
Continual Vision-based Reinforcement Learning with

Group Symmetries

Shiqi Liu1∗, Mengdi Xu1∗, Peide Huang1, Xilun Zhang1

Yongkang Liu2, Kentaro Oguchi2, Ding Zhao1

1Carnegie Mellon University, 2R&D, Toyota Motor North America, ∗equal contribution
{shiqiliu, mengdixu, peideh, xilunz, dingzhao}@andrew.cmu.edu

{yongkang.liu, kentaro.oguchi}@toyota.com

Abstract: Continual reinforcement learning aims to sequentially learn a variety of

tasks, retaining the ability to perform previously encountered tasks while simulta-

neously developing new policies for novel tasks. However, current continual RL

approaches overlook the fact that certain tasks are identical under basic group op-

erations like rotations or translations, especially with visual inputs. They may un-

necessarily learn and maintain a new policy for each similar task, leading to poor

sample efficiency and weak generalization capability. To address this, we intro-

duce a unique Continual Vision-based Reinforcement Learning method that rec-

ognizes Group Symmetries, called COVERS, cultivating a policy for each group

of equivalent tasks rather than an individual task. COVERS employs a proximal-

policy-gradient-based (PPO-based) algorithm to train each policy, which contains

an equivariant feature extractor and takes inputs with different modalities, includ-

ing image observations and robot proprioceptive states. It also utilizes an unsu-

pervised task clustering mechanism that relies on 1-Wasserstein distance on the

extracted invariant features. We evaluate COVERS on a sequence of table-top

manipulation tasks in simulation and on a real robot platform. Our results show

that COVERS accurately assigns tasks to their respective groups and significantly

outperforms baselines by generalizing to unseen but equivariant tasks in seen task

groups. Demos are available on our project page1.

Keywords: Continual Learning, Symmetry, Manipulation

1 INTRODUCTION

Quick adaptation to unseen tasks has been a key objective in the field of reinforcement learning

(RL) [1, 2, 3]. RL algorithms are usually trained in simulated environments and then deployed

in the real world. However, pre-trained RL agents are likely to encounter new tasks during their

deployment due to the non-stationarity of the environment [4, 5]. Blindly reusing policies obtained

during training can result in substantial performance drops and even catastrophic failures [6, 7, 8].

Continual RL (CRL), also referred to as lifelong RL, addresses this issue by sequentially learning a

series of tasks. It achieves this by generating task-specific policies for the current task, while simul-

taneously preserving the ability to solve previously encountered tasks [3, 9, 10, 11, 12]. Existing

CRL works that rely on task delineations to handle non-stationary initial states, dynamics, or reward

functions can greatly boost task performance, particularly when significant task changes occur [10].

However, in realistic task-agnostic settings, these delineations are unknown and have to be identified

by the agents. In this work, we explore how to define and detect task delineations to enhance robots’

learning capabilities in task-agnostic CRL.

1Project Page: https://sites.google.com/view/rl-covers/.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

Algorithm 1 COVERS: Continual Vision-based RL with Group Symmetries

Input: Threshold dϵ, initial frame number k, update interval Nu, rollout step size Ns

Output: collection of policies Π
Initialization: Current policy πcur initialized as a random policy with a policy data buffer B ← ∅,
policy collection Π← {(πcur,B)}, number of episodes n← 0, online rollout buffer D ← ∅

1: while task not finish do
2: n← n+ 1
3: if n%Nu = 0 then
4: Rollout buffer O ← ∅ ▷ Unsupervised Policy Assignment
5: Rollout Ns steps with πcur and get trajectories τ = {(s0, a0, . . . , sH−1, aH−1)}
6: Append the first k frames of each episode to rollout buffer O ← {(s0, . . . , sk−1)}
7: Append the whole episode trajectories τ to the online rollout buffer D
8: Calculate the 1-Wasserstein distances dWi (O,Bi), ∀{πi,Bi} ∈ Π (Equation 2)

9: Get the minimum distance dWj where j = argmini d
W
i (O,Bi)

10: if dj > dϵ then
11: Initialize a new random policy π as well as its policy data buffer B ← O
12: πcur ← π, Π← Π ∪ {{π,B}}
13: else
14: Assign the existing policy and buffer with πcur ← πj , Bj ← Bj ∪ O

15: Update πcur based on online rollout buffer D (Equation 1) ▷ Equivariant Policy Update
16: D ← ∅

17: else
18: Sample an episode and append to online rollout buffer D

new task group may emerge at each episode, the total number of distinct groups remains unknown,

and the group may arrive in random orders. The primary objective is to devise an online learning

algorithm capable of achieving high performance across all tasks with strong data efficiency. We

visualize our CRL setting with table-top manipulation environments in Figure 2.

4.2 Algorithm

We present the pseudocode for COVERS, a task-agnostic continual RL method with group sym-

metries, in Algorithm 1. COVERS maintains a collection Π = {(π,B)}, each element of which

comprising a pair of policy π and its respective data buffer B. Each policy π independently manages

one group of tasks, with B storing the initial frames of the group it oversees. At fixed time intervals,

COVERS collects Ns steps in parallel under the current policy πcur and stores the first k frames

from each episode in the rollout buffer O. Based on O, the algorithm then either (a) creates a new

policy for an unseen group and adds it to the collection Π, or (b) recalls an existing policy from the

collection Π if the group has been previously encountered. It is worth noting that we assign poli-

cies based on the initial frames of each episode rather than the full episode rollout. This is because

frames corresponding to later timesteps are heavily influenced by the behavior policy and could eas-

ily lead to unstable policy assignments. Only maintaining a subset of the rollout trajectories also

helps alleviate memory usage.

After the policy assignment, the selected policy πcur with parameters θ is updated based on an online

rollout buffer D and the PPO method [13] with loss in Equation 1. Ât is the estimated advantage,

ρt = πθ(at|st)/πθold(at|st) is the importance ratio and ϵ is the clip range.

LCLIP = Eτ∼D

[

H
∑

t=1

min[ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât]
]

. (1)

4.3 Policy Network Architecture

COVERS utilizes an equivariant policy network that comprises a policy network for predicting ac-

tions, a value network approximating values, and an equivariant feature extractor taking multiple

modalities. We show the policy architecture in Figure 3 and additional details in Figure 10.

4

ACKNOWLEDGMENT

The authors gratefully acknowledge the support from the National Science Foundation (under grants

CNS-2047454) and research grant from the Toyota Motor North America. The ideas, opinions, and

conclusions presented in this paper are solely those of the authors.

References

[1] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep

networks. In International Conference on Machine Learning, pages 1126±1135. PMLR, 2017.

[2] A. Nagabandi, C. Finn, and S. Levine. Deep online learning via meta-learning: Continual

adaptation for model-based rl. arXiv preprint arXiv:1812.07671, 2018.

[3] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning

to adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv

preprint arXiv:1803.11347, 2018.

[4] M. Xu, P. Huang, F. Li, J. Zhu, X. Qi, K. Oguchi, Z. Huang, H. Lam, and D. Zhao. Scalable

safety-critical policy evaluation with accelerated rare event sampling. In 2022 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 12919±12926. IEEE,

2022.

[5] P. Huang, M. Xu, F. Fang, and D. Zhao. Robust reinforcement learning as a stackelberg game

via adaptively-regularized adversarial training. arXiv preprint arXiv:2202.09514, 2022.

[6] W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement learning

for robotics: a survey. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI),

pages 737±744. IEEE, 2020.

[7] K. Khetarpal, M. Riemer, I. Rish, and D. Precup. Towards continual reinforcement learning:

A review and perspectives. Journal of Artificial Intelligence Research, 75:1401±1476, 2022.

[8] P. Huang, X. Zhang, Z. Cao, S. Liu, M. Xu, W. Ding, J. Francis, B. Chen, and D. Zhao. What

went wrong? closing the sim-to-real gap via differentiable causal discovery. arXiv preprint

arXiv:2306.15864, 2023.

[9] K. Khetarpal, M. Riemer, I. Rish, and D. Precup. Towards continual reinforcement learning:

A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

[10] M. Xu, W. Ding, J. Zhu, Z. Liu, B. Chen, and D. Zhao. Task-agnostic online reinforcement

learning with an infinite mixture of gaussian processes. Advances in Neural Information Pro-

cessing Systems, 33:6429±6440, 2020.

[11] H. Ren, A. Sootla, T. Jafferjee, J. Shen, J. Wang, and H. Bou-Ammar. Reinforcement learning

in presence of discrete markovian context evolution. arXiv preprint arXiv:2202.06557, 2022.

[12] A. Xie, J. Harrison, and C. Finn. Deep reinforcement learning amidst continual structured non-

stationarity. In International Conference on Machine Learning, pages 11393±11403. PMLR,

2021.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347, 2017.

[14] S. Thrun and T. M. Mitchell. Lifelong robot learning. Robotics and autonomous systems, 15

(1-2):25±46, 1995.

[15] F. Tanaka and M. Yamamura. An approach to lifelong reinforcement learning through multiple

environments. In 6th European Workshop on Learning Robots, pages 93±99, 1997.

9

[16] Z. Chen and B. Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence

and Machine Learning, 12(3):1±207, 2018.

[17] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne. Experience replay for continual

learning. Advances in Neural Information Processing Systems, 32, 2019.

[18] M. Xu, Z. Liu, P. Huang, W. Ding, Z. Cen, B. Li, and D. Zhao. Trustworthy reinforce-

ment learning against intrinsic vulnerabilities: Robustness, safety, and generalizability. arXiv

preprint arXiv:2209.08025, 2022.

[19] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,

J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in

neural networks. Proceedings of the national academy of sciences, 114(13):3521±3526, 2017.

[20] S. Powers, E. Xing, E. Kolve, R. Mottaghi, and A. Gupta. Cora: Benchmarks, baselines, and

metrics as a platform for continual reinforcement learning agents. In Conference on Lifelong

Learning Agents, pages 705±743. PMLR, 2022.

[21] H. Ahn, S. Cha, D. Lee, and T. Moon. Uncertainty-based continual learning with adaptive

regularization. Advances in neural information processing systems, 32, 2019.

[22] R. TraorÂe, H. Caselles-DuprÂe, T. Lesort, T. Sun, G. Cai, N. DÂıaz-RodrÂıguez, and D. Fil-

liat. Discorl: Continual reinforcement learning via policy distillation. arXiv preprint

arXiv:1907.05855, 2019.

[23] S. Sñmundsson, K. Hofmann, and M. P. Deisenroth. Meta reinforcement learning with latent

variable gaussian processes. arXiv preprint arXiv:1803.07551, 2018.

[24] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy

with online system identification. arXiv preprint arXiv:1702.02453, 2017.

[25] M. Xu, P. Huang, Y. Niu, V. Kumar, J. Qiu, C. Fang, K.-H. Lee, X. Qi, H. Lam, B. Li, et al.

Group distributionally robust reinforcement learning with hierarchical latent variables. In

International Conference on Artificial Intelligence and Statistics, pages 2677±2703. PMLR,

2023.

[26] M. Caccia, J. Mueller, T. Kim, L. Charlin, and R. Fakoor. Task-agnostic continual reinforce-

ment learning: In praise of a simple baseline. arXiv preprint arXiv:2205.14495, 2022.

[27] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ran-

zato. Continual learning with tiny episodic memories. 2019.

[28] B. Ravindran and A. G. Barto. Symmetries and model minimization in markov decision pro-

cesses, 2001.

[29] B. Ravindran and A. G. Barto. Approximate homomorphisms: A framework for non-exact

minimization in markov decision processes. 2004.

[30] E. van der Pol, D. Worrall, H. van Hoof, F. Oliehoek, and M. Welling. Mdp homomorphic

networks: Group symmetries in reinforcement learning. Advances in Neural Information Pro-

cessing Systems, 33:4199±4210, 2020.

[31] E. van der Pol, H. van Hoof, F. A. Oliehoek, and M. Welling. Multi-agent mdp homomorphic

networks. arXiv preprint arXiv:2110.04495, 2021.

[32] D. Wang, R. Walters, and R. Platt. So (2) equivariant reinforcement learning. In International

conference on learning representations (ICLR), 2022.

[33] D. Wang, R. Walters, X. Zhu, and R. Platt. Equivariant q learning in spatial action spaces. In

Conference on Robot Learning, pages 1713±1723. PMLR, 2022.

10

[34] L. Zhao, X. Zhu, L. Kong, R. Walters, and L. L. Wong. Integrating symmetry into differentiable

planning with steerable convolutions. In The Eleventh International Conference on Learning

Representations, 2023.

[35] D. Wang, J. Y. Park, N. Sortur, L. L. Wong, R. Walters, and R. Platt. The surprising effective-

ness of equivariant models in domains with latent symmetry. arXiv preprint arXiv:2211.09231,

2022.

[36] X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt. Sample efficient grasp learning

using equivariant models. arXiv preprint arXiv:2202.09468, 2022.

[37] T. Cohen and M. Welling. Group equivariant convolutional networks. In International confer-

ence on machine learning, pages 2990±2999. PMLR, 2016.

[38] F. Fuchs, D. Worrall, V. Fischer, and M. Welling. Se (3)-transformers: 3d roto-translation

equivariant attention networks. Advances in Neural Information Processing Systems, 33:1970±

1981, 2020.

[39] M. J. Hutchinson, C. Le Lan, S. Zaidi, E. Dupont, Y. W. Teh, and H. Kim. Lietransformer:

Equivariant self-attention for lie groups. In International Conference on Machine Learning,

pages 4533±4543. PMLR, 2021.

[40] M. Weiler and G. Cesa. General e (2)-equivariant steerable cnns. Advances in Neural Infor-

mation Processing Systems, 32, 2019.

[41] M. Finzi, M. Welling, and A. G. Wilson. A practical method for constructing equivariant

multilayer perceptrons for arbitrary matrix groups. In International Conference on Machine

Learning, pages 3318±3328. PMLR, 2021.

[42] G. Cesa, L. Lang, and M. Weiler. A program to build e(n)-equivariant steerable CNNs. In

International Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=WE4qe9xlnQw.

[43] P. Huang, M. Xu, J. Zhu, L. Shi, F. Fang, and D. Zhao. Curriculum reinforcement learn-

ing using optimal transport via gradual domain adaptation. Advances in Neural Information

Processing Systems, 35:10656±10670, 2022.

[44] V. I. Bogachev and A. V. Kolesnikov. The monge-kantorovich problem: achievements, con-

nections, and perspectives. Russian Mathematical Surveys, 67(5):785, 2012.

[45] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on

Robot Learning, pages 1094±1100. PMLR, 2020.

[46] S. Bahl, A. Gupta, and D. Pathak. Human-to-robot imitation in the wild. arXiv preprint

arXiv:2207.09450, 2022.

[47] B. Bakker. Reinforcement learning with long short-term memory. Advances in neural infor-

mation processing systems, 14, 2001.

[48] P. I. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, and E. Yudovina.

Introduction to representation theory, volume 59. American Mathematical Soc., 2011.

[49] D. Steinley. Properties of the hubert-arable adjusted rand index. Psychological methods, 9(3):

386, 2004.

11

A Brief Introduction to Group and Representation Theory

In this section, we briefly introduce Group and Representation Theory [48] to help understand the

policy structure in Section B.2.

Linear group representations describe abstract groups in terms of linear transformations on some

vector spaces. In particular, they can be used to represent group elements as linear transformations

(matrices) on that space. A representation of a group G on a vector space V is a group homomor-

phism from G to GL(V), the general linear group on V. That is, a representation is a map

ρ : G→ GL (V) , such that ρ(g1g2) = ρ(g1)ρ(g2), ∀g1, g2 ∈ G. (3)

Here V is the representation space, and the dimension of V is the dimension of the representation.

A.1 Trivial Representation

Trivial representation maps any group element to the identity, i.e.

∀g ∈ G, ρ(g) = 1. (4)

A.2 Irreducible Representations

A representation of a group G is said to be irreducible (shorthand as irrep) if it has no non-trivial

invariant subspaces. For example, given a group G acting on a vector space V , V is said to be

irreducible if the only subspaces of V preserved under the action of every group element are the zero

subspace and V itself. The trivial representation is an irreducible representation and is common to

all groups.

A.3 Regular Representation

Given a group G, the regular representation is a representation over a vector space V which has a

basis indexed by the elements of G. In other words, if G has n elements (if G is finite), then the

regular representation is a representation on a vector space of dimension n. An important fact about

the regular representation is that it can be decomposed into irreducible representations in a very

structured way.

A.4 Dihedral Group

The dihedral group Dn is the group of symmetries of a regular n-sided polygon, including n rotations

and n reflections. Thus, Dn has 2n elements. For example, the dihedral group of a square (D4)

includes 4 rotations and 4 reflections, giving 8 transformations in total.

B Additional Experiment Details

B.1 Image Inpainting

To close the sim-to-real gap, we employ a pre-processing technique on camera images, which in-

volves in-painting robotic arms. The process begins by capturing a background image in which

the robotic arm is absent from the camera’s view. For every time step, a mask that represents the

position of each robotic limb is generated, leveraging the 3D locations of individual joints and the

projection matrix of the camera. With this mask, we can select all areas devoid of the robotic arm,

and subsequently update the background image accordingly. The images are subjected to a color

correction process to mitigate any potential color deviations attributable to lighting or reflection.

Lastly, a distinct blue circle is overlaid at the gripper’s position on the background image to indicate

the gripper’s location. The entire image in-painting process is shown in Figure 9.

12

C Additional Ablation Study

C.1 Sensitivity Analysis of Different Metrics

In Section 4.4, we used the 1-Wasserstein distance to measure the distance between those two fea-

ture distributions. In this section, we compared the 1-Wasserstein distance with two other metrics:

Euclidean distance and Mahalanobis distance. We present the qualitative results in Figure 13a, 13b

and 13c.

Adjusted Rand Index (ARI). To evaluate how different metric affects the algorithm performance,

besides evaluating the converged performance, we further evaluated the Adjusted Rand Index (ARI)

[49] of the policy ID and group ID during the training progress. The ARI value measures the

similarity between two clusterings by considering all pairs of samples. It counts pairs assigned to

the same or different clusters in both the predicted and true clusterings. Here we used the group

index as the ground truth label for each episode, while the policy index as the predicted label. Then

we compute the ARI value between two clustering of the entire training process. An ARI value

closer to 1.0 indicates a more accurate clustering result.

Euclidean distance (or L2 norm). The Euclidean distance between point q and p is

d(p, q) =
√

(p− q)2. (5)

To compute the Euclidean distance between features of the state buffer Bi of size n and the buffer

O, we computed the mean vector x and y of buffer X and Y, the Euclidean distance is simply

d(x, y) =
√

(x− y)2. Here X and Y be matrices constructed by invariant features extracted from

the state buffer Bi of size n and the buffer O of size m, as shown in Section 4.4. Here we test five

different threshold dϵ and run three random seeds for each threshold. The quantitative converged

performance is shown in Table 5.

Table 5: Quantitative results showing performances at convergence for different Euclidean distance
threshold dϵ, including the average performance over three runs as well as the confidence interval of
95%.

Threshold dϵ 0.3 0.4 0.5 0.6 0.7

Plate Slide
Success Rate 0.91± 0.04 0.92± 0.04 0.93± 0.04 0.97± 0.03 0.96± 0.03
Ave. Reward 332.27± 19.4 338.96± 19.51 342.46± 19.2 346.63± 20.03 348.02± 20.68

Button Press
Success Rate 0.83± 0.06 0.73± 0.07 0.77± 0.07 0.95± 0.03 0.97± 0.02
Ave. Reward 323.49± 6.92 304.63± 9.71 298.75± 10.67 334.18± 2.08 332.27± 3.0

Drawer Close
Success Rate 0.93± 0.04 0.98± 0.02 0.73± 0.07 0.87± 0.05 0.98± 0.02
Ave. Reward 413.04± 9.03 432.22± 6.14 387.01± 11.63 409.37± 10.19 454.7± 3.25

Goal Reach
Success Rate 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.82± 0.06
Ave. Reward 488.43± 0.18 486.82± 0.59 488.89± 0.11 488.82± 0.08 480.46± 2.35

Average
Success Rate 0.92± 0.02 0.91± 0.02 0.86± 0.03 0.95± 0.02 0.94± 0.02
Ave. Reward 389.31± 7.77 390.66± 8.11 379.28± 8.4 394.75± 7.48 403.86± 7.42

Mahalanobis distance. The Mahalanobis distance measures the distance between a point x and a

distribution D. It is defined as:

dM (x) =
√

(x− µ)TΣ−1(x− µ), (6)

where x is the point, µ is the mean of the distribution D, and Σ is the covariance matrix of D.

We compute Mahalanobis distance between the mean vector y of Y and distribution X. Similarly,

we test five different threshold dϵ and run three random seeds for each dϵ. The quantitative converged

performance is shown in Table 6.

Wasserstein distance. In Table 1 we analysed COVERS performance under 1-Wasserstein distance

with threshold of dϵ = 1.0. Here we test five different threshold dϵ and run three random seeds for

each dϵ. The converged performance is shown in Table 7.

Analysis. Our results show that the Wasserstein distance is less sensitive to the hyperparameter

and performs well across different parameters. Moreover, the L2 distance can yield satisfactory

16

Table 6: Quantitative results showing performances at convergence for different Mahalanobis dis-
tance threshold dϵ, including the average performance over three runs as well as the confidence
interval of 95%.

Threshold dϵ 3.0 4.0 5.0 6.0 7.0

Plate Slide
Success Rate 0.94± 0.04 0.96± 0.03 0.95± 0.03 0.9± 0.05 0.31± 0.07
Ave. Reward 332.75± 20.91 330.25± 20.56 329.31± 22.13 333.61± 19.43 138.03± 22.72

Button Press
Success Rate 0.81± 0.06 0.83± 0.06 0.7± 0.07 0.94± 0.04 0.24± 0.07
Ave. Reward 323.0± 3.83 321.57± 4.34 306.89± 7.62 336.77± 0.76 301.48± 6.24

Drawer Close
Success Rate 0.82± 0.06 0.85± 0.06 0.78± 0.07 0.72± 0.07 0.62± 0.08
Ave. Reward 392.73± 9.48 420.41± 8.77 399.06± 10.31 390.82± 10.78 363.15± 11.7

Goal Reach
Success Rate 0.99± 0.01 0.96± 0.03 0.99± 0.01 0.99± 0.01 0.9± 0.05
Ave. Reward 487.85± 0.27 486.54± 1.15 488.54± 0.16 486.05± 1.46 484.0± 2.26

Average
Success Rate 0.9± 0.02 0.91± 0.02 0.86± 0.03 0.89± 0.02 0.52± 0.04
Ave. Reward 384.09± 7.84 389.69± 7.88 380.95± 8.54 386.81± 7.44 321.66± 11.96

Table 7: Quantitative results showing performances at convergence for different 1-Wasserstein dis-
tance threshold dϵ, including the average performance over three runs as well as the confidence
interval of 95%.

Threshold dϵ 0.6 0.8 1.0 1.2 1.4

Plate Slide
Success Rate 0.49± 0.1 0.94± 0.04 0.95± 0.04 0.95± 0.04 0.89± 0.06
Ave. Reward 196.34± 31.64 339.21± 26.44 340.1± 24.42 352.65± 24.72 336.82± 24.02

Button Press
Success Rate 0.48± 0.1 0.83± 0.07 0.88± 0.06 0.94± 0.04 0.75± 0.08
Ave. Reward 272.01± 13.25 316.08± 9.41 324.98± 4.54 326.22± 5.81 298.83± 13.23

Drawer Close
Success Rate 0.97± 0.03 0.89± 0.06 0.91± 0.05 0.88± 0.06 0.76± 0.08
Ave. Reward 433.62± 7.79 410.59± 13.92 411.99± 11.26 425.68± 8.38 393.62± 12.99

Goal Reach
Success Rate 0.98± 0.02 0.98± 0.02 0.95± 0.04 0.98± 0.02 0.98± 0.02
Ave. Reward 488.72± 0.11 487.93± 0.16 486.9± 0.96 487.62± 0.4 488.05± 0.36

Average
Success Rate 0.74± 0.04 0.92± 0.03 0.94± 0.02 0.95± 0.02 0.86± 0.03
Ave. Reward 347.67± 14.55 388.45± 10.23 390.99± 9.29 398.05± 9.12 379.33± 10.31

performance with the optimal hyperparameter selection. Such observations show that the invariant

feature is more important in group identification other than the metrics.

C.2 The Effect of Buffer Size

We conduct an ablation study to show the effect of the buffer sizes. We select five buffer sizes,

including 32, 64, 128, 256, and 512. We show the results in Table 8 and Figure 13d. Our results

show that when buffer size equals 128, COVERS achieves the best performance.

D Additional Training Results

D.1 Evaluation over Different Levels of Camera Perturbations

In this section, we present the converged performance of our algorithm under different camera per-

turbation levels. For experiments with perturbation distance dp, we randomly shift the xy coordinate

Table 8: Quantitative results showing performances at convergence for different buffer sizes, includ-
ing the average performance over three runs as well as the confidence interval of 95%.

Buffer size 32 64 128 256 512

Plate Slide
Success Rate 0.61± 0.08 0.94± 0.04 0.95± 0.04 0.96± 0.03 0.94± 0.04
Ave. Reward 240.42± 25.11 310.47± 20.19 340.1± 24.42 331.52± 21.91 347.38± 20.26

Button Press
Success Rate 0.55± 0.08 0.94± 0.04 0.88± 0.06 0.49± 0.08 0.77± 0.07
Ave. Reward 269.27± 14.27 333.79± 1.66 324.98± 4.54 221.73± 23.32 311.55± 6.15

Drawer Close
Success Rate 0.9± 0.05 0.73± 0.07 0.91± 0.05 0.86± 0.05 0.79± 0.06
Ave. Reward 380.41± 13.72 378.98± 11.03 411.99± 11.26 398.73± 8.54 394.83± 10.06

Goal Reach
Success Rate 0.96± 0.03 0.99± 0.01 0.95± 0.04 0.99± 0.01 0.99± 0.01
Ave. Reward 486.83± 0.74 488.62± 0.1 486.9± 0.96 488.35± 0.16 488.3± 0.43

Average
Success Rate 0.76± 0.03 0.9± 0.02 0.94± 0.02 0.83± 0.03 0.88± 0.03
Ave. Reward 344.23± 11.17 377.96± 7.95 390.99± 9.29 360.08± 11.37 385.52± 7.9

17

understood when comparing them relative to each other. The averaged training time for COVERS,

CNN, Equi, COVERS-GT, COVERS-CNN is roughly the same, about 34 hours, while CLEAR and

3RL take 10 and 30 hours to train, respectively. For memory consumption, COVERS, CNN, Equi,

COVERS-GT, COVERS-CNN are roughly the same, about 10 Gigabytes. For 3RL and CLEAR, the

memory consumption is about 250 Gigabytes since they are off-policy algorithms and consist of a

large replay buffer that stores state-action pair. This could be problematic in our setup since we use

images as part of the state that dramatically increases memory consumption.

D.3 Qualitative Visualization using Training Rewards

Similar to Figure 6 that shows the success rates along training, we provide qualitative visualization

using the task rewards in Figure 14.

19

	INTRODUCTION
	Related Work
	Preliminary
	Methodology
	Problem Formulation
	Algorithm
	Policy Network Architecture
	Unsupervised Dynamic Policy Assignment

	Simulation Experiments
	Environment
	Baselines and Ablations

	Simulation Results and Ablations
	Results
	Ablation Study

	Real-world Validation
	Conclusion
	Brief Introduction to Group and Representation Theory
	Trivial Representation
	Irreducible Representations
	Regular Representation
	Dihedral Group

	Additional Experiment Details
	Image Inpainting
	Detailed Policy Architecture
	Randomness of Tasks
	Implementation of CLEAR
	Implementation of 3RL
	Hyperparameters

	Additional Ablation Study
	Sensitivity Analysis of Different Metrics
	The Effect of Buffer Size

	Additional Training Results
	Evaluation over Different Levels of Camera Perturbations
	Additional Training Setups
	Qualitative Visualization using Training Rewards

