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ABSTRACT

Dueling bandits is a prominent framework for decision-making involving prefer-
ential feedback, a valuable feature that fits various applications involving human
interaction, such as ranking, information retrieval, and recommendation systems.
While substantial efforts have been made to minimize the cumulative regret in du-
eling bandits, a notable gap in the current research is the absence of regret bounds
that account for the inherent uncertainty in pairwise comparisons between the
dueling arms. Intuitively, greater uncertainty suggests a higher level of difficulty
in the problem. To bridge this gap, this paper studies the problem of contex-
tual dueling bandits, where the binary comparison of dueling arms is generated
from a generalized linear model (GLM). We propose a new SupLinUCB-type
algorithm that enjoys computational efficiency and a variance-aware regret bound

O(dy/ S, 07 +d), where o is the variance of the pairwise comparison in round

t, d is the dimension of the context vectors, and 7’ is the time horizon. Our regret
bound naturally aligns with the intuitive expectation — in scenarios where the

comparison is deterministic, the algorithm only suffers from an 5(d) regret. We
perform empirical experiments on synthetic data to confirm the advantage of our
method over previous variance-agnostic algorithms.

1 INTRODUCTION

The multi-armed bandit (MAB) model has undergone comprehensive examination as a framework for
decision-making with uncertainty. Within this framework, an agent has to select one specific “arm”
to pull in each round, and receives a stochastic reward as feedback. The objective is to maximize the
cumulative reward accumulated over all rounds. While the MAB model provides a robust foundation
for various applications, the reality is that many real-world tasks present an intractably large action
space coupled with intricate contextual information. Consequently, this challenge has led to the
proposal of the (linear) contextual bandit model, where the reward is intricately linked to both the
context associated with the selected arm and the underlying reward function. A series of work into
the linear contextual bandits has led to efficient algorithms such as LinUCB (Li et al., 2010; Chu
et al., 2011) and OFUL (Abbasi-Yadkori et al., 2011).

In scenarios where feedback is based on subjective human experiences — a phenomenon evident in
fields such as information retrieval (Yue & Joachims, 2009), ranking (Minka et al., 2018), crowd-
sourcing (Chen et al., 2013), and Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) — preferential choices emerge as a more natural and intuitive form of feedback compared
with numerical evaluations. The rationale behind preference feedback lies in the fact that numerical
scores can exhibit significant variability among individuals, resulting in noisy and poorly calibrated
rewards. On the contrary, a binary signal from preferential feedback remains independent of scale
and is thus more reliable. This distinction gives rise to a specialized variant of the MAB problem
known as dueling bandits (Yue et al., 2012). In this setting, the agent simultaneously pulls two arms
and receives binary preferential feedback, which essentially indicates the outcome of a comparison
between the chosen arms. A line of works proposed efficient and practical algorithms for multi-armed
dueling bandits based on upper confidence bound (UCB) (Zoghi et al., 2014; 2015) or Thompson
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sampling (Wu & Liu, 2016). Similar to linear contextual bandits, considerable effort has been invested
in developing efficient algorithms that minimize the cumulative regret for the contextual dueling
bandits (Saha, 2021; Bengs et al., 2022).

Intuitively, the variance of the noise in the feedback signal determines the difficulty of the problem. To
illustrate, consider an extreme case, where the feedback of a linear contextual bandit is noiseless (i.e.,
the variance is zero). A learner can recover the underlying reward function precisely by exploring
each dimension only once, and suffer a O(d) regret in total, where d is the dimension of the context
vector. This motivates a series of works on establishing variance-aware regret bounds for multi-armed
bandits, e.g. (Audibert et al., 2009; Mukherjee et al., 2017) and contextual bandits, e.g. (Zhou et al.,
2021; Zhang et al., 2021b; Kim et al., 2022; Zhao et al., 2023b;a). This observation also remains valid
when applied to the dueling bandit scenario. In particular, the binary preferential feedback is typically
assumed to adhere to a Bernoulli distribution, with the mean value denoted by p. The variance reaches
its maximum when p is close to 1/2, a situation that is undesirable in human feedback applications,
as it indicates a high level of disagreement or indecision. Therefore, maintaining a low variance in
comparisons is usually preferred, and variance-dependent dueling algorithms are desirable because
they can potentially perform better than those algorithms that only have worst-case regret guarantees.
This leads to the following research question:

Can we design a dueling bandit algorithm with a variance-aware regret bound?

We give an affirmative answer to this question by studying the dueling bandit problem with a
contextualized generalized linear model, which is in the same setting as Saha (2021); Bengs et al.
(2022). We summarize our contributions as follows:

* We propose a new algorithm, named VACDB, to obtain a variance-aware regret guarantee. This
algorithm is built upon several innovative designs, including (1) adaptation of multi-layered
estimators to generalized linear models where the mean and variance are coupled (i.e., Bernoulli
distribution), (2) symmetric arm selection that naturally aligns with the actual reward maximization
objective in dueling bandits.

* We prove that our algorithm enjoys a variance-aware regret bound 9] (d A/ Zle o? + d), where o
is the variance of the comparison in round ¢. Our algorithm is computationally efficient and does not
require any prior knowledge of the variance level, which is available in the dueling bandit scenario.
In the deterministic case, our regret bound becomes 6(d), showcasing a remarkable improvement
over previous works. When the variances of the pairwise comparison are the same across different

pairs of arms, our regret reduces to the worst-case regret of 0] (d\/T ), which matches the lower
bound Q(d+/T) proved in Bengs et al. (2022)

* We compare our algorithm with many strong baselines on synthetic data. Our experiments demon-
strate the empirical advantage of the proposed algorithm in terms of regret and adaptiveness when
faced with environments with varying variances.

* As an additional outcome of our research, we identified an unrigorous argument in the existing
analysis of MLE for generalized linear bandits. To rectify this issue, we provide a rigorous proof
based on Brouwer’s invariance of domain property (Brouwer, 1911), which is discussed further in
Appendix D.

Notation In this paper, we use plain letters such as x to denote scalars, lowercase bold letters such
as x to denote vectors and uppercase bold letters such as X to denote matrices. For a vector x, ||x||2
denotes its £5-norm. The weighted ¢5-norm associated with a positive-definite matrix A is defined as
Ix|la = VxT Ax. For two symmetric matrices A and B, we use A = B to denote A — B is positive
semidefinite. We use 1 to denote the indicator function and 0 to denote the zero vector. For a postive
integer N, we use [N] to denote {1,2,..., N}. We use x;.; to denote the set {x; }1<i<;. We use
standard asymptotic notations including O(-), Q(-), ©(+), and O(-), Q(-), ©(-) will hide logarithmic
factors.

2 RELATED WORK

Multi-Armed Bandits and Contextual Bandits. The multi-armed bandit problem involves an agent
making sequential decisions among multiple arms based on the observation of stochastic reward,
with the goal of maximizing the cumulative rewards over time. It has been widely studied, including
works such as Lai et al. (1985); Lai (1987); Auer (2002); Auer et al. (2002); Kalyanakrishnan et al.
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(2012); Lattimore & Szepesvari (2020); Agrawal & Goyal (2012). To deal with large decision spaces
with potentially infinitely many actions or to utilize contextual information, extensive studies have
been conducted in contextual bandits. Some work focused on contextual linear bandits, where the
mean reward of an arm is a linear function of some feature vectors, including algorithms such as
LinUCB/SupLinUCB (Chu et al., 2011), OFUL (Abbasi-Yadkori et al., 2011). Other works, such as
(Filippi et al., 2010; Li et al., 2017; Jun et al., 2017), studied the generalized linear bandits where the
mean reward is from a generalized linear model (GLM).

Dueling Bandits. The problem of dueling bandits is a variant of the multi-armed bandits, where the
stochastic reward is replaced by a pairwise preference. This model was first proposed in Yue et al.
(2012). Many works (Zoghi et al., 2014; Komiyama et al., 2015) studied this problem, assuming the
existence of a Condorcet winner, which is one arm that beats all the other arms. There are also works
on other types of winners such as Copeland winner (Zoghi et al., 2015; Wu & Liu, 2016; Komiyama
et al., 2016), Borda winner (Jamieson et al., 2015; Falahatgar et al., 2017; Heckel et al., 2018; Saha
et al., 2021; Wu et al., 2023) and von Neumann winner (Ramamohan et al., 2016; Dudik et al., 2015;
Balsubramani et al., 2016). Similar to the idea of contextual bandits, some works considered regret
minimization for dueling bandits with context information. Kumagai (2017) studied the contextual
dueling bandit problem where the feedback is based on a cost function. They proposed a stochastic
mirror descent algorithm and proved the regret upper bound under strong convexity and smoothness
assumptions. Saha (2021) proposed algorithms and lower bounds for contextual preference bandits
with logistic link function, considering pairwise and subsetwise preferences, respectively. Bengs
et al. (2022) further extended to the contextual linear stochastic transitivity model, allowing arbitrary
comparison function, and provided efficient algorithms along with a matching lower bound for the
weak regret. For a recent comprehensive survey of dueling bandits, please refer to Bengs et al. (2021).
Our work studies the same model as Saha (2021); Bengs et al. (2021).

Variance-Aware Bandits. It has been shown empirically that leveraging variance information
in multi-armed bandit algorithms can enjoy performance benefits (Auer et al., 2002). In light of
this, Audibert et al. (2009) proposed an algorithm, named UCBV, which is based on Bernstein’s
inequality equipped with empirical variance. It provided the first analysis of variance-aware al-
gorithms, demonstrating an improved regret bound. EUCBV Mukherjee et al. (2017) is another
variance-aware algorithm that employs an elimination strategy. It incorporates variance estimates
to determine the confidence bounds of the arms. For linear bandits, Zhou et al. (2021) proposed a
Bernstein-type concentration inequality for self-normalized martingales and designed an algorithm
named Weighted OFUL. This approach used a weighted ridge regression scheme, using variance to
discount each sample’s contribution to the estimator. In particular, they proved a variance-dependent
regret upper bound, which was later improved by Zhou & Gu (2022). These two works assumed the
knowledge of variance information. Without knowing the variances, Zhang et al. (2021a) and Kim
et al. (2022) obtained the variance-dependent regret bound by constructing variance-aware confidence
sets. (Zhao et al., 2023b) proposed an algorithm named MOR-UCB with the idea of partitioning the
observed data into several layers and grouping samples with similar variance into the same layer.
A similar idea was used in Zhao et al. (2023a) to design a SupLin-type algorithm SAVE. It assigns
collected samples to L layers according to their estimated variances, where each layer has twice the
variance upper bound as the one at one level lower. In this way, for each layer, the estimated variance
of one sample is at most twice as the others. Their algorithm is computationally tractable with a
variance-dependent regret bound based on a Freedman-type concentration inequality and adaptive
variance-aware exploration.

3 PROBLEM SETUP

In this work, we consider a preferential feedback model with contextual information. In this model,
an agent learns through sequential interactions with its environment over a series of rounds indexed
by ¢, where ¢t € [T'] and T is the total number of rounds. In each round ¢, the agent is presented with
a finite set of alternatives, with each alternative being characterized by its associated feature in the
contextual set A; C R%. Following the convention in bandit theory, we refer to these alternatives
as arms. Both the number of alternatives and the contextual set .A; can vary with the round index t.
Afterward, the agent selects a pair of arms, with features (x;, y;) respectively. The environment then
compares the two selected arms and returns a stochastic feedback o;, which takes a value from the set
{0, 1}. This feedback informs the agent which arm is preferred: When o, = 1 (resp. o; = 0), the arm
with feature x; (resp. y;) wins.

We assume that stochastic feedback o; follows a Bernoulli distribution, where the expected value
p¢ is determined by a generalized linear model (GLM). To be more specific, let x(-) be a fixed link
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function that is increasing monotonically and satisfies p(x) + p(—=z) = 1. We assume the existence
of an unknown parameter 8* € R¢ which generates the preference probability when two contextual
vectors are given, i.e.

P(o; = 1) = P(arm with x; is preferred over arm with y;) = py, = p((x; — y¢) ' 0%).

This model is the same as the linear stochastic transitivity (LST) model in Bengs et al. (2022), which
includes the Bradley-Terry-Luce (BTL) model (Hunter, 2003; Luce, 1959), Thurstone-Mosteller
model (Thurstone, 1994) and the exponential noise model as special examples. Please refer to Bengs
et al. (2022) for details. The preference model studied in Saha (2021) can be treated as a special case
where the link function is logistic.

We make the assumption on the boundness of the true parameter 8* and the feature vector.

Assumption 3.1. ||0*||2 < 1. There exists a constant A > 0 such that for all ¢ € [T] and all x € Ay,
[[x[l2 < A.

Additionally, we make the following assumption on the link function yx, which is common in the
study of generalized linear contextual bandits (Filippi et al., 2010; Li et al., 2017).

Assumption 3.2. The link function p is differentiable. Furthermore, the first derivative [ satisfies
ky < () < L, for some constants L,,, r,, > 0.

We define the random noise €; = o; — p;. Since the stochastic feedback o; adheres to the Bernoulli
distribution with expected value p, ¢; € {—p;, 1 — p; }. From the definition of ¢;, we can see that
le:| < 1. Furthermore, we make the following assumptions:

2 2
Elet[x1:4, y1:t, €1:6-1] = 0, E[€}[X1:4, Y145 €1:0-1] = 07
Intuitively, o, reflects the difficulty associated with comparing the two arms:

* When p, is around 1/2, it suggests that the arms are quite similar, making the comparison challeng-
ing. Under this circumstance, the variance o, tends toward a constant, reaching a maximum value
of 1/4.

* On the contrary, as p; approaches O or 1, it signals that one arm is distinctly preferable over the
other, thus simplifying the comparison. In such scenarios, the variance o; decreases significantly
toward 0.

The learning objective is to minimize the cumulative average regret defined as

1T

Regret(T) = §Zt:1 [QXZ‘TG* — (x¢ + yt)TB*], 3.1
where x} = arg max,c .4, X ' 6* is the contextual/feature vector of the optimal arm in round ¢. This
definition is the same as the average regret studied in (Saha, 2021; Bengs et al., 2022). Note that in
Bengs et al. (2022), besides the average regret, they also studied another type of regret, called weak
regret. Since the weak regret is smaller than the average regret, the regret bound proved in our paper
can immediately imply a regret bound defined by the weak regret.

4  ALGORITHM

4.1 OVERVIEW OF THE ALGORITHM

In this section, we present our algorithm named VACDB in Algorithm 1. Our algorithm shares
a similar structure with Sta’D in Saha (2021) and SupCoLSTIM in Bengs et al. (2022). The
core of our algorithm involves a sequential arm elimination process: from Line 6 to Line 18, our
algorithm conducts arm selection with a layered elimination procedure. Arms are progressively
eliminated across layers, with increased exploration precision in the subsequent layers. Starting
at layer / = 1, our algorithm incorporates a loop comprising three primary conditional phases:
Exploitation (Lines 7-9), Elimination (Lines 10-12) and Exploration (Lines 14-16). When all arm
pairs within a particular layer have low uncertainty, the elimination procedure begins, dropping the
arms with suboptimal estimated values. This elimination process applies an adaptive bonus radius
based on variance information. A more comprehensive discussion can be found in Section 4.3.
Subsequently, it advances to a higher layer, where exploration is conducted over the eliminated set.
Upon encountering a layer with arm pairs of higher uncertainty than desired, our algorithm explores
them and receives the feedback. Once comprehensive exploration has been achieved across layers
and the uncertainty for all remaining arm pairs is small enough, our algorithm leverages the estimated
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Algorithm 1 Variance-Aware Contextual Dueling Bandit (VACDB)

1: Require: a > 0, L < [logy(1/a)], k. Ly

2: Initialize: For £ € [L], £y < 2720, 0, 4 + 0, %, ; 0, Brp < 271+ 1/k,,)
3. fort=1,...,T do

Observe A,

5 Let.At,l — Ay, £+ 1.

6:  while x;,y, are not specified do

7 if ||x: — yt||§;} < aforall x¢,y; € A then

ook

8: Choose x;,y¢ = argmax, yc 4, , {(x +¥) 010+ Brl|x — y||§;11}

and observe o; = 1(x; > y¢) //Exploitation (Lines 7-9)
9: Keep the same index sets at all layers: W11 oo < ¥, o forall ¢’ € [L]
10 else if | x; — y¢||g-1 <27 *forall x,y; € Ay then

t,0 !
11: At72+1 — {X S At,Z | XTOt’g > maXx/c A, , x’TOM — 27E6t7g}
12: {=704+1 //Elimination (Lines 10-12)
13: else
14: Choose x;,y¢ such that | x; — y[|g-1 > 27°
t,4

and observe o; = 1(x; > y¢) //Exploration (Lines 14-16)

15: Compute the weight wy < 27¢/||x; — y¢||g-1
t,e

16: Update the index sets W11 ¢ < Wy o U {t} and Wiy ¢ < WU, forall ¢ € [L]/{¢}
17: end if

18:  end while R R
19:  For/ € [L] such that ¥, 1, # W, o, update ;110 + Xy o+ wi(xe — yi)(Xe — i) |

20:  Calculate the MLE 6, , by solving the equation:
22,0+ 3w (s —y4)T0) —0s) (x, —y.) = 0
s€Wii1 0

21:  Compute Btﬂ,l according to (4.3)

22: FOI‘@ S [L] SllCh that ‘I’t+17[ = \I’tl, let Et+1’[ = Et,g, 0t+1,[ < et’g,ﬂt+1,e < Bt,[
23: end for

parameters in the last layer to select the best arm from the remaining arms. For a detailed discussion
of the selection policy, please refer to Section 4.4. After arm selection in the exploration phase, the
estimator of the current layer is updated (Lines 19-22) using the regularized MLE, which will be
discussed in more details in Section 4.2. Note that our algorithm maintains an index set ¥, , for each
layer, comprising all rounds before round ¢ when the algorithm conducts exploration in layer £. As a
result, for each exploration step, only one of the estimators 8; ; needs to be updated. Furthermore,
our algorithm updates the covariance matrix 3; ; used to estimate uncertainty (Line 19).

4.2 REGULARIZED MLE

Most of the previous work adopted standard MLE techniques to maintain an estimator of 8* in
the generalized linear bandit model (Filippi et al., 2010; Li et al., 2017), which requires an initial
exploration phase to ensure a balanced input dataset across R for the MLE. In the dueling bandits
setting, where the feedback in each round can be seen as a generalized linear reward, Saha (2021);
Bengs et al. (2022) also applied a similar MLE in their algorithms. As a result, a random initial
exploration phase is also inherited to ensure that the MLE equation has a unique solution. However,
in our setting, where the decision set varies among rounds and is even arbitrarily decided by the envi-
ronment, this initial exploration phase cannot be directly applied to control the minimum eigenvalue
of the covariance matrix.

To resolve this issue, we introduce a regularized MLE for contextual dueling bandits, which is more
well-behaved in the face of extreme input data and does not require an additional exploration phase at
the starting rounds. Specifically, the regularized MLE is the solution of the following equation:

A0 + Z wg (,u((xs — yS)TH) — 05) (xs —ys) =0, 4.1)
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where we add the additional regularization term \@ to make sure that the estimator will change mildly.
From the theoretical viewpoint, our proposed regularization term leads to a non-singularity guarantee
for the covariance matrix. Additionally, we add some weights here to obtain a tighter concentration
inequality. Concretely, with a suitable choice of the parameters in each layer and a Freedman-type
inequality first introduced in Zhao et al. (2023a), we can prove a concentration inequality for the
estimator in the ¢-th layer:

=

¢
g < 2? [16\/256% ,wlo?log(4t2L/5) + 6log(4>L/6) | +27°. 4.2)
t,0 m ’

This upper bound scales with 27, which arises from our choice of the weights.

The regularized MLE can be formulated as a finite-sum offline optimization problem. For many
widely used models, such as the Bradley-Terry-Luce (BTL) model (Hunter, 2003; Luce, 1959), the
regularized MLE is a strongly convex and smooth optimization problem. We can solve it using
accelerated gradient descent (Nesterov, 2003) and SVRG (Johnson & Zhang, 2013), both of which
achieve a linear rate of convergence. This can mitigate the scalability issues caused by the increasing
number of iterations. The regularized MLE can also be solved by an online learning algorithm such
as in Jun et al. (2017) and Zhao et al. (2023b), where additional effort is required for the analysis.

4.3 MULTI-LAYER STRUCTURE WITH VARIANCE-AWARE CONFIDENCE RADIUS

Due to the multi-layered structure of our algorithm, the construction of the confidence set is of
paramount importance. Our algorithm distinguishes itself from prior multi-layered algorithms (Saha,
2021; Bengs et al., 2022) primarily through a variance-aware adaptive selection of the confidence
radius, which helps to achieve a variance-aware regret bound. Intuitively, we should choose the

confidence radius Bt, ¢ based on the concentration inequality (4.2). However, it depends on the true
variance o, of which we do not have prior knowledge. To address this issue, we estimate it using the

estimator 6, o. We choose

~ 16-27¢ —
o= \/(8Vart,z + 18log(4(t + 1)2L/5)> log(4t2L/4)
"
Lo9—t
+ log(4t2L/6) 4+ 2741, 4.3)
o
where
~ 2
Vi = § s s (Os =l — YS)Tgt,€)> ;20> 64(L,./ku)/log(4(t + 1)2L/5),
7 W e, otherwise.

The varied selections of Var, ¢ arise from the fact that our variance estimator becomes more accurate
at higher layers. For those low layers, we employ the natural upper bound o; < 1. Note that this
situation arises only O (log log(7'/9)) times, which is a small portion of the total layers L = ©(log T').
In our proof, we deal with two cases separately. Due to the limited space available here, the full proof
can be found in Appendix E.

4.4 SYMMETRIC ARM SELECTION

In this subsection, we focus on the arm selection policy described in Line 9. To our knowledge, this
policy is new and has never been studied in prior work for the (generalized) linear dueling bandit
problem. In detail, suppose that we have an estimator ét in round ¢ that lies in a high probability
confidence set:

(o:lo-0s, <5},
where f]t =+ Zf;} (x; —yi)(x; — yi) . Our choice of arms can be written as
xi,ye = argmax [(x +y) 0, + filx — ylg | (44
X, yEA; t

Intuitively, we utilize (x + y)8; as the estimated score and incorporate an exploration bonus
dependent on ||x — y/|| 51 Our symmetric selection of arms aligns with the nature of dueling bandits
where the order of arms does not matter. Here we compare it with several alternative arm selection
criteria that have appeared in previous works.
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The MaxInP algorithm in Saha (2021) builds the so-called “promising” set that includes the optimal
arm:

Ci={x €A | (x=y)T0 +Alx—ylg— > 0.Yy € A}.

It chooses the symmetric arm pair from the set C; that has the highest pairwise score variance
(maximum informative pair), i.e.,

X¢, Y = argmax ||x — y|5-1.
X,y €Cy ¢

The Sta’ D algorithm in Saha (2021) uses an asymmetric arm selection criterion, which selects the
first arm with the highest estimated score, i.e.,
X = argmax XTé\t.
xEA,

Following this, it selects the second arm as the toughest competitor to the arm x;, with a bonus term
related to |[x; — y|[5;-1, 1€,
t

y: = argmaxy ' 0; + 26;[x¢ — y 51 (4.5)
yEA,: t

Similar arm selection criterion has also been used in the CoL ST IM algorithm (Bengs et al., 2022). We
can show that these two alternative arm selection policies result in comparable regret decomposition
and can establish similar regret upper bound. A more detailed analysis can be found in Appendix C.

5 MAIN RESULTS
5.1 VARIANCE-AWARE REGRET BOUND
In this section, we summarize our main results in the following theorem.

Theorem 5.1. If we set o = 1/(T3/2), then with probability at least 1 — 24, the regret of Algorithm 1
is bounded as

This regret can be divided into two parts, corresponding to the regret incurred from the exploration
steps (Line 14) and the exploitation steps (Line 8). The exploitation-induced regret is always 6(1)
as shown in (5.1), and thus omitted by the big-O notation. The total regret is dominated by the
exploration-induced regret, which mainly depends on the total variance Zthl o?. Note that the
comparisons during the exploration steps only happen between non-identical arms (x; # y¢).

Remark 5.2. To show the advantage of variance awareness, consider the extreme case where the
comparisons are deterministic. More specifically, for any two arms with contextual vectors x and y,
the comparison between arm x and item y is determined by o, = 1 {xtT 0" >y 0" }, and thus has

zero variance. Our algorithm can account for the zero variance, and the regret becomes O(d), which
is optimal since recovering the parameter 8* € R¢ requires exploring each dimension.

Remark 5.3. The setting we study is quite general, where the arm set is time-varying, and therefore,
the variance of arms can vary with respect to time and arms. When we restrict our setting to a special

case with uniform variances for all pairwise comparisons, i.e., 02 = ¢ for all ¢, our upper bound

becomes O(od/T). This results in a regret bound that does not depend on the random variable 7.
Remark 5.4. In the worst-case scenario, the variance of the arm comparison is upper bounded by
1/4, our regret upper bound becomes O(d+/T), which matches the regret lower bound Q(dv/T)
for dueling bandits with exponentially many arms proved in Bengs et al. (2022), up to logarithmic
factors. This regret bound also recovers the regret bounds of MaxInP (Saha, 2021) and CoLSTIM
(Bengs et al., 2022). Compared with Sta’ D (Saha, 2021) and SupCoLSTIM (Bengs et al., 2022),
our regret bound is on par with their regret bounds provided the number of arms K is large. More
specifically, their regret upper bounds are O(1/dT log K ). When K is exponential in d, their regret
bound becomes O(d+/T), which is of the same order as our regret bound.

Remark 5.5. Notably, in Bengs et al. (2022), they made an assumption that the context vectors can
span the total d-dimensional Euclidean space, which is essential in their initial exploration phase. In
our work, we replace the initial exploration phase with a regularizer, thus relaxing their assumption.
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5.2 PROOF SKETCH OF THEOREM 5.1

As we describe in Section 4, the arm selection is specified in two places, the exploration part (Lines 14
- 16) and the exploitation part (Lines 8 - 9). Given the update rule of the index set, each step within
the exploration part will be included by the final index set W71 ¢ of a singular layer £. Conversely,
steps within the exploitation part get into 7'/ Uye(z) W4 1,¢. Using this division, we can decompose
the regret into :

1 * 1 O* T p* T p*
Regret(T) = 5 ZSE[T]/(UgE[L]\I’T+1,Z) (2X9 0 - (Xs 0 +y§ 0 ))

exploitation

+ Zze[L]Zseqfﬂu (2X§T9* — (xJ 0" + yIB*)) }

exploration

We bound the incurred regret of each part separately.

For any round s € T'/ Uye(z) W11, the given condition for exploitation indicates the existence

of a layer £, such that ||x, — ys|g-1 < aforall x;,y, € A, . Using the Cauchy inequality and
s, 0 ’

the MLE described in Section 4.2, we can show that the regret incurred in round s is smaller than
30,0, - . Considering the simple upper bound 35 ¢, < O(v/T) and a = T3/ the regret for one
exploitation round does not exceed O(1/T). Consequently, the cumulative regret is

* T p* T g* T g* A
ZSE[T}/(UZE[L]‘I’T+1,Z) (2XS 0 - (Xs 0 +Y5 9 )) S O(l)'7 (51)

which is a low-order term in total regret.
In the exploration part, the regret is the cumulative regret encountered within each layer. We analyze

the low layers and high layers distinctly. For ¢ < ¢* = [log2 (64(Lu/mu) V1og(4(T + 1)2L/5))_‘ ,
the incurred regret can be upper bounded by the number of rounds in this layer

Yicwrg,, (2X5T07 — (x] 0" +y]0%)) < AWry .

Moreover, | U741 ¢| can be upper bounded by

L? .
[Wriq,e| < 2%dlog (14 2% AT/d) < O (H;‘dlog (1+2% AT/d) log (A(T + 1)2L/6)>.
"

(5.2)

Thus the total regret for layers ¢ < £* is bounded by 5(d) For ¢ > ¢*, we can bound the cumulative
regret incurred in each layer with

Lemma 5.6. With high probability, for all £ € [L]\ {1}, the regret incurred by the index set U1 ¢
is bounded by

Secwr,, (2707 — (x]0" +y10%)) <O(d-2Br).

By summing up the regret of all the layers, we can upper bound the total regret for layers £ > ¢* as

D oee[ny/ier] ZSE‘PT_H,e (QX;TG* — (x/ 0" + Y;ra*)) < 5(:“\/ 23:10752 + ,i>’

We can complete the proof of Theorem 5.1 by combining the regret in different parts together. For
the detailed proof, please refer to Appendix E.

6 EXPERIMENTS

Experiment Setup. We study the proposed algorithm in simulation to compare it with those that
are also designed for contextual dueling bandits. Each experiment instance is simulated for 7" = 4000
rounds. The unknown parameter 8* to be estimated is generated at random and normalized to be a
unit vector. The feature dimension is set to d = 5. A total of |.4;| = 2¢ distinct contextual vectors are
generated from {—1,1}%. In each round, given the arm pair selected by the algorithm, a response is
generated according to the random process defined in Section 3. For each experiment, a total of 128



Published as a conference paper at ICLR 2024

repeated runs are carried out. We tune the confidence radius of each algorithm to showcase the best
performance. The average cumulative regret is reported in Figure 1 along with the standard deviation
in the shaded region. The link function u(-) is set to be the logistic function. Our implementation is
publicly available ! .

Algorithms. We list the algorithms studied in this section as follows:

* MaxInP: Maximum Informative Pair by Saha (2021). It maintains an active set of possible optimal
arms each round. The pairs are chosen on the basis of the maximum uncertainty in the difference
between the two arms. Instead of using a warm-up period 7 in their definition, we initialize
39 = Al as regularization. When A = 0.001 this approach empirically has no significant impact
on regret performance compared to the warm-up method.

* MaxPairUCB: In this algorithm, we keep the MLE the same as MaxInP. However, we eliminate
the need for an active set of arms, and the pair of arms that is picked is according to the term
defined in (4.4).

* CoLSTIM: This method is from Bengs et al. (2022). First, they add randomly disturbed utilities
to each arm and pick the arm that has the best estimation. They claim this step achieves better
empirical performance. The second arm is chosen according to criteria as defined in (4.5).

* VACDB: The proposed variance-aware Algorithm 1 in this paper. « is set to this theoretical value
according to Theorem 5.1. However, we note that for this specific experiment, L = 4 is enough to

eliminate all suboptimal arms. The estimated 6 in one layer below is used to initialize the MLE
of the upper layer when it is first reached to provide a rough estimate since the data is not shared
among layers.

x103 x10*

Regret Comparison. In Figure la we first

T —— VACDB a=05

notice that the proposed method VACDB has
a better regret over other methods on aver-

1.04

VACDB a=1
= VACDB a=2

4 —— VACDB a=4

Pz

age, demonstrating its efficiency. Second, the
MaxPairUCB and CoLSTIM algorithm have
a slight edge over the MaxInP algorithm em-
pirically, which can be partially explained by
the discussion in Section 4.4. The contributing
factor for this could be that in MaxInP the cho-
sen pair is solely based on uncertainty, while the
other two methods choose at least one arm that
maximizes the reward.

Variance-Awareness. In Figure 1b, we show

the variance awareness of our algorithm by scaling the unknown parameter 8*. Note that the variance
of the Bernoulli distribution with parameter p is 0 = p(1 — p). To generate high- and low-variance
instances, we scale the parameter 8* by a ratio of « € {0.5,1,2,4}. If & > 1 then p will be closer
to 0 or 1 which results in a lower variance instance, and vice versa. In this plot, we show the result
under four cases where the scale is set in an increasing manner, which corresponds to reducing the
variance of each arm. With decreasing variance, our algorithm suffers less regret, which corresponds
to the decrease in the o, term in our main theorem.

7 CONCLUSION

We introduced a variance-aware method for contextual dueling bandits. An adaptive algorithm called
VACDB is proposed. Theoretical analysis shows a regret upper bound depending on the observed
variances in each round. The worst-case regret bound matches lower bound. Additionally, we conduct
some simulated studies to show that the proposed algorithm reacts to instances with changing variance
implied by the regret analysis. In the future, one of the possible directions is to consider a subset-wise
comparison: In each round, a subset of size K arms can be chosen from all arms, and the agent
can only observe the best arm of the chosen subset. The dueling bandits model in this work can
be treated as a special case of K = 2. Moreover, the preference probability is characterized by a
generalized linear model, which may be a strong assumption for some real-world applications. We
aim to generalize our results to broader nonlinear function classes, such as the function class with
bounded Eluder dimension (Russo & Van Roy, 2013).

Regret(t)
Regret(t)

—— MaxInP
ColLSTIM
MaxPairUCB
—— VACDB

0.5 1

0.0 1

T T T T T T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000
t t

(a) Compare proposed al-(b) Variance-awareness of
gorithm with baselines. the proposed algorithm.
Figure 1: Experiments showing regret performance
in various settings.

"https://github.com/uclaml/VACDB


https://github.com/uclaml/VACDB

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and area chair for their helpful comments. QD, YW and QG are
supported in part by the NSF grants CIF-1911168 and CPS-2312094. YW is also supported by UCLA
Dissertation Year Fellowship. TJ and FF are supported in part by the NSF grant CIF-1908544. The
views and conclusions contained in this paper are those of the authors and should not be interpreted
as representing any funding agencies.

REFERENCES

Yasin Abbasi-Yadkori, D4vid P4l, and Csaba Szepesvéri. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.
In Conference on learning theory, pp. 39—1. IMLR Workshop and Conference Proceedings, 2012.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. Exploration-exploitation tradeoff using
variance estimates in multi-armed bandits. Theor. Comput. Sci., 410:1876-1902, 2009.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397-422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47:235-256, 2002.

Akshay Balsubramani, Zohar Karnin, Robert E Schapire, and Masrour Zoghi. Instance-dependent
regret bounds for dueling bandits. In Conference on Learning Theory, pp. 336-360. PMLR, 2016.

Viktor Bengs, Rébert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hiillermeier. Preference-based
online learning with dueling bandits: A survey. Journal of Machine Learning Research, 22:7-1,
2021.

Viktor Bengs, Aadirupa Saha, and Eyke Hiillermeier. Stochastic contextual dueling bandits under
linear stochastic transitivity models. In International Conference on Machine Learning, pp.
1764-1786. PMLR, 2022.

Luitzen EJ Brouwer. Beweis der invarianz des n-dimensionalen gebiets. Mathematische Annalen, 71:
305-313, 1911.

Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise ranking aggregation
in a crowdsourced setting. In Proceedings of the sixth ACM international conference on Web
search and data mining, pp. 193-202, 2013.

Wei Chu, Lihong Li, L. Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff
functions. In International Conference on Artificial Intelligence and Statistics, 2011.

Miroslav Dudik, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, and Masrour Zoghi.
Contextual dueling bandits. ArXiv, abs/1502.06362, 2015.

Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh Ravindrakumar.
Maxing and ranking with few assumptions. Advances in Neural Information Processing Systems,
30, 2017.

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvari. Parametric bandits: The
generalized linear case. Advances in Neural Information Processing Systems, 23, 2010.

David A Freedman. On tail probabilities for martingales. the Annals of Probability, pp. 100—118,
1975.

Reinhard Heckel, Max Simchowitz, Kannan Ramchandran, and Martin Wainwright. Approximate
ranking from pairwise comparisons. In International Conference on Artificial Intelligence and
Statistics, pp. 1057-1066. PMLR, 2018.

David R. Hunter. Mm algorithms for generalized bradley-terry models. Annals of Statistics, 32:
384-406, 2003.

Kevin Jamieson, Sumeet Katariya, Atul Deshpande, and Robert Nowak. Sparse dueling bandits. In
Artificial Intelligence and Statistics, pp. 416-424. PMLR, 2015.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, and Rebecca Willett. Scalable generalized
linear bandits: Online computation and hashing. Advances in Neural Information Processing
Systems, 30, 2017.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection in
stochastic multi-armed bandits. In /CML, volume 12, pp. 655-662, 2012.

Yeoneung Kim, Insoon Yang, and Kwang-Sung Jun. Improved regret analysis for variance-adaptive
linear bandits and horizon-free linear mixture mdps. Advances in Neural Information Processing
Systems, 35:1060-1072, 2022.

10



Published as a conference paper at ICLR 2024

Junpei Komiyama, Junya Honda, Hisashi Kashima, and Hiroshi Nakagawa. Regret lower bound and
optimal algorithm in dueling bandit problem. In Conference on learning theory, pp. 1141-1154.
PMLR, 2015.

Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa. Copeland dueling bandit problem: Re-
gret lower bound, optimal algorithm, and computationally efficient algorithm. In International
Conference on Machine Learning, pp. 1235-1244. PMLR, 2016.

Wataru Kumagai. Regret analysis for continuous dueling bandit. Advances in Neural Information
Processing Systems, 30, 2017.

Tze Leung Lai. Adaptive treatment allocation and the multi-armed bandit problem. The annals of
statistics, pp. 1091-1114, 1987.

Tze Leung Lai, Herbert Robbins, et al. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4-22, 1985.

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge University Press, 2020. doi:
10.1017/9781108571401.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on
World wide web, pp. 661-670, 2010.

Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear contextual
bandits. In International Conference on Machine Learning, pp. 2071-2080. PMLR, 2017.

R. Duncan Luce. Individual choice behavior. In , 1959.

Thomas P. Minka, Ryan Cleven, and Yordan Zaykov. Trueskill 2: An improved bayesian skill rating
system. In Microsoft Research, 2018.

Subhojyoti Mukherjee, Kolar Purushothama Naveen, Nandan Sudarsanam, and Balaraman Ravindran.
Efficient-ucbv: An almost optimal algorithm using variance estimates. In AAAI Conference on
Artificial Intelligence, 2017.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

S. Ramamohan, A. Rajkumar, and Shivani Agarwal. Dueling bandits: Beyond condorcet winners to
general tournament solutions. In NIPS, 2016.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. Advances in Neural Information Processing Systems, 26, 2013.

Aadirupa Saha. Optimal algorithms for stochastic contextual preference bandits. In Neural Informa-
tion Processing Systems, 2021.

Aadirupa Saha, Tomer Koren, and Y. Mansour. Adversarial dueling bandits. ArXiv, abs/2010.14563,
2021.

Louis Leon Thurstone. A law of comparative judgment. Psychological Review, 34:273-286, 1994.

Huasen Wu and Xin Liu. Double thompson sampling for dueling bandits. Advances in neural
information processing systems, 29, 2016.

Yue Wu, Tao Jin, Hao Lou, Farzad Farnoud, and Quanquan Gu. Borda regret minimization for
generalized linear dueling bandits. arXiv preprint arXiv:2303.08816, 2023.

Yisong Yue and Thorsten Joachims. Interactively optimizing information retrieval systems as a
dueling bandits problem. In Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 1201-1208, 2009.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, 78(5):1538—-1556, 2012.

Xiaohang Zhang, Guoliang Li, and Jianhua Feng. Crowdsourced top-k algorithms: An experimental
evaluation. Proc. VLDB Endow., 9:612-623, 2016.

Zihan Zhang, Jiaqi Yang, Xiangyang Ji, and Simon S Du. Improved variance-aware confidence sets
for linear bandits and linear mixture mdp. Advances in Neural Information Processing Systems,
34:4342-4355, 2021a.

Zihan Zhang, Jiaqi Yang, Xiangyang Ji, and Simon Shaolei Du. Improved variance-aware confidence
sets for linear bandits and linear mixture mdp. In Neural Information Processing Systems, 2021b.

Heyang Zhao, Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Variance-dependent regret
bounds for linear bandits and reinforcement learning: Adaptivity and computational efficiency.
arXiv preprint arXiv:2302.10371, 2023a.

11



Published as a conference paper at ICLR 2024

Heyang Zhao, Dongruo Zhou, Jiafan He, and Quanquan Gu. Optimal online generalized linear
regression with stochastic noise and its application to heteroscedastic bandits. In International
Conference on Machine Learning, pp. 42259-42279. PMLR, 2023b.

Dongruo Zhou and Quanquan Gu. Computationally efficient horizon-free reinforcement learning for
linear mixture mdps. Advances in neural information processing systems, 35:36337-36349, 2022.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning
for linear mixture markov decision processes. In Conference on Learning Theory, pp. 4532-4576.
PMLR, 2021.

Masrour Zoghi, Shimon Whiteson, Rémi Munos, and M. de Rijke. Relative upper confidence bound
for the k-armed dueling bandit problem. ArXiv, abs/1312.3393, 2014.

Masrour Zoghi, Zohar S. Karnin, Shimon Whiteson, and M. de Rijke. Copeland dueling bandits. In
NIPS, 2015.

12



Published as a conference paper at ICLR 2024

A  COMPARISON WITH PRIOR WORKS

In this section, we provide a detailed discussion of the layered design, drawing a comparison with
Sta’D in Saha (2021) and SupCoLSTIM in Bengs et al. (2022). The general idea follows Auer
(2002), which focuses on maintaining a set of “high confidence promising arms”. The algorithm
operates differently in two distinct scenarios. If there are some pairs (x,y:) in the current layer ¢
with high uncertainty, represented by ||x; — y: ||2 1, we will explore those arm pairs. Conversely,

when achieving the desired accuracy, we ehmlnate suboptlmal arms using our confidence set and
proceed to a subsequent layer demanding greater accuracy. This process continues until we reach
a sufficiently accurate high layer, at which we make decisions based on the remaining arms in the

confidence set and the estimated parameters 6, ;.

In the final stage, Sta’D picks the first arm x; as the one with the maximum estimated score,
followed by choosing its strongest challenger y,, which has the highest optimistic opportunity to
beat x;. SupCoLSTIM adopts a similar policy and distinguishes itself with a randomized learning
strategy by generating additive noise terms from an underlying perturbation distribution. Our arm
selection is based on the symmetric arm selection policy described in Section 4.4.

Sta’D and SupCoLSTIM choose the confidence set radius Bt ¢ to be 27¢ in the ¢-th layer. In
comparison, our choice /Bt’g is defined in (4.3). As we mention in Section 4.3, apart from the

2~¢ dependency on the layer /, it also relies on the estimated variance. Such a variance-adaptive
confidence set radius helps to achieve the variance-aware regret bound.

B ADDITIONAL EXPERIMENT ON REAL-WORLD DATA

To showcase the performance of our algorithms in a real-world x10°
setting, we use EventTime dataset (Zhang et al., 2016). In this 25
dataset, ' = 100 historical events are compared in a pairwise

fashion by crowd-sourced workers. The data contains binary 2.0 7 -

response indicating which one of the events the worker thinks £ | 5 |
precedes the other. There is no side information ) o
& 1.0
A={x;,i € [K
{ v [ ]}7 0.5 1 —— MaxInP
or the true parameter 6* readily available in the dataset. Thus, VACDB

. . Lo : . 0.0 1
we estimate them with pairwise comparison data. To achieve T

this, let C;;, 4, j € [K] be the number of times event j precedes 0 1000 QOtOO 30004000
event ¢ labeled by the workers. The following MLE is used: Figure 2: Regret comparison be-

tween VACDB and MaxInP on a

.
argmax Z Z Cijlog (o((xi —x;)'0)). real-world dataset.
Bid0 ek jelk)

With the estimated A and 8*, it is then possible to simulate the interactive process. We compared our
algorithm VACDB with MaxInP in Figure 2. We can see that after about 2500 rounds, our algorithm
starts to outperform MaxInP in terms of cumulative regret.

C DISCUSSION ON ARM SELECTION POLICIES

In this sectlon we present a detailed discussion for Sectlon 4.4. We assume that in round ¢, we have

an estimator @y, a covariance matrix Xy = A + ZZ 1 '(x; — yi)(x; —y;)" and a concentration
inequality with confidence radius S,

16, — 0|1z, < B (€.
The three arm selection methods can be described as follows:

Method 1: Following Saha (2021), let C; be
Co={xcA|(x=y)"0,+Bix—ylg >0,Vy € A}.
Then x; € C, because for any y € A,
(%7 =) 6+ Bellx; =yl = (x; —y) " (B = 07) + (x; =) 0" + Billx] — vl

> Billxi =yl = %) = yllg- 180 = 07]1=,
=0,

13
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where the first inequality holds due to Cauchy-Schwarz inequality and x; is the optimal arm in round
t. The second inequality holds due to (C.1).

The arms selected in round ¢ are x;, y; = argmax, ycc, ||X — ¥/ -1 Then the regret in round ¢ can
? g t
be decomposed as

2ry = 2XIT9* — (x¢ + yt)TB*
= (xf —x:) 0"+ (x] —y:) ' 6°
= (x; —x;) (6" — ét) + (%7 — Xt)Tat +(x; —ye) (0" — é\t) + (x; — Yt)—ré\t
< (x; = x0) (0" = 0,) + Bllx; — xillg—r + (%] —y0) T (07 = 61) + Billx] — yill g
< x; =%l 1107 = Bulls, + Billx; — x5
+ %5 =yl 16" = 0lls, + Billxi — yills
<2Bilx; = xill 52+ 28il1% = yills
< 4B4|lx: — Yt||z:t—17

where the first inequality holds because the choice x;,y: € C;. The second inequality holds due to
Cauchy-Schwarz inequality. The third inequality holds due to (C.1). The last inequality holds due to
XI S Ct7 Xt, Yt = a’rgmaxx,yGCt ||X - YHE:l

Method 2: Following Bengs et al. (2022), we choose the first arm as

X; = argmax XTOt.
xEA,

Then choose the second arm as

yi = argmaxy ' 0; +25;(x; — y|x5-1,
yeA; '

The regret in round ¢ can be decomposed as
2ry = QXITO* —(x+y:)' 0"
=20xF —x) 0" + (x, — y¢) O
= 2(x — %) (07 = 8;) +2(x; —x¢) 0, + (x0 = y0) (8" = 0,) + (x: — y1) "6,
< 2||x; — x|l 1167 — Oills, + (x —x.)" 6
+ [Ix¢ — Yt||g;1 6" — ét”z:,, + (x¢ — Yt)Tét
< 2B1[Ix; = Xtz + (x5 = y) "0 + Billxi — il
< y;é\t + 206]|x¢ — Yt||z;;1 - XfTat + (x} — Yt)Tgt + Bel|x¢ — YtHzgl
= 3/8t||xt - Yt“z;la

where the first inequality holds due to the Cauchy-Schwarz inequality and x,” ét > Xz‘ét. The
second inequality holds due to the Cauchy-Schwarz inequality. The third inequality holds due to

Yt = argmaxyc 4, y 1 0; +2B:||x¢ — y||2;1.
Method 3: In this method, we choose two arms as

xi, v = argmax [(x +y) 0, + filx — ylg | €2)
x,yEA: ¢

Then the regret can be decomposed as
2r, = 2x7 10" — (%, +y,) "0
=(xf = %) 0"+ (x{ —yi) 0"
=(x} — %) (0" = 0,) + (x; —ye) (0" — 8,) + (2x] —x — y1) ' 6,
< |Ix; = xillg- 1107 = Oulls, + %7 = yillg2 107 = Oillz, + (2] — %0 — 1) 6,

< Bellxt = Xellgr + Bellx; = yells s + (%7 = %0 — ye) "6y,
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where the first inequality holds due to the Cauchy-Schwarz inequality. The second inequality holds
due to (C.1). Using (C.2), we have

(x; +x0) "0, + Bellx; — Xt||§;t—1 < (xe+y0) 0+ Bellx, — Yt||f:;1
(xF+31) 00+ Billxt — yillg-r < (e + ve) 0+ Bellx: — illg-1-
Adding the above two inequalities, we have
Billx; = xullgyr + Bellxi = yellg 1 < (o4 ye = 2%7) 00 + 2Bil|x: — yill g1
Therefore, we prove that the regret can be upper bounded by
2ry < 204||1x¢ — Yt||§:;1-

In conclusion, we can prove similar inequalities for the above three arm selection policies. To get an
upper bound of regret, we can sum up the instantaneous regret in each round and use Lemma G.1 to
obtain the final result.

D A RIGOROUS PROOF FOR THE MLE

D.1 DISCUSSION ON THE WEAKNESS

In the proof of Lemma E.1, for completeness, we need to prove that (4.1) has a unique solution.
Following Li et al. (2017), we define a auxiliary function G : R? — R? as

0) =0 + ng [/Jf ((xs - YS)TO) — K ((Xs - ys)Ta*)] (xs - YS)'

Using the condition that the m1n1mum eigenvalue of the covariance matrix is strlctly positive, we

can prove that G is injective and 6 is the solution of (4.1) is equivalent to G(6 ) Z, where Z is a
quantity dependent on the stochastic noise. In Li et al. (2017), there is a minor weakness in asserting

the existence and uniqueness of the solution with 6=G! (Z), without confirming whether Z lies
in the range of G. We solve this problem with the classical Brouwer invariance of domain theorem in
algebraic topology:

Theorem D.1 (Brouwer 1911). Let U be an open subset of R%, and let f : U — R be a continuous
injective map. Then f(U) is also open.

We complete the proof by proving G(R%) is both open and closed and therefore (4.1) has a unique
solution.

D.2 A DETAILED PROOF

We will prove that the function G is a bijection from R? to R?. We first show it’s injective. The proof
idea is similar to Theorem 1 in Li et al. (2017). With the mean value theorem, for any 6, 6, € R4,
there exists m € [0, 1] and @ = m8; + (1 — m)84, such that the following equation holds,

G(6:) — G(62)
= )‘(91 - 92) + ng [/J' ((Xs - YS)Tel) — M ((Xs - ys)TOQ)] (Xs - ys)

AL+ Zwiﬂ ((Xs - YS)TG_) (x5 —ys)(xs — yS)T‘| (61 — 05).

We define F'(0) as

F(0)

A+ Zw (s —ys) ") (x5 = ys) (x5 — ys)Tl :

Using /i(-) > K, > 0 and inf; w? > 0, we have F'(8) is positive definite. Therefore, we prove that
when 0; # 03, G ¢(01) # Gy.4(02). That is to say, G ¢ is an injection from R? to R¢.

Next, we prove G is surjective. The classical Brouwer invariance of domain theorem (Theorem G.4)
in algebraic topology indicates that G is an open map, and thus G(R?) is an open set. On the other
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hand, the minimum eigenvalue of F () is strictly positive. Therefore, F'(8) is invertible, and we
have

01— 0; = F(0) " [Gre(61) — G14(62)] - (D.1)

Let {Gy.¢(6;)}52, be a Cauchy sequence in G(R?). Using (D.1) and the fact that Apin (F(8)) > X >
0, we have for any m > n,

1
18m = Onllz < TG (Om) = G(On)]l2-

This inequality shows that {0, }22, is also a Cauchy sequence. With the completeness of the space
R?, the limit lim,_, . 8; = 0 exists. By the continuity of the function G, we have

Jim G(6;) = G(0) € G(RY).

Therefore, G(R?) is also closed. We have proved that G(R?) is both open and closed. Using R¢ is
connected, we have proved that G(RY) = R%, i.e. Gy is subjective.
In conclusion, the function G is invertible, and (4.1) has a unique solution.

E PROOF OF THEOREM 5.1

In this section, we assume (4.1) has a unique solution 6; ¢, which is essential in our analysis. A
detailed discussion is in Section D.

We first need the concentration inequality for the MLE.

Lemma E.1. With probability at least 1 — 4, the following concentration inequality holds for all
round ¢ > 2 and layer ¢ € [L] simultaneously:

With this lemma, we have the following event holds with high probability:

BM—O*

. <2 > w202log(4t2L/5) + 6log(44°L/5) | +27°.
b s€EWyi

6,0—6"||_ <2 D" w2o2log(442L/5) + 6log(4t2L/8) | + 27" forall ¢, ¢

Eee I{’u seW,

-]

Lemma E.1 shows that P[€] > 1 — §. For our choice of B\t,z defined in (4.3), we define the following
event:

U
EPMS = 0 Bry > — 16\/ Z w202 log(4t2L/5) + 6log(4t>L/6) | +27¢, forall t,/
seW;

The following two lemmas show that the event £{°" holds with high probability.

Lemma E.2. With probability at least 1 — §, for all t > 2, £ € [L], the following two inequalties
hold simultaneously.

Z w?o? < 2 Z w?e? 4 Z;llog(éthL/é).

seW, SE‘I’t [
7
Z wre? < = Z w?o? + - 3 log(4t*L/$).
SE\I/,: e SE\Ijt 0

Lemma E.3. Suppose that the inequalities in Lemma E.2 and the event £ hold. For all ¢ > 2 and
¢ € [L] such that 2¢ > 64(L,,/r,)+/1og(4(T + 1)2L/9), the following inequalities hold

Z wio? <8 w? (0S — i ((xs - ys)Tét,g)) + 18log(4(t + 1)2L/9).

seEW, » )
. 2
Z w? (05 — i ((XS — yS)T0t75>) <4 Z w?o? + 8log(4(t +1)2L/6).
seEW, » seWy g
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Recall that with our choice of Bt’g in (4.3), the inequality in £ holds naturally when 2¢ <
64(L,/k,)\/10g(4(T + 1)2L/5). Combining Lemma E.2, Lemma E.3 and P[] > 1 — 4, after
taking a union bound, we have proved P[E%°™s N €] > 1 — 24.

Lemma E.4. Suppose the high probability events £2°™ and £ holds. Then for all t > 1 and ¢ € [L]
such that the set A ; is defined, the contextual vector of the optimal arm x; lies in Ay ¢.

Then we can bound the regret incurred in each layer separately.

Lemma E.5. Suppose the the high probability events £°°™ and £ holds. Then for all £ € [L]/1, the
regret incurred by the index set W71 ¢ is bounded by

> (xT0 — (x]0" +y07) <O (d-2Bra).
sEV 1

With all these lemmas, we can prove Theorem 5.1.

Proof of Theorem 5.1. Conditioned on £°°" N &£, let

0" = [10g(64(Lyu/ ) log(A(T + 1)2L/9))| -

Using the high probability event £°°™%, Lemma E.4 and Lemma E.5, for any ¢ > £*, we have

> (2xiTer - (x] 0" +y/]0%)

SEVT 1,0

<0 (d : QZBT,eq)

~ | a N 2
= > w? (05 = pl(xs = ys)T9T+1,e)> +1+1
B\ s€Wrie
T
~ [ d d
SO —y|> o2+—+1], (E.1)
Fu \ i3 Ky

where the first inequality holds due to Lemma E.5. The second inequality holds due to the definition
4.3. The last inequality holds due to Lemma E.3 and ws < 1.

For ¢ € [¢*], we have

> (2x1Ter - (x] 6" +y]6%))

seWryiy
< 4| Upyq 0l
74
= %42 Z [Jws (x5 — YS)”Qf;Sy[

seWry1y

< 2%F3qlog(1 4 T/(dN))

2
=0 <dL2“> : (E2)
K

where the first equality holds due to our choice of w;y such that |ws(xs — ¥s) H% . The second
5,0

inequality holds due to Lemma G.1. The last equality holds due to £ < ¢*
For any s € [T]/(Uger)¥r1,0), We set £, as the value of layer such that [|x, — y|/g-1 < o forall
’ 5,0

Xs,ys € As ¢ and then the while loop ends. By the choice of x,,ys and x} € A, o, (Lemma E4),
we have

. . . A
2x5 050, <x;050, +y; 050, + Bse,

Xs = ¥sllg-

<x) 0,0 +yl0ss, + Bss,c, (E.3)
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where the last inequality holds because ||x, — y|lg-1 < aforall x,,y, € A ;. Then we have
5,8

> (2x:T0" — (x. 6" +yl6Y)
sE€[T]/(Veen)Yr+1,0)
= Z ZXZTH* — ZXZTé\S,gS + (X;ré\&gb‘ — XSTG*)
SET]/(Vee(r)Yr+1,0)

~

+ (y;ras,fs - y;r9*) + <2XZT§S,ES - (Xg—és,fs + yzé\s,is)))

> (I -xls +lIxi -yl ) 16* — 6.,
vs S,ks
SET]/(Vee(r)¥r+1,0)

< ¥ 3B
s€[T]/(Ueein)¥r+1,e)

<T-0(1/T) = 0(1), (E4)

IN

S, Thsec

where the first inequality holds due to the Cauchy-Schwarz inequality and (E.3). The third inequality
holds due to [|x; — ys|ls-1 < aforall x,,y, € Asp,, X} € A, (Lemma E.4) and Lemma E.1.
s,

The third inequality holds due to our choice of 3, .. < O(V/T) and @ = 1/T3/2. Combining (E.1),
(E.2), (E.4) together, we obtain

L2 1

4 )) .

K Ky

d

m m

Regret(T) = 5(

F PROOF OF LEMMAS IN SECTION E

F.1 PROOF OF LEMMA E.1
Proof of Lemma E.1. Forafixed ¢ € [L],lett € Upiq 4, t > 2, we define some auxiliary quantities:

Gre(0) = 272@"5#0 + Z w? [/‘ ((Xs - YS)TH) —H ((Xs - YS)TO*)] (X5 —¥s)

seWy
€ =0t — [ ((Xt - Yt)TO*)
Zig = Z wges(xS —ys).

SEW, ¢

Recall (4.1), @}g is the solution to

2k, 000+ > w? (u((xs —y.) 610) - os) (xs —ys) = 0. (F.1)
seWy

A simple transformation shows that (F.1) is equivalent to following equation,

Gro (Bue) =22 mufue+ 3 w? [ (%= v2) Oue) = (0 — ¥0)T07)] (%0 = )

sEW, ¢
= > w? o —p((x—y.) 0%)] (xs — )
SE‘I’tJ{
=Ziy.

We has proved G, ¢ is invertible in Section D and thus §t7g =G, el (Zig).
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Moreover, we can see that Gy 4(0%) = 2720k,0%. Recall £, = 2725, + Socw, , wE(xs —
ys)(Xs —ys) . We have

HGt,é(é\t,Z) — Gy (0%) if

t,l

Y

K2(Ore — 0°) TS, ((Br0 — 07)
Ko ||0n0 — 0*”221,/

where the first inequality holds because /() > £, > 0 and thus F(6) = /iuit’g. Using the triangle
inequality, we have

0,,—0"

‘ -~

<2705 + — |
t,

<2776 + — HZtl”):—l
Ry

To bound the || Z; ¢||s-1 term, we use Lemma G.3. By the choice of w;, forany ¢t € W7 o, we have
.0
[|we (x¢ — yt)Hit_é =2 "and w; < 1.
We also have

[U}tEt |]:t] < th[et |]:t] < tht and |’U}t6t| < |€t| < 1.

Therefore, Lemma G.3 shows that with probability at least 1 — /L, for all t € Up4 4, the following
inequality holds

1Zeellg1 < 16.24\/ S w2o?log(42L/8) + 6 - 2~ log(4¢2L/6).
N seW,

Finally, we get

Hgt,z -7\ Z w202 log(4t2L /) + 6log(4t>L/5) | +27¢.
Et,@ e
Take a union bound on all £ € [L], and then we finish the proof of Lemma E.1. O

F.2 PROOF OF LEMMA E.2

Proof of Lemma E.2. The proof of this lemma is similar to the proof of Lemma B.4 in Zhao et al.
(2023a). For a fixed layer £ € [L], using the definition of €5 and o, we have

Vs Z 1a E[Gf - U§|X1:Sa Yi:s, 01:3—1] = 0.
Therefore, we have

Z E[w2(€2 — O, ) |X1 sy Y1:sy01:5— 1] S Z E[wf‘fg‘xl:‘?»yhmOl:s—l]
seW, s€EW:

E 2 2
WsOg,s
seW,

where the last inequality holds due to the definition of o, and €5 < 1. Then using Lemma G.2 and
taking a union bound on all £ € [L], for all ¢ > 2, we have

doowie o)< 2 ) wie?log(442L/5) + -210g(4t2L/5)

seWy p seW,

g = > wlel+ g log(4t L/6), (F2)
SE\IJt e
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where we use the Young’s inequality ab < %aQ + %bz. Finally, we finish the proof of Lemma E.2 by

(]
g
)
mql\.')
I

E 2 2
Wg€g —

seWy seWyp

E 2.2
Wg€q +

s€Wy

IN

IA

seEW, o

> wie —al)

s€EWy 0

> wie —al)

s€Wy 0

1 7
2 2 2 2 2
E wies + 3 E wios + glog(4t L/é),

sEW, o

(F3)

where the first inequality holds due to the triangle inequality. The second inequality holds due to

(F.2). We also have

§ : 2 2 E 2 2 20 .2
WO = Wg€g — Wy (Es - Js)
seWy seWyp seWy p
§ 2.2 2/ .2 2
2> Wg€g — Wy (Es - Js)
SE\I/t’g SE‘I’t,l
> 2.2 1 2 2 71 4 2L §
wses_§ Wy s_fog(t /)
sEW, o SEV, ¢

The proof of this inequality is almost the same as

F.3 PROOF OF LEMMA E.3

(F3).

Proof of Lemma E.3. For a fixed ¢ € [L], Lemma E.2 indicates that

14
252 <9 22 + log(4¢®L/5
S wlet<2 3T w4 o log(4L/s)

seWy p SE‘I’t,E

< %log(4t2L/§) +4

Z wg(os—u(

s€Wy o

+4 Z w?(esf

seWy p

(0r 0 (e~ v078.)))

(n

(F4)

where the second inequality holds due to the basic inequality (a + b)? < 2a? + 2b2 for all a, b € R.
Using our definition of €, 05 = (x5 — ys) " 6*) + €,. Thus, we have

(1)

seWy p

I
=
)

N
=
=
s

\
<

> wl (es - (os — ((Xs - ys)T@,e)))g
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where the last inequality holds because the first order derivative of function p is upper bounded by
L,, (Assumption 3.2). Moreover, by expanding the square, we have

<12y w? ((xs —y) (Bes — 49*))2

SG‘I’t,Z

=12 (00— 0") wi(xe — ys) (x5 —y,) (B0 — 07)

seWy p

- Li (é\tl - 0*)T Z wg(xs - YS)(XS - yS)T (é\t,l - 0*)

seWy ¢

2
« (F.6)

< I? ’
- P2

6,,—6"

where the last inequality holds due to

Sie=2""kd4 D wixe—ye)(Xs—y) = Y wi(xe—ya)(xe—y.)'

seWy o IS\

Combining (F.5), (F.6) and the event £ (Lemma E.1), we have

272ZL2 [ ?
(I) < —5*~ > w2o?log(4(t + 1)L/6) + 6log(4(t + 1)°L/6) +
i L sEW,
2—22L2 [ 9
< Tl 5121log(4(t + 1)2L/6) - Z wio? +2(6log(4(t+1)>L/8) + k)" | ,
H seW,

where the last inequality holds due to the basic inequality (a + b)? < 2a® + 2b* for all a,b € R.
When 2¢ > 64(L,,/r,,)+/log(4(t + 1)2L/6), we can further bound the above inequality by

> wio? +log(4(t +1)°L/5). (F7)

s€EWii1 e

Subitituting (F.7) into (F.4), we have
~ 2
> wiot <4 37wl (00— (xs —3:)T6e))

1
2 2 2
+9log(4(t + 1)°L/d) + 5 g‘p w5os.
s t,l

Therefore, we prove the first inequality in Lemma E.3 as follows
R 2
Z w?af S 8 Z wi (05 —H ((Xs - ys)TGt,Z))
+ 181log(4(t + 1)2L/6).
For the second inequality, we have

S w? (o (05— v0)T8))

seWy

<2 Y wide2 3w (o (o —n (-5 7000)))

seW, seWy o

(€]
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We complete the proof of Lemma E.3.

St (or (60 - 9078 )

SE‘IJh@

<2 > wéeé+f > wio? +2log(4(t +1)°L/d)

seEW, y 56‘1’1 N

1
Z wio? + log(4t2L/5 + I Z w?o? + 2log(4(t + 1)2L/6)
SE‘I’M sEW, 4
2 2 2
<4 Y wlol+8log(4(t+1)°L/9),
seWy g

where the first inequality holds due to (F.7). The second inequality holds due to Lemma E.2. O

F.4 PrROOF OF LEMMA E.4

Proof of Lemma E.4. We prove it by induction. For £ = 1, we initialze the set .A; 1 to be A;, thus
trivially x; € A; 1. Now we suppose A; ¢ is defined and x; € A; ;. By the way A; 1 is constructed,
At ¢4+1 is defined only when ||x — y||§:l} <2 %forall x,y € As .

_ T
Let Xpmax = argmax, A X 0; ;. Then we have

X; " Or6 = X Ot = (XZ‘TO* Xanax8") + (X7 = Xmax) " (8.0 — 67)

v
L
F

Xmax”z 1 ||0t€ G*Hf:t’éa

where the inequality holds due to the Cauchy-Schwarz inequality and the fact xf =
argmax, 4, X' 6*.  With the inductive hypothesis, we know x; € A;,. Thus we have

lIxf — Xmax|| -1 < 2~¢. Finally, with the inequality in Lemma E.1, we have
t,l

Ou> max X 9“;72 Bt[

XEAL ¢

Therefore, we have x; € A; ¢4, and we complete the proof of Lemma E.4 by induction. O

F.5 PROOF OF LEMMA E.5

Proof of Lemma E.5. For any s € W11 ¢4, due to the definition of 7, ; , and our choice of x,, y
(Algorithm 1 Line 14-16), we have x,,ys € A, . Additionally, because the set A, ; is defined,

Ix — yHE ! < 27+ for all x,y € A;¢—1. From Lemma E.4, we can see that x} € Aj .
—1

Comblmng these results, we have

x5 — Xs|lg-1 <27 |Ix: —Vsllg—r <27 1 (F.8)

s, 4—1 s,0—1

where we use the inclusion property As ¢ C A o—1. Moreover, x,, x5 € A; ¢ shows that

Th 9—t+13
X4 0501 > ek X T0,0 1 -2 Boss
s 1
—0+17
> X5 95,#1 — 278 o, (F9)

where we use x; € A, ¢—;. Similarly, we have

ViOso1>x 0,01 — 2715, (F.10)
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Now we compute the regret incurred in round s.

2x; 0% — (x] 0" +y]0%) = (x: — xs) 0" + (x} —y,)' 6
< (X: - XS)T é\s,é—l + ‘(X: - Xs)T (é\s,f—l - 9*)‘

+(xF =y 0501+ ‘(X: —ys)' (55’4*1 N 0*)’

~

<2 ot X — Xl ] 6., 107
s,0—1 S
+2 B+ I = ollgor (8 — 07
s,—1 -1
<8278, 41, (E11)

where the first inequality holds due to the basic inequality « < |z| for all z € R. The second
inequality holds due t (F.9), (F.10) and the Cauchy-Schwarz inequality. The last inequality holds due
to (F.8) and Lemma E.1. Now we can return to the summation of regret on the index set W71 4.

Z (2x:70" — (x] 0" +y. 0)) < Z 8- 24@,@—1

seWryi seWry1
<8 27ZBT,€—1|\IJT+1,€|
<8- 2ZBT,£—1 Z ”ws : (Xs - YS)”QEJZ;
seWry1y
< 8-2'Bry1-2dlog (1 +22+2T/d),
where the first inequality holds due to (F.11). The second inequality holds due to our choice of w,
such that [|w; - (x5 — y)|lg-1 = 27*. The last inequality holds due to Lemma G.1. Therefore, we
8,0
complete the proof of Lemma E.5. O

G AUXILIARY LEMMAS

Lemma G.1 (Lemma 11, Abbasi-Yadkori et al. 2011). For any A > 0 and sequence {xk}szl C R
for k € [K], define Z), = \I + Zi:ll x;x; . Then, provided that ||x 2 < L holds for all k € [K],
we have
K
> min{1, ||xk|\;;1} < 2dlog(1+ KL?/(dN)).
k=1

Lemma G.2 (Freedman 1975). Let M, v > 0 be fixed constants. Let {x;}"_; be a stochastic process,
{Gi }ie[n) be a filtration so that for all i € [n], z; is G;-measurable, while almost surely

E[2;|Gi—1] = 0, |zi| < M,ZE[xﬂgi_ﬂ <.
=1

Then for any § > 0, with probability at least 1 — §, we have
> @i < /20log(1/0) + 2/3 - Mlog(1/5).
i=1

Lemma G.3 (Zhao et al. 2023a). Let {Gi}32, be a filtration, and {xj, 7 }r>1 be a stochastic
process such that x; € R¢ is G;,-measurable and Nk € Ris Giy1-measurable. Let L, o, A\, e > 0,
p* € R4 Fork > 1, let y, = (u*,X1,) + 15, where 1, X3, satisfy

k

Bl | Ge] = 0,|m| < R, E[n? | Gi] < vy, for Vk > 1.
=1

Fork > 1,let Z, = AL+ 2 x;x[, by = XF_ yixi, pi = Z;, 'by, and

Br = 16p\/vy log(4k2 /) + 6pR1og(4k?/5),
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where p > sup;~ ||Xk||z,j1 . Then, for any 0 < § < 1, we have with probability at least 1 — 6,
= o—1

k

Vi >1,| sz‘mnzk—_l < B, Ik — 1|z < Br + VA"
i1

Theorem G.4 (Brouwer invariance of domain theorem,Brouwer 1911). Let U be an open subset of
R?, and let f : U — R? be a continuous injective map. Then f(U) is also open.
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