What Went Wrong? Closing the Sim-to-Real Gap via
Differentiable Causal Discovery

Peide Huang', Xilun Zhang'*, Ziang Cao'*, Shiqi Liu'*
Mengdi Xu', Wenhao Ding', Jonathan Francis?, Bingqing Chen?, Ding Zhao'!

LCarnegie Mellon University, 2Bosch Center for Artificial Intelligence, *equal contribution
{peideh, xilunz, ziangc, shiqiliu, mengdixu, wenhaod, dingzhao}@andrew.cmu.edu
{jon.francis, bingqing.chen}@us.bosch.com

Abstract: Training control policies in simulation is more appealing than on real
robots directly, as it allows for exploring diverse states in an efficient manner.
Yet, robot simulators inevitably exhibit disparities from the real-world dynamics,
yielding inaccuracies that manifest as the dynamical simulation-to-reality (sim-to-
real) gap. Existing literature has proposed to close this gap by actively modifying
specific simulator parameters to align the simulated data with real-world obser-
vations. However, the set of tunable parameters is usually manually selected to
reduce the search space in a case-by-case manner, which is hard to scale up for
complex systems and requires extensive domain knowledge. To address the scal-
ability issue and automate the parameter-tuning process, we introduce COMPASS,
which aligns the simulator with the real world by discovering the causal relation-
ship between the environment parameters and the sim-to-real gap. Concretely,
our method learns a differentiable mapping from the environment parameters to
the differences between simulated and real-world robot-object trajectories. This
mapping is governed by a simultaneously learned causal graph to help prune the
search space of parameters, provide better interpretability, and improve general-
ization on unseen parameters. We perform experiments to achieve both sim-to-
sim and sim-to-real transfer, and show that our method has significant improve-
ments in trajectory alignment and task success rate over strong baselines in sev-
eral challenging manipulation tasks. Demos are available on our project website:
https://sites.google.com/view/sim2real-compass.

Keywords: sim-to-real gap, reinforcement learning, causal discovery

1 Introduction

Training control policies directly on real robots poses challenges due to the sample complexity of
deep reinforcement learning (RL) algorithms. Therefore, training in simulation is often necessary to
perform diverse exploration of the state-action space in an efficient manner [1, 2, 3,4, 5, 6, 7]. How-
ever, robot simulators are constructed based on simplified models and are thus approximations of the
real world. For example, dynamics such as contact and collision are notoriously difficult to simulate
with simplified physics [8, 9]. Even if the dynamics could be simulated accurately, not all physical
parameters can be precisely measured in the real world and specified in simulation, e.g., friction
coefficients, actuation delay, etc. As a result, a robot that is trained in a biased simulator could have
catastrophic performance degradation in the real world [10, 11, 12, 13]. Itis, therefore, critical to use
simulators that closely mimic real-world dynamics to reduce this sim-to-real gap [14, 15, 16, 17].

Existing literature has proposed to close the sim-to-real gap by adjusting the parameters of the simu-
lator to align the simulated data with the observed real data. To facilitate this, robot simulators such

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

Causality-Guided Domain Randomization Causality

Gradient backprop
Rollout sim trajectories Env parameter €
Learn a differentiable Optimize Sim-to-real traj. diff. d.-
> en causal model env params
T A.‘ . .
— SR Train agent policy
P —|
—>

> A/A\A/A
camera camera

bias bias

friction friction
.) , inertial pucki d- inertial puckld, € e
Rollout real trajectories
D= {(e" ™ AP},
damping puck2d, damping puck2d,

Figure 1: Overview of the COMPASS framework.

as robosuite [18] provide APIs to modify over 400 different environment parameters. Unfortu-
nately, the search space grows exponentially with the dimension of the environment parameters. To
mitigate this issue, various existing methods attempt to modify the parameters more efficiently, us-
ing gradient-based or gradient-free sampling-based techniques [19, 20]. For example, in quasi-static
manipulation tasks, such as sorting pegs or opening drawers, Chebotar et al. [19] chose to modify
parameters related to the size, positions, and compliance; in dynamic manipulation tasks, Muratore
et al. [20] chose to modify mass, friction, and restitution coefficients, etc.

However, this parameter selection process is typically carried out on a case-by-case basis, necessi-
tating substantial domain knowledge to restrict the scope of environment parameters. This becomes
challenging when dealing with simulations involving multiple interacting objects [21]. Furthermore,
most existing methods lack the capability to offer explicit insights that can effectively guide the fu-
ture deployment of more complex systems. They fail to offer direct answers to the question “What
went wrong with my simulator” or, more specifically, “What simulator parameters should I tune to
reduce the sim-to-real gap” without post hoc analysis of the final parameters. In contrast, humans
are good at analyzing complex events, identifying and eliminating irrelevant factors, and uncovering
crucial cause-and-effect relationships. Such causal discovery capability enables an efficient and in-
terpretable search [22, 23, 24] for differences between two systems, providing a promising direction
to bridge the gap between simulation and reality.

In this work, we propose a method that aims to align the simulator with the real world by discovering
the causality between environment parameters and the sim-to-real gap (COMPASS) as illustrated in
Figure 1. COMPASS learns a differentiable mapping, from the simulation environment parameters to
the differences between simulated and real-world trajectories of dynamic robot-object interactions,
governed by a simultaneously-learned causal graph. With the differentiable causal model fixed,
COMPASS back-propagates gradients to optimize the simulation environment parameters in an end-
to-end manner to reduce the domain gaps. Beyond the interpretability, the causal graph also helps
to prune the parameter search space, thus improving the efficiency of domain randomization as well
as the scalability. We summarize our contributions as follows:

1. We propose a novel causality-guided parameter estimation framework to close the sim-to-real
gap and improve agent performance in the real world.

2. We design a fully-differentiable model that explicitly embeds the causal structure to provide
better interpretability, prune the search space of parameters, and improve generalization.

3. We empirically evaluate our method in both the simulation and the real world, which outperforms
baselines in terms of trajectory alignment and task success rate with the same sample size.

2 Related Work

Closing the sim-to-real gap in robotic control tasks is often approached through domain randomiza-
tion (DR) [10, 25, 26, 27, 28, 29, 30, 31]. Although DR proves successful in numerous applications,
particularly when access to real environments or data collected therein is unavailable, it is recognized

that vanilla DR may result in overly conservative policies when the range of randomization is broad
[32, 33]. As an alternative approach for achieving sim-to-real transfer, system identification aims
to estimate the parameters of the environment through limited interactions with real environments
[20, 34, 21, 35, 36, 37] and has been combined with DR methods. We draw inspiration from this
line of work in developing our parameter estimation framework, which learns causal relationships
from dynamic robot-object interactions in order to facilitate the sim-to-real transfer.

Gradient-free Parameter Estimation for Sim-to-Real Transfer. Gradient-free parameter estima-
tion methods typically utilize sampling-based methods to update the simulation environment param-
eters. Chebotar et al. [19] propose the SimOpt framework, which iteratively alters the distribution
of environment parameters in simulation to mirror real environment rollouts via the cross-entropy
method. Moving away from the assumption that the distribution of environment parameters follows
a Gaussian distribution, as adopted in [19], Ramos et al. [38] develop BayesSim, which uses a Gaus-
sian mixture model and optimizes the parameter distribution from a Bayesian perspective. Muratore
et al. [20] propose Neural Posterior Domain Randomization (NPDR) which further removes assump-
tions on the environment parameter distribution by utilizing neural likelihood-free inference methods
and could handle correlated parameters. It is worth noting that scaling up sampling-based methods
becomes challenging when dealing with a large number of parameters. In contrast, COMPASS learns
a difference-prediction model, leverages gradients to adjust the simulation parameters, and further
improves scalability with learned causal structures.

Gradient-based Parameter Estimation for Sim-to-Real Transfer. Gradient-based methods typ-
ically employ a neural network to encapsulate the gradient landscape of parameter differences
[34, 21, 35] or to model environment dynamics [36]. TuneNet [34] uses a neural network to predict
the discrepancies in parameters based on the observations derived from two distinct environments.
The Search Parameter Model (SPM) [35] is a binary classifier, with rollouts and parameters as input,
which predicts whether a set of parameters is higher or lower than the target ones. Unlike TuneNet
or SPM, we opt to predict observation differences using environment parameters as inputs. Allevato
et al. [21] further expand the capabilities of TuneNet from handling a single parameter to managing a
model with 5 parameters. In contrast, we demonstrate COMPASS is able to scale up to a 64-parameter
system, a capacity notably larger than existing works. EXI-Net [36] implements a dynamics pre-
dictive model, conditioned on environment parameters, and identifies the most suitable parameters
via back-propagation. While EXI-Net strives to model a broad spectrum of environments by sepa-
rately modeling the known/explicit and implicit dynamics parameters, we aim to enhance sim-to-real
transfer efficiency by capitalizing on the progressively discovered causal structure.

3 Methodology

3.1 Problem formulation: Markov Decision Processes and sim-to-real gap

A finite-horizon Markov Decision Process (MDP) is defined by M = (S, A, P, R, pg, v, T), where
S and A are state and action spaces, P : S x A xS — R, is a state-transition probability function or
probabilistic system dynamics, R : § x A — R is a reward function, pg : S — R is an initial state
distribution, -y is a reward discount factor, and 7T is a fixed horizon. Let 7 = (sg, ag, - . ., ST, ar)
be a trajectory of states and actions and R(7) = Z?:o YR (84, a4) is the trajectory reward. The
objective of RL is to find parameters 6 of a policy mg(a|s) that maximize the expected discounted
reward over trajectories induced by the policy: Er,[R(7)], where sg ~ po, st41 ~ P (St+1]8¢, at),
and ay ~ Ty (at|st).

In our work, we assume that the simulator’s system dynamics are conditioned on environment pa-
rameters € € RI€l je, P: S x A xS x RI¢l — R4, where £ is the set of all tunable environment
parameters and | - | measures the cardinality of the set. Given a simulator parameterized by e, the
agent is optimizing E, [R(7)]. When the simulation dynamics are very close to the real-world dy-
namics, one can expect the trajectory rollouts in the simulator to be close to that in the real world as
well. Hence, an optimal agent trained in the simulator would expect near-optimal performance in the
real world [39]. However, due to unmodeled dynamics and inaccurate environment parameters, the

simulation dynamics are different from the real world (i.e., there exists a sim-to-real gap), resulting
in different trajectory rollouts and thus degradation in real-world performance [1, 2, 10, 11, 15].

For better interpretability, we assume a factorized state space, i.e., S = {S; X -+ X Sk}, with
spt € S representing the k-th factorized state at time ¢. Each component usually has explicit
semantic meanings (i.e., an event or object’s property) [23], which holds through state and action
abstraction in general [40, 41, 42]. For example, in the case of pick-and-place, the state space can
be factorized to the 3D position and orientation of the object and end effector. Similar to Chebotar
et al. [19], we then define a factorized trajectory difference function:

T
dk(Tsim7 7—real) = Z ||3k,t,sim - Sk,t,realH% fork=1,2,.... K (1
t=0
The trajectory difference function is then d := [d1, ..., dk], and the trajectory difference d. is the

output of d to measure the sim-to-real gap between of a pair of trajectories, (Tgim, Treal)- In this work,
we aim to find a simulation environment parameter € that minimizes the expectation of trajectory
differences d.- under the same policy.

3.2 Learning causality between environment parameters and trajectory differences

To model the causality, COMPASS learns a causal model fy (€, a; G) mapping the environment param-
eter € and action sequence a = [ag, ..., ar| to the trajectory difference d.. This model contains
a causal graph G, whose nodes represent the variables to be considered and the edges represent
the causal influence from one node to another node. We jointly learn the model parameter ¢ and
discover the underlying causal graph G in a fully differentiable manner.

Causal Graph. The causal graph G plays a crucial role in the model by providing interpretability,
pruning the search space of parameters, and improving the generalization on unseen parameters.
Since we focus on the influence of environment parameter € to the trajectory difference d,, we can
represent the graph with a binary adjacency matrix of size |£| x K, where 1/0 indicates the exis-
tence/absence of an edge from the environment parameter to the trajectory difference. Motivated
by previous works [43, 44, 45] that formulate the combinatorial graph learning into a continuous
optimization problem, we design a sample-efficient pipeline by making the optimization of G differ-
entiable. We sample elements of the graph G from a Gumbel-Softmax distribution [46], parametrized
by ¢ € [0,1]I€1xK i, G;; ~ GumbelSoftmax(v;;; 7T = 1), where 7T is the softmax temperature.
We denote the parameterized causal graph as G,;. All elements (7, j) are initialized to ones to ensure
the causal graph is fully connected at the beginning.

Structural Causal Model. Since the causal graph only describes the connection between variables,
we also need a parameterized model to precisely represent how the causes influence the effects.
We design an encoder-decoder structure in f, with G as a linear transformation applied to the
intermediate features. First, the encoder operates on each dimension of € independently to generate
features ze € RI1*%=_ Then the causal graph is multiplied by the features to generate the inputs for
the decoder, i.e., ge = ZZQ € R4:*K where d, is the dimension of the feature. Similarly, the action
sequence a is passed through the encoder and transformation to produce the feature of the action
sequence g, € R%*X_ Finally, g + ¢, is passed through the decoder to output the prediction d,.

Differentiable Causal Discovery. Given a dataset D := {€™,a™,d’" },,=1, ..., the optimization
objective to discover the underlying causal model consists of two terms:

M
1 m m m
Low =17 D Ifo(€.a™Gy) — dZ |3+ A0,)
m=1

where the first term is the mean squared error between the predicted trajectory differences and the
real differences, and the second is a regularization term that encourages the sparsity of G (||1||,, is the
entry-wise p-norm of 1) with a positive scalar A to eliminate the influence of irrelevant environment
parameters. The detailed architecture of this causal model can be found in Appendix A.

Algorithm 1 Causality between envirOnMent PArameterS and the Sim-to-real gap (COMPASS)

1: Input:
2: €y € RI®I: initial guess of environment parameters,
3: (: threshold for sim-to-real gap,
4: Sim(-): simulator with controllable environment parameters
5. Output: €;, 7o
6: Initialize agent policy 7y
7: Initialize fy(€, a;Gy) with o < 1g|x g
8: fori=20,1,2,...,Maxlter do
9: Train g in Sim(e;)
10: {78 }n=1....,n < Rollout N trajectories using 7y in Sim(e;)
11: {Tr’ga] }n:L---, ~ < Rollout N trajectories using 7y in the real environment
12: Stop the iterations if AVERAGE(d(72,,71,), .., d(7N,,72)) < ¢
13: D+ o
14: forn e {1,...,N}do > This loop can run in parallel
15: {eg';}m:l,___M <+ CAUSALITYGUIDEDDOMAINRANDOMIZATION(€;, %)
16: forme{l,...,M} do
17: Tar < Rollout g in Sim(eg})
18: dZL — d(TZ:rlm TrZal)
19: D+ DU{ey, i dr}
20: Jointly optimize model parameter ¢ and causal graph parameter) of f, (€, a;G,) >Eq.2
21: €i+1 < UPDATEENVPARAM(€;, fo(€:,a;Gy)) > Eq. 3

Algorithm 2 Causality-Guided Domain Randomization

1: function CAUSALITYGUIDEDDOMAINRANDOMIZATION(E, 1)
2: forr=1,2,...,|&| do

3 if max(v,.) > Threshold then > 1, is the 7-th row of)
4: {€"}m=1,....m < UNIFORM(€, — 0, €, + 0,.) > €, is the r-th dimension of €
5 return {€” },,—1, v

3.3 Closing the sim-to-real gap via differentiable causal discovery

The main algorithm is shown in Algorithm 1. We highlight two parts of the algorithm here.

Causality-guided Domain Randomization. The learned causal graph is used to prune the search
space. Since each element of the causal graph parameter ¢ indicates the probability of an edge
from the environment parameter to the trajectory difference, we can use v to determine whether
to randomize a particular environment parameter or not. For instance, if the learned ¢ indicates
that there is no causal relationship between the torsional friction and the trajectory difference, the
torsional friction will be excluded from randomization in the subsequent iteration, which enhances
the efficiency of DR. The randomized environment parameters are sampled uniformly from certain
ranges according to the current environment parameters. In this way, COMPASS automatically reduces
the search space by orders of magnitude without human supervision or domain knowledge. The
detail of causality-guided domain randomization is shown in Algorithm 2.

Environment Parameter Optimization. Owing to the full differentiability of our model, we can
back-propagate the gradient information directly to the environment parameters to minimize the
predicted sim-to-real gap:

K
1
J = Ekz_:lqu,k(e,a;gw), €e—e€—nVeJ 3)

where f; i, is the k-th dimension of the output. We use the real action sequences and apply Eq. 3
multiple times until convergence or reaching the maximum step. The sparse causal graph G could
improve the robustness against noisy trajectory data and generalization on unseen environment pa-
rameter values during parameter optimization.

© puck -
2 puck2 -
T puck1 -
£ puck2 -

o puck -
2 puck2-

env@light@pos_x -

4 Experimental Results

4.1 Experimental setups

Mini-Air-Hockey with Obstacle. We design a challenging task
of playing air hockey with a robot arm. To reach the goal, the agent
needs to consider pusher-to-puck, puck-to-puck, puck-to-wall colli-
sions, and surface properties of the hockey table. The task is to ma-
nipulate the pusher to hit the first puck, colliding with the second,
which in turn needs to avoid the obstacle to reach the goal position
by bouncing against the wall. Similar to Evans et al. [47], the ac-
tion space includes the starting position of the pusher, hitting angle,
and velocity. The state space includes the position of the two pucks
(K = 2). The pusher, puck, and goal have a radius of 3cm, 2.55cm,
and 15cm, respectively. This task requires precise actuation since
objects interact multiple times, propagating and compounding sim- ;
to-real mismatches such that the agent can experience a significant ~ Figure 2: Experimental setup.
drop in success rate. Additionally, methods need to be robust against noisy and unmodeled dynam-
ics. For instance, the floating force, in reality, is generated by a fan placed at the center of the table,
and thus is non-uniform and stochastic. There are 64 tunable environment parameters in our experi-
ments (|€| = 64), and we use parameter notations in the format of object@param_type @ param. We
use the Kinova Gen 3 robot arm in the real-world test bench and simulate in the robosuite [18]
environment with MuJoCo physics engine [8]. Experimental details and two supplementary experi-
ments, Double-Bouncing-Ball and Push-I, are available in Appendix B, E and F, respectively.

Baselines. As baselines, we select the state-of-the-art gradient-free sampling baselines NPDR [20],
and two gradient-based baselines, TuneNet [34] and EXI-Net [36], as discussed in Section 2.

4.2 Sim-to-sim trajectory alignment with known target environment parameters

In this experiment, we verify whether COMPASS can align trajectories between two different envi-
ronments. We conduct experiments in simulation so that the ground truth environment parameters
are known to us. Among the two environments, one is treated as the “real” (target) environment we
want to align with, the other is the simulation environment we will fine-tune. We collect rollouts
with a scripted stochastic policy. For each method except Tune-Net, we use Maxilter = 10, N =
10, M = 64. For Tune-Net, we collect a dataset of size Maxlter x N x M = 6400 to train the
regression model. More implement details and ablation study are presented in Appendix C and D.

The learned causal graph parameters 1) after 2 iterations (¢ = 0, 1, 2) are shown in Figure. 3. We ob-
serve that the learned causal graph is very sparse, reducing the search space by orders of magnitude
without extensive domain knowledge. Our method is able to automatically discover different types
of relevant environment parameters such as actuation, sensing, and dynamics. It is worth noting
that only the damping of the right wall out of 4 sides has causality discovered with the trajectory

o N R N o
MAEE AR PE RN TR PP EN PO RSN P PPN PRETPPPPOIXEPNPET 2PN BN &) 223Xt 2PN
eS8 5558028 daSdsadd28ddas 2 Sdd22 70 2 B S5 ddddd 925 84dad 825 d
§52 38002 8 BE8 8L eECEELTeESECERELELnD SEESEL R 3EE3E EES22 9 8
903299 g 2 5 | & (1 18 | 5 a8] S s ol 5 | & 5 |
©9p = EEECDDT 888 8cBI88S888cB/8c83L /B c ¢ 00D 0p00L /0006086068 /B8 /ca
EE0 9 s EE RO S ESQEE S EEESREScc 6988 ccQEa@ELS8EEcccc I6§S5QEETESc
g@“ﬁ®®@@@@m§©@g@§m@@gg@@@Emﬁ@g@@gﬁmﬁ Q0 csQ@c®5BCOPOOPORPSBTS c®@S5B SO
L rE RS s SNt A R RSN R E S R r SN A A E R P RSN NN P SRR EF IR RN Y
>3298 8005258 cS55cE500550cE5550005055020QceS558585c0Q955555200985500905%5
£55200550205282092 02880922280 s0828399r08 102089 reasooegrs @28 gD
83370080905 5900705 0905700900575 950900955555799595975500900099F555997559
5522585208538 85%269098828 385552588535 s 855285 ssss529882¢525%828
G ﬁ:gﬁﬁug@agg@)uggg@a@s‘g)s‘s‘u@«wg)@n;‘g‘w;‘,wg‘n@g)g‘;‘s‘;‘glu@g)ewgﬂu@)g@
2°2092209a% 838303338 YL T 0557 5048505055528 202337
5 T 3 g9 S $55= s:835838%s5¢8253¢8 3 5553328893538
5 X 3 E 1 ;0|g0m‘t\‘mmmﬂm T 37 pp222F 33 cog 8o
g E a3 8 B8FgEEsL g9 9 T5LeTF & § £228
g ° & £ pe iy ge? £°° gee

S ki

8 2

Figure 3: Learned causal graph parameters 1. Darker colors present values closer to 1. We use parameter
notations in the format of object@param_type @param.

obstacle@dyna@damping -

COMPASS EXI-Net NPDR Tune-Net === Ground Truth
g g 2 510
g 5 5 @
g -4 g 4 g 4 5,
S 8 S Tog
® -6 -~ © © TN - @ 6 -7 A= é) §
o o © B mmmmommo—oooomE e
> -8 S -8 S -8 3
° © =) @08
) ® ® Q0.
g -10 g 10 g -10 g
] S g]
3-12 a-12 a -12 207
01234567829 01234567829 01234567829 01234567829
Iteration Iteration Iteration Iteration

2 2
5 e x 0.04 > 0.01
210,05 210.05 8003) ANSENERE 2 000
k=l S 5 0 é .
K3} K3}
£ £ 0.02 g ~0.01

0.04 -==—=—==mmem—o - © 0.04 5]
) £
© © =0.02 -=r=fF=—SF-sSme—acT
g < 8 0.01 8
3 bl ® -0.03
®0.03 ©0.03 -=====—Smmmmmmm e % 0.00 F
% g) @ -0.04
2 0123456789 & 01234567829 0123456789 0123456789

Iteration Iteration Iteration Iteration

Figure 4: Environment parameters optimization. We show 8 parameters with discovered causality (as shown
in Figure 3). The final mean absolute percentage errors (MAPE) are 0.22, 0.95, 0.29, 3.85 for COMPASS, EXI-
Net, NPDR, Tune-Net, respectively. The solid lines represent the mean value across 5 random seeds, and the
shaded area represents the standard deviation. The damping is negative due to the sign convention in MuJoCo.

03 03 03
COMPASS NPDR
02 EXI-Net Tune-Net
6
01
5
-
00 °
% 4
o1 S
—e— "real" pucki iter 1 puck1 —e— “real" puck1 iter 1 puck1 —e— "real" pucki iter 1 puck1 A 3
02—+ "real" puck2 iter 1 puck2 02— 'real" puck2 iter 1 puck2 L2 —— 'real" puck2 iter 1 puck2
—s— fter 2 puck1 iter 0 puck1 —s— fter 2 puck1 iter 0 puck1 —s— iter2 puck1 iter 0 puck1
—+— iter 2 puck2 iter 0 puck2 —+— iter 2 puck2 iter 0 puck2 —&— iter 2 puck2 iter 0 puck2 2
03 03 -03
01 00 01 02 03 04 01 00 o1 02 03 04 01 00 o1 02 03 04 012345672829
(a) NPDR Iteration
03 03 03 8
02 02 02
o * 6
o o o 2 o)
Lo 9
A o S
00 00 00 £ a
01 01 01
—e— “real” puck1 iter 1 puck1 —e— “real” puck1 iter 1 puck1 —e— "real” puck1 iter 1 puck1 2
02 —— "real" puck2 iter 1 puck2 02 —— "real"puck2 iter 1 puck2 02 —— "real" puck2 iter 1 puck2 01234567829
—e— iter 2 puck1 iter 0 puck1 ~— ifer 2 puckt iter 0 puck1 —e— iter2 puck1 iter 0 puck1 N
—a— iter 2 puck2 iter 0 puck2 —+— iter 2 puck2 iter 0 puck2 —+— iter 2 puck2 iter 0 puck2 Iteration
03 03 03
01 00 01 0z 03 04 o1 00 o1 o0z 03 o4 01 o0 01 0z 03 o0&
(b) COMPASS (c) Trajectory difference

Figure 5: (a) and (b) visualize sampled trajectory-aligning results using NPDR and COMPASS, respectively.
The overlapping of trajectories and the obstacle are due to the camera bias. (c) shows the mean trajectory
differences throughout 10 iterations, evaluated with 5 random seeds and 10 pairs of rollouts per seed.

difference because we initialized the position of puckl and puck2 in such a way that they almost
only collided with the right wall. Though occasionally pucks did collide with the front wall or the
obstacle, the speed at contacting is usually low and has minimal effects on the trajectory; therefore
COMPASS placed low attention to such causality. Compared with the baseline methods, our proposed
method provides unique interpretability that could guide the sim-to-real transfer in other systems.

The optimization process of 8 environment parameters with discovered causality is shown in Fig-
ure 4. We observe that COMPASS optimizes the environment parameters to approach the ground truth
gradually, while baseline methods struggle to converge, especially for damping. Since Tune-Net
trains a regression model to predict the difference between the current and the target set of environ-
ment parameters given trajectories, it does not work well when most of the environment parameters
have negligible effects on the trajectories. Note that our method does NOT necessarily converge
to the ground-truth environment parameters; rather, it aims to find a combination of environmental
parameters to minimize the trajectory difference (more discussion in Section 5). The trajectory-
aligning results are shown in Figure. 5(a)(b). It is observed that our method outperforms all the base-
lines in terms of the trajectory difference using the same number of “real” and simulation rollouts.

Table 1: Trajectory difference (averaged between Puckl and Puck2) and agents’ performance in the real
environment. “+” represents the standard deviation. We evaluate the results using 5 policies generated from
independent runs and collect 10 trajectories for each run.

Low fan speed High fan speed
Nominal NPDR COMPASS \ Nominal NPDR COMPASS

3.68+0.07 281+0.16 237+0.10 | 223+037 3.056+046 1.41+£0.25
Trajectory difference max ({,) 10.77£0.05 7.34+141 5.71+0.23 | 9.84+056 10.36+0.82 8.17+1.34
Trajectory difference mean (J) 7.60+0.03 5.184+0.77 4.02+0.07 | 6.07£0.40 5.63+0.5 3.97 +0.45

Puck? final dist. to goal center () | 0.35+0.04 0.18£0.05 0.12+0.03 | 0.29+0.09 0.154+0.07 0.13 £0.02
Success rate (1) 0.00+£0.00 0.394+0.33 0.80+0.09 | 0.20£0.07 0.47+0.41 0.75+0.22

Trajectory difference min (J)

4.3 Sim-to-real with policy optimization in the loop

In this experiment, we first trained the agent in the initial simulation environment parameters with
Soft Actor-Critic (SAC) [48]. Then, we applied COMPASS and the best-performing baseline in the
sim-to-sim experiment, NPDR, to update the environment parameters and retrained the agent in the
new simulation environment parameters. Finally, we deployed the agent in the real environment and
reported the evaluation statistics. We used a fixed set of real trajectories instead of collecting new
ones in every iteration. We effectively set up two real environments by powering the electric fan at
different speeds, referred to as low fan speed and high fan speed.

Upon inspecting Table. 1, we first observe that (i) COMPASS consistently outperforms the nominal
simulator and the NPDR baseline in terms of trajectory difference and success rate. Notably,
COMPASS improved success rate by 105.1% and 59.6% compared with NPDR in the low and high
fan speed settings, respectively. We hypothesize that COMPASS is more robust to the noisy and
unmodeled dynamics in the real environment owing to the sparse causal model learned during the
model learning and parameter optimization process. We also observe that (ii) the agent’s real-world
performance positively correlates with the trajectory alignment performance. This is as expected
given that previous works have proved that the policy performance degradation is bounded by the
difference in transition distributions between two systems [39]. Similar patterns are observed in the
supplementary experiments as well (Appendix E).

5 Discussion and Conclusion

In conclusion, COMPASS is a novel causality-guided framework to identify simulation environment
parameters that minimize the sim-to-real gap. It has three salient features. Firstly, COMPASS requires
less domain knowledge of the randomized environment parameters, enabling a more automated pro-
cess for sim-to-real transfer. Secondly, COMPASS learns an interpretable causal structure, providing
better generalization during environment parameter optimization and robustness against observa-
tional noise in real rollouts. Lastly, COMPASS employs a fully differentiable model to update the
environment parameters, which mitigates the efficiency issue of the existing sampling-based meth-
ods. Through both simulation and real-world experiments, we verify that our proposed method
outperforms the existing gradient-free and gradient-based parameter estimation methods in terms of
trajectory alignment accuracy and the agent’s success rate, while offering interpretability.

Limitations. With all the advantages of COMPASS discussed, some limitations of our method also
suggest directions for future work. Similar to the existing gradient-based methods [34, 36, 35, 21],
COMPASS could converge to local minima since the identifiable set of parameters may be coupled [49,
50], which would result in multiple local minima in the parameter space. Indeed, if the purpose is
to find a specific combination of parameters that minimize the sim-to-real gap, it becomes less
important whether it converges to the global optimum or not [34]. In addition, COMPASS finds a
single combination of environment parameters rather than a distribution of them. Nevertheless,
our method can maintain several particles of environment parameters as an empirical distribution
[51, 52, 53, 54, 55] without extensive modifications to the core algorithm.

Acknowledgments

The authors gratefully acknowledge the support from the National Science Foundation under grants
CNS-2047454.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803-3810. IEEE, 2018.

O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3-20, 2020.

J. Francis, B. Chen, S. Ganju, S. Kathpal, J. Poonganam, A. Shivani, S. Genc, 1. Zhukov,
M. Kumskoy, A. Koul, et al. Learn-to-race challenge 2022: Benchmarking safe learning and
cross-domain generalisation in autonomous racing. arXiv preprint arXiv:2205.02953, 2022.

S. H. Park, G. Lee, J. Seo, M. Bhat, M. Kang, J. Francis, A. Jadhav, P. P. Liang, and L.-P.
Morency. Diverse and admissible trajectory forecasting through multimodal context under-
standing. In Computer Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XI 16, pages 282—298. Springer, 2020.

G. Tatiya, J. Francis, L. Bondi, I. Navarro, E. Nyberg, J. Sinapov, and J. Oh. Knowledge-driven
scene priors for semantic audio-visual embodied navigation. arXiv preprint arXiv:2212.11345,
2022.

J. Francis, B. Chen, W. Yao, E. Nyberg, and J. Oh. Distribution-aware goal prediction and con-
formant model-based planning for safe autonomous driving. arXiv preprint arXiv:2212.08729,
2022.

J. Herman, J. Francis, S. Ganju, B. Chen, A. Koul, A. Gupta, A. Skabelkin, I. Zhukov, M. Kum-
skoy, and E. Nyberg. Learn-to-race: A multimodal control environment for autonomous rac-

ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9793-9802, 2021.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE,
2012.

B. Ellenberger. Pybullet gymperium. https://github.com/benelot/pybullet-gym,
2018-2019.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 23-30. IEEE, 2017.

A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and
D. Batra. Sim2real predictivity: Does evaluation in simulation predict real-world performance?
IEEE Robotics and Automation Letters, 5(4):6670-6677, 2020.

M. Xu, P. Huang, F. Li, J. Zhu, X. Qi, K. Oguchi, Z. Huang, H. Lam, and D. Zhao. Scalable
safety-critical policy evaluation with accelerated rare event sampling. In 2022 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 12919-12926. IEEE,
2022.

M. Xu, Z. Liu, P. Huang, W. Ding, Z. Cen, B. Li, and D. Zhao. Trustworthy reinforce-
ment learning against intrinsic vulnerabilities: Robustness, safety, and generalizability. arXiv
preprint arXiv:2209.08025, 2022.

[14] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. In Field and Service Robotics: Results of the 11th International
Conference, pages 621-635. Springer, 2018.

[15] J. Francis, N. Kitamura, F. Labelle, X. Lu, I. Navarro, and J. Oh. Core challenges in embodied
vision-language planning. Journal of Artificial Intelligence Research, 74:459-515, 2022.

[16] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff. High fidelity tools for rescue robotics:
results and perspectives. In RoboCup 2005: Robot Soccer World Cup IX 9, pages 301-311.
Springer, 2006.

[17] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. Neuralsim: Augmenting
differentiable simulators with neural networks. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 9474-9481. IEEE, 2021.

[18] Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiriany, and Y. Zhu. robo-
suite: A modular simulation framework and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020.

[19] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. In 2079
International Conference on Robotics and Automation (ICRA), pages 8973-8979. IEEE, 2019.

[20] F. Muratore, T. Gruner, F. Wiese, B. Belousov, M. Gienger, and J. Peters. Neural posterior
domain randomization. In Conference on Robot Learning, pages 1532—1542. PMLR, 2022.

[21] A. Allevato, M. Pryor, and A. L. Thomaz. Multiparameter real-world system identification
using iterative residual tuning. Journal of Mechanisms and Robotics, 13(3), 2021.

[22] W. Ding, L. Shi, Y. Chi, and D. Zhao. Seeing is not believing: Robust reinforcement learning
against spurious correlation. arXiv preprint arXiv:2307.07907, 2023.

[23] W. Ding, H. Lin, B. Li, and D. Zhao. Generalizing goal-conditioned reinforcement learning
with variational causal reasoning. arXiv preprint arXiv:2207.09081, 2022.

[24] W. Ding, H. Lin, B. Li, and D. Zhao. Causalaf: causal autoregressive flow for safety-critical
driving scenario generation. In Conference on Robot Learning, pages 812-823. PMLR, 2023.

[25] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In
Conference on Robot Learning, pages 1162—1176. PMLR, 2020.

[26] X. Chen, J. Hu, C. Jin, L. Li, and L. Wang. Understanding domain randomization for sim-to-
real transfer. arXiv preprint arXiv:2110.03239, 2021.

[27] Q. Vuong, S. Vikram, H. Su, S. Gao, and H. I. Christensen. How to pick the domain random-
ization parameters for sim-to-real transfer of reinforcement learning policies? arXiv preprint
arXiv:1903.11774, 2019.

[28] F. Muratore, C. Eilers, M. Gienger, and J. Peters. Data-efficient domain randomization with
bayesian optimization. IEEE Robotics and Automation Letters, 6(2):911-918, 2021.

[29] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. Deep
drone racing: From simulation to reality with domain randomization. IEEE Transactions on
Robotics, 36(1):1-14, 2019.

[30] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar, B. McGrew, A. Ray,
J. Schneider, P. Welinder, et al. Domain randomization and generative models for robotic grasp-
ing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3482-3489. IEEE, 2018.

10

[31] P. Huang, M. Xu, F. Fang, and D. Zhao. Robust reinforcement learning as a stackelberg game
via adaptively-regularized adversarial training. arXiv preprint arXiv:2202.09514, 2022.

[32] O.Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar. Multi-agent manipulation via locomotion
using hierarchical sim2real. arXiv preprint arXiv:1908.05224, 2019.

[33] M. Xu, P. Huang, Y. Niu, V. Kumar, J. Qiu, C. Fang, K.-H. Lee, X. Qi, H. Lam, B. Li, et al.
Group distributionally robust reinforcement learning with hierarchical latent variables. In
International Conference on Artificial Intelligence and Statistics, pages 2677-2703. PMLR,
2023.

[34] A. Allevato, E. S. Short, M. Pryor, and A. Thomaz. Tunenet: One-shot residual tuning for
system identification and sim-to-real robot task transfer. In Conference on Robot Learning,
pages 445-455. PMLR, 2020.

[35] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak. Auto-tuned sim-to-real transfer. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pages 1290-1296.
IEEE, 2021.

[36] T. Murooka, M. Hamaya, F. von Drigalski, K. Tanaka, and Y. Ljiri. Exi-net: Explic-
itly/implicitly conditioned network for multiple environment sim-to-real transfer. In Confer-
ence on Robot Learning, pages 1221-1230. PMLR, 2021.

[37] W. Yu, V. C. Kumar, G. Turk, and C. K. Liu. Sim-to-real transfer for biped locomotion. In
2019 ieee/rsj international conference on intelligent robots and systems (iros), pages 3503—
3510. IEEE, 2019.

[38] F. Ramos, R. C. Possas, and D. Fox. Bayessim: adaptive domain randomization via probabilis-
tic inference for robotics simulators. arXiv preprint arXiv:1906.01728, 2019.

[39] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32, 2019.

[40] D. Abel. A theory of abstraction in reinforcement learning. arXiv preprint arXiv:2203.00397,
2022.

[41] M. Shanahan and M. Mitchell. Abstraction for deep reinforcement learning. arXiv preprint
arXiv:2202.05839, 2022.

[42] D. Abel, D. Arumugam, L. Lehnert, and M. Littman. State abstractions for lifelong reinforce-
ment learning. In International Conference on Machine Learning, pages 10-19. PMLR, 2018.

[43] P. Brouillard, S. Lachapelle, A. Lacoste, S. Lacoste-Julien, and A. Drouin. Differentiable
causal discovery from interventional data. Advances in Neural Information Processing Sys-
tems, 33:21865-21877, 2020.

[44] Y. Yu, J. Chen, T. Gao, and M. Yu. Dag-gnn: Dag structure learning with graph neural net-
works. In International Conference on Machine Learning, pages 7154-7163. PMLR, 2019.

[45] S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien. Gradient-based neural dag learn-
ing. arXiv preprint arXiv:1906.02226, 2019.

[46] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[47] B. Evans, A. Thankaraj, and L. Pinto. Context is everything: Implicit identification for dynam-
ics adaptation. In 2022 International Conference on Robotics and Automation (ICRA), pages
2642-2648. IEEE, 2022.

11

[48] T.Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861-1870. PMLR, 2018.

[49] P. K. Khosla and T. Kanade. Parameter identification of robot dynamics. In 71985 24th IEEE
conference on decision and control, pages 1754—1760. IEEE, 1985.

[50] N. Fazeli, R. Tedrake, and A. Rodriguez. Identifiability analysis of planar rigid-body frictional
contact. Robotics Research: Volume 2, pages 665-682, 2018.

[51] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In L. P.
Kaelbling, D. Kragic, and K. Sugiura, editors, Proceedings of the Conference on Robot Learn-
ing, volume 100 of Proceedings of Machine Learning Research, pages 1162—-1176. PMLR, 30
Oct-01 Nov 2020. URL https://proceedings.mlr.press/v100/mehta20a.html.

[52] P. Huang, M. Xu, J. Zhu, L. Shi, F. Fang, and D. Zhao. Curriculum reinforcement learn-
ing using optimal transport via gradual domain adaptation. Advances in Neural Information
Processing Systems, 35:10656-10670, 2022.

[53] P. Klink, C. D’Eramo, J. Peters, and J. Pajarinen. On the benefit of optimal transport for
curriculum reinforcement learning. arXiv preprint arXiv:2309.14091, 2023.

[54] D. Cho, S. Lee, and H. J. Kim. Outcome-directed reinforcement learning by uncertainty &
temporal distance-aware curriculum goal generation. arXiv preprint arXiv:2301.11741,2023.

[55] J. Kim, D. Cho, and H. J. Kim. free autonomous reinforcement learning via implicit and
bidirectional curriculum. arXiv preprint arXiv:2305.09943, 2023.

[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[57] A. Tejero-Cantero, J. Boelts, M. Deistler, J.-M. Lueckmann, C. Durkan, P. J. Gongalves, D. S.
Greenberg, and J. H. Macke. Sbi — a toolkit for simulation-based inference, 2020.

[58] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable
baselines. https://github.com/hill-a/stable-baselines, 2018.

[59] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[60] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. Robotics: Science and Systems, 2023.

[61] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-
ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

[62] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

[63] A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik. Adapting rapid motor adapta-
tion for bipedal robots. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1161-1168. IEEE, 2022.

[64] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference
on Robotics and Automation (ICRA), pages 1593-1599. IEEE, 2022.

[65] M. Mozian, J. C. G. Higuera, D. Meger, and G. Dudek. Learning domain randomization dis-
tributions for training robust locomotion policies. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 6112-6117. IEEE, 2020.

12

[66] S. Liu, M. Xu, P. Huang, X. Zhang, Y. Liu, K. Oguchi, and D. Zhao. Continual vision-based
reinforcement learning with group symmetries. In 7th Annual Conference on Robot Learning,
2023.

13

A Model details

In a standard fully-connected multilayer perceptron (MLP), the input is treated as a whole and input
into the first linear layer. It blends all information into the feature of subsequent layers, making
it difficult to separate the cause and effects. To highlight the difference between our model and
traditional MLP, we plot the detailed model architecture of the COMPASS in Figure. 6.

More specifically, we design an encoder-decoder structure in f, with G as a linear transformation
applied to the intermediate features. First, the encoder operates on each dimension of € indepen-
dently to generate features z. € RI€/X9-. Then the causal graph is multiplied by the features to
generate the inputs for the decoder, i.e., ge = ng € R4=*K where d, is the dimension of the
feature. Similarly, the action sequence a is passed through the encoder and transformation to
produce the feature of the action sequence g € R *¥ . Finally, g + gq is passed through the
decoder to output the prediction d..

Causal graph G

position
embedding

— position
Env _ . . |] embedding
param | *)) matrix)
—_ multiplication -

Trajectory
Difference

linear -

transformation

Actions| :

Figure 6: COMPASS model architecture.

B Experimental Details

B.1 Experimental Configurations for Robot Simulation Setup

A simulator was developed to mimic a simulated air hockey table with dimensions matching the
real-world setup using robosuite [18]. This allowed us to gather rollout trajectories and training
data within the simulated environment. The specific dimensions of the objects within the simulation,
such as the table size, are detailed in Table 2. Additionally, for the sim-to-sim experiment config-
uration, default simulation parameters and the ground-truth simulated real environment parameters
are presented in Table 3.

State and action space. The observation space for the RL agent comprises 6 dimensions. It includes
the initial position of puckl (3D), and the initial position of puck2 (3D). The RL agent’s action space
consists of 4 dimensions: the initial position of the pusher in the x-direction, the initial position of
the pusher in the y-direction, the shooting angle of the pusher, and the pushing velocity of the pusher.
We fixed the initial position of puckl and puck2. Note that the shooting angle is relative to the line
connecting the center of the pusher and puckl.

Reward function. The reward is calculated as —10 X ||[Zpuckls Ypuckls Zpucki]
[%goals Ygoals Zgoal]||2- To provide additional incentive for reaching the goal, the distance penalty
term is divided by 2. Furthermore, a terminal reward is given if the hockey stays within the success
region at the last time step. It is important to mention that the reward is not accumulated through-
out the horizon. Instead, it only considers the final Euclidean distance between puck?2 and the goal
center. For further numerical details and specifications, please refer to Table 4.

14

Table 2: Mujoco Simulation Environment Setup

X(m) Y(m) Z(m) Radius(m)
Air hockey table 0.0 0.0 0.8 [0.45, 0.9, 0.035]
Puckl -0.15 0.0 0.8 0.0255
Puck2 -0.075 -0.075 0.8 0.0255
Goal point 0.43 0.0 0.8 0.15
Obstacle bar 0.1 0.0 0.8 [0.025, 0.18, 0.025]

Table 3: Sim-to-Sim Env Parameters

Env param

Simulated “Real”
Env Parameters

Default Simulation
Env Parameters

pusher@actuation @ vel_discount 0.75 0.85
pusher @dyna@damping -10.0 -6.0
puckl @dyna@damping -10.0 -6.0
puckl @dyna@friction_sliding 0.05 0.04
puck2 @dyna@damping -10.0 -6.0
puck2 @dyna@friction_sliding 0.05 0.03
front_wall, back_wall, 10.0 6.0
left_wall, right_wall, obstacle@dyna@damping e e

env@camera@bias_x 0.0 +0.03
env@camera@bias_y 0.0 -0.02

B.2 Experimental Configurations for Real Robot Setup

This is a top-down view of the mini -

air hockey table we used to collect

real trajectories. The dimensional

attributes of each component are T
annotated in Figure 7, while green

dashed lines distinctly demarcate
the designated goal area. We used
Kinova Gen 3 robot platform and
installed a top-down Intel RealSense
D345f RGB camera to track the
position of puckl and puck?2.

C Implementation Details

Figure 7: Top-Down View of Table Air Hockey.

We reproduced the baseline implementation EXI-Net [36], NPDR [20] and Tune-Net [34] based on
the papers and released code base. We utilized software packages such as PyTorch [56], sbi [57],
StableBaseline3 [58], and OpenCV [59]. We report the hyperparameters used for all algorithms,

Table 4: Simulation Environment Setup

Simulation Parameters

Action space

Observation space
Terminal reward
Simulation horizon
Simulation timestep

low: [-0.24, 0.065, -0.157, 0.3]
high: [-0.21, 0.085, 0.157, 0.5]
low: [-inf] — high:[inf]
2.25
50 time steps
0.05 s

15

Table 5: Soft Actor-Critic Hyperparameters

Parameters Name Values
learning_rate 3e-4
gradient_steps 32
batch_size 32
train_freq 8
ent_coef 0.005
net_arch [32, 32]
policy “MlpPolicy”
env_number 64
buffer_size 1,000,000
learning_starts 100
tau 0.005
gamma 0.99
action_noise None
stats_window_size 100

including the proposed COMPASS method, in Table 6, 7, 8, and 9, which provide a comprehensive

list of the parameters we utilized to reproduce the results.

Soft Actor-Critic hyperparameters. We use SAC implementation in StableBaseline3 [58] to train
the RL agents. The training hyperparameter is shown in Table 5.

Table 6: COMPASS hyperparameters

Description value variable_name
Shared Hyperparameters

Number of iterations 10 n_round

Retrain in each iteration True retrain_from_scratch

(if False, keep using the model trained in the first iteration) - -

Number of rollouts in each iteration 640 n_samples_per_round

Number of command actions in each iteration 10 n_cmd_action

Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate

Algorithm-Specific Hyperparameters

Network encoder dimension 32 emb_dim
Network hidden dimension [256, 256] hidden_dim
Causal dimension 32 causal_dim
Sparsity weight of the loss function 0.003 sparse_weight
Sparsity weight discount 0.5 sw_discount
Loss function MSE + Sparsity loss_function
Optimizer Adam optimizer

16

Table 7: EXI-Net hyperparameters

Description value variable_name

Shared Hyperparameters

Number of iterations 10 n_round
Retrain in each iteration

(if False, keep using the model trained in the first iteration) True retrain_from_scratch
Number of rollouts in each iteration 640 n_samples_per_round
Number of command actions in each iteration 10 n_cmd_action
Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate

Algorithm-Specific Hyperparameters

Network hidden dimension [256,256] hidden_dim
Loss function MSE loss_function
Optimizer Adam optimizer

Table 8: NPDR hyperparameters

Description value variable_name

Shared Hyperparameters

Number of iterations 10 n_round

Retrain in each iteration True retrain_from_scratch
(if False, keep using the model trained in the first iteration) .
Number of rollouts in each iteration 640 n_samples_per_round
Number of command actions in each iteration 10 n_cmd_action

Algorithm-Specific Hyperparameters

Prior distribution type Uniform prior

Inference model type maf inf_model
Embedding net type LSTM embedding_struct
Embedding downsampling factor 2 downsampling_factor
Posterior hidden features 100 hidden_features
Posterior number of transforms 10 num_transforms
Normalize posterior False normalize_posterior
Density estimator training epochs 50 num_epochs

Density estimator training rate 3e-4 learning_rate

Early stop epochs once posterior converge 20 stop_after_epochs
Use combined loss for posterior training True use_combined_loss
Discard prior samples False discard_prior_samples
Sampling method MCMC sample_with

MCMC thinning factor 2 thin

Table 9: Tune-Net hyperparameters

Description value variable_name
Shared Hyperparameters

Number of iterations 1 n_round

Retrain in each iteration False retrain_from_scratch

(if False, keep using the model trained in the first iteration) - .

Number of rollouts in each iteration 6400 n_samples_per_round

Number of command actions in each iteration 10 n_cmd_action

Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate

Algorithm-Specific Hyperparameters
(2, 304) (dim_pair, dim_state)

Network input dimension
(Pair of Trajectory and Action dimension)
Network output dimension

(Tunable env param dimension) 64 dim_zeta
Env param update iteration 10 K

Network hidden dimension [256,256] hidden_dim
Loss function MSE loss_fn
Optimizer Adam optimizer

17

D Supplementary Ablation Study for Air-Hockey Experiment

D.1 Different Real Rollout Size N and Sim Rollout Size M

We investigated the effect of the real rollout size N and simulation rollout size M by testing values
of N =5,10,20at M = 64 and M = 32,64,128 at N = 10. The optimization processes for
environment parameters, given these sizes, are illustrated in Figure 8 and 9. Notably, for a given
N, M, COMPASS demonstrates superior convergence in comparison to NPDR.

Further insights are offered in Figure 10a and 10c, which depicts the trajectory differences over it-
erative steps, and Figure 10b and 10d, showing the final trajectory discrepancies for different N, M
values. These visualizations highlight that as the rollout budget N, M diminishes, the performance
gap between COMPASS and other benchmark methods widens. This can be attributed to the fully-
differentiable nature of COMPASS. Reinforcing our key contributions, COMPASS consistently outper-
forms the baselines, maintaining superiority under identical counts of real and simulation rollouts.

COMPASS (N=5) COMPASS (N=10) === COMPASS (N=20) NPDR (N=5) NPDR (N=10) NPDR (N=20) === Ground Truth
=3 o =] = 1.0
£ £ £ E
£ E £ 5
3 /e 8 =
@ 6 --—Frma—=" - é é > 09
S S S ® =L
S g g 3 N
2 8 > > -8 @
9)) goe
5 -10 < ~ -10 2
& g 3 %
3 -12 3 -12 3 -12 207
01234567829 0123456789 0123456789 0123456789
Iteration Iteration Iteration Iteration
2 2
5 5 0.04 0.01
3 ! ol S~ A
£0.05 £ 0.05 S 003 -- P e S — & 0.00
3] o 5] _
= _/\/ N RS ® 0.02 @ —0.01 \/\
© 0.04 == N SR () g g =
g e @ 0.01 ® —0.02 --"=sges= ~G
g g é) ' é) 0.03
9003) Z 0.00 z
S S ° ® -0.04
2 0123456789 2 0123456789 01234567829 0123456789
Iteration Iteration Iteration Iteration

Figure 8: Environment parameters optimization with different real rollout sizes N. We show 8 parameters
with discovered causality (as shown in Figure 3). The solid lines represent the mean value across 3 random
seeds, and the shaded area represents the standard deviation.

COMPASS (M=32) COMPASS (M=64) == COMPASS (M=128) NPDR (M=32) NPDR (M=64) NPDR (M=128) === Ground Truth
o o oD + 1.0
£ £ £ 2
g -4 g 4 2 3
_g e STINISEES g ’\/\—/ -g Elog
R /. 6 =N mme m———m—— > U
g e S 9 . e
g c c ° ‘o
Z -8 2> 8 = T
4 ® ® %)08 /
% -10 % -10 % £
2 -12 3 -12 2 -12 2307
0123456789 012345672829 01234567289 012345672829
Iteration Iteration Iteration Iteration
[=2} [=2}
c c
5 5 « 0.04 5 001
ﬁ‘005 ﬁ‘005 g
g S/ g -0.01
‘= ‘=4 © © -
©004 VAT ©004 g 002 &
@ © = £ -0.02 -—-—Em—Camea—e_
€ € 0.01
& 2 atz S g
® 0.03 ©0.03 ---=f======—o=Zoo-- S @ -0.03
S & 0.00 2
s s @ -0.04
2 0123456789 2 01234567289 01234567289 01234567289
Iteration Iteration Iteration Iteration

Figure 9: Environment parameters optimization with different sim rollout sizes M. We show 8 parameters
with discovered causality (as shown in Figure 3). The solid lines represent the mean value across 3 random
seeds, and the shaded area represents the standard deviation.

18

COMPASS (N=5) NPDR (N=5)
COMPASS (N=10) NPDR (N=10)
= COMPASS (N=20) === NPDR (N=20)
6
5
-
T4
¥
33
[
2
1
012345672839
Iteration
8
& 6
3
sS4
[

N

012345672829
Iteration

(@

Puck1 d¢
B R N -

Puck2 d;

COMPASS
NPDR

EXI-Net

5 [} 20

1
Real rollout size N

©

o

IS

N

[} 20
rollout size N

5 1
Real

(b)

COMPASS (M=32) NPDR (M=32)
COMPASS (M=64) NPDR (M=64)
e COMPASS (M=128) === NPDR (M=128)
6
®
-
T4
3
>3
a
2
0123456789
Iteration
8
.6
K]
3
sS4
a

N

012345672829
Iteration

©

COMPASS EXI-Net
NPDR
6
5
"
T4
3
S 3
a
2
1
32 64 128
Sim rollout size M
8
& 6
I
s
sS4
a

N

32 128

64
Sim rollout size M

(d

Figure 10: (a)(b) Trajectory difference for different real rollout size V. (c)(d) Trajectory difference different
sim rollout size M.

6
s 4
D.2 Different Initial Environment Parameters X
& 2
To investigate the sensitivity of COMPASS to initialization, we conducted
experiments with randomly initialized environment parameters. The en- 01234567809
. L Iteration
vironment parameter optimization processes are illustrated in Figure.12,
while Figure.11 presents the trajectory discrepancies.
6
A key observation from both figures is that the starting point—i.e., the g
parameter initialization—does influence the complexity of aligning the 3 ¢

trajectories. Despite these variances in initialization, COMPASS consis- 2
tently demonstrates its capability to minimize the trajectory difference

. .. 0123456789
across different initial conditions.

Iteration

Figure 11: Trajectory dif-
D.3 Different Sparsity Weight \ ference.
The learned causal graph parameters, denoted as), are illustrated in Figure. 13 across various
sparsity weights: A = 0.001, 0.005, 0.01. In the absence of regularization (specifically when A = 0),
the graph tends to be denser, devoid of any constraints to minimize edge count. As A increases, the

é’ 2 2 § 0.9

s, - /_\/\/\/ 8 4 / I A=
3 g g T

[oguray LU Lo %) -6 -F-—fFf NN~ @ -6 S AR @0'8

c

> S s g

p=d O ©)

® Q - Q -8 =

& -8 o8] S 0.7

H 3 ¥ 5

[}

2 a-10 3 -1 2

0123456789 0123456789 0123456789 0123456789

o Iteration o Iteration Iteration Iteration

c c
2 0.05 2 % 0.06 > 0.04

@ @ 0.05 [@
S 5 S 004 2 002
B 0.04 B 0.04 %) """"""""""" Cg)
® ® s 002 g 000

g Q003 ----cmostoEmeooo 8 000 3
20.03 =3 ® @ 002

C] Q02 2 -0.02 2

% ¢ 13 @ -0.04

a 0123456789 2 0123456789 0123456789 01234567389

Iteration

Iteration Iteration

Iteration

Figure 12: Environment parameters optimization with randomized initialization. We only show one run per
initialization.

19

(a) A = 0.001
(b) A = 0.005

puckl -
puck2 -
puckl -
puck2 -
puckl -
puck2 -
puckl -
puck2 -
puckl -
puck2 -
puckl -
puck2 -
puckl -
puck2 -
puckl -
puck2 -
puckl -

=]
£
-
£
~
£
o
£
-
£
~
£
o
£
-
£
~
£

- buidwep®eukpda|deIsqo
- zz| ejuauI®euAp®s|de1Sqo

- |euoISIO] ¢
I"ejpauI®eulp®s)deisqo
ejuauI®eulp®s)deIsqo
dwep®eukp®|jem 3|

101" uoiLY®eUAP®| oM 3|
Pl uod®eukp®|iem o]

- |euoisi0y uoIPLBeuAp®|lem Ya|
"eusuI@euip®|iem Ya)

-2z euaui@eukp®|iem o)
- KA "erusui®euip®|iem Y6l

L3@euApd|iem 3ybu
- xx|"ejuaui®@eukp®|jiem 3ybu

- buidwep®eukp®|lem Iybu

-zz| ejuau|®eukp®|iem deq

- |eUOISI03
- Xx|"eipauI®eulp®|em juoly

"uodLy®eulp®|iem Juoly
HaUI®eukp®|jem juoly

- Buipyis”uondp@euhp®ziond

- buidwep®eukp®gyond

I"euauI®@euAp®iond
- buidwep®eukp®1yond

- Buyjjos U0 eukp®Tyond

- Xx|"ejpauI®euip®Tond

- |euoisi03” uoPL®euipdTond
-zz| ejuaui®eukp®Jsaysnd

- RA"erpaui®eulp®aaysnd
-3unodsip [aA®uonene®iaysnd
- buidwep®euAp®.aysnd

- xx|"ejpauI®eulpd®iaysnd
-Jjuslque®iyby®nus

- 6 jusIquediybl @Aaus

-q jualquediybldaus

- K selq@elawed@aus

- X seig@esawed®aud

- Aysodsin®red@nud

- Asusp®uiie®Aaus

- Ksod®1yb1|®Aus

-Z sod®1yb1@Aus

- X sod@1y61@Aus

puck2 -

20

(©A=0.01
Learned causal graph parameters 1y with different sparsity weight A. Darker colors present values

graph becomes progressively sparser. However, it still maintains the most influential edges; omitting

closer to 1. We use parameter notations in the format of object@param_type @ param.
them would significantly elevate the prediction error.

Figure 13

E Sim-to-Real Double-Bouncing-Ball Experiment

E.1 Double-bouncing-ball experimental setup

Figure 14 illustrates the experimental setup. Building upon the experimental design presented by
Allevato et al. [34], we’ve raised the bar by allowing the ball to bounce twice, rather than just once,
before landing in the goal basket. The goal basket has a diameter of 13.0 cm, and the ball measures
6.8 cm in diameter. Successful task completion is characterized by the ball’s accurate entry into the
hoop from above.

The task’s intricacy hinges on achieving a seamless alignment between the real-world dynamics and
the simulation. By releasing the ball at a specific height, it needs to bounce first off inclined plate 1,
followed by plate 2, and finally enter into the goal basket. The ball’s motion is constrained within
a 2-D plane with properly aligned plates. As such, the action space is represented by a scalar -
the ball’s release height. Simultaneously, the state space corresponds to the ball’s 2-D positional
coordinates within this plane () = 1). This experiment encompasses 82 environment parameters

(€] = 82).

Figure 14: Double-bouncing-ball setup.
E.2 Learned causal graph

Figure 15 depicts the learned causal graph parameter, denoted as . Starting from a fully-connected
causal graph, COMPASS efficiently narrows down the parameter search space from 82 dimen-
sions to a mere 4 dimensions. Specifically, these are ball@dyna@damping, ball@dyna@mass,
platel @dyna@damping, and plate2 @dyna@damping. Remarkably, this refinement is achieved
within just two iterations.

E.3 Sim-to-real trajectory alignment results

As depicted in Figure 16, it’s evident that COMPASS effectively aligns simulated trajectories closely
with their real-world counterparts. Given the extensive scale of environment parameters in this con-

izz-

ball@dyna@mass -
ball@vis@geom_b -

is@geom_r-
floor@vis@geom_g -

reflectance -
robot@dyna_shoulder_link@mass -

I_shininess -

ial_specular -

env@air@density -

shoulder.

HalfArm2_Li

HalfArm2_Lii

robot@dyna_HalfArm1_Link@:

HalfArm1_Li

table@dyna@mass -
floor@vis@geom_b -

table@vis@geom_g -
table@dyna@inertia_izz -

table@vis@geom_b -

ball@vis@geom_g -
table@vis@geom_r -

ball@vis@geom_r-
ball@dyna@inertia_iyy -

env@light@active -
env@air@viscosity -
plate1@vis@geom_r -
plate1@dyna@friction_torsional -
plate1@vis@geom_g -
plate1@dyna@mass -
plate2@dyna@mass -
plate2@dyna@inertia_izz -
plate2@vis@geom_b -
plate2@vis@geom_g -
plate2@vis@geom_r -

plate1@vis@geom_b -

env@light@ambient_r -
env@light@ambient_g -
env@light@ambient_b -
ball@dyna@damping -
ball@dyna@inertia_ixx -
ball@dyna@friction_rolling -
table@dyna@inertia_iyy -

ball@dyna@inertia
d) b:

robot@dyna_base@in
robot@dyna_base@in
robot@dyna_base@mass -

plate1@dyna@inertia_ixx -

na_HalfArm2_Lir

shoulder.
HalfArm2._Li
HalfArm1_Li
HalfArm1_Li
robot@dyna_forearm_link@mass -

shoulder_li
robot@dyna_forearm_link@in

plate2@dyna@friction_sliding -

plate2@dyna@friction_rolling -
table@vis@material_reflectance -

robot@dyna_base@in

robot@dyna_forearm_link@int
robot@dyna_forearm_link@in

Figure 15: Learned causal graph parameters 1 for double-bouncing-ball experiments. Darker colors present
values closer to 1. We use parameter notations in the format of object@param_type @param.

21

text, sampling-based techniques like NPDR become notably inefficient. This is primarily because
they necessitate an immense sample size to learn a posterior distribution accurately.

—e— real iter 3 —e— real iter 3 —e— real iter 3 —e— real iter3 ~
iter 6 iter 0 iter 6 iter0 % iter 6 iter 0 ‘ iter 6 iter 0

NN N
[4

" \ " Nt e \ o \
y \J \ \
08 08 : 08 \ 08

o4 w2 o0 o2 os o4 w2 o0 o2 os o+ -2 o0 o2 os o4 w2 o0 o2 os
(a) NPDR
—e— real iter 3 —e— real iter 3 —e— real iter 3 —e— real iter3 A
16 —e— iter6 iter 0 6 —e— iter6 iter 0 , 16 —e— iter6 iter 0 ;, 16 —e— iter6 iter 0 b
it [|
14 14 1 14 14 ;-
‘ | | |
=N
12 P= [12 12 NS [= ~ }
. I / | N
l | Nt N\
10 X ¢ 10 N 10 [10 \
\/ - \ So—e \| o \a
. N < J
08 08 08 08
0a w2 o0 02 os 0e w2 o0 o2 os o4 -2 o0 02 os o4 w2 o0 o2 os

(b) COMPASS
Figure 16: Visualization of sim-to-real trajectory alignment.

E.4 Real-world agent performance

Table 10 presents the real-world performance of agents after policy optimization in the adjusted
environment, compared with nominal agents (those trained in the original environments). Consistent
with the trajectory alignment outcomes, agents trained using COMPASS demonstrate superior success
rates compared to those trained using NPDR and the nominal approach.

(a) Nominal (b) NPDR (c) COMPASS

Figure 17: Real-world policy rollouts.

Table 10: Agents’ performance in the real environment. “£” represents the standard deviation. We evaluate
the results using 5 policies generated from independent runs and collect 10 trajectories for each run.

| Nominal NPDR COMPASS
Success rate (1) | 0.30+0.14 0.58+0.15 0.86+0.10

22

F Sim-to-Sim Push-I Experiment

F.1 Experimental setup

We conducted further evaluations using an experiment inspired by the Push-T experiment described
by Chi et al. [60]. In this experiment, illustrated in Figure. 18, the agent controls the robot arm to

strategically move a slender I-shaped cube towards a specific position and alignment. The task spans

30. The state space comprises the 3-D coordinates and orientation of the cube, the

target, and the end effector. The action space is defined by the 3-D velocity of the end effector and
the gripper’s action (either open or close). The states of interest are factorized into the position, roll,

a horizon of T’

4). This setup involves 67 environment parameters (|£| = 67).

pitch, and yaw of the cube (K

Figure 18: Push-I task. The green cube represents the target.

F.2 Learned causal graph

The learned causal graph parameter is shown in Figure. 19. Starting from a fully-connected causal

- q woab@jensix IeBuy Jeuu B p1edduBBainixe)
- 6 woaB@|ensiA IeBuyIeuu 1B 0iedduB@enixe)
- MwoeB@ensiA 1eBuy seuu B 01edduB@einixe)

Ieuu B

-z I 1euu B

- KA epuy Ieuu WL

- epeul oUW

- q woabD(ensinJebuy ieIno B pIeddubDainixe)}
- 6" woab@[ensixIeBuy ieIno B gIedduBDeunixe}
- "woeB@ensix"1eBuy eino 1B (ieddB@ainxe)

- opeiBuy 1811105 18Buy I8N0 ey
- Buyjos " uogoy 100 JeBuyIeIno el |
- [eUOISI0} UOPOYBUOIS|0910BuY IeNa e 01eddEDoIwEUAD
- Buipyis”uopow@uorsi|ios IeBuysaino el
- opes Bul 1811100 epjonUY Jeuuy el
- Buyjos"uopou 1109”8 ponuY Jeuul 8| (1
- [BUOISI0} UOROLBUOIS|I00eprNUY Jeuui yei 01eddBDIwEUAD
-Buipyis™ TeponW Jeuui Yol
Jeuui Yoy
-zz{"epou " euu el
- KA {Iouu 4ol
- epul T Iouu Yol

- opes Buidwep@uois|ioa epnuY ieIno™ el pieddub@oiuweukp

- Buyjoi uogoy 1109 appnu{ I8N0 el

- [euoISI0}UOKOWBUOISII03 BN JeINo Yol iedduB@lweuAp

- Buip|S”uoRBUOIS|I03 epNUY IeIN0 ™Yol p1edduBDoiuweukp
{180 Yo ¢

-zzey {180 Yy (

- Khep Ieno el

- epeuf 1eno el

- Bujjoi uogoWBuoIs|iospuey iedduBDoIweUAD

- leuoisi0f uogoWB OIS0 pueyp:edduB@oiweukp
- Buypis” oo @UOIS|i09 Puey IeddB@oIwEUAD
- opesBuy 151109 puBy~(uedd 6D

- q woab@[ensin pue g:addub@enixel

- 6 woeB@[Ens pueyp:eddubDenixe}
- Mwosb@jensin~puey pieddub@ainixe)
-G WoeB@sIN 06 eqno@eunixe}

-6 WoeB@sIn 06 eqno@einixa}

- MwoeB@sin 0B eqno@enixe}

- opei Buidwep@06eqno@olweuip

- Buyjos uonow@06eqno@olweukp

- [leuOISIO} UOROL D06 eano@onweukp

- Buipiis”uopol@0B™eqno@olwieuip

- ssew@uiewi eqno@ojweukp

- zz epeuiBujew eqno@olweuAp

- KA epeuiDueweqno@oiweukp

- epeuD uew eqno@ojweudp

- lejnoeds feelew@(Ensi_elqEIDeInxe}
- sseujus™ [eLBleW@|ensIAe|qejDaInixa}

10eyer el
-q woebDens|A”s|qeiDe.nixe}
- B woeBDensIA"s|qeIDeNIXe}
- "woeb@[ensin"e|qeiDeinixe}
- ssew®e|qe)Doieulp

- zz[esuiDeIqeIDoIweuAp

- AA"eipeuiBe|qei@olweuip

- xx"ejusui@e|qelDoiweuip

- OAOEDIYBIDBURYB)

- quelque@)YBIDBuRLB)

- 6 jueique@1yB@Bunub)

- Muelque@BI@6unyBi

-7 sod@BIDBunuB)

- K"sod@B@BunyBIl

- X"sod@WBI@BunyB)|

- ysoosin@Aue@oiweukp

- Rysuep@Aus@oiweukp

G it 4aii o aLid
885y #°f: £°Ff %
0usy Laon]

3 dimensions within 2 iterations. Specifically, they are cube @dyna @mass, cube @ dyna @damping,

graph, COMPASS efficiently narrows down the parameter search space from 67 dimensions to only
cube@dyna@friction_sliding.

Figure 19: Learned causal graph parameters 1) for Push-I experiments.

23

=
COMPASS EXI-Net NPDR === Ground Truth g
o ©
0.7 -20.0 £ S -30
" 2 2 ®
@ S 475 @ 1.0 [
206 e s £ -40
© ¥ IVREEENEE | 0 9 seeee s
© Q ~150 2o9 9
€05 ® ® ¥ -50
) 5125 (LR SN O o T el s
c
804 —mmmm e 9 00 308 160
3 o - ® ©
°© 3] 15
03 -75 So7 =1-70
0123456789 0123456789 © 0123456789 & 0123456789
Iteration Iteration Iteration 2 Iteration
(=]

Figure 20: Environment parameters optimization. The solid lines represent the mean value across 3 random
seeds, and the shaded area represents the standard deviation.

COMPASS EXI-Net NPDR
005 0.020 0.35
. 0.22
0.30
0.015
5 004 . < . 020
s
§ > £ 025 s
2 S 0.010 g 0.18
$ 00 « & =
& 0.
0.20 016
0.005 .
0.02
0.15 0.14
0123 45%86789 0123 45¢67289 0123 4586789 0123 45¢6789
Iteration Iteration Iteration Iteration

Figure 21: Trajectory difference optimization results. The solid lines represent the mean value across 3 random
seeds, and the shaded area represents the standard deviation.

F.3 Environment parameter optimization and trajectory alignment

Figure.20 depicts the optimization of environment parameters across iterations. We observe that
COMPASS optimizes the environment parameters to approach the ground truth gradually, while base-
line methods struggle to converge. The trajectory difference over the iterations is presented in Fig-
ure. 21, while the visualization of trajectory alignment is shown in Figure. 22, 23, 24, 25. At first
glance, the trajectory difference in the roll angle doesn’t seem to show much reduction. However,
a closer examination of Figure.22 reveals that the roll angle has minimal changes during the whole
trajectory regardless of the environment parameters. Given the elongated shape of the cube (illus-
trated in Figure. 18), it’s reasonable to see only minor variations in this direction. Overall, these
figures highlight COMPASS’s efficiency in aligning the simulator with the real world.

F.4 Sim-to-sim agent performance

Table 10 presents the “real” performance of agents after policy optimization in the adjusted environ-
ment, compared with nominal agents (those trained in the original environments). Consistent with
the trajectory alignment outcomes, agents trained using COMPASS demonstrate higher success rates
compared to those trained using NPDR and the nominal approach.

Table 11: Agents’ performance in the “real” environment. “+” represents the standard deviation. We evaluate
the results using 3 policies generated from independent runs and collect 10 trajectories for each run.

| Nominal NPDR EXI-Net COMPASS
Success rate (1) | 0.10+0.22 0.40+0.21 0.50+0.22 0.70+0.28

24

o iter9 iter 5 iter 0 o iter9 iter 5 iter 0 o iter9 iter 5 iter 0 o iter9 iter 5 iter 0 o iter9 iter 5 iter 0
-0ss oo o2
020 '
—oss o008 oot 010 s,
0005 008 o1 hevte
o008
x o » /,.«" - o AL s <o N
bty £ ®
o008 g =
S o g = e g WY 3 e 8w
£ o002 -o0s
—os0 /| o 005
o000 ¥ -o010 o
080 000
3 EEED Ed 3 R 3 R 3 Ed 3 R
time step time step time step time step
iter 9 ter 5 iter 0 iter 9 iter 5 iter 0 iter 9 ter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0
-0ss o010 oxz e e
020
—oss oo0 oot 010
0005, 008 015 2
0006
—0s7
5 z e B A A § o H /
-] 8 o0 ¢ Ao e 2 /
S os =4 w N ¥ 2 oo § Qoo /.,
¥ o002 -000s-
o8 f s 005
0000 ~o0t0 000 -
080 000
] IR RN T 3 1 5 @ 3 % T 5 1 5w 3 % T 3 1 5 @ 3 %
time step time step time step time step time step
—o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0 —o iter9 iter 5 iter 0 —o iter9 iter 5 iter 0 —o iter9 iter 5 iter 0
055
ooz 012 /.-u,._-_
o010 020
056 om0 o0
o005 o0 015
- - : i ¥
= A 2a%a.0 008
2 2 8 ooos S oo R TR o, S S ! H
8 o 4 d e g = S /
0004 -0005- A
059 I 002 oo 008 i
000 000
080 o000 oo 000
s R RN T 5 W 5 @ 3 % IR NS T 3 W 5 @ B %
time step time step time step time step time step
Figure 22: Trajectory alignment results of EXI-Net, NPDR, and COMPASS.
- itero iter 5 iter 0 o iter9 iter s iter 0 o itero iter 5 iter 0 o iter9 iter 5 iter 0 - iter9 iter 5 iter 0
~0ss0 0004 o1 N
-0365. 0003 ,-""‘M o010 012 o | 4
0570 0002 4 010
o005 015
L R WP i \ o i e i B [
) @ 3 oo B 3 | /
g o 2 e S oo SN N oo 8on]
—0ses oos
o0 0005 o |
~0s%0 o0z 005
-0s95 0002 000 [
000
—os00 000 000
NS RN RS ENERES
time step time step time step time step
iter 9 iter 5 iter 0 iter 9 iter s iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0
o014
0565 o175
0002 o010 onz
-0s70 0150
1 o001 010
—asms 4 o oas i ozs
> oo com s
X oo 2 3 owo 315 hnggstody Yo 4 gow
2 oses -3 o >oors
o008
0005
DUN IR [v
f ooz a2 ’
—0595 4 000 o025
000 ok /
-0s00 0003 0000
] T 5 1 5w % w0] EENED]
time step time step time step time step time step
—o— iter9 ter 5 iter 0 —o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0
o
020
\
o057 "—ﬂ“ o001 o005 010 015
x > \ o 1
0000 = 2% 3 H
@ a D oo o " SRCCRE R Er | S o
Q -ose 2 = = /l >
o001
oo -0005 008 |
- o | s
o010 1
000 z \)l::wf
080 0003 000
0 EREEE] T 5 0 3 2 0 N R N
time step time step time step time step time step

Figure 23: Trajectory alignment results of EXI-Net,

(c) COMPASS.

25

NPDR, and COMPASS.

iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0
~0560 0000 o014
0565 o010 o 025
- o001
0570 005 o010 020
x ~0575 o > P
0002 = TR R, §] 2 015
D o5) o000 . o= 4 eyt £ s
g 7 g e ¥ g o 2 /
-osss 7 0003 oo o00a 010 i/
~05%0 7 o002 /
—0s9s -o00s f"“” o010 o0 o 00
—0.600- ¥ 002 000
3]) RS 3] RS RS
time step time step time step time step time step
iter9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0
025
~0ss0 Fatttl 0000 o014
-0s65 o010 012
020
- o001
X 0575 > o002 - £ oo 015
~ 2\
a o S >o10
-0s8s ¥ 0003 oot
0005 I i
-0s%0 o002 005
0004 P
—asss \7 oo o0 & -
—0s00 0005 on2 000
EEE)] B Bl 3 EEE)] EEED El EIEE) Ed
time step time step time step time step time step
—o— iter9 iter 5 iter 0 e iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0
025
—os 0000 0 oontee
o010 oxz
o001 o
-0s7 oo0s 010 /
x > -0002 = oo 015
8 8 § ol mmit®ophan) 8O g
Q Q -0003 a o0
0005 oot J
—ose 0004 002 005
s N . 000 000
-os0 ot o2 000
3 R 3 EEED Ed 3 R R
time step time step time step time step
Figure 24: Trajectory alignment results of EXI-Net, NPDR, and COMPASS.
iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0
“0ss 025 e
o008 on
o010
056 010 020
o004 000
X _os7 £ > N s oo 3018
@ @ o000 ocAogol s
8 S oom [Sl £ oos ®
Q ose a Q o0 |
{ 0005 oot
—ose 0000 002 . 1 00s
v FALY
000 el v
-os0 oo 000
R] Ed R R R
time step time step time step time step time step
iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0 iter 9 iter 5 iter 0
-0ss 025
0008 oxz
o010
056 010 020
o004 0005 i
X —os7 P > _ N con 3 015
a 2 S oo ST enirhy £ oo g b4
Qo5 a a 010 I
i v -o005 oot
—ose ! 0000 002 005
. oo
000 o
-0s0 o002 o
R RN Ed R N R
time step time step time step time step time step
—o— iter9 ter 5 iter 0 —o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0 —o— iter9 iter 5 iter 0
-0ss 025
0006 on
o010
-0s6 o0t 010 020
o005
008
X om > oo = 5 z o
Q Q e £ oo [}
2 o5 a Q 010
/ 0000 V 000 004
s / ™ A A
o002 o010 Y.
Vo
000
o i -
0 EREEE] R N R N
time step time step time step time step time step

Figure 25: Trajectory alignment results of EXI-Net, NPDR, and COMPASS.

(c) COMPASS.

26

G Additional Literature Review

Adaptive Policy in Locomotion and Manipulation. The challenge of sim-to-real transfer has
been central to the field of locomotion tasks, and it has recently demonstrated remarkable success
[61, 62, 63, 64, 65]. Rapid Motor Adaptation (RMA) [62] proposed a solution to bridge the sim-to-
real gap by effectively learning the relationship between dynamic-affecting parameters and historical
contexts. More recently, Kumar et al. [63] introduced Adapting-RMA (A-RMA) to further refine
the base policy of RMA using model-free reinforcement learning (RL) techniques. Typically, RMA-
based methods approach the sim-to-real challenge as a generalization problem. They tend to assume
an appropriate range and set of parameters that influence testing performance, along with a sizable
randomized training budget, to ensure successful operation. These assumptions present inherent
challenges due to the requisite domain expertise and training time. In manipulation, Liu et al. [66]
approached the adaptive policy from a continual RL perspective, cultivating a policy for each group
of tasks rather than an individual task to solve unseen tasks in seen groups in a zero-shot manner.
In contrast, this paper focuses on aligning simulators with real-world dynamics. Our approach
involves the automated identification of simulation environment parameters that minimize the sim-
to-real dynamics gap. While there are similar studies, such as the work by Mozian et al. [65], which
on searching for the environment parameter distributions that are challenging yet not excessively
adversarial to learn, our emphasis is on sim-to-real applications with novel causality-based system
identification.

27

	Introduction
	Related Work
	Methodology
	Problem formulation: Markov Decision Processes and sim-to-real gap
	Learning causality between environment parameters and trajectory differences
	Closing the sim-to-real gap via differentiable causal discovery

	Experimental Results
	Experimental setups
	Sim-to-sim trajectory alignment with known target environment parameters
	Sim-to-real with policy optimization in the loop

	Discussion and Conclusion
	Model details
	Experimental Details
	Experimental Configurations for Robot Simulation Setup
	Experimental Configurations for Real Robot Setup

	Implementation Details
	Supplementary Ablation Study for Air-Hockey Experiment
	Different Real Rollout Size N and Sim Rollout Size M
	Different Initial Environment Parameters
	Different Sparsity Weight

	Sim-to-Real Double-Bouncing-Ball Experiment
	Double-bouncing-ball experimental setup
	Learned causal graph
	Sim-to-real trajectory alignment results
	Real-world agent performance

	Sim-to-Sim Push-I Experiment
	Experimental setup
	Learned causal graph
	Environment parameter optimization and trajectory alignment
	Sim-to-sim agent performance

	Additional Literature Review

