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Abstract: Training control policies in simulation is more appealing than on real
robots directly, as it allows for exploring diverse states in an efficient manner.
Yet, robot simulators inevitably exhibit disparities from the real-world dynamics,
yielding inaccuracies that manifest as the dynamical simulation-to-reality (sim-to-
real) gap. Existing literature has proposed to close this gap by actively modifying
specific simulator parameters to align the simulated data with real-world obser-
vations. However, the set of tunable parameters is usually manually selected to
reduce the search space in a case-by-case manner, which is hard to scale up for
complex systems and requires extensive domain knowledge. To address the scal-
ability issue and automate the parameter-tuning process, we introduce COMPASS,
which aligns the simulator with the real world by discovering the causal relation-
ship between the environment parameters and the sim-to-real gap. Concretely,
our method learns a differentiable mapping from the environment parameters to
the differences between simulated and real-world robot-object trajectories. This
mapping is governed by a simultaneously learned causal graph to help prune the
search space of parameters, provide better interpretability, and improve general-
ization on unseen parameters. We perform experiments to achieve both sim-to-
sim and sim-to-real transfer, and show that our method has significant improve-
ments in trajectory alignment and task success rate over strong baselines in sev-
eral challenging manipulation tasks. Demos are available on our project website:
https://sites.google.com/view/sim2real-compass.
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1 Introduction

Training control policies directly on real robots poses challenges due to the sample complexity of
deep reinforcement learning (RL) algorithms. Therefore, training in simulation is often necessary to
perform diverse exploration of the state-action space in an efficient manner [1, 2, 3,4, 5, 6, 7]. How-
ever, robot simulators are constructed based on simplified models and are thus approximations of the
real world. For example, dynamics such as contact and collision are notoriously difficult to simulate
with simplified physics [8, 9]. Even if the dynamics could be simulated accurately, not all physical
parameters can be precisely measured in the real world and specified in simulation, e.g., friction
coefficients, actuation delay, etc. As a result, a robot that is trained in a biased simulator could have
catastrophic performance degradation in the real world [10, 11, 12, 13]. Itis, therefore, critical to use
simulators that closely mimic real-world dynamics to reduce this sim-to-real gap [14, 15, 16, 17].

Existing literature has proposed to close the sim-to-real gap by adjusting the parameters of the simu-
lator to align the simulated data with the observed real data. To facilitate this, robot simulators such
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Figure 1: Overview of the COMPASS framework.

as robosuite [18] provide APIs to modify over 400 different environment parameters. Unfortu-
nately, the search space grows exponentially with the dimension of the environment parameters. To
mitigate this issue, various existing methods attempt to modify the parameters more efficiently, us-
ing gradient-based or gradient-free sampling-based techniques [19, 20]. For example, in quasi-static
manipulation tasks, such as sorting pegs or opening drawers, Chebotar et al. [19] chose to modify
parameters related to the size, positions, and compliance; in dynamic manipulation tasks, Muratore
et al. [20] chose to modify mass, friction, and restitution coefficients, etc.

However, this parameter selection process is typically carried out on a case-by-case basis, necessi-
tating substantial domain knowledge to restrict the scope of environment parameters. This becomes
challenging when dealing with simulations involving multiple interacting objects [21]. Furthermore,
most existing methods lack the capability to offer explicit insights that can effectively guide the fu-
ture deployment of more complex systems. They fail to offer direct answers to the question “What
went wrong with my simulator” or, more specifically, “What simulator parameters should I tune to
reduce the sim-to-real gap” without post hoc analysis of the final parameters. In contrast, humans
are good at analyzing complex events, identifying and eliminating irrelevant factors, and uncovering
crucial cause-and-effect relationships. Such causal discovery capability enables an efficient and in-
terpretable search [22, 23, 24] for differences between two systems, providing a promising direction
to bridge the gap between simulation and reality.

In this work, we propose a method that aims to align the simulator with the real world by discovering
the causality between environment parameters and the sim-to-real gap (COMPASS) as illustrated in
Figure 1. COMPASS learns a differentiable mapping, from the simulation environment parameters to
the differences between simulated and real-world trajectories of dynamic robot-object interactions,
governed by a simultaneously-learned causal graph. With the differentiable causal model fixed,
COMPASS back-propagates gradients to optimize the simulation environment parameters in an end-
to-end manner to reduce the domain gaps. Beyond the interpretability, the causal graph also helps
to prune the parameter search space, thus improving the efficiency of domain randomization as well
as the scalability. We summarize our contributions as follows:

1. We propose a novel causality-guided parameter estimation framework to close the sim-to-real
gap and improve agent performance in the real world.

2. We design a fully-differentiable model that explicitly embeds the causal structure to provide
better interpretability, prune the search space of parameters, and improve generalization.

3. We empirically evaluate our method in both the simulation and the real world, which outperforms
baselines in terms of trajectory alignment and task success rate with the same sample size.

2 Related Work

Closing the sim-to-real gap in robotic control tasks is often approached through domain randomiza-
tion (DR) [10, 25, 26, 27, 28, 29, 30, 31]. Although DR proves successful in numerous applications,
particularly when access to real environments or data collected therein is unavailable, it is recognized



that vanilla DR may result in overly conservative policies when the range of randomization is broad
[32, 33]. As an alternative approach for achieving sim-to-real transfer, system identification aims
to estimate the parameters of the environment through limited interactions with real environments
[20, 34, 21, 35, 36, 37] and has been combined with DR methods. We draw inspiration from this
line of work in developing our parameter estimation framework, which learns causal relationships
from dynamic robot-object interactions in order to facilitate the sim-to-real transfer.

Gradient-free Parameter Estimation for Sim-to-Real Transfer. Gradient-free parameter estima-
tion methods typically utilize sampling-based methods to update the simulation environment param-
eters. Chebotar et al. [19] propose the SimOpt framework, which iteratively alters the distribution
of environment parameters in simulation to mirror real environment rollouts via the cross-entropy
method. Moving away from the assumption that the distribution of environment parameters follows
a Gaussian distribution, as adopted in [19], Ramos et al. [38] develop BayesSim, which uses a Gaus-
sian mixture model and optimizes the parameter distribution from a Bayesian perspective. Muratore
et al. [20] propose Neural Posterior Domain Randomization (NPDR) which further removes assump-
tions on the environment parameter distribution by utilizing neural likelihood-free inference methods
and could handle correlated parameters. It is worth noting that scaling up sampling-based methods
becomes challenging when dealing with a large number of parameters. In contrast, COMPASS learns
a difference-prediction model, leverages gradients to adjust the simulation parameters, and further
improves scalability with learned causal structures.

Gradient-based Parameter Estimation for Sim-to-Real Transfer. Gradient-based methods typ-
ically employ a neural network to encapsulate the gradient landscape of parameter differences
[34, 21, 35] or to model environment dynamics [36]. TuneNet [34] uses a neural network to predict
the discrepancies in parameters based on the observations derived from two distinct environments.
The Search Parameter Model (SPM) [35] is a binary classifier, with rollouts and parameters as input,
which predicts whether a set of parameters is higher or lower than the target ones. Unlike TuneNet
or SPM, we opt to predict observation differences using environment parameters as inputs. Allevato
et al. [21] further expand the capabilities of TuneNet from handling a single parameter to managing a
model with 5 parameters. In contrast, we demonstrate COMPASS is able to scale up to a 64-parameter
system, a capacity notably larger than existing works. EXI-Net [36] implements a dynamics pre-
dictive model, conditioned on environment parameters, and identifies the most suitable parameters
via back-propagation. While EXI-Net strives to model a broad spectrum of environments by sepa-
rately modeling the known/explicit and implicit dynamics parameters, we aim to enhance sim-to-real
transfer efficiency by capitalizing on the progressively discovered causal structure.

3 Methodology

3.1 Problem formulation: Markov Decision Processes and sim-to-real gap

A finite-horizon Markov Decision Process (MDP) is defined by M = (S, A, P, R, pg, v, T), where
S and A are state and action spaces, P : S x A xS — R, is a state-transition probability function or
probabilistic system dynamics, R : § x A — R is a reward function, pg : S — R is an initial state
distribution, -y is a reward discount factor, and 7T is a fixed horizon. Let 7 = (sg, ag, - . ., ST, ar)
be a trajectory of states and actions and R(7) = Z?:o YR (84, a4) is the trajectory reward. The
objective of RL is to find parameters 6 of a policy mg(a|s) that maximize the expected discounted
reward over trajectories induced by the policy: Er,[R(7)], where sg ~ po, st41 ~ P (St+1]8¢, at),
and ay ~ Ty (at|st).

In our work, we assume that the simulator’s system dynamics are conditioned on environment pa-
rameters € € RI€l je, P: S x A xS x RI¢l — R4, where £ is the set of all tunable environment
parameters and | - | measures the cardinality of the set. Given a simulator parameterized by e, the
agent is optimizing E, [R(7)]. When the simulation dynamics are very close to the real-world dy-
namics, one can expect the trajectory rollouts in the simulator to be close to that in the real world as
well. Hence, an optimal agent trained in the simulator would expect near-optimal performance in the
real world [39]. However, due to unmodeled dynamics and inaccurate environment parameters, the



simulation dynamics are different from the real world (i.e., there exists a sim-to-real gap), resulting
in different trajectory rollouts and thus degradation in real-world performance [1, 2, 10, 11, 15].

For better interpretability, we assume a factorized state space, i.e., S = {S; X -+ X Sk}, with
spt € S representing the k-th factorized state at time ¢. Each component usually has explicit
semantic meanings (i.e., an event or object’s property) [23], which holds through state and action
abstraction in general [40, 41, 42]. For example, in the case of pick-and-place, the state space can
be factorized to the 3D position and orientation of the object and end effector. Similar to Chebotar
et al. [19], we then define a factorized trajectory difference function:

T
dk(Tsim7 7—real) = Z ||3k,t,sim - Sk,t,realH% fork=1,2,.... K (1
t=0
The trajectory difference function is then d := [d1, ..., dk], and the trajectory difference d. is the

output of d to measure the sim-to-real gap between of a pair of trajectories, (Tgim, Treal)- In this work,
we aim to find a simulation environment parameter € that minimizes the expectation of trajectory
differences d.- under the same policy.

3.2 Learning causality between environment parameters and trajectory differences

To model the causality, COMPASS learns a causal model fy (€, a; G) mapping the environment param-
eter € and action sequence a = [ag, ..., ar| to the trajectory difference d.. This model contains
a causal graph G, whose nodes represent the variables to be considered and the edges represent
the causal influence from one node to another node. We jointly learn the model parameter ¢ and
discover the underlying causal graph G in a fully differentiable manner.

Causal Graph. The causal graph G plays a crucial role in the model by providing interpretability,
pruning the search space of parameters, and improving the generalization on unseen parameters.
Since we focus on the influence of environment parameter € to the trajectory difference d,, we can
represent the graph with a binary adjacency matrix of size |£| x K, where 1/0 indicates the exis-
tence/absence of an edge from the environment parameter to the trajectory difference. Motivated
by previous works [43, 44, 45] that formulate the combinatorial graph learning into a continuous
optimization problem, we design a sample-efficient pipeline by making the optimization of G differ-
entiable. We sample elements of the graph G from a Gumbel-Softmax distribution [46], parametrized
by ¢ € [0,1]I€1xK i, G;; ~ GumbelSoftmax(v;;; 7T = 1), where 7T is the softmax temperature.
We denote the parameterized causal graph as G,;. All elements (7, j) are initialized to ones to ensure
the causal graph is fully connected at the beginning.

Structural Causal Model. Since the causal graph only describes the connection between variables,
we also need a parameterized model to precisely represent how the causes influence the effects.
We design an encoder-decoder structure in f, with G as a linear transformation applied to the
intermediate features. First, the encoder operates on each dimension of € independently to generate
features ze € RI1*%=_ Then the causal graph is multiplied by the features to generate the inputs for
the decoder, i.e., ge = ZZQ € R4:*K where d, is the dimension of the feature. Similarly, the action
sequence a is passed through the encoder and transformation to produce the feature of the action
sequence g, € R%*X_ Finally, g + ¢, is passed through the decoder to output the prediction d,.

Differentiable Causal Discovery. Given a dataset D := {€™,a™,d’" },,=1, ..., the optimization
objective to discover the underlying causal model consists of two terms:

M
1 m m m
Low =17 D Ifo(€.a™Gy) — dZ |3+ A0, )
m=1

where the first term is the mean squared error between the predicted trajectory differences and the
real differences, and the second is a regularization term that encourages the sparsity of G (||1||,, is the
entry-wise p-norm of 1) with a positive scalar A to eliminate the influence of irrelevant environment
parameters. The detailed architecture of this causal model can be found in Appendix A.



Algorithm 1 Causality between envirOnMent PArameterS and the Sim-to-real gap (COMPASS)

1: Input:
2: €y € RI®I: initial guess of environment parameters,
3: (: threshold for sim-to-real gap,
4: Sim(-): simulator with controllable environment parameters
5. Output: €;, 7o
6: Initialize agent policy 7y
7: Initialize fy(€, a;Gy) with o < 1g|x g
8: fori=20,1,2,...,Maxlter do
9: Train g in Sim(e;)
10: {78 }n=1....,n < Rollout N trajectories using 7y in Sim(e;)
11: {Tr’ga] }n:L---, ~ < Rollout N trajectories using 7y in the real environment
12:  Stop the iterations if AVERAGE(d(72,,71,), .., d(7N,,72)) < ¢
13: D+ o
14: forn e {1,...,N}do > This loop can run in parallel
15: {eg';}m:l,___M <+ CAUSALITYGUIDEDDOMAINRANDOMIZATION(€;, %)
16: forme{l,...,M} do
17: Tar < Rollout g in Sim(eg})
18: dZL — d(TZ:rlm TrZal)
19: D+ DU{ey, i dr}
20: Jointly optimize model parameter ¢ and causal graph parameter ) of f, (€, a;G,) >Eq.2
21: €i+1 < UPDATEENVPARAM(€;, fo(€:,a;Gy)) > Eq. 3

Algorithm 2 Causality-Guided Domain Randomization

1: function CAUSALITYGUIDEDDOMAINRANDOMIZATION(E, 1)
2: forr=1,2,...,|&| do

3 if max(v,.) > Threshold then > 1, is the 7-th row of )
4: {€"}m=1,....m < UNIFORM(€, — 0, €, + 0,.) > €, is the r-th dimension of €
5 return {€” },,—1, v

3.3 Closing the sim-to-real gap via differentiable causal discovery

The main algorithm is shown in Algorithm 1. We highlight two parts of the algorithm here.

Causality-guided Domain Randomization. The learned causal graph is used to prune the search
space. Since each element of the causal graph parameter ¢ indicates the probability of an edge
from the environment parameter to the trajectory difference, we can use v to determine whether
to randomize a particular environment parameter or not. For instance, if the learned ¢ indicates
that there is no causal relationship between the torsional friction and the trajectory difference, the
torsional friction will be excluded from randomization in the subsequent iteration, which enhances
the efficiency of DR. The randomized environment parameters are sampled uniformly from certain
ranges according to the current environment parameters. In this way, COMPASS automatically reduces
the search space by orders of magnitude without human supervision or domain knowledge. The
detail of causality-guided domain randomization is shown in Algorithm 2.

Environment Parameter Optimization. Owing to the full differentiability of our model, we can
back-propagate the gradient information directly to the environment parameters to minimize the
predicted sim-to-real gap:

K
1
J = Ekz_:lqu,k(e,a;gw), €e—e€—nVeJ 3)

where f; i, is the k-th dimension of the output. We use the real action sequences and apply Eq. 3
multiple times until convergence or reaching the maximum step. The sparse causal graph G could
improve the robustness against noisy trajectory data and generalization on unseen environment pa-
rameter values during parameter optimization.
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4 Experimental Results

4.1 Experimental setups

Mini-Air-Hockey with Obstacle. We design a challenging task
of playing air hockey with a robot arm. To reach the goal, the agent
needs to consider pusher-to-puck, puck-to-puck, puck-to-wall colli-
sions, and surface properties of the hockey table. The task is to ma-
nipulate the pusher to hit the first puck, colliding with the second,
which in turn needs to avoid the obstacle to reach the goal position
by bouncing against the wall. Similar to Evans et al. [47], the ac-
tion space includes the starting position of the pusher, hitting angle,
and velocity. The state space includes the position of the two pucks
(K = 2). The pusher, puck, and goal have a radius of 3cm, 2.55cm,
and 15cm, respectively. This task requires precise actuation since
objects interact multiple times, propagating and compounding sim- ;
to-real mismatches such that the agent can experience a significant ~ Figure 2: Experimental setup.
drop in success rate. Additionally, methods need to be robust against noisy and unmodeled dynam-
ics. For instance, the floating force, in reality, is generated by a fan placed at the center of the table,
and thus is non-uniform and stochastic. There are 64 tunable environment parameters in our experi-
ments (|€| = 64), and we use parameter notations in the format of object@param_type @ param. We
use the Kinova Gen 3 robot arm in the real-world test bench and simulate in the robosuite [18]
environment with MuJoCo physics engine [8]. Experimental details and two supplementary experi-
ments, Double-Bouncing-Ball and Push-I, are available in Appendix B, E and F, respectively.

Baselines. As baselines, we select the state-of-the-art gradient-free sampling baselines NPDR [20],
and two gradient-based baselines, TuneNet [34] and EXI-Net [36], as discussed in Section 2.

4.2 Sim-to-sim trajectory alignment with known target environment parameters

In this experiment, we verify whether COMPASS can align trajectories between two different envi-
ronments. We conduct experiments in simulation so that the ground truth environment parameters
are known to us. Among the two environments, one is treated as the “real” (target) environment we
want to align with, the other is the simulation environment we will fine-tune. We collect rollouts
with a scripted stochastic policy. For each method except Tune-Net, we use Maxilter = 10, N =
10, M = 64. For Tune-Net, we collect a dataset of size Maxlter x N x M = 6400 to train the
regression model. More implement details and ablation study are presented in Appendix C and D.

The learned causal graph parameters 1) after 2 iterations (¢ = 0, 1, 2) are shown in Figure. 3. We ob-
serve that the learned causal graph is very sparse, reducing the search space by orders of magnitude
without extensive domain knowledge. Our method is able to automatically discover different types
of relevant environment parameters such as actuation, sensing, and dynamics. It is worth noting
that only the damping of the right wall out of 4 sides has causality discovered with the trajectory
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Figure 3: Learned causal graph parameters 1. Darker colors present values closer to 1. We use parameter
notations in the format of object@param_type @param.
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Figure 4: Environment parameters optimization. We show 8 parameters with discovered causality (as shown
in Figure 3). The final mean absolute percentage errors (MAPE) are 0.22, 0.95, 0.29, 3.85 for COMPASS, EXI-
Net, NPDR, Tune-Net, respectively. The solid lines represent the mean value across 5 random seeds, and the
shaded area represents the standard deviation. The damping is negative due to the sign convention in MuJoCo.
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Figure 5: (a) and (b) visualize sampled trajectory-aligning results using NPDR and COMPASS, respectively.
The overlapping of trajectories and the obstacle are due to the camera bias. (c) shows the mean trajectory
differences throughout 10 iterations, evaluated with 5 random seeds and 10 pairs of rollouts per seed.

difference because we initialized the position of puckl and puck2 in such a way that they almost
only collided with the right wall. Though occasionally pucks did collide with the front wall or the
obstacle, the speed at contacting is usually low and has minimal effects on the trajectory; therefore
COMPASS placed low attention to such causality. Compared with the baseline methods, our proposed
method provides unique interpretability that could guide the sim-to-real transfer in other systems.

The optimization process of 8 environment parameters with discovered causality is shown in Fig-
ure 4. We observe that COMPASS optimizes the environment parameters to approach the ground truth
gradually, while baseline methods struggle to converge, especially for damping. Since Tune-Net
trains a regression model to predict the difference between the current and the target set of environ-
ment parameters given trajectories, it does not work well when most of the environment parameters
have negligible effects on the trajectories. Note that our method does NOT necessarily converge
to the ground-truth environment parameters; rather, it aims to find a combination of environmental
parameters to minimize the trajectory difference (more discussion in Section 5). The trajectory-
aligning results are shown in Figure. 5(a)(b). It is observed that our method outperforms all the base-
lines in terms of the trajectory difference using the same number of “real” and simulation rollouts.



Table 1: Trajectory difference (averaged between Puckl and Puck2) and agents’ performance in the real
environment. “+” represents the standard deviation. We evaluate the results using 5 policies generated from
independent runs and collect 10 trajectories for each run.

Low fan speed High fan speed
Nominal NPDR COMPASS \ Nominal NPDR COMPASS

3.68+0.07 281+0.16 237+0.10 | 223+037 3.056+046 1.41+£0.25
Trajectory difference max ({,) 10.77£0.05 7.34+141 5.71+0.23 | 9.84+056 10.36+0.82 8.17+1.34
Trajectory difference mean (J) 7.60+0.03 5.184+0.77 4.02+0.07 | 6.07£0.40 5.63+0.5 3.97 +0.45

Puck? final dist. to goal center () | 0.35+0.04 0.18£0.05 0.12+0.03 | 0.29+0.09 0.154+0.07 0.13 £0.02
Success rate (1) 0.00+£0.00 0.394+0.33 0.80+0.09 | 0.20£0.07 0.47+0.41 0.75+0.22

Trajectory difference min (J)

4.3 Sim-to-real with policy optimization in the loop

In this experiment, we first trained the agent in the initial simulation environment parameters with
Soft Actor-Critic (SAC) [48]. Then, we applied COMPASS and the best-performing baseline in the
sim-to-sim experiment, NPDR, to update the environment parameters and retrained the agent in the
new simulation environment parameters. Finally, we deployed the agent in the real environment and
reported the evaluation statistics. We used a fixed set of real trajectories instead of collecting new
ones in every iteration. We effectively set up two real environments by powering the electric fan at
different speeds, referred to as low fan speed and high fan speed.

Upon inspecting Table. 1, we first observe that (i) COMPASS consistently outperforms the nominal
simulator and the NPDR baseline in terms of trajectory difference and success rate. Notably,
COMPASS improved success rate by 105.1% and 59.6% compared with NPDR in the low and high
fan speed settings, respectively. We hypothesize that COMPASS is more robust to the noisy and
unmodeled dynamics in the real environment owing to the sparse causal model learned during the
model learning and parameter optimization process. We also observe that (ii) the agent’s real-world
performance positively correlates with the trajectory alignment performance. This is as expected
given that previous works have proved that the policy performance degradation is bounded by the
difference in transition distributions between two systems [39]. Similar patterns are observed in the
supplementary experiments as well (Appendix E).

5 Discussion and Conclusion

In conclusion, COMPASS is a novel causality-guided framework to identify simulation environment
parameters that minimize the sim-to-real gap. It has three salient features. Firstly, COMPASS requires
less domain knowledge of the randomized environment parameters, enabling a more automated pro-
cess for sim-to-real transfer. Secondly, COMPASS learns an interpretable causal structure, providing
better generalization during environment parameter optimization and robustness against observa-
tional noise in real rollouts. Lastly, COMPASS employs a fully differentiable model to update the
environment parameters, which mitigates the efficiency issue of the existing sampling-based meth-
ods. Through both simulation and real-world experiments, we verify that our proposed method
outperforms the existing gradient-free and gradient-based parameter estimation methods in terms of
trajectory alignment accuracy and the agent’s success rate, while offering interpretability.

Limitations. With all the advantages of COMPASS discussed, some limitations of our method also
suggest directions for future work. Similar to the existing gradient-based methods [34, 36, 35, 21],
COMPASS could converge to local minima since the identifiable set of parameters may be coupled [49,
50], which would result in multiple local minima in the parameter space. Indeed, if the purpose is
to find a specific combination of parameters that minimize the sim-to-real gap, it becomes less
important whether it converges to the global optimum or not [34]. In addition, COMPASS finds a
single combination of environment parameters rather than a distribution of them. Nevertheless,
our method can maintain several particles of environment parameters as an empirical distribution
[51, 52, 53, 54, 55] without extensive modifications to the core algorithm.
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A Model details

In a standard fully-connected multilayer perceptron (MLP), the input is treated as a whole and input
into the first linear layer. It blends all information into the feature of subsequent layers, making
it difficult to separate the cause and effects. To highlight the difference between our model and
traditional MLP, we plot the detailed model architecture of the COMPASS in Figure. 6.

More specifically, we design an encoder-decoder structure in f, with G as a linear transformation
applied to the intermediate features. First, the encoder operates on each dimension of € indepen-
dently to generate features z. € RI€/X9-. Then the causal graph is multiplied by the features to
generate the inputs for the decoder, i.e., ge = ng € R4=*K where d, is the dimension of the
feature. Similarly, the action sequence a is passed through the encoder and transformation to
produce the feature of the action sequence g € R *¥ . Finally, g + gq is passed through the
decoder to output the prediction d..

Causal graph G

position
embedding

— position
Env _ . . | ] embedding
param | * ) ) matrix )
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linear -
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Actions| :

Figure 6: COMPASS model architecture.

B Experimental Details

B.1 Experimental Configurations for Robot Simulation Setup

A simulator was developed to mimic a simulated air hockey table with dimensions matching the
real-world setup using robosuite [18]. This allowed us to gather rollout trajectories and training
data within the simulated environment. The specific dimensions of the objects within the simulation,
such as the table size, are detailed in Table 2. Additionally, for the sim-to-sim experiment config-
uration, default simulation parameters and the ground-truth simulated real environment parameters
are presented in Table 3.

State and action space. The observation space for the RL agent comprises 6 dimensions. It includes
the initial position of puckl (3D), and the initial position of puck2 (3D). The RL agent’s action space
consists of 4 dimensions: the initial position of the pusher in the x-direction, the initial position of
the pusher in the y-direction, the shooting angle of the pusher, and the pushing velocity of the pusher.
We fixed the initial position of puckl and puck2. Note that the shooting angle is relative to the line
connecting the center of the pusher and puckl.

Reward function. The reward is calculated as —10 X ||[Zpuckls Ypuckls Zpucki]
[%goals Ygoals Zgoal]||2- To provide additional incentive for reaching the goal, the distance penalty
term is divided by 2. Furthermore, a terminal reward is given if the hockey stays within the success
region at the last time step. It is important to mention that the reward is not accumulated through-
out the horizon. Instead, it only considers the final Euclidean distance between puck?2 and the goal
center. For further numerical details and specifications, please refer to Table 4.
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Table 2: Mujoco Simulation Environment Setup

X(m) Y(m) Z(m) Radius(m)
Air hockey table 0.0 0.0 0.8 [0.45, 0.9, 0.035]
Puckl -0.15 0.0 0.8 0.0255
Puck2 -0.075 -0.075 0.8 0.0255
Goal point 0.43 0.0 0.8 0.15
Obstacle bar 0.1 0.0 0.8 [0.025, 0.18, 0.025]

Table 3: Sim-to-Sim Env Parameters

Env param

Simulated “Real”
Env Parameters

Default Simulation
Env Parameters

pusher@actuation @ vel_discount 0.75 0.85
pusher @dyna@damping -10.0 -6.0
puckl @dyna@damping -10.0 -6.0
puckl @dyna@friction_sliding 0.05 0.04
puck2 @dyna@damping -10.0 -6.0
puck2 @dyna@friction_sliding 0.05 0.03
front_wall, back_wall, 10.0 6.0
left_wall, right_wall, obstacle@dyna@damping e e

env@camera@bias_x 0.0 +0.03
env@camera@bias_y 0.0 -0.02

B.2 Experimental Configurations for Real Robot Setup

This is a top-down view of the mini -

air hockey table we used to collect

real trajectories. The dimensional

attributes of each component are T
annotated in Figure 7, while green

dashed lines distinctly demarcate
the designated goal area. We used
Kinova Gen 3 robot platform and
installed a top-down Intel RealSense
D345f RGB camera to track the
position of puckl and puck?2.

C Implementation Details

Figure 7: Top-Down View of Table Air Hockey.

We reproduced the baseline implementation EXI-Net [36], NPDR [20] and Tune-Net [34] based on
the papers and released code base. We utilized software packages such as PyTorch [56], sbi [57],
StableBaseline3 [58], and OpenCV [59]. We report the hyperparameters used for all algorithms,

Table 4: Simulation Environment Setup

Simulation Parameters

Action space

Observation space
Terminal reward
Simulation horizon
Simulation timestep

low: [-0.24, 0.065, -0.157, 0.3]
high: [-0.21, 0.085, 0.157, 0.5]
low: [-inf] — high:[inf]
2.25
50 time steps
0.05 s
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Table 5: Soft Actor-Critic Hyperparameters

Parameters Name Values
learning_rate 3e-4
gradient_steps 32
batch_size 32
train_freq 8
ent_coef 0.005
net_arch [32, 32]
policy “MlpPolicy”
env_number 64
buffer_size 1,000,000
learning_starts 100
tau 0.005
gamma 0.99
action_noise None
stats_window_size 100

including the proposed COMPASS method, in Table 6, 7, 8, and 9, which provide a comprehensive

list of the parameters we utilized to reproduce the results.

Soft Actor-Critic hyperparameters. We use SAC implementation in StableBaseline3 [58] to train
the RL agents. The training hyperparameter is shown in Table 5.

Table 6: COMPASS hyperparameters

Description value variable_name
Shared Hyperparameters

Number of iterations 10 n_round

Retrain in each iteration True retrain_from_scratch

(if False, keep using the model trained in the first iteration) - -

Number of rollouts in each iteration 640 n_samples_per_round

Number of command actions in each iteration 10 n_cmd_action

Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate

Algorithm-Specific Hyperparameters

Network encoder dimension 32 emb_dim
Network hidden dimension [256, 256] hidden_dim
Causal dimension 32 causal_dim
Sparsity weight of the loss function 0.003 sparse_weight
Sparsity weight discount 0.5 sw_discount
Loss function MSE + Sparsity  loss_function
Optimizer Adam optimizer
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Table 7: EXI-Net hyperparameters

Description value variable_name

Shared Hyperparameters

Number of iterations 10 n_round
Retrain in each iteration

(if False, keep using the model trained in the first iteration) True retrain_from_scratch
Number of rollouts in each iteration 640 n_samples_per_round
Number of command actions in each iteration 10 n_cmd_action
Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate

Algorithm-Specific Hyperparameters

Network hidden dimension [256,256] hidden_dim
Loss function MSE loss_function
Optimizer Adam optimizer

Table 8: NPDR hyperparameters

Description value variable_name

Shared Hyperparameters

Number of iterations 10 n_round

Retrain in each iteration True retrain_from_scratch
(if False, keep using the model trained in the first iteration) .
Number of rollouts in each iteration 640 n_samples_per_round
Number of command actions in each iteration 10 n_cmd_action

Algorithm-Specific Hyperparameters

Prior distribution type Uniform  prior

Inference model type maf inf_model
Embedding net type LSTM embedding_struct
Embedding downsampling factor 2 downsampling_factor
Posterior hidden features 100 hidden_features
Posterior number of transforms 10 num_transforms
Normalize posterior False normalize_posterior
Density estimator training epochs 50 num_epochs

Density estimator training rate 3e-4 learning_rate

Early stop epochs once posterior converge 20 stop_after_epochs
Use combined loss for posterior training True use_combined_loss
Discard prior samples False discard_prior_samples
Sampling method MCMC  sample_with

MCMC thinning factor 2 thin

Table 9: Tune-Net hyperparameters

Description value variable_name
Shared Hyperparameters

Number of iterations 1 n_round

Retrain in each iteration False retrain_from_scratch

(if False, keep using the model trained in the first iteration) - .

Number of rollouts in each iteration 6400 n_samples_per_round

Number of command actions in each iteration 10 n_cmd_action

Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate

Algorithm-Specific Hyperparameters
(2, 304) (dim_pair, dim_state)

Network input dimension
(Pair of Trajectory and Action dimension)
Network output dimension

(Tunable env param dimension) 64 dim_zeta
Env param update iteration 10 K

Network hidden dimension [256,256] hidden_dim
Loss function MSE loss_fn
Optimizer Adam optimizer
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D Supplementary Ablation Study for Air-Hockey Experiment

D.1 Different Real Rollout Size N and Sim Rollout Size M

We investigated the effect of the real rollout size N and simulation rollout size M by testing values
of N =5,10,20at M = 64 and M = 32,64,128 at N = 10. The optimization processes for
environment parameters, given these sizes, are illustrated in Figure 8 and 9. Notably, for a given
N, M, COMPASS demonstrates superior convergence in comparison to NPDR.

Further insights are offered in Figure 10a and 10c, which depicts the trajectory differences over it-
erative steps, and Figure 10b and 10d, showing the final trajectory discrepancies for different N, M
values. These visualizations highlight that as the rollout budget N, M diminishes, the performance
gap between COMPASS and other benchmark methods widens. This can be attributed to the fully-
differentiable nature of COMPASS. Reinforcing our key contributions, COMPASS consistently outper-
forms the baselines, maintaining superiority under identical counts of real and simulation rollouts.
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Figure 8: Environment parameters optimization with different real rollout sizes N. We show 8 parameters
with discovered causality (as shown in Figure 3). The solid lines represent the mean value across 3 random
seeds, and the shaded area represents the standard deviation.
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To investigate the sensitivity of COMPASS to initialization, we conducted
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vironment parameter optimization processes are illustrated in Figure.12,
while Figure.11 presents the trajectory discrepancies.
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tently demonstrates its capability to minimize the trajectory difference
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graph becomes progressively sparser. However, it still maintains the most influential edges; omitting

closer to 1. We use parameter notations in the format of object@param_type @ param.
them would significantly elevate the prediction error.
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E Sim-to-Real Double-Bouncing-Ball Experiment

E.1 Double-bouncing-ball experimental setup

Figure 14 illustrates the experimental setup. Building upon the experimental design presented by
Allevato et al. [34], we’ve raised the bar by allowing the ball to bounce twice, rather than just once,
before landing in the goal basket. The goal basket has a diameter of 13.0 cm, and the ball measures
6.8 cm in diameter. Successful task completion is characterized by the ball’s accurate entry into the
hoop from above.

The task’s intricacy hinges on achieving a seamless alignment between the real-world dynamics and
the simulation. By releasing the ball at a specific height, it needs to bounce first off inclined plate 1,
followed by plate 2, and finally enter into the goal basket. The ball’s motion is constrained within
a 2-D plane with properly aligned plates. As such, the action space is represented by a scalar -
the ball’s release height. Simultaneously, the state space corresponds to the ball’s 2-D positional
coordinates within this plane () = 1). This experiment encompasses 82 environment parameters

(€] = 82).

Figure 14: Double-bouncing-ball setup.
E.2 Learned causal graph

Figure 15 depicts the learned causal graph parameter, denoted as . Starting from a fully-connected
causal graph, COMPASS efficiently narrows down the parameter search space from 82 dimen-
sions to a mere 4 dimensions. Specifically, these are ball@dyna@damping, ball@dyna@mass,
platel @dyna@damping, and plate2 @dyna@damping. Remarkably, this refinement is achieved
within just two iterations.

E.3 Sim-to-real trajectory alignment results

As depicted in Figure 16, it’s evident that COMPASS effectively aligns simulated trajectories closely
with their real-world counterparts. Given the extensive scale of environment parameters in this con-
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Figure 15: Learned causal graph parameters 1 for double-bouncing-ball experiments. Darker colors present
values closer to 1. We use parameter notations in the format of object@param_type @param.
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text, sampling-based techniques like NPDR become notably inefficient. This is primarily because
they necessitate an immense sample size to learn a posterior distribution accurately.
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Figure 16: Visualization of sim-to-real trajectory alignment.

E.4 Real-world agent performance

Table 10 presents the real-world performance of agents after policy optimization in the adjusted
environment, compared with nominal agents (those trained in the original environments). Consistent
with the trajectory alignment outcomes, agents trained using COMPASS demonstrate superior success
rates compared to those trained using NPDR and the nominal approach.

(a) Nominal (b) NPDR (c) COMPASS

Figure 17: Real-world policy rollouts.

Table 10: Agents’ performance in the real environment. “£” represents the standard deviation. We evaluate
the results using 5 policies generated from independent runs and collect 10 trajectories for each run.

| Nominal NPDR COMPASS
Success rate (1) | 0.30+0.14 0.58+0.15 0.86+0.10
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F Sim-to-Sim Push-I Experiment

F.1 Experimental setup

We conducted further evaluations using an experiment inspired by the Push-T experiment described
by Chi et al. [60]. In this experiment, illustrated in Figure. 18, the agent controls the robot arm to

strategically move a slender I-shaped cube towards a specific position and alignment. The task spans

30. The state space comprises the 3-D coordinates and orientation of the cube, the

target, and the end effector. The action space is defined by the 3-D velocity of the end effector and
the gripper’s action (either open or close). The states of interest are factorized into the position, roll,

a horizon of T’

4). This setup involves 67 environment parameters (|£| = 67).

pitch, and yaw of the cube (K

Figure 18: Push-I task. The green cube represents the target.

F.2 Learned causal graph

The learned causal graph parameter is shown in Figure. 19. Starting from a fully-connected causal
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3 dimensions within 2 iterations. Specifically, they are cube @dyna @mass, cube @ dyna @damping,

graph, COMPASS efficiently narrows down the parameter search space from 67 dimensions to only
cube@dyna@friction_sliding.

Figure 19: Learned causal graph parameters 1) for Push-I experiments.
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Figure 20: Environment parameters optimization. The solid lines represent the mean value across 3 random
seeds, and the shaded area represents the standard deviation.
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Figure 21: Trajectory difference optimization results. The solid lines represent the mean value across 3 random
seeds, and the shaded area represents the standard deviation.

F.3 Environment parameter optimization and trajectory alignment

Figure.20 depicts the optimization of environment parameters across iterations. We observe that
COMPASS optimizes the environment parameters to approach the ground truth gradually, while base-
line methods struggle to converge. The trajectory difference over the iterations is presented in Fig-
ure. 21, while the visualization of trajectory alignment is shown in Figure. 22, 23, 24, 25. At first
glance, the trajectory difference in the roll angle doesn’t seem to show much reduction. However,
a closer examination of Figure.22 reveals that the roll angle has minimal changes during the whole
trajectory regardless of the environment parameters. Given the elongated shape of the cube (illus-
trated in Figure. 18), it’s reasonable to see only minor variations in this direction. Overall, these
figures highlight COMPASS’s efficiency in aligning the simulator with the real world.

F.4 Sim-to-sim agent performance

Table 10 presents the “real” performance of agents after policy optimization in the adjusted environ-
ment, compared with nominal agents (those trained in the original environments). Consistent with
the trajectory alignment outcomes, agents trained using COMPASS demonstrate higher success rates
compared to those trained using NPDR and the nominal approach.

Table 11: Agents’ performance in the “real” environment. “+” represents the standard deviation. We evaluate
the results using 3 policies generated from independent runs and collect 10 trajectories for each run.

| Nominal NPDR EXI-Net COMPASS
Success rate (1) | 0.10+0.22 0.40+0.21 0.50+0.22 0.70+0.28
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Figure 22: Trajectory alignment results of EXI-Net, NPDR, and COMPASS.
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Figure 23: Trajectory alignment results of EXI-Net,

(c) COMPASS.
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Figure 24: Trajectory alignment results of EXI-Net, NPDR, and COMPASS.
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Figure 25: Trajectory alignment results of EXI-Net, NPDR, and COMPASS.

(c) COMPASS.

26



G Additional Literature Review

Adaptive Policy in Locomotion and Manipulation. The challenge of sim-to-real transfer has
been central to the field of locomotion tasks, and it has recently demonstrated remarkable success
[61, 62, 63, 64, 65]. Rapid Motor Adaptation (RMA) [62] proposed a solution to bridge the sim-to-
real gap by effectively learning the relationship between dynamic-affecting parameters and historical
contexts. More recently, Kumar et al. [63] introduced Adapting-RMA (A-RMA) to further refine
the base policy of RMA using model-free reinforcement learning (RL) techniques. Typically, RMA-
based methods approach the sim-to-real challenge as a generalization problem. They tend to assume
an appropriate range and set of parameters that influence testing performance, along with a sizable
randomized training budget, to ensure successful operation. These assumptions present inherent
challenges due to the requisite domain expertise and training time. In manipulation, Liu et al. [66]
approached the adaptive policy from a continual RL perspective, cultivating a policy for each group
of tasks rather than an individual task to solve unseen tasks in seen groups in a zero-shot manner.
In contrast, this paper focuses on aligning simulators with real-world dynamics. Our approach
involves the automated identification of simulation environment parameters that minimize the sim-
to-real dynamics gap. While there are similar studies, such as the work by Mozian et al. [65], which
on searching for the environment parameter distributions that are challenging yet not excessively
adversarial to learn, our emphasis is on sim-to-real applications with novel causality-based system
identification.
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