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Abstract: Continual reinforcement learning aims to sequentially learn a variety of

tasks, retaining the ability to perform previously encountered tasks while simulta-

neously developing new policies for novel tasks. However, current continual RL

approaches overlook the fact that certain tasks are identical under basic group op-

erations like rotations or translations, especially with visual inputs. They may un-

necessarily learn and maintain a new policy for each similar task, leading to poor

sample efficiency and weak generalization capability. To address this, we intro-

duce a unique Continual Vision-based Reinforcement Learning method that rec-

ognizes Group Symmetries, called COVERS, cultivating a policy for each group

of equivalent tasks rather than an individual task. COVERS employs a proximal-

policy-gradient-based (PPO-based) algorithm to train each policy, which contains

an equivariant feature extractor and takes inputs with different modalities, includ-

ing image observations and robot proprioceptive states. It also utilizes an unsu-

pervised task clustering mechanism that relies on 1-Wasserstein distance on the

extracted invariant features. We evaluate COVERS on a sequence of table-top

manipulation tasks in simulation and on a real robot platform. Our results show

that COVERS accurately assigns tasks to their respective groups and significantly

outperforms baselines by generalizing to unseen but equivariant tasks in seen task

groups. Demos are available on our project page1.
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1 INTRODUCTION

Quick adaptation to unseen tasks has been a key objective in the field of reinforcement learning

(RL) [1, 2, 3]. RL algorithms are usually trained in simulated environments and then deployed

in the real world. However, pre-trained RL agents are likely to encounter new tasks during their

deployment due to the non-stationarity of the environment [4, 5]. Blindly reusing policies obtained

during training can result in substantial performance drops and even catastrophic failures [6, 7, 8].

Continual RL (CRL), also referred to as lifelong RL, addresses this issue by sequentially learning a

series of tasks. It achieves this by generating task-specific policies for the current task, while simul-

taneously preserving the ability to solve previously encountered tasks [3, 9, 10, 11, 12]. Existing

CRL works that rely on task delineations to handle non-stationary initial states, dynamics, or reward

functions can greatly boost task performance, particularly when significant task changes occur [10].

However, in realistic task-agnostic settings, these delineations are unknown and have to be identified

by the agents. In this work, we explore how to define and detect task delineations to enhance robots’

learning capabilities in task-agnostic CRL.

1Project Page: https://sites.google.com/view/rl-covers/.
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Algorithm 1 COVERS: Continual Vision-based RL with Group Symmetries

Input: Threshold dϵ, initial frame number k, update interval Nu, rollout step size Ns

Output: collection of policies Π
Initialization: Current policy πcur initialized as a random policy with a policy data buffer B ← ∅,
policy collection Π← {(πcur,B)}, number of episodes n← 0, online rollout buffer D ← ∅

1: while task not finish do
2: n← n+ 1
3: if n%Nu = 0 then
4: Rollout buffer O ← ∅ ▷ Unsupervised Policy Assignment
5: Rollout Ns steps with πcur and get trajectories τ = {(s0, a0, . . . , sH−1, aH−1)}
6: Append the first k frames of each episode to rollout buffer O ← {(s0, . . . , sk−1)}
7: Append the whole episode trajectories τ to the online rollout buffer D
8: Calculate the 1-Wasserstein distances dWi (O,Bi), ∀{πi,Bi} ∈ Π (Equation 2)

9: Get the minimum distance dWj where j = argmini d
W
i (O,Bi)

10: if dj > dϵ then
11: Initialize a new random policy π as well as its policy data buffer B ← O
12: πcur ← π, Π← Π ∪ {{π,B}}
13: else
14: Assign the existing policy and buffer with πcur ← πj , Bj ← Bj ∪ O

15: Update πcur based on online rollout buffer D (Equation 1) ▷ Equivariant Policy Update
16: D ← ∅

17: else
18: Sample an episode and append to online rollout buffer D

new task group may emerge at each episode, the total number of distinct groups remains unknown,

and the group may arrive in random orders. The primary objective is to devise an online learning

algorithm capable of achieving high performance across all tasks with strong data efficiency. We

visualize our CRL setting with table-top manipulation environments in Figure 2.

4.2 Algorithm

We present the pseudocode for COVERS, a task-agnostic continual RL method with group sym-

metries, in Algorithm 1. COVERS maintains a collection Π = {(π,B)}, each element of which

comprising a pair of policy π and its respective data buffer B. Each policy π independently manages

one group of tasks, with B storing the initial frames of the group it oversees. At fixed time intervals,

COVERS collects Ns steps in parallel under the current policy πcur and stores the first k frames

from each episode in the rollout buffer O. Based on O, the algorithm then either (a) creates a new

policy for an unseen group and adds it to the collection Π, or (b) recalls an existing policy from the

collection Π if the group has been previously encountered. It is worth noting that we assign poli-

cies based on the initial frames of each episode rather than the full episode rollout. This is because

frames corresponding to later timesteps are heavily influenced by the behavior policy and could eas-

ily lead to unstable policy assignments. Only maintaining a subset of the rollout trajectories also

helps alleviate memory usage.

After the policy assignment, the selected policy πcur with parameters θ is updated based on an online

rollout buffer D and the PPO method [13] with loss in Equation 1. Ât is the estimated advantage,

ρt = πθ(at|st)/πθold(at|st) is the importance ratio and ϵ is the clip range.

LCLIP = Eτ∼D

[

H
∑

t=1

min[ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât]
]

. (1)

4.3 Policy Network Architecture

COVERS utilizes an equivariant policy network that comprises a policy network for predicting ac-

tions, a value network approximating values, and an equivariant feature extractor taking multiple

modalities. We show the policy architecture in Figure 3 and additional details in Figure 10.
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A Brief Introduction to Group and Representation Theory

In this section, we briefly introduce Group and Representation Theory [48] to help understand the

policy structure in Section B.2.

Linear group representations describe abstract groups in terms of linear transformations on some

vector spaces. In particular, they can be used to represent group elements as linear transformations

(matrices) on that space. A representation of a group G on a vector space V is a group homomor-

phism from G to GL(V ), the general linear group on V. That is, a representation is a map

ρ : G→ GL (V ) , such that ρ(g1g2) = ρ(g1)ρ(g2), ∀g1, g2 ∈ G. (3)

Here V is the representation space, and the dimension of V is the dimension of the representation.

A.1 Trivial Representation

Trivial representation maps any group element to the identity, i.e.

∀g ∈ G, ρ(g) = 1. (4)

A.2 Irreducible Representations

A representation of a group G is said to be irreducible (shorthand as irrep) if it has no non-trivial

invariant subspaces. For example, given a group G acting on a vector space V , V is said to be

irreducible if the only subspaces of V preserved under the action of every group element are the zero

subspace and V itself. The trivial representation is an irreducible representation and is common to

all groups.

A.3 Regular Representation

Given a group G, the regular representation is a representation over a vector space V which has a

basis indexed by the elements of G. In other words, if G has n elements (if G is finite), then the

regular representation is a representation on a vector space of dimension n. An important fact about

the regular representation is that it can be decomposed into irreducible representations in a very

structured way.

A.4 Dihedral Group

The dihedral group Dn is the group of symmetries of a regular n-sided polygon, including n rotations

and n reflections. Thus, Dn has 2n elements. For example, the dihedral group of a square (D4)

includes 4 rotations and 4 reflections, giving 8 transformations in total.

B Additional Experiment Details

B.1 Image Inpainting

To close the sim-to-real gap, we employ a pre-processing technique on camera images, which in-

volves in-painting robotic arms. The process begins by capturing a background image in which

the robotic arm is absent from the camera’s view. For every time step, a mask that represents the

position of each robotic limb is generated, leveraging the 3D locations of individual joints and the

projection matrix of the camera. With this mask, we can select all areas devoid of the robotic arm,

and subsequently update the background image accordingly. The images are subjected to a color

correction process to mitigate any potential color deviations attributable to lighting or reflection.

Lastly, a distinct blue circle is overlaid at the gripper’s position on the background image to indicate

the gripper’s location. The entire image in-painting process is shown in Figure 9.
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C Additional Ablation Study

C.1 Sensitivity Analysis of Different Metrics

In Section 4.4, we used the 1-Wasserstein distance to measure the distance between those two fea-

ture distributions. In this section, we compared the 1-Wasserstein distance with two other metrics:

Euclidean distance and Mahalanobis distance. We present the qualitative results in Figure 13a, 13b

and 13c.

Adjusted Rand Index (ARI). To evaluate how different metric affects the algorithm performance,

besides evaluating the converged performance, we further evaluated the Adjusted Rand Index (ARI)

[49] of the policy ID and group ID during the training progress. The ARI value measures the

similarity between two clusterings by considering all pairs of samples. It counts pairs assigned to

the same or different clusters in both the predicted and true clusterings. Here we used the group

index as the ground truth label for each episode, while the policy index as the predicted label. Then

we compute the ARI value between two clustering of the entire training process. An ARI value

closer to 1.0 indicates a more accurate clustering result.

Euclidean distance (or L2 norm). The Euclidean distance between point q and p is

d(p, q) =
√

(p− q)2. (5)

To compute the Euclidean distance between features of the state buffer Bi of size n and the buffer

O, we computed the mean vector x and y of buffer X and Y, the Euclidean distance is simply

d(x, y) =
√

(x− y)2. Here X and Y be matrices constructed by invariant features extracted from

the state buffer Bi of size n and the buffer O of size m, as shown in Section 4.4. Here we test five

different threshold dϵ and run three random seeds for each threshold. The quantitative converged

performance is shown in Table 5.

Table 5: Quantitative results showing performances at convergence for different Euclidean distance
threshold dϵ, including the average performance over three runs as well as the confidence interval of
95%.

Threshold dϵ 0.3 0.4 0.5 0.6 0.7

Plate Slide
Success Rate 0.91± 0.04 0.92± 0.04 0.93± 0.04 0.97± 0.03 0.96± 0.03
Ave. Reward 332.27± 19.4 338.96± 19.51 342.46± 19.2 346.63± 20.03 348.02± 20.68

Button Press
Success Rate 0.83± 0.06 0.73± 0.07 0.77± 0.07 0.95± 0.03 0.97± 0.02
Ave. Reward 323.49± 6.92 304.63± 9.71 298.75± 10.67 334.18± 2.08 332.27± 3.0

Drawer Close
Success Rate 0.93± 0.04 0.98± 0.02 0.73± 0.07 0.87± 0.05 0.98± 0.02
Ave. Reward 413.04± 9.03 432.22± 6.14 387.01± 11.63 409.37± 10.19 454.7± 3.25

Goal Reach
Success Rate 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.82± 0.06
Ave. Reward 488.43± 0.18 486.82± 0.59 488.89± 0.11 488.82± 0.08 480.46± 2.35

Average
Success Rate 0.92± 0.02 0.91± 0.02 0.86± 0.03 0.95± 0.02 0.94± 0.02
Ave. Reward 389.31± 7.77 390.66± 8.11 379.28± 8.4 394.75± 7.48 403.86± 7.42

Mahalanobis distance. The Mahalanobis distance measures the distance between a point x and a

distribution D. It is defined as:

dM (x) =
√

(x− µ)TΣ−1(x− µ), (6)

where x is the point, µ is the mean of the distribution D, and Σ is the covariance matrix of D.

We compute Mahalanobis distance between the mean vector y of Y and distribution X. Similarly,

we test five different threshold dϵ and run three random seeds for each dϵ. The quantitative converged

performance is shown in Table 6.

Wasserstein distance. In Table 1 we analysed COVERS performance under 1-Wasserstein distance

with threshold of dϵ = 1.0. Here we test five different threshold dϵ and run three random seeds for

each dϵ. The converged performance is shown in Table 7.

Analysis. Our results show that the Wasserstein distance is less sensitive to the hyperparameter

and performs well across different parameters. Moreover, the L2 distance can yield satisfactory
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Table 6: Quantitative results showing performances at convergence for different Mahalanobis dis-
tance threshold dϵ, including the average performance over three runs as well as the confidence
interval of 95%.

Threshold dϵ 3.0 4.0 5.0 6.0 7.0

Plate Slide
Success Rate 0.94± 0.04 0.96± 0.03 0.95± 0.03 0.9± 0.05 0.31± 0.07
Ave. Reward 332.75± 20.91 330.25± 20.56 329.31± 22.13 333.61± 19.43 138.03± 22.72

Button Press
Success Rate 0.81± 0.06 0.83± 0.06 0.7± 0.07 0.94± 0.04 0.24± 0.07
Ave. Reward 323.0± 3.83 321.57± 4.34 306.89± 7.62 336.77± 0.76 301.48± 6.24

Drawer Close
Success Rate 0.82± 0.06 0.85± 0.06 0.78± 0.07 0.72± 0.07 0.62± 0.08
Ave. Reward 392.73± 9.48 420.41± 8.77 399.06± 10.31 390.82± 10.78 363.15± 11.7

Goal Reach
Success Rate 0.99± 0.01 0.96± 0.03 0.99± 0.01 0.99± 0.01 0.9± 0.05
Ave. Reward 487.85± 0.27 486.54± 1.15 488.54± 0.16 486.05± 1.46 484.0± 2.26

Average
Success Rate 0.9± 0.02 0.91± 0.02 0.86± 0.03 0.89± 0.02 0.52± 0.04
Ave. Reward 384.09± 7.84 389.69± 7.88 380.95± 8.54 386.81± 7.44 321.66± 11.96

Table 7: Quantitative results showing performances at convergence for different 1-Wasserstein dis-
tance threshold dϵ, including the average performance over three runs as well as the confidence
interval of 95%.

Threshold dϵ 0.6 0.8 1.0 1.2 1.4

Plate Slide
Success Rate 0.49± 0.1 0.94± 0.04 0.95± 0.04 0.95± 0.04 0.89± 0.06
Ave. Reward 196.34± 31.64 339.21± 26.44 340.1± 24.42 352.65± 24.72 336.82± 24.02

Button Press
Success Rate 0.48± 0.1 0.83± 0.07 0.88± 0.06 0.94± 0.04 0.75± 0.08
Ave. Reward 272.01± 13.25 316.08± 9.41 324.98± 4.54 326.22± 5.81 298.83± 13.23

Drawer Close
Success Rate 0.97± 0.03 0.89± 0.06 0.91± 0.05 0.88± 0.06 0.76± 0.08
Ave. Reward 433.62± 7.79 410.59± 13.92 411.99± 11.26 425.68± 8.38 393.62± 12.99

Goal Reach
Success Rate 0.98± 0.02 0.98± 0.02 0.95± 0.04 0.98± 0.02 0.98± 0.02
Ave. Reward 488.72± 0.11 487.93± 0.16 486.9± 0.96 487.62± 0.4 488.05± 0.36

Average
Success Rate 0.74± 0.04 0.92± 0.03 0.94± 0.02 0.95± 0.02 0.86± 0.03
Ave. Reward 347.67± 14.55 388.45± 10.23 390.99± 9.29 398.05± 9.12 379.33± 10.31

performance with the optimal hyperparameter selection. Such observations show that the invariant

feature is more important in group identification other than the metrics.

C.2 The Effect of Buffer Size

We conduct an ablation study to show the effect of the buffer sizes. We select five buffer sizes,

including 32, 64, 128, 256, and 512. We show the results in Table 8 and Figure 13d. Our results

show that when buffer size equals 128, COVERS achieves the best performance.

D Additional Training Results

D.1 Evaluation over Different Levels of Camera Perturbations

In this section, we present the converged performance of our algorithm under different camera per-

turbation levels. For experiments with perturbation distance dp, we randomly shift the xy coordinate

Table 8: Quantitative results showing performances at convergence for different buffer sizes, includ-
ing the average performance over three runs as well as the confidence interval of 95%.

Buffer size 32 64 128 256 512

Plate Slide
Success Rate 0.61± 0.08 0.94± 0.04 0.95± 0.04 0.96± 0.03 0.94± 0.04
Ave. Reward 240.42± 25.11 310.47± 20.19 340.1± 24.42 331.52± 21.91 347.38± 20.26

Button Press
Success Rate 0.55± 0.08 0.94± 0.04 0.88± 0.06 0.49± 0.08 0.77± 0.07
Ave. Reward 269.27± 14.27 333.79± 1.66 324.98± 4.54 221.73± 23.32 311.55± 6.15

Drawer Close
Success Rate 0.9± 0.05 0.73± 0.07 0.91± 0.05 0.86± 0.05 0.79± 0.06
Ave. Reward 380.41± 13.72 378.98± 11.03 411.99± 11.26 398.73± 8.54 394.83± 10.06

Goal Reach
Success Rate 0.96± 0.03 0.99± 0.01 0.95± 0.04 0.99± 0.01 0.99± 0.01
Ave. Reward 486.83± 0.74 488.62± 0.1 486.9± 0.96 488.35± 0.16 488.3± 0.43

Average
Success Rate 0.76± 0.03 0.9± 0.02 0.94± 0.02 0.83± 0.03 0.88± 0.03
Ave. Reward 344.23± 11.17 377.96± 7.95 390.99± 9.29 360.08± 11.37 385.52± 7.9
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understood when comparing them relative to each other. The averaged training time for COVERS,

CNN, Equi, COVERS-GT, COVERS-CNN is roughly the same, about 34 hours, while CLEAR and

3RL take 10 and 30 hours to train, respectively. For memory consumption, COVERS, CNN, Equi,

COVERS-GT, COVERS-CNN are roughly the same, about 10 Gigabytes. For 3RL and CLEAR, the

memory consumption is about 250 Gigabytes since they are off-policy algorithms and consist of a

large replay buffer that stores state-action pair. This could be problematic in our setup since we use

images as part of the state that dramatically increases memory consumption.

D.3 Qualitative Visualization using Training Rewards

Similar to Figure 6 that shows the success rates along training, we provide qualitative visualization

using the task rewards in Figure 14.
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