, F)) < 7. <

» Lemma 18. Given a (p, cov)-good partition P, if optg(P) < m, then we find a valid
inequality for (L1)-(L4) that is violated by cov.

Proof. We appeal to Lemma 12 mentioned in Section 4.1. Vv € C, define

" {|chi|d(v)| if v € R, and

0 otherwise.
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Note that
Z AyCOV,, = Z Ajcov; = Z |child(5)| cov; = Z Z cov;
veC JER JER JER vechild(j)
> Z Z CoV, ... by Property 1
JER vEchild(j)
= Z covy ... by Definition 13
velC
>m, ...by (L1)

i.e. these \,’s violate (A2). So by Lemma 12, it suffices to show that (A1) holds for these
Ay’S.

Suppose not, i.e. 359 C F': [So| <k and Y, cc.g,e7, Av = m. Then, devise a candidate
solution {k} p.p for the budgeting problem in Definition 16, as follows. For each P € P, if
3j € RN P such that Sy € F;, then set k» to be the largest fault-tolerance among such j’s;
that is, where jp := argmax;c pnp.s, e r, £, set kp := {;; . Otherwise, i.e. when there is no
such j and j} is not well-defined, set k%> := 0. By definitions, VP € P, kj < {p.

Also, by Property 2, {B(jp,7)} pcp is pairwise disjoint. Since Sy € Fj;, for each P € P,
we then have Y pcpkp < D pep [SoNB(jp, )| < [So| < k. So {kp}pep is indeed a
candidate solution for the budgeting problem. We evaluate the objective function of the
budgeting problem (see Definition 16) on {k}} pcp:

S D> Jehild(NI =D YN

PEP jeRNP:£; <k}, PEP jeRNP:£,;<k/,
> Z Z Aj ... by choice of k»’s
PEP jeRNP:SoET;
= Z Aj ... by Definition 13
jERZSQEF]‘
= Z Ao ... by choice of A\,’s
veC:SHEF,
>m ... by supposition.

So {kp}pep is a candidate solution to the budgeting problem, for which the objective
function evaluates to > m, contradicting opt z(P) < m. Hence (A1) holds for our chosen
Ay’s, and (A2) is the desired valid inequality that is violated by cov. <

» Lemma 19. The budgeting problem in Definition 16 can be solved in polynomial time.

Proof. We proceed via dynamic programming. Let N := |P|. Without loss of generality,
say P =: {Py, P,,...,Px}. For brevity, Va € [N], we say L, := {p,. To handle base cases
in our DP, we set the convention that Py := (). Now define the entries in our DP table:
Vv € [N]U{0} and Vb € [k] U {0},

M{v,b) == maX Z > [child(j)] - (DP-defn)

tha<Latio1:) . 1 ka<b T jeRnP, 0, <k,

The desired entry is M[N, k], as the corresponding {k,}~_, becomes, upon renaming as
{kp, = ka}flvzl, the kp’s that we want.
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The base cases are: M[0,0] = 0; Vv € [N], M[v,0] = 0; and Vb € [k], M[0,b] = 0. The
DP table has O(Nk) = O(nk) entries; so in polynomial time, we can fil it via the following
recurrence.

Mt = "ax” | My —1,6-0+ S [child(j)] | . (DP-rec)

/=0
JERNP, ;<L

We also remember, for each entry M|y, b], the ¢ that maximizes the RHS of (DP-rec). Note,
in (DP-defn), that the RHS for M[N, k] corresponds, up to renaming, with the RHS in the
objective function (see Definition 16). Thus it remains to show that (DP-rec) is correct wrt
(DP-defn).
To show that LHS < RHS, consider the solution {k}}._, corresponding to M|[v,b]. By
(DP-defn), &k}, < min(b, L,). So {k;}z;i is a candidate solution for M [v —1,b — k], i.e.
ST e rnpust, <k [Child()] < M [v = 1,b— k3], so

LHS = M([v,b] =) > |child ()]
a=1jERNPy:L;<k*a
<My-1b—kj]+ Y |child(j)| < RHS
JERNP,:4; <k}

since the RHS is a maximum.
To show that RHS < LHS, fix an £ € {0,...,min(b, L, )}, and let {k;}g: be the solution

corresponding to M[v — 1,b — £]. Setting k!, = ¢ yields {k.,}. _,, a candidate solution for
M]Iv,b]. So

My-1b-0+ > |chi|d(j)|:ZV: > |child(5)| < M[v,b] = LHS

JERNP,:4;<¢ a=1jERNP,:4;<k!,

since M[v,b] is a maximum by (DP-defn).
As the RHS maximizes over £ € {0,...,min(b, L, )}, we are done. <

Proof of Theorem 15. Given a (p, cov)-good partition P, we solve the budgeting problem
(Definition 16), which we can do efficiently due to Lemma 19, and obtain optz(P). If
optz(P) > m, Lemma 17 guarantees a (p + 1)-approximation; otherwise, Lemma 18 gives
a valid inequality that is violated by cov. We pass the valid inequality as a separating
hyperplane to the ellipsoid algorithm, and restart our rounding process with fresh cov,’s.
By the guarantees of ellipsoid, in polynomial time, we either round to obtain a (p + 1)-
approximation, or detect that the guess of r is too small. <

4.3 Obtaining a good partition

» Theorem 20. Given {0 < cov, < 1}, ., in polynomial time, we can obtain the following:
1. a (4t — 2, cov)-good partition, and
2. a (2%, cov)-good partition.

Theorem 15 follows from Lemmas 21 and 22.

» Lemma 21. Algorithm 3 yields a (4t — 2, cov)-good partition.
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Algorithm 3 Finding a (4t — 2, cov)-good partition.
Input: {0 <cov, <1}, .-

.U« C

2: R+ (Z)

3: while U # () do

4: J < argmax, ¢y Covy,

5: R+ RU{j}

6: child(j) <~ {v e U :d(v,j) < 2tr nl, <{;}

7. U<« U\ child(j)

8 P+ 0

9: G+ (R, E:={{j,5'}:d(j,5) <2r}) > undirected graph

_.
e

C < connected components of G
11: P+ {UjEVChild(j)}Vec
Output: A partition P of C.

Proof. Consider P, the output of Algorithm 3, and the child and R constructed alongside.
Line 7 ensures that {child(j)},.p is a partition of C'. Line 11 ensures that this partition is a
refinement of P. Lines 4 and 6 construct child as desired, ensuring that Vj € R, Vo € child(y),
cov; > cov, and ¢; > £,. So Property 1 holds.

Now consider P;, P, € P, x1 € RN Py,29 € RN Py : P # P,. By Lines 9-10, RN P; and
RN P, are distinct connected components in C, so {z1,22} ¢ E, i.e. d(x1,22) > 2r. This
shows that Property 2 holds.

Finally, consider P € P, and v € P s.t. v € child(j;) for j; € R. By Line 11, j; € RN P.
Also consider a different jo € RN P. By Lines 9-10, RN P € C. In G, consider 7, the shortest
J1-J2 path passing entirely through R N P. We claim that

> Claim. 7 contains at most ¢ vertices.

Proof. Suppose not. Then, by the pigeonhole principle, 7w contains vertices u,v € RN P s.t.
u # v and ¢, = ¢,. Choose such u,v minimizing d(u,v), and consider the u-v subpath 7’ of
m. If @ contains > ¢ vertices, then we can replace ji, jo with u,v and repeat our argument
to obtain a smaller d(u,v) — contradicting our choice of u,v. So ' contains < ¢ vertices, i.e.
d(u,v) < 2(t — 1)r; but since u,v € R, this contradicts Line 6. <

So d(j1,j2) < 2(t—1)r, i.e. by Line 6, d(v, j2) < d(v, j1)+d(j1,72) < 2tr4+2(t—1)r = (4t—2)r.
We have just showed that, Vv € P,j € RN P, d(v,j) < (4t — 2)r. By Observation 14, this
implies Property 3 for p = (4t — 2). <

» Lemma 22. Algorithm 4 yields a (2t,cov)-good partition.

Proof. Consider P, the output of Algorithm 4, and the child and R constructed alongside.
Note that, since Line 8 only creates edges to Roots, and Line 9 updates Roots accordingly,
(R, E) is indeed a forest.

Line 12 ensures that {child(j)} . is a partition of C. Line 14 ensures that this partition
is a refinement of P. Lines 6 and 11 construct child as desired, ensuring that Vj € R,
Vo € child(j), cov; > cov, and ¢; > ¢,. So Property 1 holds.

Now consider Py, P, € P, x1 € RN Py, x5 € RN P,. Without loss of generality, suppose
2o was added to R after xq; if d(z1,22) < 2r, then by Lines 8 and 10, we would have
d(x9,x1) € E, ie. o1,z would lie in the same connected component in 7. So by Lines 13-14,
P, = P,. This shows that Property 2 holds.
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Algorithm 4 Finding a (2, cov)-good partition.

1. U+ C

. (R, E) « (0,0) > initializing an empty directed forest
: Yv € U, height(v) < 0 > height in the forest; height(v) =0 = v ¢ R
: Roots <+ () > tracking roots in the forest
: while U # () do

J < argmax, ¢y Cov,,

R+ RU{j}

E+« EU {(j,j’) . j' € Roots A d(j, ') < 2height(i")y

Roots < (Roots \ {j': (4,5/) € E}H) U {4}

height(j) < 1 + max(; ;e height(j') > convention: max over ) is 0
child(j) « {v € U : d(v,j) < 2heiehtGyr A g, < ¢;}

U < U \ child(5)

: T « connected components in the forest (R, F) > each component induces a tree
P {UjEVChild(j)}VeT

e e
N

Finally, note that
> Claim 23. (j,j') € E = {; > {j.

Proof. Since (j,j') € E, we know that j’ was added to R before j, and d(j, j/) < 2height(")y.,
So if £; < ¢js, then by Line 11, we would have j € child(j’), contradicting the fact that j € R.
<

Now fix P € P, and consider jp which, by Observation 14, lies in RN P, and hence by Lines 13-
14, RN P induces a tree in (R, E). Claim 23 tells us that jp is the root in this tree, and
that height(jp) < t. So by Line 8, for any j € RN P, d(jp, j) < (2heiehtlr) — gheight(i)) ) <
(2t — 2beieht(3)) . Now consider v € P : v € child(j) for a j € RNP. Then d(v, j) < 2height(@),
so d(v, jp) < d(v,§) +d(j,jp) < (2t — 2heieht(h) 4 gheight()) ;- — 2¢r Thus Property 3 holds
for p = 2¢. <

5 Conclusion

In this paper, we have studied the Fault-tolerant k-Supplier with Outliers problem and
presented a (4t — 1)-approximation when there are ¢ distinct fault tolerances. While this
gives the optimal 3-approximation for the uniform version of the problem (improving upon
the recent result [20]), the parameter ¢ could be as large as k. To obtain our result, we
needed to resort to the powerful hammer of the round-or-cut schema, and indeed used a
very strong LP relaxation. This was necessary since, as we saw in Section 3.1, natural
LP relaxations and their strengthenings have unbounded integrality gaps. We also show a
Q(t)-bottleneck to our approach (Appendix B), and this raises the intriguing question: are
there O(1)-approximations for the FESO problem? As noted in Section 1, the authors are not
aware of clustering problems where the version without outliers has a constant approximation
(as we saw in Section 2, FkS does), but the outlier version doesn’t. Perhaps FESO is such
a candidate example. This also raises the question of designing inapproximability results
for metric clustering problems, which has not been explored much. We leave all these as
interesting avenues of further study.
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A Proof of Claim 7

Consider a feasible solution S* that serves inliers 7. Set

Vv € C, cov, = 1yer+, and

Vi € F, Yi = lics~.
These satisfy (WL1), (WL2), and (WL5) by construction. Now note that, for a v € T*,
Ng, (v, F) C S; so (WL3) is satisfied. Furthermore, for a v € C, if dy, (v, F') > r then v ¢ T*,
satisfying (WL4).

Conversely, given an integral solution satisfying (WL1)-(WL5), we can construct S* =
{ieF:y;=1},and T* = {v € C : cov, = 1}. (WL2) implies |S*| < k, and (WL1) implies
w(T*) > W. For any v € T*,

|[S* N B(v,r)| = Z Yi ... by construction of S*
i€ FNB(v,r)
> feov, =1, ... by (WL3) and construction of T

so dg, (v,5*) <.

B Limiting Example for Good-Partition Rounding

In order to achieve a better approximation factor than (¢), we will need to move beyond

the overall schema of using a good partition (Definition 13) to round solutions to (L1)-(L4).
This can be seen via the following example, illustrated in Figure 3. Here r = 1,n =t¢t,m = 1.

C is the set {v1,--- , v}, with each client v, having fault-tolerance ¢,, = a. F' is the union of
t sets {Fa}zzl, where F, = {iq1,%a2,- - -, %k}, for a total of ¢tk facilities in F'. Each client v,
has distance 2 to vqy1 and v,—1, and distance 1 to each facility in F,,. Remaining distances
are determined by making triangle inequalities tight.

Consider the following (cov, z) satisfying (L1)-(L4). We set zp, = T}LI, for each a € [t],
where H, is the t'" Harmonic number; and set all other zg’s to zero. This allows us to set
CoVy, = %H, for each a € [t]. Under this (cov, z), observe that Yv,, v, € C, v, # v, A cCOv, >
covy, = {4 < lp; so Property 1 can only hold if all clients are in the same piece of the
partition, i.e. P = {C}. This means that a (p, cov)-good partition can only be attained for
p > 2(t — 1), so upon applying Theorem 15, this approach attains a (2t — 1)-approximation
at best.

1 1 L
H; 2H,; 3Hy
U1 V2 U3
i11 i12 i1k 421 i22 iok 31 i32 i3k
1 1 1 11 1 111 11 1
H; H; ~° Hy 2H; 2H; "~ 2Hj; 3H,, 3H, ' 3Hp, TH; tH; ' THy

Figure 3 An example showing the limitations of good partitions, with a solution to (L1)-(L4)
shown in red (z values) and blue (cov values). The thin “edges” represent distance 1, the thick
“edges” represent distance 2, and all other distances are determined by making triangle inequalities
tight. The fault-tolerances are €, = 1,4y, = 2,...,4,, =1t.
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