
Prompt Learning Unlocked for App Promotion
in the Wild

Zhongyu Ouyang1, Shifu Hou1, Shang Ma1, Chaoran Chen1

Chunhui Zhang2, Toby Li1, Xusheng Xiao3, Chuxu Zhang4, Yanfang Ye1
1University of Notre Dame, 2Dartmouth College,
3Arizona State University, 4Brandeis University

Abstract

In recent times, mobile apps have increasingly incorporated app promotion ads to
promote other apps, raising cybersecurity and online commerce concerns related to
societal trust and recommendation systems. To effectively discover the intricate
nature of the app promotion graph data, we center around the graph completion
task, aiming to learn the connection patterns among diverse relations and enti-
ties. However, accurately deciphering the connection patterns in such a large and
diverse graph presents significant challenges for deep learning models. To over-
come these challenges, we introduce Prompt Promotion, a transformer-based
framework that unlocks prompt learning capabilities by incorporating metapath-
and embedding-based prompts that provide valuable hints to guide the model’s
predictions for undetermined connection patterns. Experimental results show that
our Prompt Promotion model represents a pioneering prompt-based capabil-
ity in effectively completing the app promotion graph. It not only demonstrates
superior performance in heterogeneous graph completion in real-world scenarios,
but also exhibits strong generalization capabilities for diverse, complex, and noisy
connection patterns when paired with their respective prompts.

1 Introduction

Relation indexSource entity index Answer-in-the-prompts index

(a). Train and test w/o Rand. Perm. (b). Train w/o and test w/ Rand. Perm. (c). Train and test w/ Rand. Perm (ours).

Passport Photo 
Maker – ID/VISA

Photo College,
Photo Editor Flood-It!

Benign Grey Malware

Figure 1: Example of malicious app promotion.

Mobile applications, or apps, often incorporate
advertisements (ads) as a means of promotion
(Viennot et al., 2014; Liu et al., 2015), among
which app-promotion ads are commonly used by
Android app developers to promote other apps
(Research, 2023). However, concerns arise re-
garding the trustfulness of the apps promoted
through these ads, given the competitive na-
ture of the industry and the potential for the
promotion of malicious apps (Rafieian and Yoganarasimhan, 2021; Son et al., 2017; Hardt and
Nath, 2012). Previous research has focused on analyzing the behaviors of ad libraries within
the app promotion ecosystem (Grace et al., 2012; Vallina-Rodriguez et al., 2012; Nath, 2015;
Jin et al., 2021; Liu et al., 2020). However, these studies primarily examine the behaviors of
ad libraries themselves, and pay too little attention to app propagation in terms of how mas-
sive individuals exploit the app promotion ecosystem. For instance, Figure 1 illustrates an app
promotion chain where a popular benign app “Passport Photo Maker - ID/VISA” promotes a
greyware app “Photo Collage, Photo Editor”, which in turn promotes malware “Flood-It!”, a
strategy game capable of scanning the local network and stealing sensitive phone information.
Furthermore, these studies lack a comprehensive understanding of app promotions, which involve
multiple heterogeneous actors beyond apps, such as app markets, security vendors, and developers.

Preprint. Under review.



For example, Figure 2 provides an inference path to explain why an online messaging app, “Polish
English Translation”, promotes “CallApp”. The underlying behaviors indicate that “Polish English
Translation” shares the same developer as another translation app “Thai Chinese Translation”, which
has been observed to promote “CallApp”. Hence, a more holistic approach that learns the intrinsic
connection patterns among these various entities is necessary to deeply understand the complexities
of the whole app promotion ecosystem and its implications for society and online commerce. To
address these limitations, we employ insights of graph completion learning into the heterogeneous
app promotion graph. Our goal is to predict unknown target entities based on known source entities
and relation queries, thereby completing the full graph. By applying graph completion methods to
the app promotion graph, we are able to learn representations that capture the intricate connection
patterns among different types of entities and relations. This approach not only sheds light on the
underlying dynamics of app promotion graphs, but also opens up possibilities for diverse applications.

Relation indexSource entity index Answer-in-the-prompts index

(a). Train and test w/o Rand. Perm. (b). Train w/o and test w/ Rand. Perm. (c). Train and test w/ Rand. Perm (ours).

Passport Photo 
Maker – ID/VISA

Photo College,
Photo Editor Flood-It!

Benign Grey Malware

lomol 
translatordevelop promote

Polish English 
Translation

Thai Chinese 
Translation

CallApp

develop

promote

Figure 2: Example of inferred app promotion path.

Nevertheless, learning to complete the focused
app promotion network is non-trivial, especially
with datasets collected from the wild. Exist-
ing methods for graph completion are either too
simplistic for modeling the network complexity
and information among relationships and enti-
ties (Bordes et al., 2013; Sun et al., 2018; Yang
et al., 2015), or they heavily rely on rich semantic information to train massive weight parameters
(Wang et al., 2021; Lv et al., 2022; Yao et al., 2019), which contradicts the scarcity of semantic
information in app promotion networks collected from the wild. Therefore, in this work, considering
the challenge of modeling complex connection patterns while overcoming the limitations of existing
techniques, we introduce our approach Prompt Promotion, which guides the model in learning
the intricate connection patterns by incorporating a combination of embedding-based and metapath-
based prompts. Leveraging the power of pretrained BERT, we design the embedding-based prompts,
derived from pretrained embedding-based methods like DistMult (Yang et al., 2015), provide prior
knowledge as hints to assist the model in making informed references. Additionally, we further craft
metapath-based prompts by extracting not only valid but also informative metapaths for each queried
relation. Subsequently, we combine the embedding-based and metapath-based prompts along with
the query tokens, and randomly permute them to form the final input sequence for each query. The
sequence is tokenized using the embedding-based method, replacing the original BERT tokenizer, to
ensure that the tokens are projected into the same embedding space for the subsequent fine-tuning
process. In summary, the contributions of this paper are:

• We propose a novel approach named Prompt Promotion, that addresses the challenge of
modeling connection patterns in complex app promotion graphs by leveraging the pretrained BERT
as the backbone model while incorporating both the embedding-based and metapath-based prompts
to guide the model in learning the intricate patterns within the graph.

• We demonstrate the effectiveness of our approach through extensive experiments on our collected
real-world dataset. The results show that our approach outperforms existing techniques in terms of
accuracy and generalization capabilities in extracting diverse and complex connection patterns.

• We contribute to the research community by providing a deeper understanding of the app promo-
tion ecosystem, its complexities, and implications for societal trust and online commerce. Our
work sheds light on the potential applications of graph completion methods, specifically utilizing
pretrained BERT, in improving trustworthiness in detecting malicious apps.

2 Background

In this section, we briefly introduce the definitions of a heterogeneous graph, metapath, and the task
of heterogeneous graph completion, as well as the idea of prompt engineering and details about our
app promotion graph dataset. We additionally refer related works in Appendix E.

2.1 Definitions

Definition 1 (Heterogeneous Graph). A heterogeneous graph (HG) G = (V, E ,X ) consists of a node
set V , an edge set E , and the optional features of the associated nodes and edges: X = (XV ,XE).

2



Each node’s type is mapped through the node type mapping function ϕ : V → A, and each edge’s
type through the edge type mapping function ψ : E → R, where A andR denotes the node and edge
type set respectively. We represent each edge as a triple (h, r, t) ∈ E where h, t ∈ V , r ∈ R, and the
edges are directional. For a heterogeneous graph, there exists the constrain |A|+ |R| > 2.
Definition 2 (Metapath). In a heterogeneous graph, a metapath represents a predefined sequence of
node types and edge types that capture the desired semantic relationships between nodes. Formally, a
metapath P is denoted as e1

r1−→ e2
r2−→ ...eL

rL−→ eL+1, where ri ∈ R, ei ∈ A, r = r1 · r2 · ... · rL
is the composite relation between entity type e1 and eL+1, and L is the length of the metapath.
Definition 3 (Heterogeneous Graph Completion). For a valid query (h, r) where h ∈ V and r ∈ R,
a heterogeneous graph completion (HGC) task refers to discovering valid answers T ⊂ V such that
for all t ∈ T , (h, r, t) ∈ E .

2.2 Prompt Engineering

Prompt engineering is a systematic methodology widely employed in natural language processing
applications to craft specific input signals to invoke desired output responses from machine learning
models. Under the task of graph completion where input tokens are the queries, prompts can be
designed as contextual semantic information related to the entities and relations, the query-related
neighborhood, or other encoded information that guides the model to answer the query. Specifically
for a query (h, r) in the graph completion task, the prompted input sequence is usually formulated as:

[<bos>] <prompts> [<sep>] <h> <r> [<sep>].

2.3 App Promotion Dataset

2.3.1 Data Collection

The dataset pertaining to app promotion is gathered from three distinct perspectives. Initially, for
each app, the package name, developer information, and category of each app are crawled from
Google Play. Subsequently, an analysis is conducted on the app using VirusTotal to examine the
flags associated with its security level, along with the corresponding URLs. Lastly, the manifest and
signature of each app are inferred through the process of reverse engineering (e.g., interesting strings
provided by the VirusTotal report). The promotion actions between apps are discovered by checking
whether the clickable widgets in a UI from the source apps lead to the download page of the sink
app. If so, then a source_app <promotes> sink_app relation is identified. The collected
raw data is then used to construct the following HG for the capture of ample behavior patterns.

2.3.2 Graph Construction

In order to harness the informative attributes of applications, such as URLs and signatures, which
are instrumental in forecasting elusive promotional strategies and discerning recurrent patterns in
app promotion, we construct the App Promotion HG (APHG) to epitomize the sundry entities
and relations inherent in the network. More details related to the entity statistics and relations of
constructed graph are provided in Appendix A.

Entities. An APHG encapsulates distinct entities derived from the following app attributes: appli-
cation package name, developer, application category, manifest, VirusTotal (VT) Engine, digital
signature, and URL. The manifest entity encompasses app activities, providers, receivers, services,
and permissions. Given the unique promotional behaviors demonstrated by benign, greyware, and
malicious applications, we further classify the application package name into these three discrete
classes, and extend the aggregate count of entity types within our framework to nine.

Relations. We consider multiple directional relations among the entities defined above to capture
their interactive behaviors: app-promote-app, app-include-signature, engine-detect-app, app-belong-
category, developer-involve-category, developer-develop-app, app-access-URL, developer-use-URL,
app-own-manifest. Since apps with different security levels follow different behavior patterns, we
further divide them into three sub-classes: benign, grey and malicious. In total, the above relations
are extended to twenty-nine classes of relation types. Note that all the relations are directional, and
each query only associates with one of the constructed directional relations, excluding the reverse
relations. Despite the potential to gather additional information, neither the entities nor the relations
are associated with any features. Therefore, our APHG is denoted as G = (V, E).

3



2.3.3 Task Motivation

Despite the relations in place abundantly capturing intrinsic application information, instances of
information paucity are far from scarce. This scarcity impedes our ability in gathering all relevant
information (see an illustration on Google Play in Appendix B), which in turn substantially impedes
our capacity to decipher patterns in application promotion behavior. Thus, to alleviate the burden of
information scarcity, we propose to first target the HGC task on our app promotion graph.

3 Unlocking Prompt Definition on HGC

3.1 Overall Framework

Our Prompt Promotion approach leverages the pre-trained BERT (Devlin et al., 2019) as the
transformer encoder to encode the tokenized input sequence of each query. We use an aggregator
to consolidate the output sequence and a two-layer MLP as the prediction head to perform the final
task. The overall framework is depicted in Figure 3. We incorporate this design for two reasons:
(1) encoding the query instead of the triple mitigates the calculation overhead when responding to a
specific query, and (2) the attention mechanism in BERT assigns global attention to the provided input,
including the designed prompts. We extend the input for each query into three parts: embedding-based
prompts, metapath-based prompts, and the query itself, consisting of a source-relation pair. In the
following content, we provide details regarding the two sets of prompts.

3.2 Embedding-based Prompts

!!"# !$%&!'() !′*)… !′'$ !′+$…

Ins. Prm#') C*)… #'$ C+$…

Embedding-based 
Prompts

Metapath-based 
Prompts Query

%!"# %$%&%′') %′*)… %′'$ %′+$…

Aggregator + Pred. Head

HGCInstagram <Promote> ? Unknown APP

include

detect

belong

involve

develop

access

use

own

promote

Signature

VT Engine

Manifest

URL

DeveloperCategory

App

Signature
185

Manifest
10269

URL
18870

VirusTotal
65

Categor
y 36

Developer
3139

Benign 3961 / Grey 1143 / Mal 363 

Pre-trained Embedding-based Tokenizer

BERT

Random Permutation

!! !"!#$ !%$… !#& !'&…

"! """′#& "′%&… "′#$ "′($…

Aggregator + Prediction Head

HGCInstagram <Promote> ? Unknown	APP

Pre-trained Embedding-based Tokenizer

Pre-trained BERT

Random Permutation

(!! , !")

Pre-trained Emb.-
based Method

Metapaths $)"

Pre-trained Emb.-
based Method Src. Entity

<Prm.> Relation

(a). Full Prompt (Ours) (b). Metapath-based Only (c). Embedding-based Only

Figure 3: Overall framework of our Prompt
Promotion.

Prior embedding-based models have demon-
strated remarkable performance on various pub-
lic benchmark datasets, making them state-of-
the-art solutions. These models possess inher-
ent simplicity that renders them proficient tok-
enizers, effectively mapping entity and relation
tokens to a shared semantic space. In this pa-
per, we select DistMult (Yang et al., 2015) as
the pre-trained embedding-based method to to-
kenize the entity and relation tokens. Note that
this is a designer’s choice and can be substituted
with any other methods that fit our framework.
The n embedding-based prompts are defined as
the top-n predicted entities by the pretrained
embedding-based methods according to the pre-
dicted scores, denoted as Ce. These prompts
serve as prior knowledge that assists the model
in making informed references. For instance,
when considering the query “which app does
Instagram promote?”, we provide additional
prompts in the form of a hint, such as “I am not 100% sure, but I believe these apps might be
the answers.” This supplementary information aids the model in further generating more accurate
and contextually relevant responses. The filtered prompted entities are then tokenized with the
corresponding embeddings learned by the pre-trained embedding-based method.

3.3 Metapath-based Prompts

While embedding-based prompts serve as hints from the pioneers, they may neglect true answers due
to their narrowed perspectives. Typically, embedding-based methods utilize geometric operations
in the representation space, resulting in prompts that share similarities from a geometric perspec-
tive. Although entities in a knowledge graph inherently possess semantic meanings, we posit that
the semantic information of entities in a heterogeneous graph can be alternatively extracted from
metapaths. Metapaths offer a means to capture and encode meaningful relationships within the
graph, facilitating the extraction of valuable insights. Therefore, we further provide the model with
prompts from another perspective, i.e., the metapath-based prompts from the semantic perspective.

4



The key assumption lies in the connection between a certain metapath and the queried relation. In the
following content, we first introduce the measure of the correlation between a metapath and a query,
and then illustrate how to utilize the correlation to create the metapath-based prompts.

3.3.1 Query-Metapath Correlation

For a clearer clarification, we first define the functions src(·) and dst(·) as the source and destination
entity type extractions for a relation r respectively. Regarding a specific queried relation, we make
the following definition:

Definition 4 (r-valid Metapath). A metapath p = e1
r1−→ e2

r2−→ ...eL
rL−→ eL+1 is r-valid if and

only if e1 and eL+1 are the source and destination entity types of relation r, respectively.

For example, for the relation r =benign-access-URL, a corresponding valid metapath includes but is

not limited to benign
develop←−−−− developer use−−→ URL, where src(r) = benign and dst(r) = URL. The

first step of linking a queried relation with a certain metapath is to identify all the r-valid metapaths.
For multi-hop reasoning tasks, the answers to a query usually lie within three hops. We control the
length of the metapath as L ≤ 2 and conduct an exhaustive search for each query relation r ∈ R,
whereR denotes the set of all relations. The set of all r-valid metapaths is denoted as Pr. Note that
when searching for r-valid metapaths, we also consider the reverse relation of the original relation,
since there exist entities with only outgoing edges, and reverse relations do not change the semantic
meanings. However, we only consider the original relations as the queried relations. The metapaths
in Pr are valid, but not necessarily informative. In other words, Pr does not inform us how relevant
each p ∈ Pr is to r. To quantify the correlation, we make the following definitions:
Definition 5 (p-Hit). For a specific triple (h, r, t), where r is the relation, h is the source entity
such that h ∈ H ⊂ V and ϕ(h) = src(r), t is the destination entity such that t ∈ T ⊂ V and
ϕ(t) = dst(r), we say the triple (h, r, t) is p-Hit if and only if there exist at least one path from h to t
such that this path is an instance of the metapath p.
Definition 6 (p-Hit Ratio). For a specific triple (h, r, t), if this triple is p-Hit, then the p-hit ratio α
of this triple is defined as the ratio of t among all other entities reached by the metapath p; otherwise,
the p-hit ratio of this triple is zero.
Definition 7 (r-p Ratio). For a specific relation r, a metapth p ∈ Pr, and all true (h, r, t) triples,
the corresponding r-p ratio is defined as the averaged hit ratio of all true r related triples, i.e.,
triples constructed with relation r. Note that the ratio is calculated based on a filtered setting: if
t′ is a correct answer to the query (h, r) when evaluating on the answer t, we remove t from the
denominator.

We here provide a concrete example for examplification. Consider the relation benign-access-URL

and its valid metapath p = benign
develop←−−−− developer use−−→ URL. For each true triple (h, benign-

access-URL, t) such that ϕ(h) = benign and ϕ(t) = URL, denote the set of accessible URLs to the
query (h, benign-access-URL) as Th, and the set of all URL entities reached by following metapath
p starting from h as T p

h . If the triple is p-Hit, then the hit ratio is calculated as α = 1/(|T p
h \Th|− 1);

otherwise, α = 0. We minus one in the denominator because t ∈ Th. The r-p ratio of the relation
benign-access-URL is then calculated as the averaged α of all the related true triples. Naturally, if
a metapath p is highly correlated with r for a specific source entity h, the corresponding α should be
high. We utilize the r-p ratio of each relation-metapath pair as the correlation indicator to select the
top-m metapaths for further prompt generation, and denote the m selected metapaths as Ps

r .

3.3.2 Metapath-based Prompt Generation

Even though we select m metapaths for each query, some metapaths may contain noise. This is
especially true when a metapath reaches a high-degree entity, resulting in a significant expansion
of the candidate pool. In such cases, these prompts may not provide any substantial additional
information beyond what is already known, rendering them less informative. To address this, we
apply a candidate filtering method. Specifically, we utilize a limit l to separate metapaths that lead to
large or small candidate sizes. For small-sized candidates, we perform the union operation, and for
large-sized candidates, we perform the intersect operation. The rationale is as follows: some queries
may not be highly relevant to just one metapath, in which case the number of candidates is usually
large, and we rely on the intersect operation to filter out noise. On the other hand, some queries may

5



be explained by more than one metapath, in which case the size of the candidate pool is usually small,
and the union operation considers all conditions.

Table 1: Empirical evaluation results of the correlation
between metapath and relation.

Relation hr sr br mr

mal-belong-category 0.922 4.932 0.137 6.732
benign-access-URL 0.879 129.329 0.007 128.1
developer-use-URL 0.457 42.905 0.002 200.486
grey-promote-grey 0.660 154.786 0.135 4.876

After the filtering process, we empiri-
cally evaluate the correlation between one
queried relation and the filtered candidates.
Particularly, We calculate the average size
of the filtered candidate pools sr for all r
related triples, as well as the hit ratio hr of
the correct answer for each type of query
among the candidate pools. In addition, we
denote the base hit ratio as br = sr/|ϕ(t)|
and the magnification as mr = hr/br. Table 1 presents a selection of the evaluation results
due to the large size of R. The table provides rich information: (1) the selected metapaths for
some relations are highly correlated with their relations, indicated by high hr and low sr (e.g.,
mal-belong-category); (2) some other relations provide a considerable amount of correlation,
indicated by a large mr, but may lead to a high hit ratio (e.g., benign-access-URL) or a low
hit ratio (e.g., developer-use-URL), affected by sr; (3) there are also cases in the middle with
decent hr and sr (e.g., grey-promote-grey). Nevertheless, the results confirm that metapaths
provide information regarding the query, regardless of high or low hr. To reduce the size of the
input prompts, we further utilize an embedding-based method to select the top-m prompts among the
candidate set Crh as the final metapath-based prompts, denoted as Cp.

3.4 Combined Input Sequence

For a query (h, r), we concatenate the embedding-based prompts Ce, the metapath-based prompts
Cp, and the query token h and r as the final input sequence. Before feeding the constructed sequence
into the pre-trained BERT model, we randomly permute the tokens. This step is essential in forcing
the BERT model to learn the intrinsic connection between the query and the answer, rather than
relying too much on the prompts. We validate the necessity of this step in the following experiments.
After the permutation, the input sequence is tokenized via the embedding-based method, replacing
the original BERT tokenizer. Finally, we adopt the binary cross entropy loss for the HGC task. We
provide the pseudo code for our method in Appendix C.

4 Experiment

4.1 Setup

We test our method’s effectiveness over the constructed APHG as decribed in Section 2.3. For
comparison, we carefully select DistMult (Yang et al., 2015), ComplEX (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018), HittER (Chen et al., 2021), and LTE (Zhang et al., 2022) as the
baselines, for they can be easily adapted to our HGC task. For evaluation purposes, we adopt two
key metrics: mean reciprocal rank (MRR) and Hits@K, and higher values of MRR and Hits@K
indicate better performance in accurately ranking and identifying the correct candidates in the graph
completion task. We use a pre-trained DistMult (Yang et al., 2015) as the backbone model to tokenize
the entities and relations as low-dimensional vectors, and utilize a pre-trained ComplEX (Trouillon
et al., 2016) for prompt filtering. Note that these choices are a matter of preference, and can be
substituted with other embedding-based methods such as TransE (Bordes et al., 2013). We consider
two settings under our framework: w/ Rand. Perm. denotes that we randomly permute the input
tokens before the encoding process, and w/o Rand. Perm. suggests otherwise. The input sequence
is decomposed into three essential components - the embedding-based prompts, metapath-based
prompts, and the query. Based on the above settings and components, we define model variants as
shown in Table 2. More detailed experimental setups are provided in Appendix D due to space limit.

4.2 Performance on App Promption

The performance comparison in Table 3 demonstrates that our model outperforms the other baselines
by a significant margin. This improvement can be attributed to two key factors: the incorporation
of the designed prompts and the utilization of random permutation. While our model utilizes

6



0.0

0.2

0.4

0.6

0.8
Hit@1 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@3 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@5 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@10 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

MRR w/ Rand. Perm.

0.0

0.2

0.4

0.6

Hit@1 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
Hit@3 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
Hit@5 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
Hit@10 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
MRR w/o Rand. Perm.

Base Emb-Only Meta-Only Rand-Prompt Full-Prompt (Ours)

Figure 4: Results of component-differed variants, including ours (Full-Prompt w/ Rand. Perm.).

DistMult (Yang et al., 2015) as the backbone, it extends its capabilities beyond a simple multiplication
projection of the queried source entity and relation embeddings. This is evident from the consistent
notable performance enhancement achieved by our model. We also observe that as the value of
K increases, the performance gap between our model and the baselines gradually diminishes. We
hypothesize that our model follows a two-step inference process: first, it processes the provided
prompts and attempts to identify potential answers out of the input sequence. If the correct answers
are present in the prompts, the model can recognize them with relatively high probabilities, leading
to higher hit ratios when K is small. This aspect of the task is relatively straightforward. However, if
the answers are not found in the provided prompts, the model transits to another task and endeavors
to generate an answer by considering all the given hints. This second task tests the model’s ability to
deduce query patterns and is inherently more challenging. We refer to this hypothesis as the “dual-
task” hypothesis, which suggests that our model performs and excels at both the answer identification
and answer generation tasks. Additionally, we observe a notable performance downgrade among all
the variants compared to the best. Under most conditions, the BERT encoder significantly improves
Hit@1 performance, suggesting that our framework focuses more on direct query answering, rather
than pattern matching. We provide more detailed analysis in the following section to validate our
“dual-task” hypothesis, and examine the model’s capabilities under several conditions.

4.3 Component Analysis for Prompt Designs

Table 2: Definitions of variants of our Prompt Promotion.

Variant Emb. Prm. Mtp. Prm. Query Rand. Perm.

Base ✗ ✗ ✓ ✓
Emb.-based Only ✓ ✗ ✓ ✓
Mtp.-based Only ✗ ✓ ✓ ✓
Ours w/o Rand. Perm. ✓ ✓ ✓ ✗
Ours (Prompt Promotion) ✓ ✓ ✓ ✓

In this part, we further analyze the
impacts of each component in our
framework to confirm the necessity
of constructing our model as de-
signed, as well as providing support-
ive evidence for our “dual-task” hy-
pothesis. We add another variant
Random-Prompt, where the input se-
quence is constructed with randomly sampled prompts plus the query tokens.

4.3.1 Performance Comparison

The performance of the variants is shown in Figure 4. Note that we skip the w/ Rand. Perm. setting
for the Base variant is trivial since the order of two tokens is trivial and randomly permuting them
does not affect performance too much. From Figure 4, we make the following key observations:

• We consider the Base variant as training the BERT encoder to replace the matrix multiplication
operation in DistMult. While it does not induce model collapse, it is still challenging to enforce a
BERT encoder to fill the role of the operation. This observation inspires our Prompt Promotion
approach, which detours the functionality replication of matrix multiplication and extends the
power beyond it by introducing additional prompts.

• The addition of randomly generated prompts completely collapses the model, regardless of the use
of random permutation. This is because the model is overwhelmed with not only the HGC task, but
also the identification of the queried entity and relation tokens. This suggests the requirements of
carefully crafted prompts with very limited noises.

7



(a). Full Prompt (Ours) (b). Metapath-based Only (c). Embedding-based Only

Figure 5: Learning dynamics of models with full prompts, metapath-based prompts only, and
embedding-based prompts only.

• The Embedding-based Only variant yields decent performance under the two settings, especially
for the hit ratios with small K’s. This not only validates the necessity of the embedding-based
prompts, but also confirms one side of the hypothesis - the BERT structure is considerably good at
identifying the existing answer among the input prompts.

• The fact that Metapath-based Only underperforms the Base can also be explained by the unavoidable
noise introduced in the prompts. In comparison, although Embedding-based Only also takes extra
prompts, these prompts are structurally similar in the embedding space, while the noise introduced
by merely following the metapaths is intractable.

• Full-Prompt outperforms all other variants under the two settings, suggesting the necessity in the
combination of the two sets of prompts. We also discover that as K increases, the gap between our
variants and the baselines decreases faster under the w/o Rand. Perm. setting, compared with the
other. This is because the model relies too much on identifying the existing prompts by splitting
less explanation power in deducing the query patterns. Randomly permuting the input tokens
mingles the prompts all together, therefore forcing the model to focus on the intrinsic connection
between the prompts and the query, rather than the one hooked by the token positions.

4.3.2 Training Dynamics Analysis

Table 3: Performance comparison with the baselines. Best results are
bolded, and runner-ups are underlined.

Model Hit@1 Hit@3 Hit@5 Hit@10 MRR

DisMult (Yang et al., 2015) .6040 .7280 .7550 .8350 .6840
ComplEX (Trouillon et al., 2016) .6680 .7780 .8180 .8650 .7370
ConvE (Dettmers et al., 2018) .6400 .7460 .7950 .8490 .7110
HittER (Chen et al., 2021) .5505 .6758 .7227 .7862 .6312
ConvE-LTE (Zhang et al., 2022) .6350 .7444 .7918 .8506 .6602
Distmult-LTE (Zhang et al., 2022) .6381 .7651 .8083 .8677 .7174

Base .7246 .7610 .7729 .7895 .7481
Emb.-based Only .7786 .8272 .8447 .8672 .8096
Mtp.-based Only .4567 .4740 .4843 .5082 .4795
Ours w/o. Rand. Perm. .7383 .7817 .7940 .8118 .7653
Ours .8393 .8710 .8802 .8922 .8587

We analyze the train-
ing dynamics of the
Embedding-based Only,
Metapath-based Only, and
Full-Prompt variants under
two settings with their
learning curves shown in
Figure 5. Comparing from
the setting perspective,
we observe that models
converge slower under
w/ Rand.Perm.. This is
because variants under w/o
Rand.Perm. tends to take
the shortcut solution by
memorizing the positions,
rather than learning the behavior patterns. Identifying the shortcut token’s positions, compared
with the HGC task, is a relatively easier task that requires less model complexity and learning time.
This aligns with our “dual-task” hypothesis - the easier line of task is to identify the answer from
the prompts, leading to faster convergence, and the harder one is to deduce the query patterns,
corresponding to a relatively slower convergence. Additionally, we find that the gaps in hit ratios for

8



Relation indexSource entity index Answer-in-the-prompts index

(a). Train and test w/o Rand. Perm. (b). Train w/o and test w/ Rand. Perm. (c). Train and test w/ Rand. Perm (ours).

Figure 6: Attention heatmaps of the case under three settings.

different K’s are larger under w/ Rand. Perm., indicating better generality and pattern extrapolation
abilities. Among the variants, Full-Prompt exhibits reasonable learning behavior. It avoids saturating
too quickly like Metapath-based Only due to less introduced noise, and does not take excessively
long to achieve performance improvement like Embedding-based Only, which relies heavily on
accessible shortcuts that hinder generality.

4.4 Random Permutation on Model Learning

To further analyze how the random permutation affects the model learning, we empirically study the
model behavior under a specific query case. Consider the Full-Prompt variant, where we differ the
train and test conditions: (a) We train and test the variant under w/o. Rand. Perm..; (b) We train the
variant w/o. Rand. Perm., but test it under w/ Rand. Perm.; (c) We train and test the variant under w/
Rand. Perm.. Regarding a specific query, we show the normalized attention scores heat map under the
three conditions in Figure 6. The rankings of the correct answer under the three conditions are 1, 133,
and 1 respectively. Under condition (a), we see the model consistently pay heavy attention to tokens
on positions 1 and 21. This is because we set m=20 and n=20, and the most probable answers can
usually be found in these positions. Without random permutation, the model quickly identifies the
shortcut, rather than paying extra attention to the query (indexed by the red and blue dotted lines).
Under condition (b), the model failed to assign a high ranking to the correct answer. Due to the
random permutation, tokens on positions 1 and 21 no longer provide precise information as the
model assumes, making it overwhelmed with the introduced randomness. This can also be confirmed
with small attention scores assigned to the query and the potential answers. Therefore, randomly
permuting the input sequence acts as a potential and effective attack to variants trained under w/o
Rand. Perm.. The model trained and tested under w/ Rand. Perm. as we designed, on the other
hand, assigns much more even attention to the input sequence. More specifically, it learns to assign
attention to the potential answers in the input (red and purple line intersections in Layer 1, Head 1),
the source entity (red vertical dotted line in Layer 2, Head 2), as well as other important information
in deems important (tokens indexed by 7, 31, etc.). This confirms that random permutation enhances
the model’s ability to learn the intrinsic connection between the query and the answer, reducing
reliance on input prompts and increasing robustness and generality.

5 Conclusion
In this work, we focus on the heterogeneous graph completion task in the context of app promotion,
and propose a prompt-based approach named Prompt Promotion that leverages a pre-trained
BERT to model the connection patterns in the complex app promotion ecosystem. Specifically, by
incorporating both embedding-based and metapath-based prompts, our model first unlocks the prompt
learning for app promotion graphs, and achieves superior performance compared to baselines. In
addition, we conduct thorough analysis regarding the components, training dynamics to illustrate
the delicacy of our designed framework. The contributions of this research include advancing the
understanding of app promotion networks, improving trustworthiness in recommender systems, and
detecting promotion traces of malicious apps. Future directions involve exploring additional prompt
generation strategies and further enhancing the model’s performance.

9



References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013.

Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems. 2, 6, 14

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng Ji. 2021.
HittER: Hierarchical Transformers for Knowledge Graph Embeddings. In Conference on Empirical
Methods in Natural Language Processing. 6, 8, 13, 14

Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. 2018. Convolutional 2D
Knowledge Graph Embeddings. In AAAI Conference on Artificial Intelligence. 6, 8, 13, 14

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguistics. 4

Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe exposure
analysis of mobile in-app advertisements. In ACM conference on Security and Privacy in Wireless
and Mobile Networks. 1

Michaela Hardt and Suman Nath. 2012. Privacy-aware personalization for mobile advertising. In
ACM conference on Computer and communications security. 1

Ling Jin, Boyuan He, Guangyao Weng, Haitao Xu, Yan Chen, and Guanyu Guo. 2021. MAdLens:
Investigating into Android In-App Ad Practice at API Granularity. IEEE Transactions on Mobile
Computing (2021). 1

Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient privilege de-escalation for ad
libraries in mobile apps. In Annual International Conference on Mobile systems, Applications, and
Services. 1

Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang, Tegawendé
Bissyandé, and Jacques Klein. 2020. MadDroid: Characterizing and detecting devious ad contents
for android apps. In The Web Conference. 1

Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu, Peng Li, and Jie Zhou. 2022. Do
pre-trained models benefit knowledge graph completion? a reliable evaluation and a reasonable
approach. In Findings of the Association for Computational Linguistics. 2, 14

Suman Nath. 2015. Madscope: Characterizing mobile in-app targeted ads. In Annual International
Conference on Mobile Systems, Applications, and Services. 1

Omid Rafieian and Hema Yoganarasimhan. 2021. Targeting and privacy in mobile advertising.
Marketing Science (2021). 1

Google Research. 2023. How people discover, use, and stay engaged with apps. Think with Google
(2023). 1

Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. 2017. What Mobile Ads Know About Mobile
Users. Internet Society. 1

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2018. RotatE: Knowledge Graph
Embedding by Relational Rotation in Complex Space. In International Conference on Learning
Representations. 2, 14

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. 2016.
Complex Embeddings for Simple Link Prediction. In International Conference on Machine
Learning. 6, 8, 13, 14

Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore, Yan Grunenberger, Konstantina Papa-
giannaki, Hamed Haddadi, and Jon Crowcroft. 2012. Breaking for commercials: characterizing
mobile advertising. In Internet Measurement Conference. 1

10



Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of google play. In
ACM international conference on Measurement and modeling of computer systems. 1

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang. 2021. Structure-
augmented text representation learning for efficient knowledge graph completion. In The Web
Conference. 2, 14

Xin Xie, Ningyu Zhang, Zhoubo Li, Shumin Deng, Hui Chen, Feiyu Xiong, Mosha Chen, and Huajun
Chen. 2022. From discrimination to generation: knowledge graph completion with generative
transformer. In The Web Conference. 14

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Embedding Entities and
Relations for Learning and Inference in Knowledge Bases. In 3rd International Conference on
Learning Representations, ICLR. 2, 4, 6, 7, 8, 13, 14

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-BERT: BERT for knowledge graph comple-
tion. arXiv preprint arXiv:1909.03193 (2019). 2, 14

Zhanqiu Zhang, Jie Wang, Jieping Ye, and Feng Wu. 2022. Rethinking Graph Convolutional Networks
in Knowledge Graph Completion. In The Web Conference. 6, 8, 13

11



A App Promotion Heterogeneous Graph

Table 4: Numbers and types for entities (or nodes).

type Signature VT Engine Category Developer URL
num. 185 65 36 3139 18870

type Manifest Benign Greyware Malware Total
num. 10269 3961 1143 363 38031

Table 4 shows the statistics of the en-
tities in the constructed App Promo-
tion Heterogeneous Graph (APHG).
In addition, we define the rela-
tions as follows: (1) R1: an
app-promote-app relation indi-
cates that there exists a promo-
tion link from the subject app
to the object app; (2) R2: an
app-include-signature relation means that a digital signature can be used to verify the
authenticity and integrity of the app package; (3) R3: an engine-detect-app relation indi-
cates that a VT engine marks an app with a specific flag (e.g., adware or Trojan); (4) R4: an
app-belong-category represents that an app belongs to a specific app category categorized by
Google Play; (5) R5: a developer-involve-category relation suggests that an app created
by the developer is categorized into a specific app category; (6) R6: a developer-develop-app
relation signifies that a developer develops an app; (7) R7: an app-access-URL relation denotes
that an app has access to a specific URL; (8) R8: a developer-use-URL relation indicates that the
app developed by the developer may access a specific URL; (9) R9: an app-own-manifest rela-
tion represents that an app is associated with a specific manifest file. Since apps with different security
levels follow different behavior patterns, we further divide the apps into three classes. For example, the
relation app-belong-category is extended to three relations: benign-belong-category,
grey-belong-category, and mal-belong-category. As a result, the above relations are
extended to twenty-nine classes of relation types.

B Illustration of Information Scarcity

(a). APKCombo shows that the app was available on Google Play

(b). Google Play server cannot find the app anymore

Figure 7: Illustration of information scarcity on Google Play.

We here provide an illustration of information scarcity of within the app promotion ecosystem. As
illustrated in Figure 7, the app PDF Scanner, which acts as a seed app and plays an instrumental role
in promoting subsequent apps, was once available on Google Play. However, by relying solely on
Google Play as our information source, we inevitably encounter instances where certain attributes,
such as those related to the developer, are absent. Such omissions of information substantially impede
our capacity to decipher patterns in application promotion behavior, and further motivate us to target
the HGC task on our app promotion graph.

12



Algorithm 1 Prompt Promotion: a simplified PyTorch-style Pseudocode of our method on the
HGC task.

# model: BERT-based model
# pretrained_kge: pretrained KGE method
# M: filtered metapaths for each relation
# Train model for N epochs
for query, target in dataloader:

# Obtain emb-based prompts
emb_prompt = pretrained_kge(query)[:n]

# Find all reachable entities
reached_ent = follow_metapath(query, M)

# Sample k metapath-based prompts
mtp_prompt = sample(reached_ent, m)

# Forward
input_seq = rand_perm(concat(emb_prompt, mtp_prompt, query))
pred = model(input_seq)
loss = CrossEntropyLoss(pred, target)

# Optimize model with loss backward
loss.backward()
optimizer.step()

C Pseudo Code for Prompt Promotion

We provide the PyTorch style pseudocode of our proposed Prompt Promotion in Alg. 1 over the
app promotion HGC task.

D Experimental Setups

D.0.1 Dataset

Our app promotion dataset is collected from AndroZoo, a well-maintained and regularly updated
repository that provides various versions of apps from official app markets like Google Play. The
dataset encompasses apps released between January 1st, 2018, and February 3rd, 2023. We classify
the apps into three categories based on the number of engines that flag them on VirusTotal. Malware
apps are flagged by at least 10 engines, greyware apps are flagged by 1 to 9 engines, and benign apps
are not flagged by any engine on VirusTotal. Our seed dataset comprises approximately 48,000 apps,
evenly distributed among the three classes, providing a diverse set of apps representing different
levels of potential security risks. More details regarding the dataset and the construction for APHG
are provided in Section 2.3.

D.0.2 Baselines

We compare our approach against several baseline models commonly used in the graph completion
task:

• DistMult Yang et al. (2015): DistMult represents entities and relations as low-dimensional vectors
and utilizes a bilinear dot product scoring function for link prediction.

• ComplEX Trouillon et al. (2016): ComplEX extends DistMult by using complex-valued em-
beddings, allowing for a more expressive representation and remaining linear in both space and
time.

• ConvE Dettmers et al. (2018): ConvE employs a convolutional neural network architecture to
encode entities and relations. It operates on 2D tensors to capture local patterns and dependencies
within the knowledge graph.

• HittER Chen et al. (2021): HittER utilizes hierarchical transformers to learn knowledge graph
embeddings, balancing the contextual relational information and the information from the training
entity.

• LTE Zhang et al. (2022): LTE extends embedding-based methods by equipping existing knowl-
edge graph embedding models with linearly transformed entity embeddings. It mines semantic

13



information from entity representations to enhance the model performance. In this paper, we select
DistMult and ConvE as the backbones, denoted as DistMult-LTE and ConvE-LTE respectively.

D.0.3 Evaluation Metrics

We evaluate the graph completion performance using two key metrics: mean reciprocal rank (MRR)
and Hits@K. We empirically set the beam size for MRR as 256.

D.0.4 Implementation Details

We use a pre-trained DistMult Yang et al. (2015) as the backbone model to tokenize the entities and
relations as low-dimensional vectors. Note that this choice is a matter of preference, and can be substi-
tuted with other embedding-based methods such as TransE Bordes et al. (2013). ComplEX Trouillon
et al. (2016) is utilized for prompt filtering, and can also be replaced by any other graph completion
methods. We encode the input sequence with a two-layer BERT model, and utilize the sum operation
to aggregate the encoded sequence. Finally, a two-layer MLP is applied as the prediction head for the
HGC task. During training, we employ the AdamW optimizer and use binary cross-entropy as the
loss function. The learnable parameters of the pre-trained DistMult are initialized randomly, while
BERT is loaded with pretrained weight parameters. The training process is conducted on an NVIDIA
RTX 3090 GPU with 24 GB of memory.

E Related Work

For the task of graph completion/link prediction, methods that learn both the entity and relation
representations are categorized into embedding-based and transformer-based, depending on their
intrinsic modeling structures.

Embedding-based Methods. Knowledge graph embedding (KGE) methods employ geometric oper-
ations in the vector space to capture the underlying semantics of the graph, such as translation Bordes
et al. (2013), bilinear transformation Yang et al. (2015), rotation Sun et al. (2018). Other methods
design embeddings from different perspectives. For instance, CompLEX Trouillon et al. (2016)
leverages compositionality to model the complex relationships between entities. ConvE Dettmers
et al. (2018) utilizes multi-layer convolutional networks on the 2D grid abstracted from the knowledge
graph to encode local dependencies. Although conceptually straightforward, these methods encode
each entity and relation’s embedded information through a simple vector. The inherent simplicity
of embedding-based methods can present challenges in scenarios involving complex reasoning and
scarcity of information.

Transformer-based Methods. Taking account of the relatively weak expression power of the
embedding-based methods, several recent works utilize transformers for additional enhanced con-
textual information encoding. Some works take the triple as the input and perform tasks such as
triple classification and link prediction. For example, KG-BERT Yao et al. (2019) treats triples as
textual sequences to inject semantic information and exploits pretrained BERT to learn context-aware
embeddings. PKGC Lv et al. (2022) leverages the entity’s semantic information and converts them
into natural prompt sentences to address the closed-world assumption (CWA) and incoherent issue.
However, the above methods require the scoring of all possible triples in inference, therefore introduc-
ing some unnecessary calculation overheads. On the other head, some other works are designed to
directly output the candidate entities. For example, StAR Wang et al. (2021) designs a structure-aware
and structure-augmented framework for efficient KGC inference. HittER Chen et al. (2021) extracts
context neighbors for the source entity and introduces the additional masked entity prediction task
for balanced contextualization. GenKGC Xie et al. (2022) introduces relation-aware demonstration
and entity-ware hierarchical decoding for better representation learning. Despite the progress made
so far, we notice some implementation gaps in applying the above methods to a knowledge graph
and a heterogenous graph: First, entities in a knowledge graph naturally entitle semantic information,
while this is not always true for a heterogeneous graph; Second, the above methods left out the
entity/node type information provided in a heterogeneous graph, therefore leaving considerate space
for performance improvement. In contrast, our model is designed to not only straightly output the
candidate entities, which eliminates the calculation overhead, but also fully utilize the entity and
relation type information for better prompting.

14


