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Abstract

We present approximation algorithms for the Fault-tolerant k-Supplier with Outliers (FkSO) problem.

This is a common generalization of two known problems – k-Supplier with Outliers, and Fault-tolerant

k-Supplier – each of which generalize the well-known k-Supplier problem. In the k-Supplier problem

the goal is to serve n clients C, by opening k facilities from a set of possible facilities F ; the objective

function is the farthest that any client must travel to access an open facility. In FkSO, each client v

has a fault-tolerance ℓv, and now desires ℓv facilities to serve it; so each client v’s contribution to the

objective function is now its distance to the ℓv
th closest open facility. Furthermore, we are allowed

to choose m clients that we will serve, and only those clients contribute to the objective function,

while the remaining n − m are considered outliers.

Our main result is a (4t − 1)-approximation for the FkSO problem, where t is the number of

distinct values of ℓv that appear in the instance. At t = 1, i.e. in the case where the ℓv’s are

uniformly some ℓ, this yields a 3-approximation, improving upon the 11-approximation given for the

uniform case by Inamdar and Varadarajan [2020], who also introduced the problem. Our result for

the uniform case matches tight 3-approximations that exist for k-Supplier, k-Supplier with Outliers,

and Fault-tolerant k-Supplier.

Our key technical contribution is an application of the round-or-cut schema to FkSO. Guided

by an LP relaxation, we reduce to a simpler optimization problem, which we can solve to obtain

distance bounds for the “round” step, and valid inequalities for the “cut” step. By varying how we

reduce to the simpler problem, we get varying distance bounds – we include a variant that gives

a (2t + 1)-approximation, which is better for t ∈ {2, 3}. In addition, for t = 1, we give a more

straightforward application of round-or-cut, yielding a 3-approximation that is much simpler than

our general algorithm.
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1 Introduction

Clustering problems form a class of discrete optimization problems that appear in many

application areas ranging from operations research [28, 32, 30] to machine learning [21, 1, 31,

24]. They also have formed a sandbox where numerous algorithmic ideas, especially ideas

in approximation algorithms, have arisen and developed over the years. One of the first

clustering problems to have been studied is the k-Supplier problem [19]: in this problem,

one is given a set of points in a metric space (C ∪ F, d), where C is the set of “clients” and

F is the set of “facilities”, and a number k. The objective is to “open” a collection S ⊆ F

of k centers so as to minimize the maximum distance between a client v ∈ V to its nearest
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open center in S, that is, minimize maxv∈C minf∈S d(f, v). It has been known since the

mid-80’s, due to an influential paper of Hochbaum and Shmoys [19], that this problem has a

3-approximation and no better approximation is possible1.

One motivation behind the objective function above is that d(v, S) := minf∈S d(f, v)

indicates how (un)desirable the client v perceives the the set of open facilities, and the

k-Supplier objective tries to take the egalitarian view of trying to minimize the unhappiest

client. However, in certain applications, a client v would perhaps be interested not only in

having one open facility in a small neighborhood but a larger number. For instance, the

client may be worried about some open facilities closing down. This leads to the fault-tolerant

versions of clustering problems. In this setting, each client v has an integer ℓv associated

with it, and the desirability of a subset S for v is not determined by the nearest facility in S,

but rather the ℓv
th nearest facility. That is, we sort the facilities in S in increasing order of

d(f, v) and let dℓv
(v, S) denote the ℓv

th distance in this order (so d(v, S) = d1(v, S)). The

Fault-tolerant k-Supplier (FkS) problem is to find S ⊆ F with ♣S♣ = k so as to minimize

maxv∈C dℓv
(v, S). As far as we know, the Fault-tolerant k-Supplier problem has not been

explicitly studied in the literature2, however, as we show in Section 2, there is a simple

3-approximation based on the same scheme developed by Hochbaum and Shmoys [19].

One drawback of the k-Supplier objective is that it is extremely sensitive to outliers; since

one is trying to minimize the maximum, a single far-away client makes the optimal value large.

To allay this, people have considered the “outlier version” of the problem, k-Supplier with

Outliers (kSO). In kSO, one is given an additional integer parameter m, and the goal of the

algorithm is to open a subset S of k facilities and recognize a subset T ⊆ C of m-clients, so as

to minimize maxv∈T d(v, S). That is, all clients outside T are deemed outliers and one doesn’t

consider their distance to the solution. The outlier version is algorithmically interesting

and is not immediately captured by the Hochbaum-Shmoys technique. Nevertheless, in

2001, Charikar, Khuller, Mount, and Narsimhan [10] described a combinatorial, greedy-like

3-approximation for kSO3. Since then, outlier versions of many clustering problems have

been considered, and it has been a curious feature that the approximability of the outlier

version has been of the same order as the approximability of the original version without

outliers.

In this paper, as suggested by the title, we study the Fault-tolerant k-Supplier with

Outliers (FkSO) problem which generalizes FkS and kSO. This problem was explicitly studied

only recently by Inamdar and Varadarajan [20]; but that work only studies the uniformly

fault-tolerant case where all ℓv’s are the same (say, ℓ). The main result of [20] was a “reduction”

to the “non-fault-tolerant” version of the clustering problem with outliers, and their result

is that an α-approximation for the kSO problem translates4 to a (3α + 2)-approximation

for the FkSO problem with uniform fault-tolerance. Setting α = 3 from the aforementioned

work [10] on kSO, one gets an 11-approximation for the uniform case of FkSO.

1 Howard Karloff is attributed the hardness result in [19].
2 although the fault-tolerant facility location and k-median have been extensively studied [22, 17, 36, 18];

more on this in Section 1.1.
3 A different LP-based approach was taken by Chakrabarty, Goyal, and Krishnaswamy [6] and vastly

generalized by Chakrabarty and Negahbani [7]; more on this in Sections 1.1 and 2.
4 Actually, they [20] only study the “k-Center” case when F = C, and in that case the result is (2α + 2);

their proofs do reveal that for the Supplier version, one obtains (3α + 2).
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Our Contributions

We begin by providing a simple LP-based 3-approximation for the FkSO problem when

the fault-tolerances are uniform, that is, ℓv = ℓ for all v ∈ C. This improves the known

11-approximation [20]. Even this special case is interesting in that when the uniform

fault-tolerance ℓ divides k, then the “natural LP” suffices to obtain a 3-approximation using a

rounding scheme similar to a prior rounding algorithm for kSO [6]. However, when ℓ doesn’t

divide k, then we need to add in valid inequalities akin to Chvátal-Gomory cuts [13, 16]

in integer programming. Nevertheless, the rounding algorithm is simple and is described

in Section 3.

Our main contribution is to the general FkSO problem, when ℓv’s can be different for

different clients. This problem becomes much more complex for the simple reason that

if two clients v and v′ are located very close together, but ℓv < ℓv′ , then opening ℓv

facilities around v would still render v′ unhappy – this does not happen in the uniform

case. Therefore, the Hochbaum-Shmoys procedure [19], or more precisely the LP-guided

Hochbaum-Shmoys rounding that is known for kSO [6], simply doesn’t apply under non-

uniform fault-tolerance. Indeed, the natural LP relaxation and its natural strengthening,

which give us the 3-approximation for the uniform case, has large integrality gaps even when

the ℓv’s take only two values; we show this in Section 3.1.

Our main result is a (4t − 1)-approximation for the FkSO problem when there are t

distinct5 ℓv’s (that is, ♣¶ℓv : v ∈ C♢♣ = t). When t = 1, we recover the 3-approximation

mentioned above. This is not the most desirable result (one would hope a O(1)-approximation

for any t), but as the above integrality gap example illustrates, even when t = 2, strong LPs

have bad integrality gaps. We also use the same schema to give a (2t + 1)-approximation,

which gives better approximation factors for t ∈ ¶2, 3♢.

Our main technical contribution is to apply the round-or-cut schema introduced for

clustering problems by Chakrabarty and Negahbani [7] to FkSO. In particular, this schema

uses a fractional solution ¶covv♢v∈C which indicates the extent to which each client v is an

“inlier” (that is, in the final set T of at least m clients). Earlier works [6, 7] use this fractional

solution to guide the Hochbaum-Shmoys-style [19] rounding algorithm, creating a partition

on the set of clients and solving a simpler optimization problem on this partition. We also

use the same schemata, except that our partitioning scheme is a more general one warranted

by the non-uniform fault-tolerances; nevertheless, we show that we either obtain the desired

approximation factor (the “round” step), or we can prove that the covv’s cannot arise as a

combination of integral solutions (the “cut” step). Once we do this, the round-or-cut schema

implies a polynomial time approximation factor. We also show that t is the limiting factor in

our approach; more precisely, the diameter of the parts of the desired partition dictates the

upper bound on the approximation factor, and in Appendix B we construct an instance such

that the diameter needs to be Ω(t). We leave the possibility of obtaining O(1)-approximations

for FkSO, or alternatly proving a super-constant hardness, as an intriguing open problem.

5 We should point to the reader that one can’t simply solve t different uniform FkSO versions and “stick
them together” to get such a result; although it is a natural idea, note that a priori we do not know
how many outliers one will obtain from each fault-tolerant class, and enumerating is infeasible.

STACS 2024
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1.1 Related Work

The Hochbaum-Shmoys algorithm [19] gives a 3-approximation for the k-Supplier problem,

and has been extended to give approximation algorithms for multiple related problems.

Plesník [33] gave one such extension, obtaining a 3-approximation6 when each client v

has weight w(v), and this scales the client’s “unhappiness”, so that the objective function

becomes maxv∈C (w(v) ·minf∈S d(v, f)). In another direction, Chakrabarty, Goyal, and

Krishnaswamy [6] gave an extension to k-Supplier with Outliers, using an LP relaxation to

indicate which clients are outliers, and obtaining a Hochbaum-Shmoys-like 3-approximation.

This was vastly extended by Chakrabarty and Negahbani [7], implying a 3-approximation

for multiple problems, including kSO with knapsack constraints on the facilities. Bajpai,

Chekuri, Chakrabarty, and Negahbani [4] generalized the aforementioned weighted ver-

sion [33] to handle outliers, matroid constraints, and knapsack constraints, obtaining constant

approximation ratios for each.

In the early 2000s, Jain and Vazirani [22] introduced the notion of fault-tolerance for the

Uncapacitated Facility Location (UFL) problem. The notion has thereafter been studied for

various related problems: UFL [17, 36, 5]; UFL with multiset solutions, often called facility

placement or allocation [37, 38, 34]; k-Median [36, 27, 18]; matroid and knapsack Median [15];

and k-Center [26, 11, 25, 27]. In particular relevance to this paper, the FkSO problem was

studied by Inamdar and Varadarajan [20]. In addition, prior work also addresses alternate

notions of fault-tolerance and outlier-type constraints. In a 2020 preprint, Deng [14] combines

fault-tolerance with an outlier-type constraint requiring that the number of client-facility

connections, rather than the weight of satisfied clients, be at least some m. An altogether

different notion of fault-tolerance has also been studied [12, 29, 35], where clients each want

just one facility, but an adversary secretly causes some k′ ≤ k of the chosen facilities to fail.

The round-or-cut schema that this paper applies, has found widespread usage in clustering

problems, including in problems related to k-Supplier. For example, the weighted version

of k-Supplier [33, 4] can be extended to impose different budgets to different weight classes

– i.e. there is no longer one k, but one ki per distinct weight wi. This version admits a

constant-factor approximation for certain special cases [8, 23] via the round-or-cut schema.

Round-or-cut has also been used for k-Supplier with covering constraints [3], and for the

Capacitated Facility Location problem [2]. In the continuous clustering realm, where facilities

can be picked from a potentially infinite-sized ambient metric space, round-or-cut has been

used to circumvent the infinitude of the instance [9].

2 Preliminaries

Before we formally define our main problem, let us set up some important notation.

▶ Definition 1. Given a subset S ⊆ F , a client v ∈ C, and a ∈ [k], let da(v, S) be the

distance of v to its ath closest neighbor in S (breaking ties arbitrarily and consistently). So

d1(v, S) = d(v, S). Also let Na(v, S) ⊆ S denote the a facilities in S that are closest to v.

▶ Definition 2 (Fault-tolerant k-Supplier and Fault-tolerant k-Supplier with Outliers). In the

Fault-tolerant k-Supplier (FkS) problem, we are given a finite metric space (C∪F, d), where C

is a set of n clients and F is a set of poly(n) facilities. We are also given a parameter k ∈ N,

and fault-tolerances ¶ℓv ∈ [k]♢v∈C . The goal is to open k facilities, i.e. pick S ⊆ F : ♣S♣ ≤ k,

minimizing maxv∈C dℓv
(v, S).

6 The work [33] studies the k-Center case, where F = C, and gives a 2-approximation; but the proofs
imply a 3-approximation for the Supplier version.
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In the Fault-tolerant k-Supplier with Outliers (FkSO) problem, we are given an FkS

instance along with an additional parameter m ∈ [n]. The goal is to pick S of size k as before,

along with inliers T ⊆ C : ♣T ♣ ≥ m, minimizing maxv∈T dℓv
(v, S).

In the absence of fault-tolerances and outliers, i.e. in the k-Supplier problem, the Hochbaum-

Shmoys algorithm [19] achieves a 3-approximation as follows. It starts with a guess r of the

optimum value, large enough that every client j has a facility within distance r of itself, but

otherwise arbitrary. Then it picks an arbitrary client j, opens a facility within distance r of j,

and deletes the set of “children” of j, which is child(j) := B(j, 2r)∩C = ¶v ∈ C : d(v, j) ≤ 2r♢.

Then it repeats this with the remaining clients, until there are no clients left. Observe that

the j’s picked over the iterations – call them the set R – has the following well-separated

property.

▶ Definition 3 (r-well-separated set). A set X ⊆ C is r-well-separated if for distinct x, y ∈ X,

we have d(x, y) > 2r. Where r is clear from context, we simply say that X is well-separated.

Since R is well-separated, it takes ♣R♣ clients to provide every j ∈ R with a facility in B(j, r).

So if ♣R♣ > k, then the guess of r is too small – we can double r and retry the algorithm. On

the other hand, if ♣R♣ ≤ k, then the guess is either correct or too large, so we halve r and

retry. This binary search yields the correct r, and the following guarantee: ¶child(j)♢j∈R

partitions C, and for a v ∈ child(j), since d(v, j) ≤ 2r and we opened a facility in B(j, r),

there is a facility within distance 3r of v. This means that we have a 3-approximation.

The Hochbaum-Shmoys algorithm described above, generalizes to give a 3-approximation

for FkS via the following modifications: instead of picking j’s into R in arbitrary order,

we pick them in decreasing order of ℓv’s; we also open ℓj facilities in each B(j, r) : j ∈ R,

instead of just one. This guarantees that, if v ∈ child(j), ℓv ≤ ℓj , allowing us to extend the

Hochbaum-Shmoys [19] guarantee to FkS. We now formally state this algorithm.

Algorithm 1 Hochbaum-Shmoys [19] modified for FkS.

Input: C

1: U ← C

2: R← ∅

3: S ← ∅

4: while U ̸= ∅ do

5: j ← argmaxv∈U ℓv

6: R← R ∪ ¶j♢

7: i1, i2, . . . , iℓj
← ℓj arbitrary facilities in B(j, r) ∩ F ▷ they exist by choice of r

8: S ← S ∪
{

i1, i2, . . . , iℓj

}

9: child(j)← ¶v ∈ U : d(v, j) ≤ 2r♢

10: U ← U \ child(j)

Output: S ⊆ F

To show that this algorithm yields a 3-approximation, we need to argue that ∀v ∈ C,

dℓv
(v, S) ≤ 3r. To see this, consider j ∈ R : v ∈ child(j). Algorithm 1 guarantees that

ℓv ≤ ℓj , so dℓv
(v, S) ≤ dℓj

(v, S). By triangle inequalities, this is at most d(v, j) + dℓj
(j, S).

By construction of child(j), d(v, j) ≤ 2r; and since we open ℓj facilities in Line 7, dℓj
(j, S) ≤ r.

We have just shown that

▶ Theorem 4. The FkS problem admits a 3-approximation.

STACS 2024
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One way to achieve a 3-approximation for the k-Supplier with Outliers problem, described

in [6], is as follows: under a guess of r as before, a linear program relaxation is used to assign

variables covv ∈ [0, 1] to each client v, representing whether v is “covered”, i.e. whether there

is an open facility in B(v, r). The LP-guided Hochbaum-Shmoys algorithm considers clients

in decreasing order of these covv’s, and we wait to pick facilities until the loop terminates.

Then, facilities are opened near those j ∈ R that have the k largest ♣child(j)♣. The LP

relaxation is used to ensure that ≥ m clients are served in this way. This does not generalize

directly to FkSO because the decreasing order of ℓv’s that we employed above for FkS can

conflict with the decreasing order of covv’s (indeed, one may just expect clients v with large

ℓv’s would be more likely to be outliers, that is, have low covv’s). So in our algorithm for

FkSO, we elect to follow the covv order, and explicitly force ℓv ≤ ℓj for v’s that we pick into

child(j). This choice breaks the well-separated property of R, so our techniques are devoted

to obtaining other well-separated sets that can guide our rounding; details of this can be

found in Section 4. When all the ℓv’s are the same, though, we can indeed use the natural

LP relaxation (with a slight strengthening to take care of divisibility issues), and we show

this in the next section.

3 3-approximation for UFkSO

In this section, we address the uniform case, where all fault-tolerances in the instance are

the same, i.e.

▶ Definition 5 (Uniformly Fault-tolerant k-Supplier with Outliers (UFkSO)). The Uniformly

Fault-tolerant k-Supplier with Outliers problem is a special case of the FkSO problem where,

for an ℓ ∈ N, ∀v ∈ C, ℓv = ℓ.

We prove that

▶ Theorem 6. The UFkSO problem admits a 3-approximation.

Our algorithm begins by rounding a solution to the following LP relaxation, closely

mimicking the 3-approximation for kSO [6] described in the last paragraph of the previous

section. This rounding suffices when ℓ ♣ k. When ℓ ∤ k, we identify a valid inequality for the

round-or-cut framework. In the LP, the variables ¶covv♢v∈C denote whether or not a client

v ∈ C is covered i.e. served within distance r; and variables ¶xi♢i∈F denote whether or not a

facility i ∈ F is open. B(v, r) is the ball of radius r around v, containing all points within

distance r of v, i.e. B(v, r) := ¶x ∈ C ∪ F : d(v, x) ≤ r♢.

∑

v∈C

covv ≥ m (WL1)

∑

i∈F

xi ≤ k (WL2)

∀v ∈ C,
∑

i∈F ∩B(v,r)

xi ≥ ℓcovv (WL3)

∀v ∈ C : dℓ(v, F ) > r, covv = 0 (WL4)

∀v ∈ C, i ∈ F, 0 ≤ covv, xi ≤ 1 (WL5)

Here, (WL1) enforces that at least m clients must be covered, and (WL2) enforces that at

most k facilities can be opened. (WL3) and (WL4) connect the covv variables with the xi

variables, ensuring that a client cannot be covered unless there are sufficient facilities opened
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within distance r of it. Finally, (WL5) enforces that a client can be covered only once, and a

facility can be opened only once. Claim 7 shows that this LP is a valid relaxation of our

problem. We defer its proof to Appendix A.

▷ Claim 7. An instance of UFkSO is feasible iff it admits an integral solution satisfying

(WL1)-(WL5).

Given a solution
(

¶covv♢v∈C , ¶xi♢i∈F

)

satisfying (WL1)-(WL5), we round as per Al-

gorithm 2. This algorithm constructs a well-separated set of representatives Rcov ⊆ C. Each

client v that has covv > 0 becomes the child of some representative, yielding a partition

¶child(j)♢j∈Rcov
of these clients. Then, facilities Scov ⊆ F are opened in a manner that serves

the
⌊

k
ℓ

⌋

largest child(j) sets within distance 3r.

Algorithm 2 3-approximation for UFkSO.

Input:
(

¶covv♢v∈C , ¶xi♢i∈F

)

satisfying (WL1)-(WL5)

1: Rcov ← ∅

2: U ← ¶v ∈ C : covv > 0♢

3: while U ̸= ∅ do ▷ filtering

4: j ← argmaxv∈U covv

5: Rcov ← Rcov ∪ ¶v♢

6: child(j)← B(j, 2r) ∩ U

7: U ← U \ child(j)

8: Scov ← ∅

9: R′ ← Rcov

10: while ♣Scov♣ <
⌊

k
ℓ

⌋

· ℓ do ▷ picking facilities to open

11: j ← argmaxj′∈R′ ♣child(j′)♣

12: R′ ← R′ \ ¶j♢

13: Scov ← Scov ∪Nℓ(j, F )

14: return Scov

Output: Scov ⊆ F ▷ open facilities

We argue that Algorithm 2 opens at most k facilities, and that if Nℓ(j, F ) is opened, then

child(j) is served within distance 3r. Formally,

▶ Lemma 8. Given
(

¶covv♢v∈C , ¶xi♢i∈F

)

satisfying (WL1)-(WL5),

♣Scov♣ ≤ k, and

Let R′
cov

be the clients j for which Nℓ(j, F ) was added to Scov in Line 13. Then ∀j ∈ R′
cov

,

∀v ∈ child(j), dℓ(v, Scov) ≤ 3r.

Proof.

Line 13 adds ℓ facilities to Scov in each iteration. So Line 10 ensures that ♣Scov♣ ≤ k.

Consider v ∈ child(j), j ∈ R′
cov

. By triangle inequalities, dℓ(v, Scov) ≤ d(v, j) + dℓ(j, Scov).

By Line 6, d(v, j) ≤ 2r. Since Nℓ(j, F ) ⊆ Scov, dℓ(j, Scov) ≤ dℓ(j, F ); and by Line 2,

covj > 0, i.e. by (WL4), dℓ(j, F ) ≤ r. ◀

It remains to show that
∑

j∈R′

cov

♣child(j)♣ ≥ m. We have

∑

j∈Rcov

♣child(j)♣ covj ≥
∑

v∈C:covv>0

covv =
∑

v∈C

covv ≥ m , (1)

STACS 2024
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where the first inequality is by Line 4 and the last inequality is by (WL1). We also have

∑

j∈Rcov

covj ≤
∑

j∈Rcov

∑

i∈F ∩B(j,r)

xi

ℓ
≤

∑

i∈F

xi

ℓ
≤

k

ℓ
, (2)

where the first inequality is by (WL3); the second inequality is because Rcov is well-separated;

and the last inequality is by (WL2). So we can view the LHS in (1) as a weighted sum of

♣child(j)♣ values, the weights being covj ’s. Since this weighted sum is ≥ m and the weights

sum to ≤ k/ℓ, the
⌊

k
ℓ

⌋

largest child-sets must contain at least m
k/ℓ ·

⌊

k
ℓ

⌋

elements. Hence, if

ℓ ♣ k, we are done.

In fact, we observe the following even when ℓ ∤ k: if we can replace the RHS in (2) with
⌊

k
ℓ

⌋

, then the weighted-sum argument would yield m
⌊k/ℓ⌋ ·

⌊

k
ℓ

⌋

= m. To achieve this, observe

that the argument in (2) applies to any well-separated set R ⊆ C, yielding
∑

j∈R covj ≤ k/ℓ.

Also, for any integral solution, the RHS can be replaced by its floor. Thus the following are

valid inequalities:

∀R ⊆ C : R is well-separated,
∑

j∈R

covj ≤



k

ℓ



. (WLCut)

We have showed that if (WLCut) holds for R = Rcov then we are done, i.e.

▶ Lemma 9. Given
(

¶covv♢v∈C , ¶xi♢i∈F

)

satisfying (WL1)-(WL5), if (WLCut) holds for

R = Rcov where Rcov is constructed as per Lines 1-7, then Scov is a 3-approximation.

Using this, we now present our overall algorithm via a round-or-cut schema.

Proof of Theorem 6. Given
(

¶covv♢v∈C , ¶xi♢i∈F

)

satisfying (WL1)-(WL5), we round as

per Lines 1-7 to obtain Rcov ⊆ C. If (WLCut) holds for R = Rcov, then we continue

Algorithm 2 to obtain Scov that satisfies the desired guarantees via Lemmas 8 and 9.

Otherwise, we know that the valid inequality (WLCut) for R = Rcov is violated. So we pass

it to the ellipsoid algorithm as a separating hyperplane, obtaining fresh covv’s with which we

restart Algorithm 2. By the guarantees of the ellipsoid algorithm, in polynomial time, we

either round to get Scov, or detect that the guess of r is too small. ◀

We conclude this section by exhibiting that the above algorithm fails for the general

problem. In particular, we exhibit an infinite integrality gap when there are just two different

fault-tolerances in the instance.

3.1 Gap example for FkSO

Consider (WL3) generalized to FkSO:

∀v ∈ C,
∑

i∈F ∩B(v,r)

xiv ≥ ℓvcovv ; (WL3′)

and a similar generalization of (WLCut):

∀R ⊆ C : R is well-separated,

⌈

∑

v∈R

ℓvcovv

⌉

≤ k . (WLCut′)

These, along with (WL1)-(WL2) and (WL4)-(WL5), generalize the earlier LP to FkSO. We

now show an infinite integrality gap w.r.t. this LP.
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v1 v2
· · ·

vk

· · ·

v

1/k 1/k 1/k

1

1/k 1/k 1/k

Figure 1 One of the k identical gadgets in the gap example, showing LP values in red (x values)

and blue (cov values). The “edges” represent distance 1, and all other distances are determined by

making triangle inequalities tight. The fault-tolerances are ℓv1
= ℓv2

= · · · = ℓvk
= k, and ℓv = 1.

Consider k identical gadgets, each like in Figure 1, infinitely apart from each other. Let

m = 2k. The small client in each gadget (v in Figure 1) has fault-tolerance 1. The big

clients in each gadget (v1, v2, . . . , vk in Figure 1) have fault-tolerance k. Within a gadget, an

integral solution only benefits from either picking one facility to serve just the small client,

or picking all facilities to serve all (k + 1) clients. So over all gadgets, an integral solution

can either pick one facility per gadget, or pick all facilities in exactly one gadget, either way

serving k < m clients. Since all facilities are within distance 1 of the clients in their gadget,

the above is true for an integral solution with any radius dilation α ≥ 1.

But the LP can assign xi = 1/k to each of the k2 facilities in the instance. This allows it

to assign covv = 1 to all the small clients, and covv1
= covv2

= · · · covvk
= 1/k to all the big

clients, thus serving k · 1 + k2 · 1
k = 2k = m clients.

4 Fault-tolerant k-Supplier with Outliers

In this section, we address FkSO in its full generality. We use t to denote the number of

distinct fault-tolerances in the instance, i.e. ♣¶ℓv : v ∈ C♢♣ = t. We prove that

▶ Theorem 10. The FkSO problem admits a (min ¶4t− 1, 2t + 1♢)-approximation.

4.1 Strong LP Relaxation and the Round-or-Cut Schema

To circumvent the gap example in Section 3, we adapt the following stronger linear program

idea from Chakrabarty and Negahbani [7]. As before, r is the guess of the optimal solution,

and we have the same fractional variables covv indicating coverage. However, we assert that

these covv’s arise as a convex combination of integral solutions. More precisely, we have

exponentially many auxilary variables ¶zS♢S⊆F :♣S♣≤k indicating possible locations of open

facilities and the fractional amount to which they are open. When such a solution is opened,

a client v is “covered” if there are ℓv facilities in an r-neighborhood. To this end, for a client

v, we define the collection Fv := ¶S ⊆ F : ♣S♣ ≤ k ∧ ♣S ∩B(v, r)♣ ≥ ℓv♢ of solutions which

can serve v. Therefore, the coverage covv is simply the total fractional weight of sets in Fv.

Formally, if r is a correct guess, then the following (huge) LP has a feasible solution.

STACS 2024
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∑

v∈C

covv ≥ m (L1)

∀v ∈ C, covv =
∑

S∈Fv

zS (L2)

∑

S⊆F :♣S♣≤k

zS ≤ 1 (L3)

∀S ⊆ F,∀v ∈ C, 0 ≤ zS , covv ≤ 1 (L4)

(L1) enforces that at least m clients must be covered. (L2) connects the covv and zS

variables, ensuring that a client v can only be covered via solutions in Fv. (L3)-(L4) enforce

convexity. (L4) also enforces that each client can be covered at most once.

▶ Observation 11. All covv’s that satisfy (L1)-(L4) also satisfy (WL1)-(WL5).

Also observe that we cannot efficiently figure out whether the above system is feasible

or not; indeed, if so we would solve the Fault-tolerant k-Supplier with Outliers problem

optimally. Nevertheless, one can use the round-or-cut schema to obtain an approximation

algorithm. In order to do so, the first step is to use the dual of the above system to obtain

the collection of all valid inequalities on the covv’s. Recall, a valid inequality is one that

every feasible covv must satisfy; the lemma below from the literature [6], in some sense,

eliminates all the zS variables from the above program.

▶ Lemma 12 ([7, Lemma 10]). Given real numbers ¶λv♢v∈C such that

∀S ⊆ F,
∑

v∈C:S∈Fv

λv < m , (λ1)

the following is a valid inequality for (L1)-(L4):
∑

v∈C

λvcovv < m . (λ2)

Given ¶λv♢v∈C , one cannot easily check (λ1), and thus, a priori, one cannot see the usefulness

of the above lemma. We now briefly describe its usefulness to the round-or-cut schema.

The algorithm begins with values of ¶0 ≤ covv ≤ 1♢v∈C that satisfy (L1) – such cov is

straightforward to find. We then try to use these covv’s to “round” and obtain a solution

where clients are covered within distance α · r for desired factor α, and if we fail, then we

find a valid inequality that “cuts” covv away from the above system. If we can do so, then

we can feed this separating hyperplane to the ellipsoid algorithm which would give us new

covv’s. Repeating the above procedure a polynomial number of times, we would either obtain

an α-approximation, or prove that the above system is empty implying our guess r was

too small. For FkSO, the “round” step is via the abstract concept of a “good partition”

where the “radius” of the partition dictates the approximation factor; this definition and

resulting rounding algorithm is described in Section 4.2. For the “cut” step, we show that if

our rounding algorithm fails, then we can use this failure to generate ¶λv♢v∈C ’s that satisfy

(λ1) but not (λ2), leveraging our definition of “good partitions”. This gives our separating

hyperplane using Lemma 12, and we succeed in cutting, and thus we can run the round-or-cut

schema. Subsequently, we construct good partitions. In Section 4.3, we describe two methods

to do this: one with “radius” (4t− 1) and the other with radius (2t + 1). In Appendix B, we

show a limitation of our approach, via an example where this “radius” can be Ω(t).

Before proceeding, we make one simplification: at the beginning of every rounding step,

we discard any clients that have covv = 0, and hereafter assume, without loss of generality,

that ∀v ∈ C, covv > 0.
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4.2 Good Partitions and Implementing Round-or-cut

Given covv’s for every v ∈ C, we define a notion of a “good partition”. Before formally

defining it, we explain this operationally, hopefully giving intuition for the definition. We

start with a finer partition, and the good partition P coarsens it. As in previous algorithms

discussed so far, we have R ⊆ C, a set of representatives. The finer partition is ¶child(j)♢j∈R,

as motivated by our algorithms for FkS in Section 2 and UFkSO in Section 3. This time,

however, we want favorable properties from both of those algorithms to coincide – we want,

for j ∈ R and v ∈ child(j), covv ≤ covj as well as ℓv ≤ ℓj . These desired properties of the

finer partition are formalized as Property 1.

The property above breaks the “well-separated” property of R, which was crucial in our

other algorithms in Sections 2 and 3. Therefore, instead of requiring R to be well-separated,

we coalesce the child-sets of certain representatives, to get a coarsening P of ¶child(j)♢j∈R

such that representatives across different parts of P are indeed well-separated. This is

Property 2.

Our approximation ratio is then determined by the diameter of the parts P ’s in the good

partition; so we impose a radius bound on each P ∈ P, requiring that the highest-fault-

tolerance client in each P be not too far from the rest of P . This is Property 3. We are now

ready to present the formal definition.

▶ Definition 13 ((ρ, cov)-good partition). Given a parameter ρ ∈ R, and ¶0 ≤ covv ≤ 1♢v∈C

satisfying (L1), a partition P of C is (ρ, cov)-good if there exists R ⊆ C such that the

following hold.

1. Every v ∈ C is assigned to be the child of a j ∈ R, forming a partition ¶child(j)♢j∈R of

C that refines P. Also, ∀j ∈ R,∀v ∈ child(j), covj ≥ covv and ℓj ≥ ℓv.

2. For any two j, j′ ∈ R that lie in different parts of P, d(j, j′) > 2r.

3. For each P ∈ P, let jP := argmaxv∈P ℓv (breaking ties arbitrarily). Then ∀v ∈ P ,

d(jP , v) ≤ ρr.

Figure 2 An example of a (6, cov)-good partition P (Definition 13). The ellipses represent P,

and their subdivisions represent the child sets. All the circles are clients, with the filled-in circles

being R, and among those, the double borders indicate the jP ’s. cov values are 1 on R and 1/2

elsewhere. ℓv values are indicated by the sizes of the circles. The “edges” represent distance 2r, and

all other distances are obtained by making triangle inequalities tight.

We observe here that the child-sets constructed in Section 3 are themselves a good

partition, so for UFkSO, we did not need to coarsen it. This will not necessarily be the case

for child-sets that we construct in Section 4.3. We also observe that

STACS 2024
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▶ Observation 14. In a (ρ, cov)-good partition P, by Property 1, the jP ’s in Property 3 can

be chosen such that ∀P ∈ P, jP ∈ R. So we can assume, without loss of generality, that all

jP ’s are in R.

We prove that a good partition suffices to achieve our desired approximation. That is,

▶ Theorem 15. If we have a feasible instance with a (ρ, cov)-good partition, then in polynomial

time, we can either obtain a (ρ+1)-approximation, or identify a valid inequality for (L1)-(L4)

that is violated by cov.

To prove Theorem 15, we solve a budgeting problem on the (ρ, cov)-good partition. We

want to distribute our budget of k facilities among the P ∈ P, assigning each P ∈ P with

kP facilities that are within distance (ρ + 1)r of the clients in P . Here kP must be at most

ℓP := ℓjP
, because at most ℓP facilities are guaranteed to exist within a bounded distance

of clients in P . The payoff from assigning kP facilities to P in this way is that the clients

¶v ∈ P : ℓv ≤ kP ♢ are served within distance (ρ + 1)r. So if
∑

P ∈P ♣¶v ∈ P : ℓv ≤ kP ♢♣ ≥ m,

we have our (ρ + 1)-approximation. Therefore, we want our choice of kP ’s to maximize
∑

P ∈P ♣¶v ∈ P : ℓv ≤ kP ♢♣, and this maximum to be ≥ m. However, our analysis can only

handle clients from well-separated sets; so instead, we maximize the following lower-bound

on our desired quantity:
∑

P ∈P

∑

j∈R∩P :ℓj≤kP
♣child(j)♣, where we under-count by only

considering v ∈ child(j) served if j is served. Formally, our budgeting problem is the

following.

▶ Definition 16 (Budgeting over a (ρ, cov)-good partition). Given a (ρ, cov)-good parti-

tion P, let ℓP := maxv∈P ℓv. Find ¶kP ≤ ℓP ♢P ∈P such that
∑

P ∈P kP ≤ k, maximizing
∑

P ∈P

∑

j∈R∩P :ℓj≤kP
♣child(j)♣. Let optB(P) denote this maximum.

In Lemma 17, we show that if optB(P) ≥ m, then we can round. Then in Lemma 18, we

see that if optB(P) < m, then we can cut. Lemma 19 shows that optB(P) can be found

efficiently. Together, these three lemmas yield the proof of Theorem 15.

▶ Lemma 17. Given a (ρ, cov)-good partition P, if optB(P) ≥ m, then we have a (ρ + 1)-

approximation.

Proof. Let ¶kP ♢P ∈P be an optimal solution to the budgeting problem (Definition 16). Define

S := ∪P ∈PNkP
(jP , F ). So ♣S♣ ≤ k. We show that S serves ≥ m clients within distance

(ρ + 1)r.

Define T := ⊎P ∈P ⊎j∈R∩P :ℓj≤kP
child(j). Then ♣T ♣ =

∑

P ∈P

∑

j∈R∩P :ℓj≤kP
♣child(j)♣ =

optB(P) ≥ m. We complete this proof by showing that ∀v ∈ T , dℓv
(v, S) ≤ (ρ + 1)r. For

this, fix v ∈ T . By triangle inequalities, we have that dℓv
(v, S) ≤ d(v, jP ) + dℓv

(jP , S). By

Property 3, d(v, jP ) ≤ ρr, so it remains to show that dℓv
(jP , S) ≤ r.

By definition of T , dℓv
(jP , S) ≤ dkP

(jP , S). Since NkP
(jP , F ) ⊆ S, dkP

(jP , S) ≤

dkP
(jP , F ). By definitions of kP and ℓP , dkP

(jP , F ) ≤ dℓP
(jP , F ) = dℓjP

(jP , F ). But

covjP
> 0; so by Observation 11 and (WL4), dℓjP

(jP , F ) ≤ r. ◀

▶ Lemma 18. Given a (ρ, cov)-good partition P, if optB(P) < m, then we find a valid

inequality for (L1)-(L4) that is violated by cov.

Proof. We appeal to Lemma 12 mentioned in Section 4.1. ∀v ∈ C, define

λv :=

{

♣child(v)♣ if v ∈ R, and

0 otherwise.
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Note that

∑

v∈C

λvcovv =
∑

j∈R

λjcovj =
∑

j∈R

♣child(j)♣ covj =
∑

j∈R

∑

v∈child(j)

covj

≥
∑

j∈R

∑

v∈child(j)

covv . . . by Property 1

=
∑

v∈C

covv . . . by Definition 13

≥ m , . . . by (L1)

i.e. these λv’s violate (λ2). So by Lemma 12, it suffices to show that (λ1) holds for these

λv’s.

Suppose not, i.e. ∃S0 ⊆ F : ♣S0♣ ≤ k and
∑

v∈C:S0∈Fv
λv ≥ m. Then, devise a candidate

solution ¶k′
P ♢P ∈P for the budgeting problem in Definition 16, as follows. For each P ∈ P, if

∃j ∈ R ∩ P such that S0 ∈ Fj , then set k′
P to be the largest fault-tolerance among such j’s;

that is, where j′
P := argmaxj∈R∩P :S0∈Fj

ℓj , set k′
P := ℓj′

P
. Otherwise, i.e. when there is no

such j and j′
P is not well-defined, set k′

P := 0. By definitions, ∀P ∈ P, k′
P ≤ ℓP .

Also, by Property 2, ¶B(j′
P , r)♢P ∈P is pairwise disjoint. Since S0 ∈ Fj′

P
for each P ∈ P,

we then have
∑

P ∈P k′
P ≤

∑

P ∈P ♣S0 ∩B(j′
P , r)♣ ≤ ♣S0♣ ≤ k. So ¶k′

P ♢P ∈P is indeed a

candidate solution for the budgeting problem. We evaluate the objective function of the

budgeting problem (see Definition 16) on ¶k′
P ♢P ∈P :

∑

P ∈P

∑

j∈R∩P :ℓj≤k′

P

♣child(j)♣ =
∑

P ∈P

∑

j∈R∩P :ℓj≤k′

P

λj

≥
∑

P ∈P

∑

j∈R∩P :S0∈Fj

λj . . . by choice of k′
P ’s

=
∑

j∈R:S0∈Fj

λj . . . by Definition 13

=
∑

v∈C:S0∈Fv

λv . . . by choice of λv’s

≥ m . . . by supposition.

So ¶k′
P ♢P ∈P is a candidate solution to the budgeting problem, for which the objective

function evaluates to ≥ m, contradicting optB(P) < m. Hence (λ1) holds for our chosen

λv’s, and (λ2) is the desired valid inequality that is violated by cov. ◀

▶ Lemma 19. The budgeting problem in Definition 16 can be solved in polynomial time.

Proof. We proceed via dynamic programming. Let N := ♣P♣. Without loss of generality,

say P =: ¶P1, P2, . . . , PN♢. For brevity, ∀a ∈ [N ], we say La := ℓPa
. To handle base cases

in our DP, we set the convention that P0 := ∅. Now define the entries in our DP table:

∀ν ∈ [N ] ∪ ¶0♢ and ∀b ∈ [k] ∪ ¶0♢,

M [ν, b] := max
¶ka≤La♢ν

a=1
:
∑

ν

a=1
ka≤b

ν
∑

a=1

∑

j∈R∩Pa:ℓj≤ka

♣child(j)♣ . (DP-defn)

The desired entry is M [N, k], as the corresponding ¶ka♢
N
a=1 becomes, upon renaming as

¶kPa
= ka♢

N
a=1, the kP ’s that we want.
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The base cases are: M [0, 0] = 0; ∀ν ∈ [N ], M [ν, 0] = 0; and ∀b ∈ [k], M [0, b] = 0. The

DP table has O(Nk) = O(nk) entries; so in polynomial time, we can fil it via the following

recurrence.

M [ν, b] :=
min(b,Lν )

max
ℓ=0



M [ν − 1, b− ℓ] +
∑

j∈R∩Pν :ℓj≤ℓ

♣child(j)♣



 . (DP-rec)

We also remember, for each entry M [ν, b], the ℓ that maximizes the RHS of (DP-rec). Note,

in (DP-defn), that the RHS for M [N, k] corresponds, up to renaming, with the RHS in the

objective function (see Definition 16). Thus it remains to show that (DP-rec) is correct wrt

(DP-defn).

To show that LHS ≤ RHS, consider the solution ¶k∗
a♢

ν
a=1 corresponding to M [ν, b]. By

(DP-defn), k∗
ν ≤ min(b, Lν). So ¶k∗

a♢
ν−1
a=1 is a candidate solution for M [ν − 1, b− k∗

a], i.e.
∑ν−1

a=1

∑

j∈R∩Pa:ℓj≤k∗

a
♣child(j)♣ ≤M [ν − 1, b− k∗

a], so

LHS = M [ν, b] =

ν
∑

a=1

∑

j∈R∩Pa:ℓj≤k∗a

♣child(j)♣

≤M [ν − 1, b− k∗
a] +

∑

j∈R∩Pν :ℓj≤k∗

ν

♣child(j)♣ ≤ RHS

since the RHS is a maximum.

To show that RHS ≤ LHS, fix an ℓ ∈ ¶0, . . . , min(b, Lν)♢, and let ¶k′
a♢

ν−1
a=1 be the solution

corresponding to M [ν − 1, b− ℓ]. Setting k′
ν = ℓ yields ¶k′

a♢
ν
a=1, a candidate solution for

M [ν, b]. So

M [ν − 1, b− ℓ] +
∑

j∈R∩Pν :ℓj≤ℓ

♣child(j)♣ =
ν

∑

a=1

∑

j∈R∩Pa:ℓj≤k′

a

♣child(j)♣ ≤M [ν, b] = LHS

since M [ν, b] is a maximum by (DP-defn).

As the RHS maximizes over ℓ ∈ ¶0, . . . , min(b, Lν)♢, we are done. ◀

Proof of Theorem 15. Given a (ρ, cov)-good partition P, we solve the budgeting problem

(Definition 16), which we can do efficiently due to Lemma 19, and obtain optB(P). If

optB(P) ≥ m, Lemma 17 guarantees a (ρ + 1)-approximation; otherwise, Lemma 18 gives

a valid inequality that is violated by cov. We pass the valid inequality as a separating

hyperplane to the ellipsoid algorithm, and restart our rounding process with fresh covv’s.

By the guarantees of ellipsoid, in polynomial time, we either round to obtain a (ρ + 1)-

approximation, or detect that the guess of r is too small. ◀

4.3 Obtaining a good partition

▶ Theorem 20. Given ¶0 ≤ covv ≤ 1♢v∈C , in polynomial time, we can obtain the following:

1. a (4t− 2, cov)-good partition, and

2. a (2t, cov)-good partition.

Theorem 15 follows from Lemmas 21 and 22.

▶ Lemma 21. Algorithm 3 yields a (4t− 2, cov)-good partition.
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Algorithm 3 Finding a (4t − 2, cov)-good partition.

Input: ¶0 ≤ covv ≤ 1♢v∈C

1: U ← C

2: R← ∅

3: while U ̸= ∅ do

4: j ← argmaxv∈U covv

5: R← R ∪ ¶j♢

6: child(j)← ¶v ∈ U : d(v, j) ≤ 2tr ∧ ℓv ≤ ℓj♢

7: U ← U \ child(j)

8: P ← ∅

9: G← (R, E := ¶¶j, j′♢ : d(j, j′) ≤ 2r♢) ▷ undirected graph

10: C ← connected components of G

11: P ← ¶∪j∈V child(j)♢V ∈C

Output: A partition P of C.

Proof. Consider P, the output of Algorithm 3, and the child and R constructed alongside.

Line 7 ensures that ¶child(j)♢j∈R is a partition of C. Line 11 ensures that this partition is a

refinement of P. Lines 4 and 6 construct child as desired, ensuring that ∀j ∈ R, ∀v ∈ child(j),

covj ≥ covv and ℓj ≥ ℓv. So Property 1 holds.

Now consider P1, P2 ∈ P, x1 ∈ R ∩P1, x2 ∈ R ∩P2 : P1 ≠ P2. By Lines 9-10, R ∩P1 and

R ∩ P2 are distinct connected components in C, so ¶x1, x2♢ /∈ E, i.e. d(x1, x2) > 2r. This

shows that Property 2 holds.

Finally, consider P ∈ P, and v ∈ P s.t. v ∈ child(j1) for j1 ∈ R. By Line 11, j1 ∈ R ∩ P .

Also consider a different j2 ∈ R∩P . By Lines 9-10, R∩P ∈ C. In G, consider π, the shortest

j1-j2 path passing entirely through R ∩ P . We claim that

▷ Claim. π contains at most t vertices.

Proof. Suppose not. Then, by the pigeonhole principle, π contains vertices u, v ∈ R ∩ P s.t.

u ≠ v and ℓu = ℓv. Choose such u, v minimizing d(u, v), and consider the u-v subpath π′ of

π. If π′ contains > t vertices, then we can replace j1, j2 with u, v and repeat our argument

to obtain a smaller d(u, v) – contradicting our choice of u, v. So π′ contains ≤ t vertices, i.e.

d(u, v) ≤ 2(t− 1)r; but since u, v ∈ R, this contradicts Line 6. ◁

So d(j1, j2) ≤ 2(t−1)r, i.e. by Line 6, d(v, j2) ≤ d(v, j1)+d(j1, j2) ≤ 2tr+2(t−1)r = (4t−2)r.

We have just showed that, ∀v ∈ P, j ∈ R ∩ P , d(v, j) ≤ (4t− 2)r. By Observation 14, this

implies Property 3 for ρ = (4t− 2). ◀

▶ Lemma 22. Algorithm 4 yields a (2t, cov)-good partition.

Proof. Consider P, the output of Algorithm 4, and the child and R constructed alongside.

Note that, since Line 8 only creates edges to Roots, and Line 9 updates Roots accordingly,

(R, E) is indeed a forest.

Line 12 ensures that ¶child(j)♢j∈R is a partition of C. Line 14 ensures that this partition

is a refinement of P. Lines 6 and 11 construct child as desired, ensuring that ∀j ∈ R,

∀v ∈ child(j), covj ≥ covv and ℓj ≥ ℓv. So Property 1 holds.

Now consider P1, P2 ∈ P, x1 ∈ R ∩ P1, x2 ∈ R ∩ P2. Without loss of generality, suppose

x2 was added to R after x1; if d(x1, x2) ≤ 2r, then by Lines 8 and 10, we would have

d(x2, x1) ∈ E, i.e. x1, x2 would lie in the same connected component in T . So by Lines 13-14,

P1 = P2. This shows that Property 2 holds.
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Algorithm 4 Finding a (2t, cov)-good partition.

1: U ← C

2: (R, E)← (∅, ∅) ▷ initializing an empty directed forest

3: ∀v ∈ U , height(v)← 0 ▷ height in the forest; height(v) = 0 =⇒ v /∈ R

4: Roots← ∅ ▷ tracking roots in the forest

5: while U ̸= ∅ do

6: j ← argmaxv∈U covv

7: R← R ∪ ¶j♢

8: E ← E ∪
{

(j, j′) : j′ ∈ Roots ∧ d(j, j′) ≤ 2height(j′)r
}

9: Roots← (Roots \ ¶j′ : (j, j′) ∈ E♢) ∪ ¶j♢

10: height(j)← 1 + max(j,j′)∈E height(j′) ▷ convention: max over ∅ is 0

11: child(j)←
{

v ∈ U : d(v, j) ≤ 2height(j)r ∧ ℓv ≤ ℓj

}

12: U ← U \ child(j)

13: T ← connected components in the forest (R, E) ▷ each component induces a tree

14: P ← ¶∪j∈V child(j)♢V ∈T

Finally, note that

▷ Claim 23. (j, j′) ∈ E =⇒ ℓj > ℓj′ .

Proof. Since (j, j′) ∈ E, we know that j′ was added to R before j, and d(j, j′) ≤ 2height(j′)r.

So if ℓj ≤ ℓj′ , then by Line 11, we would have j ∈ child(j′), contradicting the fact that j ∈ R.

◁

Now fix P ∈ P, and consider jP which, by Observation 14, lies in R∩P , and hence by Lines 13-

14, R ∩ P induces a tree in (R, E). Claim 23 tells us that jP is the root in this tree, and

that height(jP ) ≤ t. So by Line 8, for any j ∈ R ∩ P , d(jP , j) ≤
(

2height(jP ) − 2height(j)
)

r ≤
(

2t − 2height(j)
)

r. Now consider v ∈ P : v ∈ child(j) for a j ∈ R∩P . Then d(v, j) ≤ 2height(j),

so d(v, jP ) ≤ d(v, j) + d(j, jP ) ≤
(

2t − 2height(j) + 2height(j)
)

r = 2tr. Thus Property 3 holds

for ρ = 2t. ◀

5 Conclusion

In this paper, we have studied the Fault-tolerant k-Supplier with Outliers problem and

presented a (4t − 1)-approximation when there are t distinct fault tolerances. While this

gives the optimal 3-approximation for the uniform version of the problem (improving upon

the recent result [20]), the parameter t could be as large as k. To obtain our result, we

needed to resort to the powerful hammer of the round-or-cut schema, and indeed used a

very strong LP relaxation. This was necessary since, as we saw in Section 3.1, natural

LP relaxations and their strengthenings have unbounded integrality gaps. We also show a

Ω(t)-bottleneck to our approach (Appendix B), and this raises the intriguing question: are

there O(1)-approximations for the FkSO problem? As noted in Section 1, the authors are not

aware of clustering problems where the version without outliers has a constant approximation

(as we saw in Section 2, FkS does), but the outlier version doesn’t. Perhaps FkSO is such

a candidate example. This also raises the question of designing inapproximability results

for metric clustering problems, which has not been explored much. We leave all these as

interesting avenues of further study.
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A Proof of Claim 7

Consider a feasible solution S∗ that serves inliers T ∗. Set

∀v ∈ C, covv = 1v∈T ∗ , and

∀i ∈ F , yi = 1i∈S∗ .

These satisfy (WL1), (WL2), and (WL5) by construction. Now note that, for a v ∈ T ∗,

Nℓv
(v, F ) ⊆ S; so (WL3) is satisfied. Furthermore, for a v ∈ C, if dℓv

(v, F ) > r then v /∈ T ∗,

satisfying (WL4).

Conversely, given an integral solution satisfying (WL1)-(WL5), we can construct S∗ =

¶i ∈ F : yi = 1♢, and T ∗ = ¶v ∈ C : covv = 1♢. (WL2) implies ♣S∗♣ ≤ k, and (WL1) implies

w(T ∗) ≥W . For any v ∈ T ∗,

♣S∗ ∩B(v, r)♣ =
∑

i∈F ∩B(v,r)

yi . . . by construction of S∗

≥ ℓcovv = ℓ , . . . by (WL3) and construction of T ∗

so dℓv
(v, S∗) ≤ r.

B Limiting Example for Good-Partition Rounding

In order to achieve a better approximation factor than Ω(t), we will need to move beyond

the overall schema of using a good partition (Definition 13) to round solutions to (L1)-(L4).

This can be seen via the following example, illustrated in Figure 3. Here r = 1, n = t, m = 1.

C is the set ¶v1, · · · , vt♢, with each client va having fault-tolerance ℓva
= a. F is the union of

t sets ¶Fa♢
t
a=1, where Fa = ¶ia1, ia2, . . . , iak♢, for a total of tk facilities in F . Each client va

has distance 2 to va+1 and va−1, and distance 1 to each facility in Fa. Remaining distances

are determined by making triangle inequalities tight.

Consider the following (cov, z) satisfying (L1)-(L4). We set zFa
= 1

aHt
for each a ∈ [t],

where Ht is the tth Harmonic number; and set all other zS ’s to zero. This allows us to set

covva
= 1

aHt
for each a ∈ [t]. Under this (cov, z), observe that ∀va, vb ∈ C, va ≠ va ∧ cova ≥

covb =⇒ ℓa < ℓb; so Property 1 can only hold if all clients are in the same piece of the

partition, i.e. P = ¶C♢. This means that a (ρ, cov)-good partition can only be attained for

ρ ≥ 2(t− 1), so upon applying Theorem 15, this approach attains a (2t− 1)-approximation

at best.

v1 v2 v3
· · · · · · · · ·

vt

i11 i12

· · ·
i
1k i21 i22

· · ·
i
2k i31 i32

· · ·
i
3k i11 i12

· · ·
i
1k

1

Ht

1

2Ht

1

3Ht

1

tHt

1

Ht

1

Ht
· · ·

1

Ht

1

2Ht

1

2Ht
· · ·

1

2Ht

1

3Hn

1

3Hn
· · ·

1

3Hn

1

tHt

1

tHt
· · ·

1
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Figure 3 An example showing the limitations of good partitions, with a solution to (L1)-(L4)

shown in red (z values) and blue (cov values). The thin “edges” represent distance 1, the thick

“edges” represent distance 2, and all other distances are determined by making triangle inequalities

tight. The fault-tolerances are ℓv1
= 1, ℓv2

= 2, . . . , ℓvt = t.
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