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Abstract: Continual reinforcement learning aims to sequentially learn a variety of
tasks, retaining the ability to perform previously encountered tasks while simulta-
neously developing new policies for novel tasks. However, current continual RL
approaches overlook the fact that certain tasks are identical under basic group op-
erations like rotations or translations, especially with visual inputs. They may un-
necessarily learn and maintain a new policy for each similar task, leading to poor
sample efficiency and weak generalization capability. To address this, we intro-
duce a unique Continual Vision-based Reinforcement Learning method that rec-
ognizes Group Symmetries, called COVERS, cultivating a policy for each group
of equivalent tasks rather than an individual task. COVERS employs a proximal-
policy-gradient-based (PPO-based) algorithm to train each policy, which contains
an equivariant feature extractor and takes inputs with different modalities, includ-
ing image observations and robot proprioceptive states. It also utilizes an unsu-
pervised task clustering mechanism that relies on 1-Wasserstein distance on the
extracted invariant features. We evaluate COVERS on a sequence of table-top
manipulation tasks in simulation and on a real robot platform. Our results show
that COVERS accurately assigns tasks to their respective groups and significantly
outperforms baselines by generalizing to unseen but equivariant tasks in seen task
groups. Demos are available on our project page'.
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1 INTRODUCTION

Quick adaptation to unseen tasks has been a key objective in the field of reinforcement learning
(RL) [1, 2, 3]. RL algorithms are usually trained in simulated environments and then deployed
in the real world. However, pre-trained RL agents are likely to encounter new tasks during their
deployment due to the non-stationarity of the environment [4, 5]. Blindly reusing policies obtained
during training can result in substantial performance drops and even catastrophic failures [6, 7, 8].

Continual RL (CRL), also referred to as lifelong RL, addresses this issue by sequentially learning a
series of tasks. It achieves this by generating task-specific policies for the current task, while simul-
taneously preserving the ability to solve previously encountered tasks [3, 9, 10, 11, 12]. Existing
CRL works that rely on task delineations to handle non-stationary initial states, dynamics, or reward
functions can greatly boost task performance, particularly when significant task changes occur [10].
However, in realistic task-agnostic settings, these delineations are unknown and have to be identified
by the agents. In this work, we explore how fo define and detect task delineations to enhance robots’
learning capabilities in task-agnostic CRL.
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Our key insight is that robotic control tasks typ-

ically preserve certain desirable structures, such e
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in robotic control tasks, as demonstrated in Fig- % 4

ure 1. Consider the drawer-closing example: con-

ventional CRL works using image inputs would Figure 1: This example illustrates how group
treat each mirrored configuration as a new task Symmetry enhances adaptability. The robot is
and learn the task from scratch. Yet, we, as hu- instructed to close drawers situated in two dis-
tinct locations given top-down images. The op-
timal control policies are equivalent but mir-
rored because of the symmetry of the drawers’
locations around the robot’s position.

mans, understand that the mirrored task configu-
ration can be easily resolved by correspondingly
reflecting the actions. Learning the mirrored task
from scratch hampers positive task transfer and
limits the agent’s adaptivity. To address this issue, our goal is to exploit the geometric similarity
among tasks in the task-agnostic CRL setting to facilitate rapid adaptation to unseen but geometri-
cally equivalent tasks.

In this work, we propose COVERS, a task-agnostic vision-based CRL algorithm with strong sample
efficiency and generalization capability by encoding group symmetries in the state and action spaces.
We define a task group as the set that contains equivalent tasks under the same group operation, such
as rotations and reflections. We state our main contributions as follows:

1. COVERS grows a PPO-based [13] policy with an equivariant feature extractor for each task
group, instead of a single task, to solve unseen tasks in seen groups in a zero-shot manner.

2. COVERS utilizes a novel unsupervised task grouping mechanism, which automatically
detects group boundaries based on 1-Wasserstein distance in the invariant feature space.

3. In non-stationary table-top manipulation environments, COVERS performs better than
baselines in terms of average rewards and success rates. Moreover, we show that (a) the
group symmetric information from the equivariant feature extractor promotes the adaptiv-
ity by maximizing the positive interference within each group, and (b) the task grouping
mechanism recovers the ground truth group indexes, which helps minimize the negative
interference among different groups.

2 Related Work

Task-Agnostic CRL. CRL has been a long-standing problem that aims to train RL agents adaptable
to non-stationary environments with evolving world models [14, 15, 16, 17, 18,7, 19, 20, 21, 22]. In
task-agnostic CRL where task identifications are unrevealed, existing methods have addressed the
problem through a range of techniques. These include hierarchical task modeling with stochastic
processes [10, 11], meta-learning [3, 23], online system identification [24, 25], learning a repre-
sentation from experience [12, 26], and experience replay [17, 27]. Considering that in realistic
situations, the new task may not belong to the same task distribution as past tasks, we develop an
ensemble model of policy networks capable of handling diverse unseen tasks, rather than relying on
a single network to model dynamics or latent representations. Moreover, prior work often depends
on data distribution-wise similarity or distances between latent variables, implicitly modeling task
relationships. In contrast, we aim to introduce beneficial inductive bias explicitly by developing
policy networks with equivariant feature extractors to capture the geometric structures of tasks.

Symmetries in RL. There has been a surge of interest in modeling symmetries in components of
Markov Decision Processes (MDPs) to improve generalization and efficiency [28, 29, 30, 31, 32, 33,
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Figure 2: The continual learning environment setup involves four task groups, including Plate Slide,
Button Press, Drawer Close, and Goal Reach. Groups streamingly come in.

34, 35, 36, 37, 38, 39]. MDP homomorphic network [30] preserves equivariant under symmetries in
the state-action spaces of an MDP by imposing an equivariance constraint on the policy and value
network. As a result, it reduces the RL agent’s solution space and increases sample efficiency. This
single-agent MDP homomorphic network is then extended to the multi-agent domain by factorizing
global symmetries into local symmetries [31]. SO(2)-Equivariant RL [32] extends the discrete sym-
metry group to the group of continuous planar rotations, SO(2), to boost the performance in robotic
manipulation tasks. In contrast, we seek to exploit the symmetric properties to improve the general-
ization capability of task-agnostic CRL algorithms and handle inputs with multiple modalities.

3 Preliminary

Markov decision process. We consider a Markov decision process (MDP) as a 5-tuple
(S, A, T,R,~), where S and A are the state and action space, respectively. 7' : S x A — A(S)
is the transition function, R : S x A — R is the reward function, and +y is the discount factor. We
aim to find an optimal policy mg : S — A parameterized by 6 that maximizes the expected return

Ern, Zfigl yir (s, a,,)} , where H is the episode length.

Invariance and equivariance. Let G be a mathematical group. f : X — ) is a mapping function.
For a transformation L, : X — X that satisfies f(z) = f(L4[z]),Vg € G,z € X, we say f is
invariant to Ly. Equivariance is closely related to invariance. If we can find another transformation
Ky : Y — Y that fulfills K [f(z)] = f(L4[z]),Vg € G,z € X then we say f is equivariant to
transformation L. It’s worth noting that invariance is a special case of equivariance.

MDP with group symmetries. In MDPs with symmetries [28, 29, 30], we can identify at least one
mathematical group G of a transformation L, : S — S and a state-dependent action transformation
K5 : A — A, such that R(s,a) = R (Ly[s], K;[a]) , T (s,a,s") = T (Ly[s], K5[a], Ly [s']) hold
forallg € G,s,s’ € S,a € A.

Equivariant convolutional layer. Let G be an Euclidean group, with the special orthogonal group
and reflection group as subgroups. We use the equivariant convolutional layer developed by Weiler
and Cesa [40], where each layer consists of G-steerable kernels k : R? — RC%uX¢n that satisfies
k(gz) = pou (9)k(z)pin (97),Vg € G,z € R% piy and poy are the types of input vector field
fin : R2 — R and output vector field fo, : R? — R, respectively.

Equivariant MLP. An equivariant multi-layer perceptron (MLP) consists of both equivariant linear
layers and equivariant nonlinearities. An equivariant linear layer is a linear function 1 that maps
from one vector space V;, with type pi, to another vector space with type poy for a given group G.
Formally Vo € Viy,Vg € G : pou(9)Wx = W pin(g)z. Here we use the numerical method proposed
by Finzi et al. [41] to parameterize MLPs that are equivariant to arbitrary groups.

4 Methodology

4.1 Problem Formulation

We focus on continual learning in table-top manipulation environments, where various tasks are
sequentially presented. We hypothesize that the streaming tasks can be partitioned into task groups,
each containing tasks that share symmetry with one another. We adopt a realistic setting where a



Algorithm 1 COVERS: Continual Vision-based RL with Group Symmetries

Input: Threshold d., initial frame number k, update interval N,,, rollout step size N,

Output: collection of policies II

Initialization: Current policy 7, initialized as a random policy with a policy data buffer B < &,
policy collection IT «— { (¢, B)}, number of episodes n <— 0, online rollout buffer D «— &

1: while rask not finish do
2 n<n+1
3 if n%N,, =0 then
4: Rollout buffer O + @ > Unsupervised Policy Assignment
5: Rollout N steps with 7., and get trajectories 7 = {(so, ao,...,SH—1,a5-1)}
6 Append the first k& frames of each episode to rollout buffer O « {(so,...,sk—1)}
7 Append the whole episode trajectories 7 to the online rollout buffer D
8 Calculate the 1-Wasserstein distances d} (O, B;), V{m;, B;} € II (Equation 2)
9: Get the minimum distance d}’v where j = arg min; d!V (O, B;)
10: ifd; > d. then
11: Initialize a new random policy 7 as well as its policy data buffer B < O
12: Teur < T, 1L = TTU {{m, B}}
13: else
14: Assign the existing policy and buffer with 7, < 7, Bj < B; U O
15: Update ., based on online rollout buffer D (Equation 1) > Equivariant Policy Update
16: D+—o
17: else
18: Sample an episode and append to online rollout buffer D

new task group may emerge at each episode, the total number of distinct groups remains unknown,
and the group may arrive in random orders. The primary objective is to devise an online learning
algorithm capable of achieving high performance across all tasks with strong data efficiency. We
visualize our CRL setting with table-top manipulation environments in Figure 2.

4.2 Algorithm

We present the pseudocode for COVERS, a task-agnostic continual RL method with group sym-
metries, in Algorithm 1. COVERS maintains a collection II = {(7, B)}, each element of which
comprising a pair of policy 7 and its respective data buffer 3. Each policy 7 independently manages
one group of tasks, with B storing the initial frames of the group it oversees. At fixed time intervals,
COVERS collects N steps in parallel under the current policy 7., and stores the first k& frames
from each episode in the rollout buffer O. Based on O, the algorithm then either (a) creates a new
policy for an unseen group and adds it to the collection II, or (b) recalls an existing policy from the
collection II if the group has been previously encountered. It is worth noting that we assign poli-
cies based on the initial frames of each episode rather than the full episode rollout. This is because
frames corresponding to later timesteps are heavily influenced by the behavior policy and could eas-
ily lead to unstable policy assignments. Only maintaining a subset of the rollout trajectories also
helps alleviate memory usage.

After the policy assignment, the selected policy ¢, with parameters ¢ is updated based on an online
rollout buffer D and the PPO method [13] with loss in Equation 1. A, is the estimated advantage,
pt = mo(at|st)/ma,,,(at]s¢) is the importance ratio and e is the clip range.

H
Levip =Erop [Zmin[pt(e)fit,clip(pt(e), 161+ C)At]] (1)

t=1

4.3 Policy Network Architecture

COVERS utilizes an equivariant policy network that comprises a policy network for predicting ac-
tions, a value network approximating values, and an equivariant feature extractor taking multiple
modalities. We show the policy architecture in Figure 3 and additional details in Figure 10.
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Equivariant feature extractor. In manipulation tasks, the observations typically comprise multiple
modalities, such as image observations, robot proprioceptive states, and goal positions represented
in vector form. To accommodate these diverse modalities, we design an equivariant feature ex-
tractor h®?", that employs an equivariant convolutional network h°“°"™ [40] for image processing,
coupled with an equivariant linear network h¢Z [42] to handle vector inputs. The resulting equiv-
ariant features from these two pathways are concatenated to form the output of the feature extractor.
Formally, h®9%(s) = Concat(h¢“°™ (s), h*MLP (s)).
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Figure 3: Equivariant policy network architecture.
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Invariant value and equivariant policy. In the context of MDPs involving robotic manipulation
tasks with group symmetries, it is known that the optimal value function maintains group invari-
ance, while the optimal policy displays group equivariance [32]. To attain this, both the policy and
value networks utilize a shared equivariant feature extractor, designed to distill equivariant features
from observations. Subsequently, the value network leverages a group pooling layer to transform
these equivariant features into invariant ones, before employing a fully connected layer to generate
values. Formally, h'""(s) = GroupMaxPooling(h¢?“!(s)). The policy network, on the other hand,
processes the equivariant features with an additional equivariant MLP network to output actions.
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4.4 Unsupervised Dynamic Policy Assignment
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In COVERS, we propose to detect different groups of tasks

1
based on distances in the invariant feature space. Such a Thi"" Thi"”: e
mechanism facilitates knowledge transfer between tasks in t . 1 oo NN rollout
. . —» Buffer
each group. At a fixed episode interval, COVERS selects the 8, | m B ; D

e

mememep

policy of the group, whose data buffer 3 has the minimal dis-
tance in the invariant feature space to the rollout buffer O col- “- rollout buffer 0 -
lected in the current environment. Note that the invariant fea-
tures of both O and B are obtained through the feature extrac-
tor of 7 as shown in Figure 4. Considering that O and B may
have a different number of data pairs, we take a probabilistic
perspective by treating those data buffers as sample-based rep-
resentations of two distributions and use the Wasserstein distance to measure the distance between
those two feature distributions [43]. The invariant features are obtained from the equivariant feature
extractor via a group max-pooling operation as shown in Figure 3.

Figure 4: Calculation of 1-
Wasserstein distance and update
of selected policy m;, whose data
buffer has minimal distance to O.

Wasserstein distance on invariant feature space. Here we show how to calculate the distance to a
group {7;, B;} € II. Let X and Y be matrices constructed by invariant features extracted from the
state buffer B; of size n and the buffer O of size m. X = (X1, Xo, ..., X,,)T, X, = hi"(sp),p €
[n],sp € B,and Y = (Y1,Ya,..., YT, Y, = hi™(s)),1 € [m], s; € O. We use the 1-Wasserstein
distance [44] to measure the distance between two empirical distributions X and Y. Hence the
distance between O and B; is

d:/V(O,BJ = Wl(XvY) = min <IY’M>F s.t. 7l =a, ’YT]- = ba’y >0, (2)
8l

where M, ; = || X, —Yill2,a=[1/n,...,1/n],b = [1/m,...,1/m]. M is the metric cost matrix.



5 Simulation Experiments

We validate COVERS’s performance in robot manipulation [45] tasks with nonstationary environ-
ments containing different objects or following different reward functions. We aim to investigate
whether our method can (1) recall stored policy when facing a seen group, as well as automatically
initialize a new policy when encountering an unseen group, (2) achieve similar or better performance
compared to baselines, and (3) understand the significance of key components of COVERS.
5.1 Environment sim Real

N

Camera

Simulation setup. Our manipulation setup is composed of
four groups of tasks. Each group contains four tasks, and all
tasks within the same group exhibit rotational or reflectional
symmetry with respect to each other. We build environments
based on the Meta-World benchmark [45]. Meta-World fea-
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tures a variety of table-top manipulation tasks that require in- Environment Setup
teraction with diverse objects using a Sawyer robot. We show

the four groups of tasks in Figure 2 including Goal Reach for i
reaching a goal position, Button Press for pressing the button

with gripper, Drawer Close for closing drawer with gripper,

and Plate Slide for sliding the plate to a goal position. The

goal positions and object locations of tasks in each group are Original o down mage
symmetrically arranged around the center of the table. In our

experiments, the four task groups arrive cyclically in order, as

shown in Figure 2. The task order within each group and the

initial configuration of each task are randomized. We provide .
additional setup details in Appendix B.3.

Processed Top-down Image
States and acti.ons. The agent receives four kinds of observa- Figure 5: Image preprocessing to
tions: an RGB image c.aptured by a top—(.lown camera centered  parrow down the sim-to-real gap.
over the table at each timestep, an RGB image captured by the
same camera at the beginning of the episode, the robot state, including gripper’s 3D coordinates
and opening angle, and auxiliary information. The RGB image at the initial step helps alleviate the
occlusion problem caused by the movement of the robot. The auxiliary information contains 3D
goal positions, which are only revealed to the agent in Goal Reach since the goal locations are not
visualized in the captured image and are masked out for other groups. To close the sim-to-real gap,
we prepossess the RGB images by inpainting robot arms motivated by [46], with details deferred
to Section B.1. A comparison of the original and processed images is visualized in Figure 5. The
action is a four-dimensional vector containing the gripper’s 3D positions and its opening angle. Con-
sidering that we utilize two distinct robots: Sawyer in the simulation and Kinova in the real world,
such an action space and the image preprocessing mechanism help improve transferability.

5.2 Baselines and Ablations

We compare COVERS with different methods detailed as follows. 3RL [26], an acronym for
Replay-based Recurrent RL, is a state-of-the-art method in CRL with Meta-World tasks that in-
tegrates experience replay [17] and recurrent neural networks [47]. Note that we augment 3RL with
a convolutional neural network (CNN) to handle image inputs. In contrast, CLEAR [17], a com-
mon baseline of CRL, only utilizes the experience replay by maintaining a memory buffer to store
the experience of the past tasks and oversamples the current tasks to boost the performance in the
current one. Equi utilizes a single policy with an equivariant feature extractor to solve all tasks.
CNN utilizes a single policy with a CNN-based feature extractor as a vanilla baseline. We provide
the detailed implementation of baselines and hyperparameters in Section B.

We compare with two ablation methods. COVERS-GT uses ground truth group labels to assign
policies to different groups, which helps ablate the performance of our proposed policy assignment
mechanism. COVERS-CNN utilizes a vanilla CNN block as the image feature extractor to help
ablate the effect of using equivariant feature extractors.
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Figure 6: Training curves for COVERS and other methods. Each background color corresponds
to one task group. Each curve is averaged over 5 runs, and the shaded area shows the confidence
interval of 95%. COVERS shows similar performance with COVERS-GT, which utilizes additional
ground truth group indices, and substantially outperforms other baselines.
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Figure 7: The selected policies at each episode of COVERS. Each background color corresponds to
one task group. The assigned policy indexes remain in alignment with the ground truth ones.

6 Simulation Results and Ablations

6.1 Results

Dynamic policy assignments. Figure 7 shows that when the environment switches to a new group,
COVERS quickly detects changes and initializes a new policy for the group. Our method also
recalls the corresponding policy from the collection when facing the same group again. Overall, the
dynamic policy assignments generated by COVERS align well with the ground truth group labels.
However, we observe some instances where the policy assignment does not match the ground truth.
This could potentially be attributed to the fact that the feature extractor of each policy may not be
able to capture representative features for each group during the early stages of training. Notably,
the rate of such misclassifications significantly reduces as the number of training episodes increases.

Training performance. We show the training curves of all methods in Figure 6 and the quantitative
performance in Table 2, including the average success rates and mean rewards. COVERS achieves
a much higher episode reward and success rate consistently in different groups than baselines. It is
worth noting that although 3RL performs worse than COVERS, it achieves better performance than
baselines with implicit task representations, including Equi, CLEAR, and CNN. This indicates that
the explicit task representation used by 3RL, which maps transition pairs to latent variables using
an RNN, facilitates the revelation of partial task identifications, thereby enhancing performance. It
underscores the significance of task-specific representations in CRL. In the early stages of training,
there isn’t a significant performance difference between COVERS and Equi. However, as training
progresses, COVERS begins to outperform Equi. This is because COVERS avoids the problem of
forgetting through the retraining of policies for each previously encountered task group. A compari-
son between CNN and Equi reveals that incorporating group symmetries as inductive bias within the
equivariant network significantly enhances sample efficiency. This is achieved by only optimizing
the policy for the abstracted MDP of each task group.

6.2 Ablation Study

The effect of group symmetric information. COVERS-CNN without the invariant feature extrac-
tor demonstrates lower episodic rewards and success rates when compared with COVERS as shown
in Table 1 and Figure 6. From these results, we conclude that the equivariant feature extractor signif-
icantly enhances performance by modeling group symmetry information by introducing beneficial
inductive bias through its model architecture.



Table 1: Quantitative results showing performances at convergence for different methods, including
the average performance over five runs as well as the confidence interval of 95%.

Methods COVERS 3RL CLEAR CNN Equi COVERS-GT  COVERS-CNN

Plate Slide Success Rate 0.97 £0.02 0.28 £0.06 0.06 £0.03 0.03 +0.02 0.02£0.02 0.91£0.03 0.62 +0.05
Ave. Reward  344.04 £12.89 101.20 £ 7.35 65.65 +£2.23 23444+ 1.14 64.02+£5.85 33744 £13.87 232.254+14.24

Button Press Success Rate 0.87+£0.04 0.52 £0.06 0.31 £0.06 0.09 +0.03 0.01£0.01 0.87 +0.04 0.26 +0.05
Ave. Reward 323.41 £ 3.48 260.80 +£6.86  138.78 £12.23  91.34 £9.34 121.13 £7.02  330.56 +2.63 181.21 + 10.83

Success Rate 0.82+£0.04 0.40 £0.06 0.27 £0.05 0.16 = 0.04 0.40 £0.05 0.98 £0.02 0.56 +0.05
Ave. Reward 400.09 £ 6.18 280.62+6.39  216.08+7.68 116.334+10.1  273.26+9.67 417.38+5.6 227.34+13.0
Success Rate 0.98 +0.02 0.60 £ 0.06 0.58 4 0.06 0.14 £0.04 0.47 £ 0.05 0.97+0.02 0.97 £0.02
Ave. Reward ~ 483.53 +1.35 32223 £17.33  293.54+16.16 151.24 +14.31 306.72 +20.34 488.024+0.35  480.96 + 1.05
Success Rate 0.91+£0.02 0.44£0.03 0.30 £0.03 0.1+£0.02 0.22 £0.02 0.93 £0.01 0.60 £ 0.03
Ave. Reward 387.77 +5.02 241.214+7.39 178.5 £ 7.58 95.59 £ 5.59 191.28 +8.23 393.35+5.19  280.43 +£8.49

Drawer Close

Goal Reach

Average

The effect of the dynamic policy assignment module. In Figure 6, COVERS’s training curve is
similar to COVERS-GT, which uses ground truth group indexes as extra prior knowledge. Table 1
shows that the performance drop due to misclassification is minor considering the small standard
deviation and COVERS’s performance is within one or two standard deviations of COVERS-GT.

7 Real-world Validation

Real-world setup. Our real-world experiment setup
utilizes a Kinova GEN3 robotic arm with a Robotiq 2F-
85 gripper. The top-down RGB image is captured with
an Intel RealSense D345f. Gripper’s coordinates and
opening angle are obtained through the robot’s internal
sensors. The real robot setups are demonstrated in Fig-
ure 8. We directly deploy the trained policies in simu-
lation to the real world. Table 2 shows average success
rates across 20 trials and shows that our trained policies
have strong generalization capability to real-world sce-
narios. The performance drop compared with simula-
tion experiments may be due to the inconsistent visual
features and different scales of robots’ action spaces.

Goal Reach Button Press

Task Groups  Success Rate

Plate Slide 0.45+0.15 Drawer Close Plate Slide
Button Press  0.60 £ 0.15
Drawer Close  0.65 + 0.15 Figure 8: The real Kinova GEN3 setup with
Goal Reach 0.92 +0.07 four task groups. The goal point marked in
the figure is only disclosed to the agent in
Table 2: Real-world validation results. Goal Reach as auxiliary information.

8 Conclusion

We propose COVERS, a novel Vision-based CRL framework that leverages group symmetries to
facilitate generalization to unseen but equivalent tasks under the same group operations. COVERS
detects group boundaries in an unsupervised manner based on invariant features and grows policies
for each group of equivalent tasks instead of a single task. We show that COVERS assigns tasks
to different groups with high accuracy, has a strong generalization capability, and maintains the
capability to solve seen groups, outperforming baselines by a large margin.

Limitation: One limitation of COVERS is that the memory it occupies grows linearly with the
number of task groups. However, it is worth noting that COVERS still occupies less memory than
maintaining a policy buffer for each task by only storing representative data frames such as the ini-
tial frames for each task group. Another limitation is that although assuming a top-down camera
with a fixed base is widely adopted in existing works, it is hard to fulfill outside of labs. It would
be interesting to incorporate more general group operations, such as affine transformation and do-
main randomization techniques, to handle deformed images. Moreover, we only experimented with
groups with equivariance structures. COVERS’s performance is unknown in more complex scenar-
ios with both equivariant and non-equivariant tasks.
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A Brief Introduction to Group and Representation Theory

In this section, we briefly introduce Group and Representation Theory [48] to help understand the
policy structure in Section B.2.

Linear group representations describe abstract groups in terms of linear transformations on some
vector spaces. In particular, they can be used to represent group elements as linear transformations
(matrices) on that space. A representation of a group G on a vector space V' is a group homomor-
phism from G to GL(V'), the general linear group on V. That is, a representation is a map

p: G — GL(V), suchthat p(g192) = p(g1)p(g2), V91,92 € G. 3)

Here V is the representation space, and the dimension of V' is the dimension of the representation.

A.1 Trivial Representation

Trivial representation maps any group element to the identity, i.e.

Vg€ G, plg) = 1. S
A.2 Irreducible Representations

A representation of a group G is said to be irreducible (shorthand as irrep) if it has no non-trivial
invariant subspaces. For example, given a group GG acting on a vector space V, V is said to be
irreducible if the only subspaces of V' preserved under the action of every group element are the zero
subspace and V itself. The trivial representation is an irreducible representation and is common to
all groups.

A.3 Regular Representation

Given a group G, the regular representation is a representation over a vector space V' which has a
basis indexed by the elements of G. In other words, if G has n elements (if G is finite), then the
regular representation is a representation on a vector space of dimension n. An important fact about
the regular representation is that it can be decomposed into irreducible representations in a very
structured way.

A.4 Dihedral Group

The dihedral group D,, is the group of symmetries of a regular n-sided polygon, including n rotations
and n reflections. Thus, D,, has 2n elements. For example, the dihedral group of a square (Dy)
includes 4 rotations and 4 reflections, giving 8 transformations in total.

B Additional Experiment Details

B.1 Image Inpainting

To close the sim-to-real gap, we employ a pre-processing technique on camera images, which in-
volves in-painting robotic arms. The process begins by capturing a background image in which
the robotic arm is absent from the camera’s view. For every time step, a mask that represents the
position of each robotic limb is generated, leveraging the 3D locations of individual joints and the
projection matrix of the camera. With this mask, we can select all areas devoid of the robotic arm,
and subsequently update the background image accordingly. The images are subjected to a color
correction process to mitigate any potential color deviations attributable to lighting or reflection.
Lastly, a distinct blue circle is overlaid at the gripper’s position on the background image to indicate
the gripper’s location. The entire image in-painting process is shown in Figure 9.
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Figure 9: Image inpainting process.

B.2 Detailed Policy Architecture

In this section, we present the detailed model architecture including the model sizes and the types of
each layer in Figure 10.

In order to make our policy network equivariant under transformations from the finite group Do,
we need to choose the appropriate representation for both the network input and output, while also
ensuring that the network architecture and operations preserve this equivariance.

The image input is encoded using the trivial representation. The robot state, on the other hand, is
encoded with a mixture of different representations: the gripper’s position on the z-axis and the
gripper’s open angle are encoded with the trivial representation since they are invariant to group
actions in Dy. The gripper’s location on the x and y-axes, however, are encoded with two different
non-trivial irreducible representations because their values are equivariant to group actions in Ds.

The value output is encoded with the trivial representation since the optimal value function should
be invariant to group actions [32]. Finally, the action output is encoded with a mixture of different
representations. For actions, the gripper movement along the z-axis and the gripper’s opening angle
are encoded with the trivial representation, while the gripper’s location on the x and y-axes are
encoded with two different non-trivial irreducible representations, aligning with the input encoding.
The distance metric is encoded with trivial representation through the group pooling operation.

Robot State

LP, mix
v
Action

®.
7
M Pl 4R
M !le

(
(
(

Initial frame

Current frame —>

( )
onv, 16
64R
64T
FC, 1T )

3x3 Cony, 4R
X3 C
X3 Conv,
FC,
Value

3x3 Cony, 16R
Global max pooling ]

2x2 Max pooling
2x2 Max pooling

2x2 Max pooling
3x

Distance
Metric

Figure 10: Detailed equivariant policy network architecture. ReLU nonlinearity is omitted in the
figure. A layer with a suffix of R indicates the layer output is in the regular representation. A layer
with a suffix of T indicates the layer output is in the trivial representation. A layer with a suffix of
’mix’ means the layer output combines different representations.
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B.3 Randomness of Tasks

In each task across all groups, we introduce randomness to the object’s initial position and goal posi-
tion by adding a perturbation value sampled from a uniform distribution with a range (—0.02,0.02)
in meters. We list the perturbed features as follows:

* Goal Reach: the zyz coordinate of the goal position.
* Button Press: the xy coordinate of the button’s initial location.
* Drawer Close: the xy coordinate of the drawer’s initial location.

* Plate Slide: the xy coordinate of the plate’s destination.

B.4 Implementation of CLEAR

The CLEAR algorithm [17] addresses the challenge of continual learning by putting data from
preceding tasks in a buffer, utilized subsequently for retraining. This method effectively decelerates
the rate of forgetting by emulating a continuous learning setting. The specific network architecture
for CLEAR is illustrated in Figure 11. To make CLEAR able to process both images and robot
state as input, we introduce a feature extractor, which harmoniously integrates a CNN and an MLP
network. This composite feature extractor is carefully designed to contain a similar quantity of
learnable parameters to our Equivariant feature extractor.
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Figure 11: Network architecture for CLEAR. In (a) we show the network architecture of the actor

network and the critic network. In (b) we show the structure of the feature extractor, which consists
of both a CNN network and an MLP network. ReLU nonlinearity is omitted in the figure.

B.5 Implementation of 3RL

The 3RL algorithm [26] can be seen as an improved version of CLEAR, wherein additional historical
data is provided to the actor and critic from a dedicated context encoder. This historical data includes
(si,ai,7;), and the context encoder extracted task specificities from the history data with an RNN
network. The specific network architecture for 3RL is illustrated in Figure 12.

B.6 Hyperparameters

We show the hyperparameters of our proposed COVERS in Table 3. Moreover, we show the hyper-
parameters of baselines in Table 4.
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Figure 12: Network architecture for 3RL. In (a), we illustrate the structure of both the actor and critic
networks, whereas (b) highlights the configuration of the context encoder, comprising a feature
extractor and GRUs. It’s noteworthy that the feature extractor has the same architecture as the
CLEAR algorithm, as shown in Figure 11.

Table 3: COVERS Hyperparameter

Hyperparameters Value
Wasserstein distance threshold d. 1.0
Initial frame number & 4
Update interval N, 1000
Rollout buffer size Ng 1000
Batch size 64
Number of epochs 8
Discount factor 0.99
Optimizer learning rate 0.0003
Likelihood ratio clip range € 0.2
Advantage estimation A 0.95
Entropy coefficient 0.001
Max KL divergence 0.05

Table 4: CLEAR and 3RL Hyperparameter

Hyperparameters Value

Common hyperparameter

Replay buffer size 200000
Discount factor 0.95

Burn in period 20000

Warm up period 1000

Batch size 512
Gradient clipping range (-1.0,41.0)
Learning rate 0.0003

Entropy regularization coefficient  0.005

3RL Specific Hyperparameters

RNN'’s number of layers 1
RNN’s context size 30
RNN’s context length 5
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C Additional Ablation Study

C.1 Sensitivity Analysis of Different Metrics

In Section 4.4, we used the 1-Wasserstein distance to measure the distance between those two fea-
ture distributions. In this section, we compared the 1-Wasserstein distance with two other metrics:
Euclidean distance and Mahalanobis distance. We present the qualitative results in Figure 13a, 13b
and 13c.

Adjusted Rand Index (ARI). To evaluate how different metric affects the algorithm performance,
besides evaluating the converged performance, we further evaluated the Adjusted Rand Index (ARI)
[49] of the policy ID and group ID during the training progress. The ARI value measures the
similarity between two clusterings by considering all pairs of samples. It counts pairs assigned to
the same or different clusters in both the predicted and true clusterings. Here we used the group
index as the ground truth label for each episode, while the policy index as the predicted label. Then
we compute the ARI value between two clustering of the entire training process. An ARI value
closer to 1.0 indicates a more accurate clustering result.

Euclidean distance (or L2 norm). The Euclidean distance between point ¢ and p is

d(p,q) = v/ (p — ¢)* 5)

To compute the Euclidean distance between features of the state buffer B; of size n and the buffer
O, we computed the mean vector x and y of buffer X and Y, the Euclidean distance is simply
d(z,y) = v/(x — y)?. Here X and Y be matrices constructed by invariant features extracted from
the state buffer 3; of size n and the buffer O of size m, as shown in Section 4.4. Here we test five
different threshold d. and run three random seeds for each threshold. The quantitative converged
performance is shown in Table 5.

Table 5: Quantitative results showing performances at convergence for different Euclidean distance
threshold d., including the average performance over three runs as well as the confidence interval of
95%.

Threshold d. 0.3 0.4 0.5 0.6 0.7
Plate Slide Success Rate  0.91 £ 0.04 0.92 +0.04 0.93 +0.04 0.97 +£0.03 0.96 +0.03
Ave. Reward 332.27+19.4 338.96 + 19.51 342.46 +19.2 346.63 £ 20.03 348.02 + 20.68

Button Press Success Rate 0.83 +£0.06 0.73 +0.07 0.77 £ 0.07 0.95+0.03 0.97 +0.02
Ave. Reward 32349 +6.92 304.63+9.71 298.75+10.67 334.18 £+ 2.08 332.27 £+ 3.0

Drawer Close Success Rate  0.93 £ 0.04 0.98 £ 0.02 0.73 £0.07 0.87 £0.05 0.98 +£0.02
Ave. Reward 413.04 +£9.03  432.22+6.14 387.01 +11.63 409.37 £+ 10.19 454.7 + 3.25

Goal Reach Success Rate  0.99 £+ 0.01 0.99 £+ 0.01 0.99 +0.01 0.99 +£0.01 0.82 + 0.06
Ave. Reward 488.43 +0.18 486.82+0.59 488.89 +0.11 488.82+ 0.08 480.46 £+ 2.35

Average Success Rate  0.92 £+ 0.02 0.91 £0.02 0.86 = 0.03 0.95 +0.02 0.94 £0.02

Ave. Reward 389.31 £7.77  390.66 + 8.11 379.28 £8.4 394.75 £ 7.48 403.86 £ 7.42

Mahalanobis distance. The Mahalanobis distance measures the distance between a point x and a
distribution D. It is defined as:

dar(x) = \/ (@ — TS (@ — p), (©)
where x is the point, u is the mean of the distribution D, and X is the covariance matrix of D.

We compute Mahalanobis distance between the mean vector y of Y and distribution X. Similarly,
we test five different threshold d. and run three random seeds for each d.. The quantitative converged
performance is shown in Table 6.

Wasserstein distance. In Table 1 we analysed COVERS performance under 1-Wasserstein distance
with threshold of d. = 1.0. Here we test five different threshold d. and run three random seeds for
each d.. The converged performance is shown in Table 7.

Analysis. Our results show that the Wasserstein distance is less sensitive to the hyperparameter
and performs well across different parameters. Moreover, the L2 distance can yield satisfactory
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Table 6: Quantitative results showing performances at convergence for different Mahalanobis dis-
tance threshold d., including the average performance over three runs as well as the confidence

interval of 95%.
Threshold d, 3.0 4.0 5.0 6.0 7.0

Plate Slide Success Rate 0.94 £0.04 0.96 +0.03 0.95+0.03 0.9+ 0.05 0.31 £0.07
Ave. Reward 332.75+20.91 330.25+20.56 329.31 £22.13 333.61+19.43 138.03 £22.72

Button Press Success Rate 0.81 +0.06 0.83 £0.06 0.7 +0.07 0.94 +£0.04 0.24 +0.07
Ave. Reward  323.0 +3.83 321.57 +£4.34 306.89 + 7.62 336.77 £ 0.76  301.48 +6.24

Drawer Close Success Rate 0.82 £ 0.06 0.85 +0.06 0.78 £0.07 0.72£0.07 0.62 £+ 0.08
Ave. Reward  392.73 +9.48 420.41+8.77 399.06 + 10.31 390.82 + 10.78 363.15 + 11.7

Goal Reach Success Rate 0.99 +0.01 0.96 £0.03 0.99 +£0.01 0.99 +0.01 0.9+ 0.05

Ave. Reward  487.85+0.27  486.54+1.15 488.54+0.16  486.05 4+ 1.46 484.0 +2.26

Average Success Rate 0.94+0.02 0.91 +0.02 0.86 £ 0.03 0.89 £+ 0.02 0.52 £ 0.04
Ave. Reward 384.09+7.84 389.69+ 7.88 380.95+ 8.54 386.81 + 7.44 321.66 + 11.96

Table 7: Quantitative results showing performances at convergence for different 1-Wasserstein dis-
tance threshold d., including the average performance over three runs as well as the confidence
interval of 95%.

Threshold d. 0.6 0.8 1.0 1.2 14

Plate Slide Success Rate 0.49+0.1 0.94 +0.04 0.95 £+ 0.04 0.95 +0.04 0.89 £ 0.06
Ave. Reward 196.34 £31.64 339.21 £26.44  340.1 £24.42 352.65 +24.72 336.82 £ 24.02

Button Press Success Rate 048 £0.1 0.83£0.07 0.88 + 0.06 0.94 +£0.04 0.75+£0.08
Ave. Reward 272.01 +13.25  316.08 £9.41 324.98 + 4.54 326.22+5.81 298.83 +13.23

Drawer Close Success Rate 0.97 £0.03 0.89 & 0.06 0.91 4+ 0.05 0.88 4= 0.06 0.76 £ 0.08
Ave. Reward 433.62+7.79 410.59+13.92 411.99 £11.26 425.68 £ 8.38 393.62 +12.99

Goal Reach Success Rate 0.98 £0.02 0.98 £0.02 0.95+0.04 0.98 £+ 0.02 0.98 +0.02
Ave. Reward 488.72+£0.11 487.93+0.16 486.9 + 0.96 487.62 £ 0.4 488.05 + 0.36

Average Success Rate 0.74£0.04 0.92+0.03 0.944+0.02 0.95 +0.02 0.86 £ 0.03
Ave. Reward  347.67 +14.55 388.45+10.23 390.99 £+ 9.29 398.05 £ 9.12 379.33 £10.31

performance with the optimal hyperparameter selection. Such observations show that the invariant
feature is more important in group identification other than the metrics.

C.2 The Effect of Buffer Size

We conduct an ablation study to show the effect of the buffer sizes. We select five buffer sizes,
including 32, 64, 128, 256, and 512. We show the results in Table 8 and Figure 13d. Our results
show that when buffer size equals 128, COVERS achieves the best performance.

D Additional Training Results

D.1 Evaluation over Different Levels of Camera Perturbations

In this section, we present the converged performance of our algorithm under different camera per-
turbation levels. For experiments with perturbation distance d,,, we randomly shift the zy coordinate

Table 8: Quantitative results showing performances at convergence for different buffer sizes, includ-

ing the average performance over three runs as well as the confidence interval of 95%.

Buffer size 32 64 128 256 512
Plate Slide Success Rate 0.61 £0.08 0.94 £ 0.04 0.95 £+ 0.04 0.96 +0.03 0.94 £+ 0.04
Ave. Reward 240.42+25.11  310.47 £ 20.19 340.1 £ 24.42 331.52£21.91 347.38 +20.26

Button Press Success Rate 0.55 £0.08 0.94+0.04 0.88 = 0.06 0.49 £ 0.08 0.77 £ 0.07
Ave. Reward 269.27 +14.27 333.79 +1.66 324.98 +4.54 221.73 £ 23.32 311.55 £ 6.15

Drawer Close Success Rate 0.9+£0.05 0.73+0.07 0.91+0.05 0.86 £ 0.05 0.79 +0.06
Ave. Reward 380.414+13.72 37898 +11.03 411.99+11.26 398.73+8.54 394.83 £+ 10.06

Goal Reach Success Rate 0.96 £0.03 0.99 £ 0.01 0.95 £+ 0.04 0.99 +0.01 0.99 £+ 0.01

Ave. Reward  486.83 +0.74 488.62 £ 0.1 486.9 £ 0.96 488.35 £ 0.16 488.3 +£0.43

Average Success Rate 0.76 £ 0.03 0.9 i 0.02 0.94 +0.02 9.83 +0.03 0.88 £ 0.03

Ave. Reward 344.23 £11.17  377.96 +7.95 390.99 £9.29  360.08 + 11.37 385.52 £ 7.9
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shows similar performance with COVERS-GT, which utilizes additional ground truth group indices,
and substantially outperforms other baselines.

by adding noise sampled from a uniform distribution of range (—dp, dp). The results are shown in
Table 9. We choose five perturbation levels, including d,, = 0.01,0.02,0.03, 0.04, 0.05 in meters.
Our results show that our trained policy can still achieve high performance even with large camera
position shifts when d,, = 0.05, indicating strong robustness to the camera perturbations. The task
that suffers the most when the camera position shifts is the Button Press, which we conjecture may
be due to the contact-rich nature of the task. It is worth noting that even when the equivariance
between tasks is imperfect due to camera position shift, our policy can still achieve success rates
higher than 0.5 in 3 out of 4 tasks and an average success rate of 0.59 when d,, = 0.05.

D.2 Additional Training Setups

Training devices. We conducted COVERS training and ablation studies on a cluster of servers, with
different hardware configurations. The CPU model includes AMD RYZEN 9 3900X, AMD RYZEN
9 3900X, AMD RYZEN 9 5900x, and AMD RYZEN 9 7900x. The GPU model includes NVIDIA
GeForce RTX 2080 Ti, NVIDIA GeForce RTX 3090, and NVIDIA GeForce RTX 4090.

Training time and memory consumption. Here, we show the total time to train different methods.
Note that the absolute training time highly depends on server hardware, and our results are best

Table 9: Evaluation over Different Levels of Camera Perturbations

Perturbations level d,, (m) 0.01 0.02 0.03 0.04 0.05

Plate Slide Success Rate 0.92 +£0.05 0.86 + 0.07 0.78 +0.07 0.8 +£0.07 0.69 + 0.08
Ave. Reward 299.06 +23.95 283.54+22.36 261.21 +22.31 264.79+22.13 252.06 £+ 21.32

Button Press Success Rate 0.45 +£0.09 0.17+0.07 0.24 +0.07 0.14 + 0.06 0.08 +0.05
Ave. Reward 254.15+18.14 143.74+17.59 162.13+18.8 133.01 +16.47 144.12 +15.86

Drawer Close Success Rate 0.89 + 0.06 0.75 £ 0.08 0.67 £ 0.08 0.67 + 0.08 (}.6 +0.09
Ave. Reward 365.87 +£18.03 313.79+19.11 287.09 +20.57 270.05+20.28 235.91 + 21.67

Goal Reach Success Rate 0.98 +0.02 0.98 +0.02 0.98 +0.02 0.98 +0.02 0.98 +0.02
Ave. Reward 488.06 £ 0.7 488.56 +£0.27  488.61 £0.23 488.63+0.13 488.49 £0.45

Average Success Rate 0.80 £0.04 0.69 + 0.04 0.66)i 0.04 ) 0.65 + 0.04 0.59 +0.04
Ave. Reward 351.78 £11.79 307.41+13.93 299.76 +13.86 289.12 4+ 14.27 280.14 +14.24
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understood when comparing them relative to each other. The averaged training time for COVERS,
CNN, Equi, COVERS-GT, COVERS-CNN is roughly the same, about 34 hours, while CLEAR and
3RL take 10 and 30 hours to train, respectively. For memory consumption, COVERS, CNN, Equi,
COVERS-GT, COVERS-CNN are roughly the same, about 10 Gigabytes. For 3RL and CLEAR, the
memory consumption is about 250 Gigabytes since they are off-policy algorithms and consist of a
large replay buffer that stores state-action pair. This could be problematic in our setup since we use
images as part of the state that dramatically increases memory consumption.

D.3 Qualitative Visualization using Training Rewards

Similar to Figure 6 that shows the success rates along training, we provide qualitative visualization
using the task rewards in Figure 14.
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