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Abstract

Safe reinforcement learning (RL) trains a con-

straint satisfaction policy by interacting with the

environment. We aim to tackle a more challeng-

ing problem: learning a safe policy from an of-

fline dataset. We study the offline safe RL prob-

lem from a novel multi-objective optimization

perspective and propose the ϵ-reducible concept

to characterize problem difficulties. The inherent

trade-offs between safety and task performance in-

spire us to propose the constrained decision trans-

former (CDT) approach, which can dynamically

adjust the trade-offs during deployment. Exten-

sive experiments show the advantages of the pro-

posed method in learning an adaptive, safe, ro-

bust, and high-reward policy. CDT outperforms

its variants and strong offline safe RL baselines

by a large margin with the same hyperparameters

across all tasks, while keeping the zero-shot adap-

tation capability to different constraint thresholds,

making our approach more suitable for real-world

RL under constraints.

1. Introduction

Learning high-reward policies from offline datasets has been

a prevalent topic in reinforcement learning (RL) and has

shown great promise in broad applications (Fu et al., 2020;

Prudencio et al., 2022). Various learning paradigms are

proposed to extract as much information as possible from

pre-collected trajectories while preventing the policy from

overfitting (Kostrikov et al., 2021; Sinha et al., 2022). How-

ever, in the real world, many tasks can hardly be formulated

by solely maximizing a scalar reward function, and the exis-

tence of various constraints restricts the domain of feasible

solutions (Gulcehre et al., 2020). For example, though nu-

merous self-driving datasets are collected (Sun et al., 2020),

it is hard to define a single reward function to describe
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the task (Lu et al., 2022). The optimal driving policies

should satisfy a set of constraints, such as traffic laws and

physical dynamics. Simply maximizing the reward may

cause constraint violations and catastrophic consequences

in safety-critical applications (Chen et al., 2021a).

Safe reinforcement learning aims to obtain a reward-

maximizing policy within a constrained manifold (Garcıa

& FernÂandez, 2015; Brunke et al., 2021), showing advan-

tages to satisfy the safety requirements in real-world applica-

tions (Ray et al., 2019; Gu et al., 2022). However, most deep

safe RL approaches focus on the safety during deployment,

i.e., after training, while ignoring the constraint violation

costs during training (Xu et al., 2022b). The requirement of

collecting online interaction samples brings challenges in

ensuring training safety, because it is a non-trivial task to

prevent the agent from executing unsafe behaviors during

the learning process. Though carefully designed correction

systems or even human interventions can be used as a safety

guard to filter unsafe action in training (Saunders et al.,

2017; Dalal et al., 2018; Wagener et al., 2021), it could be

expensive to be applied due to the low sample efficiency of

many RL approaches (Xie et al., 2021).

This paper studies the problem of learning constrained poli-

cies from offline datasets such that the safety requirements

can be met both in training and deployment. Several recent

works tackle the problem by bridging the ideas in offline

RL and safe RL domains, such as using pessimistic esti-

mations (Xu et al., 2022a) or the stationary distribution

correction technique (Liu et al., 2020; Lee et al., 2022). A

constrained optimization formulation and Lagrange multipli-

ers are usually adopted when updating the policy, targeting

to find the most rewarding policy while satisfying the con-

straints (Le et al., 2019). However, these approaches require

setting a constant constraint threshold before training, and

thus the trained agents can not be adapted to other con-

straint conditions. We believe the capability of adapting

the trained policy to different constraint thresholds is im-

portant for many practical applications, because imposing

stricter constraints is usually at the cost of sacrificing the

task performance and inducing conservative behaviors (Liu

et al., 2022b). Therefore, we aim to study a training scheme

such that the trained agent can dynamically adjust its con-

straint threshold, such that we can control its deployment

conservativeness without further fine-tuning or re-training.
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We also observe that the taxonomy of offline safe RL

datasets is not adequately discussed in the literature, while

we believe the characterization of a dataset can significantly

influence the problem difficulty. We provide a novel view

of the offline safe RL problem using tools from the multi-

objective optimization (MOO) domain, which unveils the

inherent trade-off between safety performance and task re-

ward. The trade-offs can be described by a function with

respect to the dataset and the constraint threshold, which in-

spires us to propose the Constrained Decision Transformer

(CDT) approach. CDT leverages the return-conditioned se-

quential modeling framework (Chen et al., 2021b) to achieve

zero-shot adaptation to different constraint thresholds at de-

ployment while maintaining safety and high reward. The

main contributions are summarized as follows:

• We study the offline safe RL problem beyond a single

pre-defined constraint threshold from a novel MOO per-

spective. The insights suggest the limitations of exist-

ing offline safe RL training paradigms and motivate us

to propose CDT by leveraging the return-conditioned

sequential modeling capability of Transformer.

• We propose three key techniques in CDT that are impor-

tant in learning an adaptive and safe policy. To the best

of our knowledge, CDT is the first successful offline

safe RL approach that can achieve zero-shot adaptation

to different safety requirements after training, without

solving a constrained optimization.

• Extensive experiments show that CDT outperforms the

baselines and its variants in terms of both safety and

task performance by a large margin. CDT can general-

ize to different cost thresholds without re-training the

policy, while all the prior methods fail.

2. Related Work

Safe RL. Constrained optimization techniques are usually

adopted to solve safe RL problems (Garcıa & FernÂandez,

2015; Sootla et al., 2022; Yang et al., 2021; Flet-Berliac &

Basu, 2022; Ji et al., 2023). Lagrangian-based methods use

a multiplier to penalize constraint violations (Chow et al.,

2017; Tessler et al., 2018; Stooke et al., 2020; Chen et al.,

2021c). Correction-based approaches project unsafe actions

to the safe set, aiming to incorporate domain knowledge

of the problem to achieve safe exploration (Zhao et al.,

2021; Luo & Ma, 2021). Another line of work performs

policy optimization on surrogate policy spaces via low-order

Taylor approximations (Achiam et al., 2017; Yang et al.,

2020) or variational inference (Liu et al., 2022a). However,

ensuring zero constraint violations during training is still a

challenging problem.

Offline RL. Offline RL targets learning policies from col-

lected data without further interaction with the environ-

ment (Ernst et al., 2005). Many regularization and con-

straint methods for offline RL are proposed to address the

state-action distribution shift problem between the static

dataset and physical world (Levine et al., 2020; Prudencio

et al., 2022). One type of approach limits the discrepancy

between learned policy and behavioral policy (Fujimoto

et al., 2019; Kumar et al., 2019; Peng et al., 2019; Nair et al.,

2020; Fujimoto & Gu, 2021). Another way is to use value

regularization as implicit constraints(Wang et al., 2020),

e.g., optimizing the policy based on a conservative value

estimation (Kumar et al., 2020). In addition to the above

pessimism mechanism, stationary distribution correction

(DICE)-style methods train the policy by importance sam-

pling, which reduces the estimation variance (Nachum et al.,

2019b;a; Zhang et al., 2020a). Recent research also shows

the great success of leveraging the power of Transformer to

perform behavior cloning style policy optimization (Janner

et al., 2021; Chen et al., 2021b; Furuta et al., 2022).

Offline RL with safety constraints. Several recent works

study the offline safe RL problem, aiming to achieve zero

constraint violations during training (Le et al., 2019). They

utilize the ideas from both offline RL and safe RL, such as

using the DICE-style technique to formulate the constrained

optimization problem (Polosky et al., 2022; Lee et al., 2022).

Lagrangian-based approaches are also explored due to their

simplicity of combining with existing offline RL methods,

and are shown to be effective when using conservative cost

estimation (Xu et al., 2022a). However, how to adapt a

trained safe policy to various constraint thresholds is rarely

discussed in the literature.

3. Preliminaries

3.1. CMDP and Safe RL

Safe RL can be described under the Constrained Markov De-

cision Process (CMDP) framework (Altman, 1998). A finite

horizon CMDPM is defined by the tuple (S,A,P, r, c, µ0),
where S is the state space, A is the action space, P : S ×
A×S −→ [0, 1] is the transition function, r : S×A×S −→ R

is the reward function, and µ0 : S −→ [0, 1] is the initial state

distribution. CMDP augments MDP with an additional ele-

ment c : S × A × S −→ [0, Cmax] to characterize the cost

for violating the constraint, where Cmax is the maximum

cost. Note that this work can be directly applied to multi-

ple constraints and partially observable settings, but we use

CMDP with a single constraint for ease of demonstration.

A safe RL problem is specified by a CMDP and a constraint

threshold κ −→ [0,+∞). Let π : S ×A → [0, 1] denote the

policy and τ = {s1, a1, r1, c1..., sT , aT , rT , cT } denote the

trajectory, where T = |τ | is the maximum episode length.

We denote R(τ) =
∑T−1

t=0
rt as the reward return of the

trajectory τ and C(τ) =
∑T−1

t=0
ct as the cost return. The

goal of safe RL is to find the policy that maximizes the re-
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ward return while limiting the cost incurred from constraint

violations to the threshold κ:

max
π

Eτ∼π

[

R(τ)], s.t. Eτ∼π

[

C(τ)] ≤ κ. (1)

In the offline setting, the agent can not collect more data by

interaction but only access pre-collected trajectories from

arbitrary and unknown policies, which brings challenges to

solving this constrained optimization problem.

3.2. Decision Transformer for Offline RL

Decision Transformer (DT) (Chen et al., 2021b) is a type

of sequential modeling technique to solve offline RL prob-

lems, without considering the constraint in Eq. (1). Unlike

classical offline RL approaches that parametrize a single

state-conditioned policy π(a|s), DT takes in a sequence of

reward returns, states, and actions as input tokens, and out-

puts the same length of predicted actions. Given a trajectory

τ of length T , the reward return at timestep t is computed

by Rt =
∑T

t′=t rt′ , then we obtain 3 types of tokens for DT:

reward returns R = {R1, ..., RT }, states s = {s1, ..., sT },
and actions a = {a1, ..., aT }. The input sequence for

DT at timestep t is specified by a context length K ∈
{1, ..., t − 1}, and the tokens are R−K:t = {RK , ..., Rt},
s−K:t = {sK , ..., st} and a−K:t−1 = {aK , ..., at−1}. The

DT policy is parametrized by the GPT architecture (Radford

et al., 2018) with a causal self-attention mask, such that the

action sequences are generated in an autoregressive manner.

Namely, DT generates a deterministic action at timestep

t by ât = πDT(R−K:t, s−K:t,a−K:t−1). Then the policy

can be trained by minimizing the loss between the predicted

actions and the ground-truth actions in a sampled batch of

data. Typically, DT uses the cross-entropy loss for discrete

action spaces and the ℓ2 loss for continuous action spaces.

4. Method

4.1. The Offline Safe RL Problem

In this section, we revisit the offline safe RL problem and

investigate its taxonomy based on collected datasets’ cost

threshold and properties. Denote T = {τ1, τ2, ...} as a

dataset of trajectories. For the sake of subsequent analysis,

we make the assumption that the dataset is both clean and

reproducible, meaning that any trajectory in the dataset can

be reliably reproduced by a policy. This is an important

precondition, as characterizing noisy datasets that contain

outliers in highly stochastic environments is challenging

and lies beyond the discussion scope of this paper.

To describe a dataset T with both reward and cost metrics,

we introduce the Pareto Frontier (PF), Inverse Pareto Fron-

tier (IPF), and the Reward Frontier (RF) functions that are

inspired by the MOO domain. The PF of a dataset T is

computed by the maximum reward of trajectories under cost

threshold κ ∈ [0,∞):

PF(κ, T ) = max
τ∈T

R(τ), s.t. C(τ) ≤ κ.

Similarly, the IPF of a dataset T is defined by the maximum

reward beyond cost threshold κ ∈ [0,∞):

IPF(κ, T ) = max
τ∈T

R(τ), s.t. C(τ) ≥ κ.

The RF is defined by the maximum reward with cost κ ∈ C,

where C := {C(τ) : τ ∈ T } is the set of all the possible

episodic cost in T :

RF(κ, T ) = max
τ∈T

R(τ), s.t. C(τ) = κ.

Note that their constraints and domains of κ are different.

All the functions characterize the shape of the dataset. RF

is ªlocalº since it represents the highest reward of a cost

and is only defined on reachable cost values in dataset T .

On the other hand, PF and IPF are ªglobalº, since PF/IPF is

the supremum of all the RF values w.r.t costs smaller/larger

than a cost threshold. They are both defined on a continuous

space of κ. It is also easy to observe that the Pareto frontier

PF(κ, T ) is a non-deceasing function of κ, which suggests

the trade-offs between safety and task performance: finding

a policy with a small cost return usually needs to sacrifice the

reward. Based on the definition of PF and IPF, we introduce

ϵ-reducible to characterize the property of the dataset.

Definition 1 (ϵ-reducible). An offline safe RL dataset T is

ϵ-reducible w.r.t. threshold κ if: PF(κ, T ) = IPF(κ, T ) + ϵ.

It is worth noticing that ϵ ∈ R rather than R≥0. A positive

ϵ means that there does not exist any trajectory κ ∈ T that

can achieve a higher reward than PF(κ, T ) even if removing

the safety constraint, so the optimal policy is more likely to

be an interior point within the safety boundary. A negative

ϵ indicates that the reward of most rewarding trajectories in

T is upper bounded by PF(κ, T )− ϵ, and thus the agent has

a high chance for violating safety constraint if the policy

greedily maximizes the reward. In this case, the optimal

policy will likely be on the safety constraint boundary.

Fig. 1 shows an example of the cost-reward return plots

of two datasets T1 and T2. Note that although T1 and T2
are collected in the same environment, (κ, T1) and (κ, T2)
denote two different offline safe RL problems. We observe

that the ϵ-reducible property can characterize the task dif-

ficulty. For instance, problem (κ, T2) is usually easier to

solve than (κ, T1), because (κ, T2) could be reduced to an

offline RL problem by simply maximizing the reward with-

out considering the cost constraint. We have the following

conjecture regarding the task difficulty:

Suppose problem (κ, T ) is ϵ-reducible, then the smaller ϵ,
the more difficult to find the optimal solution.
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Algorithm 1 Data Augmentation via Relabeling

Input: dataset T , samples N , reward sample max rmax

Output: augmented trajectory dataset T

1: cmin ← minτ∼T C(τ), cmax ← maxτ∼T C(τ)
2: for i = 1, ..., N do

3: ▷ sample a cost return

4: κi ∼ Uniform(cmin, cmax)
5: ▷ sample a reward return above the RF value

6: ρi ∼ Uniform(RF(κi, T ), rmax)
7: ▷ find the closest and safe Pareto trajectory

8: τ∗i ← argmaxτ∼T R(τ), s.t. C(τ) ≤ κi

9: ▷ relabel the reward and cost return

10: τ̂i ← {R
∗
i + ρi −R(τ∗i ),C

∗
i + κi −C(τ∗i ), s

∗
i ,a

∗
i }

11: ▷ append the trajectory to the dataset

12: T ← T ∪ {τ̂i}
13: end for

reward return: τ∗ = argmaxτ∼T R(τ), s.t. C(τ) ≤
κ. We can observe that τ∗ = {R∗,C∗, s∗,a∗} is the

maximum-reward Pareto optimal trajectory with cost less

than κ. Then we append the new trajectory data τ̂ =
{R∗ + ρ−R(τ∗),C∗ + κ− C(τ∗), s∗,a∗} to the dataset:

T ← T ∪ {τ̂}. Note that the operators over R∗ and C
∗

are element-wise. The intuition is to relabel the associated

Pareto trajectory’s reward and cost returns, such that the

agent can learn to imitate the behavior of the most reward-

ing and safe trajectory τ∗ when the desired return (ρ, κ)
is infeasible. Fig. 3 shows an example of the procedure,

where the arrows associate Pareto-optimal trajectories with

corresponding augmented return pairs. The detailed aug-

mentation procedures are presented in Algorithm 1.

It is worth noting that real-world datasets can be noisy, oc-

casionally including anomalous ºluckyº trajectories that

record high reward and low-cost returns despite originat-

ing from subpar behavioral policies. These outliers, while

rare, can disrupt the data augmentation procedure, thereby

negatively affecting CDT’s performance. To address this

issue, our implementation utilizes two specific techniques.

The first involves associating each augmented return pair

(r, c) with a trajectory sampled in proximity to the nearest

and safe Pareto frontier data point, based on a specified

distance metric. The second technique employs a density

filter to remove such outliers exhibiting abnormal reward

and cost returns during the creation of the training dataset,

thus mitigating the outlier concern. More details regarding

these two techniques and empirical validations are available

in Appendix D.2.

Training and evaluation. CDT generally follows the train-

ing and evaluation schemes of return-conditioned sequential

modeling methods (Chen et al., 2021b; Zheng et al., 2022).

The training procedure is similar to training a Transformer

in supervised learning: sample a batch of sequences o,a

from the augmented dataset T , compute the loss in Eq.

(2) to optimize the Transformer policy model πθ via gradi-

ent descent. The evaluation procedure for a trained CDT

model is presented in Algorithm 2. Note that it differs from

standard RL, where the policy directly predicts the action

based on the state. As shown in Fig. 2, the input for the

return-conditioned policy is a tuple of four sequences: target

reward and cost returns for each step, past states, and actions.

Therefore, the output is also a sequence of actions, but we

only execute the last one in the environment. The target

returns will be updated correspondingly upon receiving new

reward and cost signals from the environment.

Algorithm 2 Returns Conditioned Evaluation for CDT

Input: trained Transformer policy πθ, episode length T ,

context length K, target reward and cost R1, C1, env

1: Get the initial state: s1 ← env.reset()
2: Initialize input sequence o = [{R1, C1, s1}]
3: for t = 1, ..., T do

4: Get predicted action at ∼ π(·|o[−K :])[−1]
5: Execute the action: st+1, rt, ct ← env.step(at)
6: ▷ compute target returns for the next step

7: Rt+1 = Rt − rt, Ct+1 = Ct − ct,
8: Append the new token ot = {Rt+1, Ct+1, st+1, at}

to the sequence o

9: end for

5. Experiment

In this section, we aim to evaluate the proposed approach

and empirically answer the following questions: 1) can CDT

learn a safe policy from a small ϵ reducible offline dataset?

2) what is the importance of each component in CDT? 3)

can CDT achieve zero-shot adaption to different constraint

thresholds? 4) is CDT robust to conflict reward returns?

To address these questions, we adopt the following tasks to

evaluate CDT and baseline approaches.

Tasks. We use several robot locomotion continuous control

tasks that are commonly used in previous works (Achiam

et al., 2017; Chow et al., 2019; Zhang et al., 2020b). The

simulation environments are from a public benchmark

(Gronauer, 2022). We consider two environments (Run

and Circle) and train multiple different robots (Car,

Drone, and Ant). In the Run environment, the agents

are rewarded for running fast between two boundaries and

are given constraint violation cost if they run across the

boundaries or exceed an agent-specific velocity threshold.

In the Circle environment, the agents are rewarded for run-

ning in a circle but are constrained within a safe region that

is smaller than the radius of the target circle. We name the

task as robot-environment such as Ant-Run.

Offline datasets. The dataset format follows the D4RL

benchmark (Fu et al., 2020), where we add another cost

6



Constrained Decision Transformer for Offline Safe Reinforcement Learning

Ant-Run Car-Circle Car-Run Drone-Circle Drone-Run Average
Methods

reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

CDT(ours) 89.76 0.83 89.53 0.85 99.0 0.45 73.01 0.88 63.64 0.58 82.99 0.72

BC-Safe 80.56 0.64 78.21 0.74 97.21 0.01 66.49 0.56 32.73 0.0 71.04 0.39

DT-Cost 91.69 1.32 89.08 2.14 100.67 11.83 78.09 2.38 72.3 4.43 86.37 4.42

BCQ-Lag 92.7 1.04 89.76 3.91 96.14 3.21 71.14 3.37 47.61 1.81 79.47 2.67

BEAR-Lag 91.19 1.66 15.48 2.24 99.09 0.09 72.36 1.99 19.07 0.0 59.44 1.2

CPQ 78.52 0.14 75.99 0.0 97.72 0.11 55.14 9.67 72.24 4.28 75.92 2.84

COptiDICE 45.55 0.6 52.17 6.38 92.86 0.89 36.44 5.54 26.56 1.38 50.72 2.96

CDT(w/o augment) 93.62 1.53 89.8 1.38 99.58 1.89 74.9 1.35 66.93 1.53 84.97 1.54

CDT(w/o entropy) 87.47 0.64 89.94 1.07 98.92 0.44 73.76 0.97 62.29 0.6 82.48 0.74

CDT(deterministic) 94.21 1.42 89.53 1.43 101.52 17.53 76.4 1.0 68.44 1.36 86.02 4.55

Table 1. Evaluation results of the normalized reward and cost. The cost threshold is 1. ↑: the higher reward, the better. ↓: the lower cost

(up to the threshold 1), the better. Each value is averaged over 20 episodes and 3 seeds. Bold: Safe agents whose normalized cost is

smaller than 1. Gray: Unsafe agents. Blue: Safe agent with the highest reward.

entry to record binary constraint violation signals. We col-

lect offline datasets using the CPPO safe RL approach with

well-tuned hyperparameters (Stooke et al., 2020). We grad-

ually increase its cost threshold such that the trajectories

can cover a diverse range of cost returns and reward returns.

All the training data for CPPO is stored as the raw dataset,

which may contain many repeated trajectories. We further

down-sample the data by applying a grid filter over the cost-

reward return space (Fig. 1) and trim redundant trajectories

to avoid the impact of unevenly distributed data (Gulcehre

et al., 2020; Gong et al., 2022; Singh et al.). Namely, we di-

vide the cost-reward space into multiple 2D grids, randomly

select a fixed number of trajectories within each grid and dis-

card the remaining ones. The cost-return plots of different

datasets used in this work are presented in Appendix A.

Metrics. We adopt the normalized reward return and the

normalized cost return as the comparison metrics, which

are consistent with the offline RL literature (Fu et al., 2020).

Denote rmax(T ) and rmin(T ) as the maximum reward re-

turn and the minimum reward return in dataset T . The

normalized reward is computed by:

Rnormalized =
Rπ − rmin(T )

rmax(T )− rmin(T )
× 100,

where Rπ denotes the evaluated reward return of policy

π. The normalized cost is defined a bit differently from

the reward, which is computed by the ratio between the

evaluated cost return Cπ and the target threshold κ:

Cnormalized =
Cπ

κ+ ϵ
,

where ϵ is a small positive number to ensure numerical

stability if the threshold κ = 0. Note that the cost return is

always non-negative in our setting, and we use κ = 10 by

default. Without otherwise statements, we will abbreviate

ªnormalized cost returnº as ªcostº and ªnormalized reward

returnº as ªrewardº for simplicity.

We can observe that a policy is unsafe if the cost is greater

than 1. We deliberately scale the reward around the range

[0, 100] and the cost around 1 to distinguish them in the

result table better. The comparison criteria follow the safe

RL setting (Ray et al., 2019): a safe policy is better than an

unsafe one. For two unsafe policies, the one with a lower

cost is better. For two safe policies, the one with a higher

reward is better.

Baselines with a fixed cost threshold. We use two recent

offline safe RL approaches: CPQ (Xu et al., 2022a) and

COptiDICE (Lee et al., 2022) as two strong baselines. We

adopt two Lagrangian-based baselines: BCQ-Lagrangian

(BCQ-Lag) and BEAR-Lagrangian (BEAR-Lag), which is

built upon BCQ (Fujimoto et al., 2019) and BEAR (Kumar

et al., 2019), respectively. The Lagrangian approach follows

the expert policy CPPO implementation, which uses adap-

tive PID-based Lagrangian multipliers to penalize constraint

violations (Stooke et al., 2020). We use the vanilla Decision

Transformer (Chen et al., 2021b) with an additional cost re-

turn token as another baseline DT-Cost, aiming to compare

the effectiveness of the proposed CDT training techniques.

We also include a Behavior Cloning baseline (BC-Safe) that

only uses safe trajectories to train the policy. This serves to

measure whether each method actually performs effective

RL, or simply copies the data.

We also conducted comprehensive studies on the Behavior

Cloning method with different datasets, including BC-all,

BC-risky, BC-frontier, and BC-boundary. Due to space

constraints, we defer the visualization of datasets and exper-

iment results on these BC-variants to Appendix D.3.

Hyperparameters. We use a fixed set of hyperparameters

for CDT across all tasks. Most common parameters, such as

the gradient steps, are also the same for CDT and baselines.

The detailed hyperparameters are in Appendix C.2.
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Figure 4. Results of zero-shot adaption to different cost returns. Each column is a task. The x-axis is the target cost return. The first row

shows the evaluated reward, and the second row shows the evaluated cost under different target costs. All plots are averaged among

3 random seeds and 20 trajectories for each seed. The solid line is the mean value, and the light shade represents the area within one

standard deviation. The vertical line is the maximum normalized cost return in the offline dataset.

5.1. Can CDT learn safe policies from offline datasets?

The evaluation results for different trained policies are pre-

sented in Table 1. We can find that only our method (CDT)

and BC-Safe successfully learn safe policies for all tasks,

while CDT consistently achieves higher reward returns than

BC-safe. It makes sense since BC-safe only uses safe data

to train and thus fails to explore high-rewarding trajecto-

ries. The comparison between BC-safe indicates that CDT

performs effective RL rather than copying data.

The results of DT-cost show that simply adding a cost return

token to the original DT structure can not train a constraint

satisfaction policy, though it successfully learns to maximize

the reward return. Note that in the Car-Run task, DT-cost

even outperforms the best trajectory’s reward in the dataset;

however, the cost is also extremely high. The comparison

indicates that the proposed training techniques in CDT are

crucial in learning a safe policy.

The Lagrangian-based baselines BCQ-Lag and BEAR-Lag

fail to behave safely on most tasks, which suggests that di-

rectly applying widely-used safe RL techniques to the offline

setting can hardly work well. Surprisingly, the CPQ and

COptiDICE methods that are designed for offline safe RL

also fail to satisfy the constraints in difficult Drone-related

tasks. Particularly, the CPQ algorithm either performs over-

conservatively with near zero cost or too aggressively with

large costs. As we discussed in Sec. 4.2, one reason for

the poor performance is the difficult-to-estimate cost value

of the optimized policy. The trajectories in the dataset are

collected from various behavior policies and may cause

biased cost value estimation, which then causes too large

or too small dual variables. Accurately fitting a cost critic

is still a challenging problem for off-policy safe RL (Liu

et al., 2022a), let alone the offline setting. The poor perfor-

mance of baselines shows the difficulties of the experimental

tasks; however, the proposed CDT can learn safe and high-

rewarding policies in those tasks very well.

Ablation study. To study the influence of data augmenta-

tion, stochastic policy, and entropy regularization, we con-

duct experiments by removing each component from CDT.

The results are shown in the lower part of Table 1. It is clear

to see both augmentation and stochastic representation are

necessary and important components since we can observe

significant safety performance degradation if removing ei-

ther one of them. Besides, entropy regularization can result

in a slight improvement regarding the overall performance.

5.2. Can CDT achieve zero-shot adaption to different

constraint thresholds?

As introduced in Sec. 4.2, one significant advantage of CDT

over baselines is its capability of zero-shot adaptation to

different cost thresholds. It is obvious that the baselines in-

troduced previously lack this capability because they need a

fixed pre-defined threshold to solve a constrained optimiza-

tion problem. Adapting them to new constraint conditions

requires re-training. To this end, we add another baseline

Multi-task Behavior Cloning (MT-BC) to compare the zero-

shot adaptation performance with CDT (Xu et al., 2022c).

We view each cost return threshold as a task and concatenate

the task information (episodic cost return) to the correspond-

ing task’s states and train the agent via BC. Namely, the BC

policy predicts an action that is conditioned on both state

and cost threshold: at = πMT-BC(st, κ).

We fix the target reward and vary the target cost for eval-

uation rollouts to obtain the results in Fig. 4. We can

see that MT-BC has certain adaptation capabilities for the

in-distribution target costs. However, when the cost limit

exceeds the maximum cost in the datasets, the actual cost

increases greatly (Car-Run), or the reward decreases sig-

nificantly in other tasks. On the contrary, the actual cost of

CDT is strongly correlated with the target cost return and

under the dashed threshold line, which shows great inter-

polation capability. The curves saturate at certain target

8
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Figure 5. Ablation study of the data augmentation technique. The x-axis is the target reward return. The first row shows the evaluated

reward, and the second row shows the evaluated cost under different target costs. The dashed line is the target cost threshold.

costs that are beyond the maximum one in the training data,

which shows that the agent can maintain safety even when

performing extrapolation over unseen target cost returns.

Furthermore, the actual reward return of CDT does not drop

compared to MT-BC.

5.3. Is CDT robust to conflict reward returns?

As mentioned in section 4.3, there exists infeasible target

cost and reward pairs that could influence safety perfor-

mance, which motivates us to propose the data augmenta-

tion technique. To test its effectiveness, we fix the target

cost return and vary the target reward to evaluate CDT and

CDT without data augmentation. The results are shown in

Fig. 5. We can observe that the actual reward increases

and then saturates as the target reward increases. However,

the actual cost keeps increasing and finally exceeds the cost

limit if removing data augmentation, while CDT can main-

tain safety even if the target return is large. The results show

that data augmentation is a necessary component in CDT to

handle conflicting target returns.

5.4. Can ϵ-reducible characterize the task difficulty?

To corroborate our hypothesis on the reducibility attribute

of offline datasets in Sec. 4.1, we conduct experiments

with both full (small ϵ) and reduced (large ϵ) datasets. The

reduced dataset was constructed by removing trajectories

whose costs exceeded the threshold and with high rewards.

This process ensures that the most rewarding trajectories are

safe, i.e., PF(κ, T ) > IPF(κ, T ). Then we train standard

offline RL algorithms, such as DT (Chen et al., 2021b), BCQ

(Fujimoto et al., 2019), and BEAR (Kumar et al., 2019) on

these datasets. Due to the page limit, we present the results

in Appendix A.

The results show that these algorithms perform poorly in

safety performance on the full dataset, which is as expected

since maximizing reward is the sole objective. However,

when training them on reduced datasets with large ϵ values,

we can observe a significant improvement in terms of safety

performance. This observation aligns with our conjecture:

larger ϵ-reducible problems are relatively easier to solve for

the same task, as using standard offline RL algorithms can

achieve good performance.

6. Conclusion

We study the offline safe RL problem from the multi-

objective optimization perspective and propose an empiri-

cally verified ϵ-reducible concept to characterize the task

difficulty. We further propose the CDT method that is capa-

ble of learning a safe and high-reward policy in challenging

offline safe RL tasks. More importantly, CDT can achieve

zero-shot adaptation to different constraint thresholds with-

out re-training and is robust to conflicting target returns,

while prior works fail. These advantages make CDT prefer-

able for real-world applications with safety constraints.

There are also several limitations of CDT: 1) it more com-

puting resources due to the Transformer architecture; 2) it

lacks rigorous theoretical guarantees for safety; 3) it requires

instant reward and cost feedback during the policy deploy-

ment and rollout; 4) improper target reward return and cost

return can still deteriorate the performance, and 5) achiev-

ing zero-constraint violations is still challenging. Therefore,

studying a more lightweight method to address the above

issues could be promising for future work. Nevertheless, we

hope our findings can inspire more research in this direction

to study the safety and generalization capability in offline

learning.
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A. Results and Discussions on the ϵ-reducible Datasets

To validate our hypothesis of the reducible property of the offline safe RL problem, we first construct reduced dataset (large

ϵ) from full dataset (small ϵ) as shown in Figure 6. We remove the trajectories if their costs exceed the cost threshold and

their rewards are higher than the trajectories whose costs are equal to the cost threshold to ensure that the trajectories with

the highest reward satisfy the safety constraints, namely, PF(κ, T ) > IPF(κ, T ). Then we train the standard offline RL

methods such as DT (Chen et al., 2021b), BCQ (Fujimoto et al., 2019) and BEAR (Kumar et al., 2019) on both the full and

reduced dataset. The evaluation results are shown in Figure 2.

As expected, on the small-ϵ-reducible full data, these standard offline RL methods have poor safety performance since

maximizing reward is the only optimization objective. They learn to mimic the trajectories with higher rewards but violate

the safety constraint in the dataset. However, when they are trained on the large-ϵ-reducible dataset, we can observe

a significant improvement in terms of safety performance. The safety constraint will be naturally satisfied because the

high-reward trajectories in the reduced dataset have smaller cost values than the threshold. In summary, we found that

standard offline RL algorithms can solve the large-ϵ-reducible problems well in most cases, which serves as strong evidence

for our conjecture: the larger ϵ, the easier to solve the problem.

(a) Ant-Run task datasets, ϵ̂|κ=10 = −0.040 within full
dataset, ϵ̂|κ=10 = 0.189 within reduced dataset.

(b) Drone-Run task datasets, ϵ̂|κ=10 = −0.281 within full
dataset, ϵ̂|κ=10 = 0.102 within reduced dataset.

Figure 6. The cost-reward return plot of reduced datasets. The normalized ϵ-reducible value for each dataset is normalized by the

maximum return value in the dataset.

Full Dataset (small ϵ) Reduced Dataset (large ϵ)

Ant-Run (ϵ̂ = −0.040) Drone-Run (ϵ̂ = −0.281) Average Ant-Run (ϵ̂ = 0.189) Drone-Run (ϵ̂ = 0.102) AverageMethods

Reward ↑ Cost ↓ Reward ↑ Cost ↓ Reward ↑ Cost ↓ Reward ↑ Cost ↓ Reward ↑ Cost ↓ Reward ↑ Cost ↓

DT 96.13 2.47 49.09 4.69 72.61 3.58 81.26 0.91 63.88 1.03 72.57 0.97

BCQ 97.99 5.39 60.1 3.01 79.04 4.2 82.59 1.19 42.34 0.51 62.46 0.85

BEAR 91.05 1.69 42.13 0.48 66.59 1.08 84.2 0.55 33.29 0.0 58.74 0.28

Table 2. Evaluation results of the normalized reward and cost. The cost threshold is 1. ↑ / ↓: the higher/lower, the better. Each value is

averaged over 20 episodes and 3 seeds. Bold: Safe agents whose normalized cost is smaller than 1. Gray: Unsafe agents. The normalized

ϵ-reducible value for each dataset, which is normalized by the maximum return value in the dataset, is also labeled in the table.

One implicit assumption for ϵ-reducible property is that the learning capability of an offline RL learner is limited, and

the datasets are of good quality that can cover high-reward spaces, i.e., the agent can hardly achieve any trajectory τ with

a higher reward r > PF(T , κ) under safety constraint κ given the collected dataset T . With this limited learning ability

assumption, given a positive-reducible dataset, the agent will not achieve a reward that is higher than PF(T , κ) even if we

remove safety constraints during offline training.
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B. Implementation Details

B.1. CDT Training Procedure Pseudo Code

Algorithm 3 CDT Training Procedure

Input: Transformer model πθ, dataset T , learning rate α, context length K, batch size B, entropy weight λ, gradient steps

M , maximum episode length T , augment samples N , reward sample max rmax

Output: trained Transformer model πθ

1: Augment dataset: T ← Augment(T , N, rmax)
2: for update step = 1, ...,M do

3: ▷ sample a batch of sequences of length K
4: B = {ai,t,oi,t}

B
i=1 ∼ T , t ∼ SampleInt(1, T )

5: ▷ compute the NLL loss and entropy loss

6: ℓnll = −
1

|B|

∑

a,o∈B log πθ(a|o)

7: ℓent = −
1

|B|

∑

o∈B H[πθ(·|o)]

8: ▷ update the policy parameter

9: ℓcdt = ℓnll + λℓent

10: θ ← θ − α∇θℓcdt

11: end for

B.2. Dataset Collection

B.2.1. ALGORITHM

We collect offline datasets using the CPPO safe RL approach (Stooke et al., 2020), which is an improved version of the

PPO-Lagrangian method by using a PID controller to update the dual variable (Ray et al., 2019). Suppose the reward and

cost value functions Vr, Vc are parameterized by θr and θc networks respectively. We use GAE (Schulman et al., 2015) to

update the value functions:

θr ← argmin
θr

Esτ∼D





(

Vr(sτ )−
T−τ
∑

t=0

(λgaeγ)tr(st, at)

)2




θc ← argmin
θc

Esτ∼D





(

Vc(sτ )−

T−τ
∑

t=0

(λgaeγ)tc(st, at)

)2




(3)

where γ is the discounting factor, and λgae is the GAE constant. The objective of clipped PPO has the form (Schulman

et al., 2017):

ℓppo = min(
πθ(a|s)

πθk(a|s)
A

πθk

r (s, a), clip(
πθ(a|s)

πθk(a|s)
, 1− ϵclip, 1 + ϵclip)A

πθk

r (s, a)) (4)

We use PID Lagrangian (Stooke et al., 2020) that addresses the oscillation and overshoot problem in Lagrangian methods.

The loss of the PPO-Lagrangian has the form:

ℓppol =
1

1 + λ
(ℓppo − λA

πθk

c (s, a)) (5)

The Lagrangian multiplier λ is computed by applying feedback control to V π
c and is determined by positive constants kP ,

kI , and kD. Instead of using a fixed cost threshold ϵ, we apply a time-varying cost threshold so that we can collect data

within a wide range of reward and cost values. The procedure of CPPO is summarized in Alg. 4.

B.2.2. HYPERPARAMETERS OF THE EXPERT CPPO POLICY

To collect datasets with a large range of cost and reward return values, we fine-tune the hyperparameters in CPPO. The key

hyperparameters for our dataset collection are listed in Tab. 3.
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Algorithm 4 CPPO

Input: Cost interval [Cmin, Cmax], starting epoch n1, ending epoch n2, epoch n, PID parameter {kP , kI , kD}, learning rate

ηϕ.

Output: Policy parameter ϕ, dataset Γ.

1: Initialization: target cost error e0 ← 0, replay buffer D ← {}, dataset Γ← {}.
2: for i = 1, ..., n do

3: Compute the threshold ϵ← min{Cmax,max{Cmin,
Cmax−Cmin

n2−n1

(i− n1) + ϵ1}}
4: Sample N trajectories {s0, a0, . . . , sT }n=1,...,N with policy πi and store transition data to replay buffer D.

5: Compute the expectation of cost return Jc.

6: Calculate the error between the real cost and the cost threshold: ei ← Jc − ϵ.
7: Update dual variable λ← kP ei + kI max{0,

∑i

j=1
ej}+ kD max{0, ei − ei−1}.

8: Update value functions based on Eq. (3).

9: Update policy: ϕ← ϕ+ ηϕ∇ϕ(Lr − λLc).
10: Save the dataset Γ← Γ ∪ D and empty the buffer D ← {}.
11: end for

parameters Car-Run Ant-Run Car-Circle Drone-Circle Drone-Run

ϵclip 0.2 0.2 0.2 0.15 0.15
λgae 0.97 0.97 0.97 0.95 0.95
γ 0.99 0.99 0.99 0.98 0.98

[ϵ1, ϵ2] [5, 80] [5, 80] [5, 80] [10, 80] [5, 80]
[n1, n2] [50, 400] [45, 200] [50, 200] [20, 550] [10, 150]

n 400 210 210 570 160

Table 3. The hyperparameters for CPPO algorithm for data collection

B.2.3. DATASET VISUALIZATION

The dataset cost-reward return plots for the training tasks Ant-Run, Car-Circle, Car-Run, Drone-Circle, and

Drone-Run are shown in Fig. 7. Due to the limited sampling number, the reward frontier value is not monotonically

increasing with respect to the cost. However, we can observe the trend that high-cost values are with high maximum reward

values in most cases. This is consistent with our intuition and our motivation for loosening safety constraints: large reward

values are traded off by the high risk of violating safety constraints. However, in some cases, such as the Car-Run task,

this trend is not conspicuous. It is because Car-Run is an easy task ± with easy robot dynamics and a simple environment,

that the safety constraint can hardly block the CPPO agent from reaching a higher reward.

C. Experiment Setting and Hyperparameters

C.1. Experiment Description

We use the Bullet safety gym (Gronauer, 2022) environments for this set of experiments. In the Run tasks, agents are

rewarded for running fast between two safety boundaries and are given costs for violation constraints if they run across the

boundaries or exceed an agent-specific velocity threshold. The reward and cost functions are defined as:

r(st) = ||xt−1 − g||2 − ||xt − g||2 + rrobot(st)

c(st) = 1(|y| > ylim) + 1(||vt||2 > vlim)

where vlim is the speed limit, ylim specifies the safety region, vt = [vx, vy] is the velocity of the agent at timestamp t,
g = [gx, gy] is the position of a fictitious target, xt = [xt, yt] is the position of the agent at timestamp t, and rrobot(st) is

the specific reward for different robot. For example, an ant robot will gain reward if its feet do not collide with each other. In

the Circle tasks, the agents are rewarded for running in a circle in a clockwise direction but are constrained to stay within a
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Figure 7. Cost-reward return plot. The reward frontiers of each sampling cost are marked in red. Each column represents a task. The

first row shows the reward frontier points in the dataset, and the second row shows the whole dataset. Each point represents collected

trajectories (not necessarily to be unique) with corresponding episodic cost and reward value. The cost values are discrete because all

these tasks adopt the 0-1 cost. The normalized ϵ-reducible values at threshold κ = 10 for these datasets are listed as Ant-Run: -0.040,

Car-Circle: -0.056, Car-Run: -0.005, Drone-Circle: -0.208, Drone-Run: -0.281. The normalized ϵ-reducible value for each dataset is

normalized by the maximum return value in the dataset.

safe region that is smaller than the radius of the target circle. The reward and cost functions are defined as:

r(st) =
−ytvx + xtvy
1 + |||xt||2 − r|

+ rrobot(st)

c(st) = 1(|x| > xlim)

where r is the radius of the circle, and xlim specifies the range of the safety region.

C.2. Hyperparameters

For baselines, we use Gaussian policies with mean vectors given as the outputs of neural networks, and with variances that

are separate learnable parameters. The policy networks and Q networks for all experiments have two hidden layers with

ReLU activation functions. The KP ,KI and KD are the PID parameters (Stooke et al., 2020) that control the Lagrangian

multiplier for the Lagrangian-based algorithms. We use the same 105 gradient steps and rollout length which is the maximum

episode length for CDT and baselines for fair comparison. The cost threshold for baselines is 10 across all the tasks. The

hyperparameters that are not mentioned are in their default value for baselines. The complete hyperparameters used in the

experiments are shown in Table 4.

Parameter All tasks Parameter Ant-Run Car-Circle Car-Run Drone-Circle Drone-Run

Number of layers 3
Actor hidden size

[256, 256] BCQ-Lag, BEAR-Lag

Number of attention heads 8 [300, 300] CPQ

Embedding dimension 128
VAE hidden size

[750, 750] BEAR-Lag

Batch size 2048 [400, 400] CPQ

Context length K 10 Rollout length 200 300 200 300 100

Learning rate 0.0001 [KP ,KI ,KD] [0.1, 0.003, 0.001] BCQ-Lag, BEAR-Lag

Droupout 0.1 Batch size 512

Adam betas (0.9, 0.999) Actor learning rate 0.0001 0.001 0.0001 0.0001 0.001

Grad norm clip 0.25 Critic learning rate 0.001 0.001 0.001 0.001 0.001

Table 4. Hyperparameters for CDT (left) and baselines (right).
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D.2. Ablation studies for noisy datasets

The real-world dataset could be noisy and contains trajectories that accidentally record high reward returns and small cost

returns despite following a poor behavioral policy. Such lucky trajectories would be rare (outliers) and should be omitted in

learning. However, when such a lucky trajectory exists in the dataset, it may affect the data augmentation procedure in CDT

and thus negatively affect its performance. To investigate this issue, our implementation adopts two techniques. They are

summarized as follows.

1. The first technique is to associate each augmented return pair (r, c) with a trajectory sampled in the neighbor-

hood of the nearest and safe Pareto frontier data point, and the sampling distribution is based on a distance metric

W ((rp, cp), (r
′, c′)) := ||(rp, cp) − (r′, c′)||2 + β, where β ∈ R+ is a constant, (rp, cp) is the return of the Pareto

frontier, and (r′, c′) ∈ U((rp, cp)) is the return of the data point in the neighbor of (rp, cp). That is to say, we may

associate the return pair (r, c) to a range of data points around the Pareto frontier (rp, cp). The probability of data selec-

tion is inversely proportional to the distance, i.e., p((r, c)← (r′, c′)) ∝ 1/W ((rp, cp), (r
′, c′)). This sampling-based

association can not only increase the diversity of augmented trajectories, but also mitigate the outlier issue.

2. The second technique uses a density filter to remove such outliers with abnormal reward and cost returns when creating

the training dataset. In particular, we implemented a grid filter that first segments the reward and cost return space into

evenly distributed grids and then counts the number of trajectories within each grid. As such, we can easily filter the

outlier trajectories of small densities.

To show the effectiveness of the above techniques, we create such a dataset that contains different portions (α% =
0.1%, 0.4%, 1%, 1.5%, 2%) of outlier trajectories based on the Drone-Run dataset. We consider the task with stochastic

reward and cost function, i.e., high-cost trajectories have the probability of α% to be labeled as a ªluckyº trajectory with

high reward and low cost. Specifically, we select α% high-cost trajectories and modify their cost return to be less than the

cost threshold, as shown in the red dots in Fig. 9.

The middle figure visualizes the sampling-based association technique. Note that the outliers do not only affect the

association, but also influence the sampled return and cost pairs. We can see that some of the augmented returns are wrongly

associated with the outliers, but the remaining ones are paired correctly.

The right figure demonstrates the result of applying a density filter. We can see that the outliers are removed since their

densities on the reward and cost return space are small. Therefore, the augmented returns are associated correctly. However,

we can observe that some normal trajectories on the lower right regions are also filtered.

Figure 9. Cost-reward return illustrations of the Drone-Run dataset. Each point denotes the trajectories with corresponding cost-return

values. Left: the original dataset w/o outlier trajectories. Middle: sampling-based association with 2% outlier trajectories. Right: density

filter with 2% outlier trajectories. The black lines show the association.

We perform CDT to train the agents based on the above two techniques. The evaluation results are listed in Table 5. Note that

the natural performance of CDT on the clean dataset is r = 63.64, c = 0.58. We can observe that as the outlier percentage

increases, CDT’s safety performance does be affected: the cost may also increase. However, in most cases, CDT can still

learn a safe policy, and the reward doesn’t drop too much. The results indicate that the proposed two techniques can mitigate

the negative effect induced by outlier trajectories.
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α = 0.1 α = 0.4 α = 1.0 α = 1.5 α = 2.0 Average
Methods

reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

CDT(ours)

sampling-based association
63.5 0.78 63.11 0.43 68.13 0.31 62.63 0.68 58.8 0.86 63.23 0.61

CDT(ours)

density filter
62.37 0.7 62.67 0.72 60.85 0.99 67.55 0.75 64.31 1.32 63.39 0.76

Table 5. Evaluation results of the normalized reward and cost w.r.t different portions of outlier trajectories. The cost threshold is 1. ↑: the

higher reward, the better. ↓: the lower cost (up to the threshold 1), the better. Each value is averaged over 20 episodes and 3 seeds. Bold:

Safe agents whose normalized cost is smaller than 1. Gray: Unsafe agents.

Apart from the above existing techniques used in our work, we also provide additional ideas to address this issue in different

cases, which are inspired by the out-of-distribution (OOD) detection domain. We detail them as follows.

• For the datasets collected in environments with highly stochastic transition dynamics, we can filter outlier trajectories

based on the probability of transition dynamics. We first train an empirical transition dynamics density estimator

p̂(s′|s, a) : S × A × S → [0, 1] by randomly sample transitions (s, a, s′) from the dataset, and then compute the

transition probability of each trajectory τ in the dataset: p(τ) =
∏

t≥0
p̂(st+1|st, at). We can then discard α%

trajectories with the lowest probabilities, where α is the percent of outliers since they are rare in the datasets.

• For the datasets that might contain lucky trajectories with high reward and low cost, we can reject the paired Pareto

trajectory based on the counts of associated augmentation samples. More specifically, after sampling reward and cost

return pairs and finishing association, we can count the number of associated return pairs for each Pareto trajectory. If

the count is of a significantly high portion among the total samples, we could discard this Pareto trajectory and continue

the process. For example, if we have 100 augmented return pairs in total, and one Pareto data has 80 associated pairs,

then we could regard the data as an outlier and remove it from the dataset.

Nevertheless, for extremely noisy datasets, the augmentation technique proposed in CDT may still fail. Investigating how to

pre-process the datasets and detect these abnormal trajectories would be interesting for future work.
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D.3. Comparison with more behavior-cloning variants

To determine whether our approach truly employs efficient RL or merely duplicates the offline data, we adopt multiple

variants of BC that utilize different portions of the offline data for training agents. As illustrated in Figure 10, BC-all

utilizes the entire set of data, BC-Safe solely relies on safe trajectories, BC-risky exclusively employs high-cost trajectories,

BC-frontier utilizes the trajectories that are close to the Pareto frontier, while BC-boundary focuses on the trajectories that

are near the cost threshold.

Figure 10. Cost-reward return illustrations of the datasets used to train different BC agents (Ant-Run and Drone-Circle dataset). Each

point denotes the trajectories with corresponding cost-return values.

From Table 6, we can find that only our approach (CDT) and BC-Safe can successfully learn safe policies for all tasks, with

CDT consistently achieving higher rewards than BC-Safe. The under-performance of BC-Risky is not surprising, given

that it exclusively utilizes unsafe data. As expected, BC-risky fails to learn safe policies since it only uses unsafe data. The

poor performance of BC-Boundary and BC-Frontier indicates that relying on a more aggressive expert who can generate

high-risk, high-reward trajectories is insufficient for exploring safe boundaries. BC-All can be deemed an average of the

other BC variants and demonstrates the ability to learn safe policies for some tasks. The comparisons between BC variants

and CDT indicates that CDT performs effective RL rather than copying data.

Ant-Run Car-Circle Car-Run Drone-Circle Drone-Run Average
Methods

reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

CDT(ours) 89.76 0.83 89.53 0.85 99.0 0.45 73.01 0.88 63.64 0.58 82.99 0.72

BC-Safe 80.56 0.64 78.21 0.74 97.21 0.01 66.49 0.56 32.73 0.0 71.04 0.39

BC-all 90.86 1.45 82.81 0.62 97.48 0.01 73.29 2.81 49.58 0.28 78.8 1.03

BC-risky 95.31 3.14 84.1 2.52 96.73 2.71 79.68 3.89 66.74 4.17 84.51 3.29

BC-boundary 86.01 1.04 83.57 0.86 97.76 0.0 67.07 0.24 62.93 3.57 79.47 1.14

BC-frontier 95.08 1.55 89.76 1.51 98.74 1.58 85.62 3.11 75.36 3.44 88.91 2.24

Table 6. Evaluation results of the normalized reward and cost. The cost threshold is 1. ↑: the higher reward, the better. ↓: the lower cost

(up to the threshold 1), the better. Bold: Safe agents whose normalized cost is smaller than 1. Gray: Unsafe agents. Blue: Safe agent with

the highest reward.
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