
What Went Wrong? Closing the Sim-to-Real Gap via

Differentiable Causal Discovery

Peide Huang1, Xilun Zhang1∗, Ziang Cao1∗, Shiqi Liu1∗

Mengdi Xu1, Wenhao Ding1, Jonathan Francis2, Bingqing Chen2, Ding Zhao1

1Carnegie Mellon University, 2Bosch Center for Artificial Intelligence, ∗equal contribution
{peideh, xilunz, ziangc, shiqiliu, mengdixu, wenhaod, dingzhao}@andrew.cmu.edu

{jon.francis, bingqing.chen}@us.bosch.com

Abstract: Training control policies in simulation is more appealing than on real

robots directly, as it allows for exploring diverse states in an efficient manner.

Yet, robot simulators inevitably exhibit disparities from the real-world dynamics,

yielding inaccuracies that manifest as the dynamical simulation-to-reality (sim-to-

real) gap. Existing literature has proposed to close this gap by actively modifying

specific simulator parameters to align the simulated data with real-world obser-

vations. However, the set of tunable parameters is usually manually selected to

reduce the search space in a case-by-case manner, which is hard to scale up for

complex systems and requires extensive domain knowledge. To address the scal-

ability issue and automate the parameter-tuning process, we introduce COMPASS,

which aligns the simulator with the real world by discovering the causal relation-

ship between the environment parameters and the sim-to-real gap. Concretely,

our method learns a differentiable mapping from the environment parameters to

the differences between simulated and real-world robot-object trajectories. This

mapping is governed by a simultaneously learned causal graph to help prune the

search space of parameters, provide better interpretability, and improve general-

ization on unseen parameters. We perform experiments to achieve both sim-to-

sim and sim-to-real transfer, and show that our method has significant improve-

ments in trajectory alignment and task success rate over strong baselines in sev-

eral challenging manipulation tasks. Demos are available on our project website:

https://sites.google.com/view/sim2real-compass.

Keywords: sim-to-real gap, reinforcement learning, causal discovery

1 Introduction

Training control policies directly on real robots poses challenges due to the sample complexity of

deep reinforcement learning (RL) algorithms. Therefore, training in simulation is often necessary to

perform diverse exploration of the state-action space in an efficient manner [1, 2, 3, 4, 5, 6, 7]. How-

ever, robot simulators are constructed based on simplified models and are thus approximations of the

real world. For example, dynamics such as contact and collision are notoriously difficult to simulate

with simplified physics [8, 9]. Even if the dynamics could be simulated accurately, not all physical

parameters can be precisely measured in the real world and specified in simulation, e.g., friction

coefficients, actuation delay, etc. As a result, a robot that is trained in a biased simulator could have

catastrophic performance degradation in the real world [10, 11, 12, 13]. It is, therefore, critical to use

simulators that closely mimic real-world dynamics to reduce this sim-to-real gap [14, 15, 16, 17].

Existing literature has proposed to close the sim-to-real gap by adjusting the parameters of the simu-

lator to align the simulated data with the observed real data. To facilitate this, robot simulators such

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.





that vanilla DR may result in overly conservative policies when the range of randomization is broad

[32, 33]. As an alternative approach for achieving sim-to-real transfer, system identification aims

to estimate the parameters of the environment through limited interactions with real environments

[20, 34, 21, 35, 36, 37] and has been combined with DR methods. We draw inspiration from this

line of work in developing our parameter estimation framework, which learns causal relationships

from dynamic robot-object interactions in order to facilitate the sim-to-real transfer.

Gradient-free Parameter Estimation for Sim-to-Real Transfer. Gradient-free parameter estima-

tion methods typically utilize sampling-based methods to update the simulation environment param-

eters. Chebotar et al. [19] propose the SimOpt framework, which iteratively alters the distribution

of environment parameters in simulation to mirror real environment rollouts via the cross-entropy

method. Moving away from the assumption that the distribution of environment parameters follows

a Gaussian distribution, as adopted in [19], Ramos et al. [38] develop BayesSim, which uses a Gaus-

sian mixture model and optimizes the parameter distribution from a Bayesian perspective. Muratore

et al. [20] propose Neural Posterior Domain Randomization (NPDR) which further removes assump-

tions on the environment parameter distribution by utilizing neural likelihood-free inference methods

and could handle correlated parameters. It is worth noting that scaling up sampling-based methods

becomes challenging when dealing with a large number of parameters. In contrast, COMPASS learns

a difference-prediction model, leverages gradients to adjust the simulation parameters, and further

improves scalability with learned causal structures.

Gradient-based Parameter Estimation for Sim-to-Real Transfer. Gradient-based methods typ-

ically employ a neural network to encapsulate the gradient landscape of parameter differences

[34, 21, 35] or to model environment dynamics [36]. TuneNet [34] uses a neural network to predict

the discrepancies in parameters based on the observations derived from two distinct environments.

The Search Parameter Model (SPM) [35] is a binary classifier, with rollouts and parameters as input,

which predicts whether a set of parameters is higher or lower than the target ones. Unlike TuneNet

or SPM, we opt to predict observation differences using environment parameters as inputs. Allevato

et al. [21] further expand the capabilities of TuneNet from handling a single parameter to managing a

model with 5 parameters. In contrast, we demonstrate COMPASS is able to scale up to a 64-parameter

system, a capacity notably larger than existing works. EXI-Net [36] implements a dynamics pre-

dictive model, conditioned on environment parameters, and identifies the most suitable parameters

via back-propagation. While EXI-Net strives to model a broad spectrum of environments by sepa-

rately modeling the known/explicit and implicit dynamics parameters, we aim to enhance sim-to-real

transfer efficiency by capitalizing on the progressively discovered causal structure.

3 Methodology

3.1 Problem formulation: Markov Decision Processes and sim-to-real gap

A finite-horizon Markov Decision Process (MDP) is defined byM = (S,A, P,R, p0, γ, T ), where

S andA are state and action spaces, P : S×A×S → R+ is a state-transition probability function or

probabilistic system dynamics, R : S ×A → R is a reward function, p0 : S → R+ is an initial state

distribution, γ is a reward discount factor, and T is a fixed horizon. Let τ = (s0, a0, . . . , sT , aT )

be a trajectory of states and actions and R(τ) =
∑T

t=0
γtR (st, at) is the trajectory reward. The

objective of RL is to find parameters θ of a policy πθ(a|s) that maximize the expected discounted

reward over trajectories induced by the policy: Eπθ
[R(τ)], where s0 ∼ p0, st+1 ∼ P (st+1|st, at),

and at ∼ πθ (at|st).

In our work, we assume that the simulator’s system dynamics are conditioned on environment pa-

rameters ϵ ∈ R
|E|, i.e., P : S × A× S × R

|E| → R+, where E is the set of all tunable environment

parameters and | · | measures the cardinality of the set. Given a simulator parameterized by ϵ, the

agent is optimizing Eπθ,ϵ[R(τ)]. When the simulation dynamics are very close to the real-world dy-

namics, one can expect the trajectory rollouts in the simulator to be close to that in the real world as

well. Hence, an optimal agent trained in the simulator would expect near-optimal performance in the

real world [39]. However, due to unmodeled dynamics and inaccurate environment parameters, the

3



simulation dynamics are different from the real world (i.e., there exists a sim-to-real gap), resulting

in different trajectory rollouts and thus degradation in real-world performance [1, 2, 10, 11, 15].

For better interpretability, we assume a factorized state space, i.e., S = {S1 × · · · × SK}, with

sk,t ∈ Sk representing the k-th factorized state at time t. Each component usually has explicit

semantic meanings (i.e., an event or object’s property) [23], which holds through state and action

abstraction in general [40, 41, 42]. For example, in the case of pick-and-place, the state space can

be factorized to the 3D position and orientation of the object and end effector. Similar to Chebotar

et al. [19], we then define a factorized trajectory difference function:

dk(τsim, τreal) :=

T∑

t=0

∥sk,t,sim − sk,t,real∥2, for k = 1, 2, . . . ,K (1)

The trajectory difference function is then d := [d1, . . . , dK ], and the trajectory difference dτ is the

output of d to measure the sim-to-real gap between of a pair of trajectories, (τsim, τreal). In this work,

we aim to find a simulation environment parameter ϵ that minimizes the expectation of trajectory

differences dτ under the same policy.

3.2 Learning causality between environment parameters and trajectory differences

To model the causality, COMPASS learns a causal model fϕ(ϵ,a;G) mapping the environment param-

eter ϵ and action sequence a = [a0, . . . , aT ] to the trajectory difference dτ . This model contains

a causal graph G, whose nodes represent the variables to be considered and the edges represent

the causal influence from one node to another node. We jointly learn the model parameter ϕ and

discover the underlying causal graph G in a fully differentiable manner.

Causal Graph. The causal graph G plays a crucial role in the model by providing interpretability,

pruning the search space of parameters, and improving the generalization on unseen parameters.

Since we focus on the influence of environment parameter ϵ to the trajectory difference dτ , we can

represent the graph with a binary adjacency matrix of size |E| × K, where 1/0 indicates the exis-

tence/absence of an edge from the environment parameter to the trajectory difference. Motivated

by previous works [43, 44, 45] that formulate the combinatorial graph learning into a continuous

optimization problem, we design a sample-efficient pipeline by making the optimization of G differ-

entiable. We sample elements of the graph G from a Gumbel-Softmax distribution [46], parametrized

by ψ ∈ [0, 1]|E|×K , i.e., Gij ∼ GumbelSoftmax(ψij ; T = 1), where T is the softmax temperature.

We denote the parameterized causal graph as Gψ . All elements (i, j) are initialized to ones to ensure

the causal graph is fully connected at the beginning.

Structural Causal Model. Since the causal graph only describes the connection between variables,

we also need a parameterized model to precisely represent how the causes influence the effects.

We design an encoder-decoder structure in f , with G as a linear transformation applied to the

intermediate features. First, the encoder operates on each dimension of ϵ independently to generate

features zϵ ∈ R
|E|×dz . Then the causal graph is multiplied by the features to generate the inputs for

the decoder, i.e., gϵ = zT
ϵ
G ∈ R

dz×K , where dz is the dimension of the feature. Similarly, the action

sequence a is passed through the encoder and transformation to produce the feature of the action

sequence ga ∈ R
dz×K . Finally, gϵ + ga is passed through the decoder to output the prediction d̂τ .

Differentiable Causal Discovery. Given a dataset D := {ϵm,am,dm
τ
}m=1,...,M , the optimization

objective to discover the underlying causal model consists of two terms:

Lϕ,ψ :=
1

M

M∑

m=1

∥fϕ(ϵ
m,am;Gψ)− d

m
τ
∥22 + λ∥ψ∥pp, (2)

where the first term is the mean squared error between the predicted trajectory differences and the

real differences, and the second is a regularization term that encourages the sparsity of G (∥ψ∥p is the

entry-wise p-norm of ψ) with a positive scalar λ to eliminate the influence of irrelevant environment

parameters. The detailed architecture of this causal model can be found in Appendix A.

4



Algorithm 1 Causality between envirOnMent PArameterS and the Sim-to-real gap (COMPASS)

1: Input:
2: ϵ0 ∈ R

|E|: initial guess of environment parameters,
3: ζ: threshold for sim-to-real gap,
4: Sim(·): simulator with controllable environment parameters
5: Output: ϵi, πθ

6: Initialize agent policy πθ
7: Initialize fϕ(ϵ,a;Gψ) with ψ ← 1|E|×K

8: for i = 0, 1, 2, . . . ,MaxIter do
9: Train πθ in Sim(ϵi)

10: {τnsim}n=1,...,N ← Rollout N trajectories using πθ in Sim(ϵi)
11: {τnreal}n=1,...,N ← Rollout N trajectories using πθ in the real environment

12: Stop the iterations if AVERAGE(d(τ1sim, τ
1
real), . . . ,d(τ

N
sim, τ

N
real)) ≤ ζ

13: D ← ∅

14: for n ∈ {1, . . . , N} do ▷ This loop can run in parallel
15: {ϵmdr }m=1,...,M ← CAUSALITYGUIDEDDOMAINRANDOMIZATION(ϵi, ψ)
16: for m ∈ {1, . . . ,M} do
17: τmsim ← Rollout πθ in Sim(ϵmdr )
18: d

m
τ
← d(τmsim, τ

n
real)

19: D ← D ∪ {ϵmdr , τ
n
real,d

m
τ
}

20: Jointly optimize model parameter ϕ and causal graph parameter ψ of fϕ(ϵ,a;Gψ) ▷ Eq. 2
21: ϵi+1 ← UPDATEENVPARAM(ϵi, fϕ(ϵi,a;Gψ)) ▷ Eq. 3

Algorithm 2 Causality-Guided Domain Randomization

1: function CAUSALITYGUIDEDDOMAINRANDOMIZATION(ϵ, ψ)
2: for r = 1, 2, . . . , |E| do
3: if max(ψr) > Threshold then ▷ ψr is the r-th row of ψ
4: {ϵmr }m=1,...,M ← UNIFORM(ϵr − δr, ϵr + δr) ▷ ϵr is the r-th dimension of ϵ

5: return {ϵm}m=1,...,M

3.3 Closing the sim-to-real gap via differentiable causal discovery

The main algorithm is shown in Algorithm 1. We highlight two parts of the algorithm here.

Causality-guided Domain Randomization. The learned causal graph is used to prune the search

space. Since each element of the causal graph parameter ψ indicates the probability of an edge

from the environment parameter to the trajectory difference, we can use ψ to determine whether

to randomize a particular environment parameter or not. For instance, if the learned ψ indicates

that there is no causal relationship between the torsional friction and the trajectory difference, the

torsional friction will be excluded from randomization in the subsequent iteration, which enhances

the efficiency of DR. The randomized environment parameters are sampled uniformly from certain

ranges according to the current environment parameters. In this way, COMPASS automatically reduces

the search space by orders of magnitude without human supervision or domain knowledge. The

detail of causality-guided domain randomization is shown in Algorithm 2.

Environment Parameter Optimization. Owing to the full differentiability of our model, we can

back-propagate the gradient information directly to the environment parameters to minimize the

predicted sim-to-real gap:

J =
1

K

K∑

k=1

fϕ,k(ϵ,a;Gψ), ϵ← ϵ− η∇ϵJ (3)

where fϕ,k is the k-th dimension of the output. We use the real action sequences and apply Eq. 3

multiple times until convergence or reaching the maximum step. The sparse causal graph G could

improve the robustness against noisy trajectory data and generalization on unseen environment pa-

rameter values during parameter optimization.

5







Table 1: Trajectory difference (averaged between Puck1 and Puck2) and agents’ performance in the real
environment. ª±º represents the standard deviation. We evaluate the results using 5 policies generated from
independent runs and collect 10 trajectories for each run.

Low fan speed High fan speed
Nominal NPDR COMPASS Nominal NPDR COMPASS

Trajectory difference min (↓) 3.68± 0.07 2.81± 0.16 2.37± 0.10 2.23± 0.37 3.05± 0.46 1.41± 0.25
Trajectory difference max (↓) 10.77± 0.05 7.34± 1.41 5.71± 0.23 9.84± 0.56 10.36± 0.82 8.17± 1.34
Trajectory difference mean (↓) 7.60± 0.03 5.18± 0.77 4.02± 0.07 6.07± 0.40 5.63± 0.5 3.97± 0.45

Puck2 final dist. to goal center (↓) 0.35± 0.04 0.18± 0.05 0.12± 0.03 0.29± 0.09 0.15± 0.07 0.13± 0.02
Success rate (↑) 0.00± 0.00 0.39± 0.33 0.80± 0.09 0.20± 0.07 0.47± 0.41 0.75± 0.22

4.3 Sim-to-real with policy optimization in the loop

In this experiment, we first trained the agent in the initial simulation environment parameters with

Soft Actor-Critic (SAC) [48]. Then, we applied COMPASS and the best-performing baseline in the

sim-to-sim experiment, NPDR, to update the environment parameters and retrained the agent in the

new simulation environment parameters. Finally, we deployed the agent in the real environment and

reported the evaluation statistics. We used a fixed set of real trajectories instead of collecting new

ones in every iteration. We effectively set up two real environments by powering the electric fan at

different speeds, referred to as low fan speed and high fan speed.

Upon inspecting Table. 1, we first observe that (i) COMPASS consistently outperforms the nominal

simulator and the NPDR baseline in terms of trajectory difference and success rate. Notably,

COMPASS improved success rate by 105.1% and 59.6% compared with NPDR in the low and high

fan speed settings, respectively. We hypothesize that COMPASS is more robust to the noisy and

unmodeled dynamics in the real environment owing to the sparse causal model learned during the

model learning and parameter optimization process. We also observe that (ii) the agent’s real-world

performance positively correlates with the trajectory alignment performance. This is as expected

given that previous works have proved that the policy performance degradation is bounded by the

difference in transition distributions between two systems [39]. Similar patterns are observed in the

supplementary experiments as well (Appendix E).

5 Discussion and Conclusion

In conclusion, COMPASS is a novel causality-guided framework to identify simulation environment

parameters that minimize the sim-to-real gap. It has three salient features. Firstly, COMPASS requires

less domain knowledge of the randomized environment parameters, enabling a more automated pro-

cess for sim-to-real transfer. Secondly, COMPASS learns an interpretable causal structure, providing

better generalization during environment parameter optimization and robustness against observa-

tional noise in real rollouts. Lastly, COMPASS employs a fully differentiable model to update the

environment parameters, which mitigates the efficiency issue of the existing sampling-based meth-

ods. Through both simulation and real-world experiments, we verify that our proposed method

outperforms the existing gradient-free and gradient-based parameter estimation methods in terms of

trajectory alignment accuracy and the agent’s success rate, while offering interpretability.

Limitations. With all the advantages of COMPASS discussed, some limitations of our method also

suggest directions for future work. Similar to the existing gradient-based methods [34, 36, 35, 21],

COMPASS could converge to local minima since the identifiable set of parameters may be coupled [49,

50], which would result in multiple local minima in the parameter space. Indeed, if the purpose is

to find a specific combination of parameters that minimize the sim-to-real gap, it becomes less

important whether it converges to the global optimum or not [34]. In addition, COMPASS finds a

single combination of environment parameters rather than a distribution of them. Nevertheless,

our method can maintain several particles of environment parameters as an empirical distribution

[51, 52, 53, 54, 55] without extensive modifications to the core algorithm.

8



Acknowledgments

The authors gratefully acknowledge the support from the National Science Foundation under grants

CNS-2047454.

References

[1] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic

control with dynamics randomization. In 2018 IEEE international conference on robotics and

automation (ICRA), pages 3803±3810. IEEE, 2018.

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,

A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.

The International Journal of Robotics Research, 39(1):3±20, 2020.

[3] J. Francis, B. Chen, S. Ganju, S. Kathpal, J. Poonganam, A. Shivani, S. Genc, I. Zhukov,

M. Kumskoy, A. Koul, et al. Learn-to-race challenge 2022: Benchmarking safe learning and

cross-domain generalisation in autonomous racing. arXiv preprint arXiv:2205.02953, 2022.

[4] S. H. Park, G. Lee, J. Seo, M. Bhat, M. Kang, J. Francis, A. Jadhav, P. P. Liang, and L.-P.

Morency. Diverse and admissible trajectory forecasting through multimodal context under-

standing. In Computer Vision±ECCV 2020: 16th European Conference, Glasgow, UK, August

23±28, 2020, Proceedings, Part XI 16, pages 282±298. Springer, 2020.

[5] G. Tatiya, J. Francis, L. Bondi, I. Navarro, E. Nyberg, J. Sinapov, and J. Oh. Knowledge-driven

scene priors for semantic audio-visual embodied navigation. arXiv preprint arXiv:2212.11345,

2022.

[6] J. Francis, B. Chen, W. Yao, E. Nyberg, and J. Oh. Distribution-aware goal prediction and con-

formant model-based planning for safe autonomous driving. arXiv preprint arXiv:2212.08729,

2022.

[7] J. Herman, J. Francis, S. Ganju, B. Chen, A. Koul, A. Gupta, A. Skabelkin, I. Zhukov, M. Kum-

skoy, and E. Nyberg. Learn-to-race: A multimodal control environment for autonomous rac-

ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

9793±9802, 2021.

[8] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012

IEEE/RSJ international conference on intelligent robots and systems, pages 5026±5033. IEEE,

2012.

[9] B. Ellenberger. Pybullet gymperium. https://github.com/benelot/pybullet-gym,

2018±2019.

[10] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization

for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ

international conference on intelligent robots and systems (IROS), pages 23±30. IEEE, 2017.

[11] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and

D. Batra. Sim2real predictivity: Does evaluation in simulation predict real-world performance?

IEEE Robotics and Automation Letters, 5(4):6670±6677, 2020.

[12] M. Xu, P. Huang, F. Li, J. Zhu, X. Qi, K. Oguchi, Z. Huang, H. Lam, and D. Zhao. Scalable

safety-critical policy evaluation with accelerated rare event sampling. In 2022 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 12919±12926. IEEE,

2022.

[13] M. Xu, Z. Liu, P. Huang, W. Ding, Z. Cen, B. Li, and D. Zhao. Trustworthy reinforce-

ment learning against intrinsic vulnerabilities: Robustness, safety, and generalizability. arXiv

preprint arXiv:2209.08025, 2022.

9



[14] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical simula-

tion for autonomous vehicles. In Field and Service Robotics: Results of the 11th International

Conference, pages 621±635. Springer, 2018.

[15] J. Francis, N. Kitamura, F. Labelle, X. Lu, I. Navarro, and J. Oh. Core challenges in embodied

vision-language planning. Journal of Artificial Intelligence Research, 74:459±515, 2022.

[16] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff. High fidelity tools for rescue robotics:

results and perspectives. In RoboCup 2005: Robot Soccer World Cup IX 9, pages 301±311.

Springer, 2006.

[17] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. Neuralsim: Augmenting

differentiable simulators with neural networks. In 2021 IEEE International Conference on

Robotics and Automation (ICRA), pages 9474±9481. IEEE, 2021.

[18] Y. Zhu, J. Wong, A. Mandlekar, R. MartÂın-MartÂın, A. Joshi, S. Nasiriany, and Y. Zhu. robo-

suite: A modular simulation framework and benchmark for robot learning. In arXiv preprint

arXiv:2009.12293, 2020.

[19] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing

the sim-to-real loop: Adapting simulation randomization with real world experience. In 2019

International Conference on Robotics and Automation (ICRA), pages 8973±8979. IEEE, 2019.

[20] F. Muratore, T. Gruner, F. Wiese, B. Belousov, M. Gienger, and J. Peters. Neural posterior

domain randomization. In Conference on Robot Learning, pages 1532±1542. PMLR, 2022.

[21] A. Allevato, M. Pryor, and A. L. Thomaz. Multiparameter real-world system identification

using iterative residual tuning. Journal of Mechanisms and Robotics, 13(3), 2021.

[22] W. Ding, L. Shi, Y. Chi, and D. Zhao. Seeing is not believing: Robust reinforcement learning

against spurious correlation. arXiv preprint arXiv:2307.07907, 2023.

[23] W. Ding, H. Lin, B. Li, and D. Zhao. Generalizing goal-conditioned reinforcement learning

with variational causal reasoning. arXiv preprint arXiv:2207.09081, 2022.

[24] W. Ding, H. Lin, B. Li, and D. Zhao. Causalaf: causal autoregressive flow for safety-critical

driving scenario generation. In Conference on Robot Learning, pages 812±823. PMLR, 2023.

[25] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In

Conference on Robot Learning, pages 1162±1176. PMLR, 2020.

[26] X. Chen, J. Hu, C. Jin, L. Li, and L. Wang. Understanding domain randomization for sim-to-

real transfer. arXiv preprint arXiv:2110.03239, 2021.

[27] Q. Vuong, S. Vikram, H. Su, S. Gao, and H. I. Christensen. How to pick the domain random-

ization parameters for sim-to-real transfer of reinforcement learning policies? arXiv preprint

arXiv:1903.11774, 2019.

[28] F. Muratore, C. Eilers, M. Gienger, and J. Peters. Data-efficient domain randomization with

bayesian optimization. IEEE Robotics and Automation Letters, 6(2):911±918, 2021.

[29] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. Deep

drone racing: From simulation to reality with domain randomization. IEEE Transactions on

Robotics, 36(1):1±14, 2019.

[30] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar, B. McGrew, A. Ray,

J. Schneider, P. Welinder, et al. Domain randomization and generative models for robotic grasp-

ing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 3482±3489. IEEE, 2018.

10



[31] P. Huang, M. Xu, F. Fang, and D. Zhao. Robust reinforcement learning as a stackelberg game

via adaptively-regularized adversarial training. arXiv preprint arXiv:2202.09514, 2022.

[32] O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar. Multi-agent manipulation via locomotion

using hierarchical sim2real. arXiv preprint arXiv:1908.05224, 2019.

[33] M. Xu, P. Huang, Y. Niu, V. Kumar, J. Qiu, C. Fang, K.-H. Lee, X. Qi, H. Lam, B. Li, et al.

Group distributionally robust reinforcement learning with hierarchical latent variables. In

International Conference on Artificial Intelligence and Statistics, pages 2677±2703. PMLR,

2023.

[34] A. Allevato, E. S. Short, M. Pryor, and A. Thomaz. Tunenet: One-shot residual tuning for

system identification and sim-to-real robot task transfer. In Conference on Robot Learning,

pages 445±455. PMLR, 2020.

[35] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak. Auto-tuned sim-to-real transfer. In

2021 IEEE International Conference on Robotics and Automation (ICRA), pages 1290±1296.

IEEE, 2021.

[36] T. Murooka, M. Hamaya, F. von Drigalski, K. Tanaka, and Y. Ijiri. Exi-net: Explic-

itly/implicitly conditioned network for multiple environment sim-to-real transfer. In Confer-

ence on Robot Learning, pages 1221±1230. PMLR, 2021.

[37] W. Yu, V. C. Kumar, G. Turk, and C. K. Liu. Sim-to-real transfer for biped locomotion. In

2019 ieee/rsj international conference on intelligent robots and systems (iros), pages 3503±

3510. IEEE, 2019.

[38] F. Ramos, R. C. Possas, and D. Fox. Bayessim: adaptive domain randomization via probabilis-

tic inference for robotics simulators. arXiv preprint arXiv:1906.01728, 2019.

[39] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy

optimization. Advances in neural information processing systems, 32, 2019.

[40] D. Abel. A theory of abstraction in reinforcement learning. arXiv preprint arXiv:2203.00397,

2022.

[41] M. Shanahan and M. Mitchell. Abstraction for deep reinforcement learning. arXiv preprint

arXiv:2202.05839, 2022.

[42] D. Abel, D. Arumugam, L. Lehnert, and M. Littman. State abstractions for lifelong reinforce-

ment learning. In International Conference on Machine Learning, pages 10±19. PMLR, 2018.

[43] P. Brouillard, S. Lachapelle, A. Lacoste, S. Lacoste-Julien, and A. Drouin. Differentiable

causal discovery from interventional data. Advances in Neural Information Processing Sys-

tems, 33:21865±21877, 2020.

[44] Y. Yu, J. Chen, T. Gao, and M. Yu. Dag-gnn: Dag structure learning with graph neural net-

works. In International Conference on Machine Learning, pages 7154±7163. PMLR, 2019.

[45] S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien. Gradient-based neural dag learn-

ing. arXiv preprint arXiv:1906.02226, 2019.

[46] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv

preprint arXiv:1611.01144, 2016.

[47] B. Evans, A. Thankaraj, and L. Pinto. Context is everything: Implicit identification for dynam-

ics adaptation. In 2022 International Conference on Robotics and Automation (ICRA), pages

2642±2648. IEEE, 2022.

11



[48] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy

deep reinforcement learning with a stochastic actor. In International conference on machine

learning, pages 1861±1870. PMLR, 2018.

[49] P. K. Khosla and T. Kanade. Parameter identification of robot dynamics. In 1985 24th IEEE

conference on decision and control, pages 1754±1760. IEEE, 1985.

[50] N. Fazeli, R. Tedrake, and A. Rodriguez. Identifiability analysis of planar rigid-body frictional

contact. Robotics Research: Volume 2, pages 665±682, 2018.

[51] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In L. P.

Kaelbling, D. Kragic, and K. Sugiura, editors, Proceedings of the Conference on Robot Learn-

ing, volume 100 of Proceedings of Machine Learning Research, pages 1162±1176. PMLR, 30

Oct±01 Nov 2020. URL https://proceedings.mlr.press/v100/mehta20a.html.

[52] P. Huang, M. Xu, J. Zhu, L. Shi, F. Fang, and D. Zhao. Curriculum reinforcement learn-

ing using optimal transport via gradual domain adaptation. Advances in Neural Information

Processing Systems, 35:10656±10670, 2022.

[53] P. Klink, C. D’Eramo, J. Peters, and J. Pajarinen. On the benefit of optimal transport for

curriculum reinforcement learning. arXiv preprint arXiv:2309.14091, 2023.

[54] D. Cho, S. Lee, and H. J. Kim. Outcome-directed reinforcement learning by uncertainty &

temporal distance-aware curriculum goal generation. arXiv preprint arXiv:2301.11741, 2023.

[55] J. Kim, D. Cho, and H. J. Kim. free autonomous reinforcement learning via implicit and

bidirectional curriculum. arXiv preprint arXiv:2305.09943, 2023.

[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning

library. Advances in neural information processing systems, 32, 2019.

[57] A. Tejero-Cantero, J. Boelts, M. Deistler, J.-M. Lueckmann, C. Durkan, P. J. GoncËalves, D. S.

Greenberg, and J. H. Macke. Sbi ± a toolkit for simulation-based inference, 2020.

[58] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,

O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable

baselines. https://github.com/hill-a/stable-baselines, 2018.

[59] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[60] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:

Visuomotor policy learning via action diffusion. Robotics: Science and Systems, 2023.

[61] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-

ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

[62] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.

arXiv preprint arXiv:2107.04034, 2021.

[63] A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik. Adapting rapid motor adapta-

tion for bipedal robots. In 2022 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 1161±1168. IEEE, 2022.

[64] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on

learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference

on Robotics and Automation (ICRA), pages 1593±1599. IEEE, 2022.

[65] M. Mozian, J. C. G. Higuera, D. Meger, and G. Dudek. Learning domain randomization dis-

tributions for training robust locomotion policies. In 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 6112±6117. IEEE, 2020.

12



[66] S. Liu, M. Xu, P. Huang, X. Zhang, Y. Liu, K. Oguchi, and D. Zhao. Continual vision-based

reinforcement learning with group symmetries. In 7th Annual Conference on Robot Learning,

2023.

13







Table 5: Soft Actor-Critic Hyperparameters

Parameters Name Values

learning rate 3e-4
gradient steps 32
batch size 32
train freq 8
ent coef 0.005
net arch [32, 32]
policy ªMlpPolicyº
env number 64
buffer size 1,000,000
learning starts 100
tau 0.005
gamma 0.99
action noise None
stats window size 100

including the proposed COMPASS method, in Table 6, 7, 8, and 9, which provide a comprehensive

list of the parameters we utilized to reproduce the results.

Soft Actor-Critic hyperparameters. We use SAC implementation in StableBaseline3 [58] to train

the RL agents. The training hyperparameter is shown in Table 5.

Table 6: COMPASS hyperparameters

Description value variable name

Shared Hyperparameters

Number of iterations 10 n round
Retrain in each iteration
(if False, keep using the model trained in the first iteration)

True retrain from scratch

Number of rollouts in each iteration 640 n samples per round
Number of command actions in each iteration 10 n cmd action
Number of epochs 4000 n epochs
Batch size 64 batch size
Learning rate 0.001 learning rate

Algorithm-Specific Hyperparameters

Network encoder dimension 32 emb dim
Network hidden dimension [256, 256] hidden dim
Causal dimension 32 causal dim
Sparsity weight of the loss function 0.003 sparse weight
Sparsity weight discount 0.5 sw discount
Loss function MSE + Sparsity loss function
Optimizer Adam optimizer

16



Table 7: EXI-Net hyperparameters

Description value variable name

Shared Hyperparameters

Number of iterations 10 n round
Retrain in each iteration
(if False, keep using the model trained in the first iteration)

True retrain from scratch

Number of rollouts in each iteration 640 n samples per round
Number of command actions in each iteration 10 n cmd action
Number of epochs 4000 n epochs
Batch size 64 batch size
Learning rate 0.001 learning rate

Algorithm-Specific Hyperparameters

Network hidden dimension [256, 256] hidden dim
Loss function MSE loss function
Optimizer Adam optimizer

Table 8: NPDR hyperparameters

Description value variable name

Shared Hyperparameters

Number of iterations 10 n round
Retrain in each iteration
(if False, keep using the model trained in the first iteration)

True retrain from scratch

Number of rollouts in each iteration 640 n samples per round
Number of command actions in each iteration 10 n cmd action

Algorithm-Specific Hyperparameters

Prior distribution type Uniform prior
Inference model type maf inf model
Embedding net type LSTM embedding struct
Embedding downsampling factor 2 downsampling factor
Posterior hidden features 100 hidden features
Posterior number of transforms 10 num transforms
Normalize posterior False normalize posterior
Density estimator training epochs 50 num epochs
Density estimator training rate 3e-4 learning rate
Early stop epochs once posterior converge 20 stop after epochs
Use combined loss for posterior training True use combined loss
Discard prior samples False discard prior samples
Sampling method MCMC sample with
MCMC thinning factor 2 thin

Table 9: Tune-Net hyperparameters
Description value variable name

Shared Hyperparameters

Number of iterations 1 n round
Retrain in each iteration
(if False, keep using the model trained in the first iteration)

False retrain from scratch

Number of rollouts in each iteration 6400 n samples per round
Number of command actions in each iteration 10 n cmd action
Number of epochs 4000 n epochs
Batch size 64 batch size
Learning rate 0.001 learning rate

Algorithm-Specific Hyperparameters

Network input dimension
(Pair of Trajectory and Action dimension)

(2, 304) (dim pair, dim state)

Network output dimension
(Tunable env param dimension)

64 dim zeta

Env param update iteration 10 K
Network hidden dimension [256, 256] hidden dim
Loss function MSE loss fn
Optimizer Adam optimizer

17





















G Additional Literature Review

Adaptive Policy in Locomotion and Manipulation. The challenge of sim-to-real transfer has

been central to the field of locomotion tasks, and it has recently demonstrated remarkable success

[61, 62, 63, 64, 65]. Rapid Motor Adaptation (RMA) [62] proposed a solution to bridge the sim-to-

real gap by effectively learning the relationship between dynamic-affecting parameters and historical

contexts. More recently, Kumar et al. [63] introduced Adapting-RMA (A-RMA) to further refine

the base policy of RMA using model-free reinforcement learning (RL) techniques. Typically, RMA-

based methods approach the sim-to-real challenge as a generalization problem. They tend to assume

an appropriate range and set of parameters that influence testing performance, along with a sizable

randomized training budget, to ensure successful operation. These assumptions present inherent

challenges due to the requisite domain expertise and training time. In manipulation, Liu et al. [66]

approached the adaptive policy from a continual RL perspective, cultivating a policy for each group

of tasks rather than an individual task to solve unseen tasks in seen groups in a zero-shot manner.

In contrast, this paper focuses on aligning simulators with real-world dynamics. Our approach

involves the automated identification of simulation environment parameters that minimize the sim-

to-real dynamics gap. While there are similar studies, such as the work by Mozian et al. [65], which

on searching for the environment parameter distributions that are challenging yet not excessively

adversarial to learn, our emphasis is on sim-to-real applications with novel causality-based system

identification.

27


	Introduction
	Related Work
	Methodology
	Problem formulation: Markov Decision Processes and sim-to-real gap
	Learning causality between environment parameters and trajectory differences
	Closing the sim-to-real gap via differentiable causal discovery

	Experimental Results
	Experimental setups
	Sim-to-sim trajectory alignment with known target environment parameters
	Sim-to-real with policy optimization in the loop

	Discussion and Conclusion
	Model details
	Experimental Details
	Experimental Configurations for Robot Simulation Setup
	Experimental Configurations for Real Robot Setup

	Implementation Details
	Supplementary Ablation Study for Air-Hockey Experiment
	Different Real Rollout Size N and Sim Rollout Size M
	Different Initial Environment Parameters
	Different Sparsity Weight 

	Sim-to-Real Double-Bouncing-Ball Experiment
	Double-bouncing-ball experimental setup
	Learned causal graph
	Sim-to-real trajectory alignment results
	Real-world agent performance

	Sim-to-Sim Push-I Experiment
	Experimental setup
	Learned causal graph
	Environment parameter optimization and trajectory alignment
	Sim-to-sim agent performance

	Additional Literature Review

