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Abstract

One key challenge for multi-task Reinforce-

ment learning (RL) in practice is the absence

of task specifications. Robust RL has been ap-

plied to deal with task ambiguity but may re-

sult in over-conservative policies. To balance

the worst-case (robustness) and average perfor-

mance, we propose Group Distributionally Ro-

bust Markov Decision Process (GDR-MDP), a

flexible hierarchical MDP formulation that en-

codes task groups via a latent mixture model.

GDR-MDP identifies the optimal policy that

maximizes the expected return under the worst-

possible qualified belief over task groups within

an ambiguity set. We rigorously show that

GDR-MDP’s hierarchical structure improves dis-

tributional robustness by adding regularization

to the worst possible outcomes. We then de-

velop deep RL algorithms for GDR-MDP for

both value-based and policy-based RL meth-

ods. Extensive experiments on Box2D control

tasks, MuJoCo benchmarks, and Google foot-

ball platforms show that our algorithms outper-

form classic robust training algorithms across

diverse environments in terms of robustness

under belief uncertainties. Demos are avail-

able on our project page (https://sites.

google.com/view/gdr-rl/home).

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated extraor-

dinary capabilities in sequential decision-making, even

for handling multiple tasks (Mnih et al., 2013; Kober
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et al., 2013; Kirk et al., 2021; Finn et al., 2017). With

policies conditioned on accurate task-specific contexts,

RL agents could perform better than ones without access

to context information (Steimle et al., 2021; Sodhani

et al., 2021). However, one key challenge for contextual

decision-making is that, in real deployments, RL agents

may only have incomplete information about the task

to solve. In principle, agents could adaptively infer the

latent context with data collected across an episode, and

prior knowledge about tasks (Wilson et al., 2007; Rakelly

et al., 2019; Hausman et al., 2018). However, the context

estimates may be inaccurate (Xie et al., 2022; Sharma

et al., 2019) due to limited interactions, poorly constructed

inference models, or intentionally injected adversarial

perturbations. Blindly trusting the inferred context and

performing context-dependent decision-making may lead

to significant performance drops or catastrophic failures in

safety-critical situations. Therefore, in this work, we are

motivated to study the problem of robust decision-making

under the task estimate uncertainty.

Prior works about robust RL involve optimizing over the

worst-case qualified elements within one uncertainty set

(Nilim and El Ghaoui, 2005; Iyengar, 2005). Such robust

criterion assuming the worst possible outcome may lead

to overly conservative policies, or even training instabil-

ities (Zhang et al., 2020a; Yu et al., 2021; Huang et al.,

2022). For instance, an autonomous agent trained with ro-

bust methods may always assume the human driver is ag-

gressive regardless of recent interactions and wait until the

road is clear, consequently blocking the traffic. Therefore,

balancing the robustness against task estimate uncertain-

ties and the performance when conditioned on the task es-

timates is still an open problem. We provide one solution to

address the above problem by modeling the commonly ex-

isting similarities between tasks under distributionally ro-

bust Markov Decision Process (MDP) formulations.

Each task is typically represented by a unique combination

of parameters or a multi-dimensional context in multi-task

RL. We argue that some parameters are more important

than others in terms of affecting the environment dynamics
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distribution within an ambiguity set. We instead hold a be-

lief over task mixtures and find the worst possible belief

distribution. (Sinha et al., 2020) also maintains a belief dis-

tribution over tasks but models tasks with a flat latent struc-

ture. Moreover, (Sinha et al., 2020) achieves robustness by

optimizing at test-time, while we aim to design robust train-

ing algorithms to save computation during deployment.

RL with Task Estimate Uncertainty. Inferring the la-

tent task as well as utilizing the estimates in decision-

making have been explored under the framework of

Bayesian-adaptive MDPs (Ghavamzadeh et al., 2015;

Brunskill, 2012; Guez et al., 2012; Lee et al., 2018; Yu

et al., 2017). Our work is similar to Bayesian-adaptive

MDPs in terms of updating a belief distribution with

Bayesian update rules, but we focus on the robustness

against task estimate uncertainties at the same time. The

closest work to our research is Xie et al. (2022), which op-

timizes a conditional value-at-risk objective and maintains

an uncertainty set centered on a context point estimate. In-

stead, we maintain an ambiguity set over beliefs and further

consider the presence of task subpopulations. Sharma et al.

(2019) also considers the uncertainties in belief estimates

but with a flat latent task structure.

Multi-task RL. Learning a suite of tasks with an

RL agent has been studied under different frameworks,

such as Latent MDP (Kwon et al., 2021), Multi-model

MDP (Steimle et al., 2021), Contextual MDP (Hallak

et al., 2015), Hidden Parameter MDP (Doshi-Velez and

Konidaris, 2016), and etc (Brunskill and Li, 2013). Our

proposed HLMDP builds on the Latent MDP (Kwon et al.,

2021) which contains a finite number of MDPs, each

accompanied by a weight. In contrast to Latent MDP

utilizing a flat structure to model each MDP’s probability,

HLMDP leverages a rich hierarchical model to cluster

MDPs to a finite number of mixtures. In addition, HLMDP

is a special yet important subclass of POMDP (Kaelbling

et al., 1998). It treats the latent task mixture that the cur-

rent environment belongs to as the unobservable variable.

HLMDP resembles the recently proposed Hierarchical

Bayesian Bandit (Hong et al., 2021) model but focuses on

more complex MDP settings.

3 PRELIMINARY

This section introduces Latent MDP and the adaptive belief

setting, both serving as building blocks for our proposed

HLMDP (Section 4) and GDR-MDP (Section 5).

Latent MDP. An episodic Latent MDP (Kwon et al.,

2021) is specified by a tuple (M, T,S,A, µ). M is a

set of MDPs with cardinality |M| = M . Here T , S ,

and A are the shared episode length (planning horizon),

state, and action space, respectively. µ is a categorical dis-

tribution over MDPs and
∑M

m=1 µ(m) = 1. Each MDP

Mm ∈ M,m ∈ [M ] is a tuple (T,S,A, Pm,Rm, νm)
where Pm is the transition probability, Rm is the reward

function and νm is the initial state distribution.

Latent MDP assumes that at the beginning of each episode,

one MDP from set M is sampled based on µ(m). It

aims to find a policy π that maximizes the accumulated

expected return solving maxπ
∑M

m=1 µ(m)Eπ
m

[
∑T

t=1 rt
]

,

where Em[·] denotes EPm,Rm
[·].

The Adaptive Belief Setting In general, a belief distri-

bution contains the probability of each possible MDP that

the current environment belongs to. The adaptive belief

setting (Steimle et al., 2021) holds a belief distribution that

is dynamically updated with streamingly observed interac-

tions and prior knowledge about the MDPs. In practice,

prior knowledge may be acquired by rule-based policies

or data-driven learning methods. For example, it is pos-

sible to pre-train in simulated complete information sce-

narios or exploit unsupervised learning methods based on

online collected data (Xu et al., 2020). There also exist

multiple choices for updating the belief, such as applying

the Bayesian rule as in POMDPs (Kaelbling et al., 1998)

and representing beliefs with deep recurrent neural nets

(Karkus et al., 2017).

4 HIERARCHICAL LATENT MDP

In realistic settings, tasks share similarities, and task sub-

populations are common. Although different MDP formu-

lations are proposed to solve multi-task RL, the task rela-

tionships are in general overlooked. To fill in the gap, we

first propose Hierarchical Latent MDP (HLMDP), which

utilizes a hierarchical mixture model to represent distribu-

tions over MDPs. Moreover, we consider the adaptive be-

lief setting to leverage prior information about tasks.

Definition 1 (Hierarchical Latent MDPs). An episodic

HLMDP is defined by a tuple (Z,M, T,S,A, w). Z de-

notes a set of Latent MDPs and |Z| = Z. M is a set of

MDPs with cardinality |M| = M shared by different La-

tent MDPs. T , S , and A are the shared episode length

(planning horizon), state, and action space, respectively.

Each Latent MDP Zz ∈ Z, z ∈ [Z] consists of a set of

joint MDPs {Mm}Mm=1 and their weights µz satisfying
∑M

m=1 µz(m) = 1. w is the categorical distribution over

Latent MDPs and
∑Z

z=1 w(z) = 1.

We provide a graphical model of HLMDP in Figure 1 (c).

HLMDP assumes that at the beginning of each episode,

the environment first samples a Latent MDP z ∼ w(z)
and then samples an MDP m ∼ µz(m). HLMDP encodes

task similarity information via the mixture model, and

thus contains richer task information than Latent MDP

proposed in (Kwon et al., 2021). For instance, we could
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always find one Latent MDP for each HLMDP. However,

there may exist infinitely many corresponding HLMDPs

given one Latent MDP.

HLMDP in Adaptive Belief Setting. When solving

multi-task RL problems, the adaptive setting is shown to

help generate a policy with a higher performance (Steimle

et al., 2021) than the non-adaptive one since it leverages

prior knowledge about the transition model as well as the

online collected data tailored to the unseen environment.

Hence we are motivated to formulate HLMDP in the adap-

tive belief setting.

HLMDP maintains a belief distribution b(z) over task

groups to model the probability that the current environ-

ment belongs to each group z. At the beginning of each

episode, we initialize the belief distribution with a uniform

distribution b0. We use the Bayesian rule to update beliefs

based on interactions and a prior knowledge base. Note that

the knowledge base are not accurate enough and may lead

to inaccurate belief updates. At timestep t, we get the next

belief estimate bt+1 with the state estimation function SE:

SE(bt, st) =
bt(j)L(j)

∑

i∈[Z] bt(i)L(i)
, ∀j ∈ [Z], (1)

where L represents the likelihood calculated based on the

(inaccurate) knowledge base.

Under the adaptive belief setting, HLMDP aims to find

an optimal policy π̄⋆ within a history-dependent policy

class Π, under which the discounted expected cumulative

reward is maximized as in Equation 2. Following gen-

eral notations in POMDPs, we denote the history at time

t as ht = (s0, a1, s1, . . . , st−1, at−1, st) ∈ Ht containing

state-action pairs (s, a). At timestep t, we use both the ob-

served state st and the inferred belief distribution bt(z) as

the sufficient statistics for history ht.

V̄ ⋆ = max
π∈Π

Eb0:T (z)Eµz(m)E
π
m

[

T
∑

t=1

γtrt
]

, (2)

where rt denotes the reward received at step t. b0(z) is the

initial belief at timestep 0.

5 GROUP DISTRIBUTIONALLY

ROBUST MDP

The belief update function in Equation 1 may not be accu-

rate, which motivates robust decision-making under belief

estimate errors. In this section, we introduce Group Dis-

tributionally Robust MDP (GDR-MDP) which models

task groups and considers robustness against the belief am-

biguity. We then study the convergence property of GDR-

MDP in the infinite-horizon case in Section 5.1. We find

that GDR-MDP’s hierarchical structure helps restrict the

worst-possible value within the ambiguity set and provide

the robustness guarantee in Section 5.2.

Definition 2 (General Ambiguity Sets). Let ∆k be a k-

simplex. Considering a categorical belief distribution b ∈
∆k, a general ambiguity set without special structures is

defined as C∆k containing all possible distributions for b.

Definition 3 (Group Distributionally Robust MDP).

An episodic GDR-MDP is defined by a 8-tuple

(C,Z,M, T,S,A, w, SE). C is a general belief am-

biguity set. T,S,A,M,Z, w are elements of an episodic

HLMDP as in Definition 1. SE : ∆Z−1 × S → ∆Z−1 is

the belief updating rule. GDR-MDP aims to find a policy

π⋆ ∈ Π that obtains the following optimal value:

V ⋆ = max
π∈Π

min
b̂0:T

∈C∆Z−1

E
b̂0:T (z)Eµz(m)E

π
m

[

T
∑

t=1

γtrt
]

, (3)

where C∆Z−1 is a general ambiguity set tailored to beliefs

over Latent MDPs in set Z .

GDR-MDP naturally balances robustness and performance

by leveraging distributionally robust formulation and rich

distributional information. In contrast to HLMDP, which

maximizes expected return over nominal adaptive belief

distribution (Equation 2), GDR-MDP aims to maximize

the expected return under the worst-possible beliefs within

an ambiguity set C∆Z−1 . Moreover, GDR-MDP optimizes

over fewer optimization variables than when directly

perturbing MDP model parameters or states. It resembles

the group distributionally robust optimization problem in

supervised learning (Sagawa et al., 2019; Oren et al., 2019)

but focuses on sequential decision-making in dynamic

environments.

5.1 Convergence in Infinite-horizon Case

With general ambiguity sets (as in Definition 2), calculat-

ing the optimal policy is intractable (Yu and Xu, 2015; De-

lage and Ye, 2010). We propose a belief-wise ambiguity

set that follows the b-rectangularity to facilitate solving the

proposed GDR-MDP.

Assumption 1 (b-rectangularity). We assume a belief-wise

ambiguity set, C̃ :=
⊗

b∈∆Z−1 Cb, where
⊗

represents

Cartesian product. b serves as the nominal distribution of

the ambiguity set.

More concretely, the b-rectangularity assumption uncou-

ples the ambiguity set related to different beliefs. When

conditioned on beliefs at each timestep, the minimization

loop selects the worst-case realization unrelated to other

timesteps. The b-rectangularity assumption is motivated

by the s-rectangularity first introduced in Wiesemann et al.

(2013), which helps reduce a robust MDP formulation to

an MDP formulation and get rid of the time-inconsistency
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problem (Xin and Goldberg, 2021). Ambiguity sets be-

yond rectangularities are recently explored in Mannor et al.

(2016) and Goyal and Grand-Clement (2018), which we

leave for future works.

With b-rectangular ambiguity sets, we derive Bellman

equations to solve Equation 3 with dynamic programming.

Detailed proofs are in Appendix Section B.1.

Proposition 1 (Group Distributionally Robust Bellman

Equation). Define the distributionally robust value of an

arbitrary policy π as follows where bt+1 = SE(bt, st).

V π
t (bt, st)= min

b̂t:T∈
Cbt:T

E
b̂t:T (z)Eµz(m)E

πt:T
m

[

T
∑

n=t

γn−trn|bt, st
]

.

The Group Distirbutionally Robust Bellman expectation

equation is

V π
t (bt, st) = min

b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt

[

ERm
[rt]+

γ
∑

st+1

Pm(st+1|st, at)V
π
t+1(bt+1, st+1)

]

. (4)

Lemma 1 (Contraction Mapping). Let V be a set of real-

valued bounded functions on ∆Z−1×S . LV (b, s) : V → V
refers to the Bellman operator defined as

LV (b, s) = max
π∈Π

min
b̂∈Cb

E
b̂(z)Eµz(m)E

π
[

ERm
[r]+

γ
∑

s′

Pm(s′|s, a)V π(SE(b, s), s)
]

. (5)

LV (b, s) is a γ-contraction operator on the complete met-

ric space (V, ‖ · ‖∞). That is, given ∀ U, V ∈ V ,

‖LU − LV ‖∞ ≤ γ‖U − V ‖∞.

Theorem 1 (Convergence in Infinite-horizon Case). De-

fine V∞(b, s) as the infinite horizon value function. For all

b ∈ B and s ∈ S , we have V∞(b, s) is the unique solu-

tion to LV∞(b, s) = V∞(b, s), and limt→∞ LVt(b, s) =
LV∞(b, s) uniformly in ‖ · ‖∞.

By repeatedly applying the contraction operator in

Lemma 1, the value function will converge to a unique

fixed point, which corresponds to the optimal value based

on Banach fixed point theorem (Banach, 1922).

5.2 Robustness Guarantee of GDR-MDP

This section shows how GDR-MDP’s hierarchical task

structure and the distributionally robust formulation help

balance performance and robustness. We compare the op-

timal value of GDR-MDP denoted as VGDR(π
⋆
GDR), with

three different robust formulations. Group Robust MDP is

a robust version of GDR-MDP with its optimal value de-

noted as VGR(π
⋆
GR). Distributionally Robust MDP holds

a belief over MDPs without the hierarchical task structure

whose optimal value denoted as VDR(π
⋆
DR). Robust MDP

is a robust version of Distributionally Robust MDP, de-

noted as VR(π
⋆
R). π

⋆
· denote optimal policies under differ-

ent formulations. We achieve the comparison by studying

how maintaining beliefs over mixtures affects the worst-

possible outcome of the inner minimization problem and

the resulting RL policy.

We study the worst-possible value via the relationships be-

tween ambiguity sets projected to the space of beliefs over

MDPs. We first define a discrepancy-based ambiguity set

that is widely used in existing DRO formulations (Abdullah

et al., 2019; Sinha et al., 2017; Lecarpentier and Rachelson,

2019).

Definition 4 (Ambiguity set with total variance distance).

Consider a discrepancy-based ambiguity set defined based

on total variance distance. Formally, the ambiguity set is

CνX ,dTV ,ξ(X) = {ν′(X) : sup
X∈X

|ν′(X)− νX (X)| ≤ ξ},

where X ∈ X is the support, νX is the nominal distribution

over X and ξ is the ambiguity set’s size.

To achieve a reasonable comparison, we control the adver-

sary’s budget ξ the same when perturbing the belief over

task groups z and tasks m, which correspond to different

model misspecification forms when there is a hierarchical

latent structure about tasks.

Theorem 2 (Values of different robust formulations). Let

Um(π) = E
π
m

[
∑T

t=1 γ
trt

]

. Let Cb(m),dTV ,ξ(m) and

Cb(z),dTV ,ξ(z) denote the ambiguity sets for beliefs over

tasks m and groups z, respectively. b(m) and b(z) satisfy

b(m) =
∑

Z µz(m)b(z) and are the nominal distributions.

For any history-dependent policy π ∈ Π, its value function

under different robust formulations are:

VGDR(π) = min
b̂(z)∈Cb(z),dTV ,ξ(z)

E
b̂(z)Eµz(m)[Um(π)],

VGR(π) = min
z∈[Z]

Eµz(m)[Um(π)],

VDR(π) = min
b̂(m)∈Cb(m),dTV ,ξ(m)

E
b̂(m)[Um(π)],

VR(π) = min
m∈[M ]

[Um(π)].

We have the following inequalities hold: VGDR(π) ≥
VGR(π) ≥ VR(π) and VGDR(π) ≥ VDR(π).

Theorem 2 shows that with a nontrivial ambiguity set,

the distributionally robust formulation in GDR-MDP helps

regularize the worst-possible value when compared with

robust ones, including the group robust (GR) and task ro-

bust (R) formulations. It also shows that GDR-MDP’s hi-

erarchical structure further helps restrict the effect of the

adversary, resulting in higher values than the distribution-

ally robust formulation with a flat latent structure (DR). To
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each training step, we sample a batch data {d =
(b(z), s, a, r, b′(z), s′, a′, r′)}N from the replay buffer D to

estimate the perturbed TD target.

We update Q-functions with gradient descents. For both

GDR-DQN and GDR-SAC, we have loss as

LQθ
=

∑

d

(

r + min
p(z)∈

Cb′(z),dTV ,ξ

∑

a∈A

Qθ(p(z), s
′, a)

−
∑

a∈A

Qθ(b(z), s, a)
)2

.

GDR-PPO. GDR-PPO conducts robust training by de-

creasing the advantages of trajectories that are vulnerable

to belief noises. More concretely, given a trajectory d, its

advantage for (bt, st) is calculated as follows.

Â(bt, st) =

T−1
∑

t′=t

rt −Rdrop − Vθ(bt, st), where

Rdrop = V (bt, st)− min
p(z)∈Cbt(z),dTV ,ξ

Vθ(p(z), st).

We measure the performance drop Rdrop under worst-

possible beliefs within the ambiguity set.

Worst-possible Beliefs. To obtain the worst case distri-

bution badv ∈ Cb′(z),dTV ,ξ, we iteratively apply a stochas-

tic variant of fast gradient sign method (FGSM) (Goodfel-

low et al., 2014) to make sure that the perturbed discrete

distribution satisfies
∑

z p(z) = 1. For each attack to the

belief distribution, we randomly sample an index i ∈ Z,

and apply the attack to each element in p(z) as follows

p(z)j = p(z)j + αb · sign(∇p(z)jV (p(z), s′)), ∀j 6= i
and p(z)i = p(z)i −

∑

j 6=i p(z)j . αb is the perturbation

step size. To stabilize robust training, we pretrain for a

small amount of episodes with exact one-hot beliefs to en-

sure that the value function could approximate the actual

state value to some extent. To achieve a certain level of

robustness over noisy inferred belief b(z), we fix the am-

biguity set size along with robust training, which is analo-

gous to the adversary budget and the robustness level (Zhou

et al., 2021). Note that FSGM (Goodfellow et al., 2014)

is an effective and efficient attack method that is widely

used in existing robust RL literature (Huang et al., 2017;

Mandlekar et al., 2017; Zhang et al., 2020b). Many other

attacks are designed based on different specialized objec-

tives, assumptions, and constraints, such as the projected

gradient attack. In principle, our hierarchical robust for-

mulation GDR-MDP and corresponding deep RL training

algorithms are agnostic to attack types.

7 EXPERIMENTS

We conduct experiments to empirically study (a) the effect

of GDR-MDP’s hierarchical structure on the robust training

stability and (b) policy’s robustness to belief estimate error.

7.1 Environments

We evaluate GDR-DQN in Lunarlander (Brockman et al.,

2016), GDR-SAC in Halfcheetah (Todorov et al., 2012),

and GDR-PPO in Google Research Football (Kurach et al.,

2020). Table 1 shows a summary of environment setups.

More details are in Appendix Section C. To initialize each

episode, we first sample a group z ∼ w(z), and then a task

m ∼ µz(m) for the episode. Note that both z and m are

unknown to the agent.

Google Research Football (GRF). This domain

presents additional challenges due to its AI randomness,

large state-action spaces, and sparse rewards. The RL

agent will control one active player on the attacking team

at each step and can pass to switch control. The non-active

players will be controlled by built-in AI. The dynamics of

our designed 3 vs. 2 tasks are determined by the player

types including central midfield (CM) and centre back

(CB), and player capability levels. The built-in CM player

tends to go into the penalty area when attacking and guard

the player on the wing (physically left or right) when

defending, while the CB player tends to guard the player

in the middle when defending, and not directly go into the

penalty area when attacking. Different patterns of policies

are required to solve the tasks from different groups. In

a CM-attacking-CB-defending task, a good solution is to

first pass the ball to the player on the wing, and then shoot.

In a CB-attacking-CM-defending task, a good policy is to

directly run into the penalty area and shoot.

Box2D Control Task: LunarLander. The Lunarlan-

der’s dynamics are controlled by the engine mode and en-

gine power. In the flipped mode, the action turning on the

left (or right) engine in normal mode will turn on the right

(or left) engine instead.

Mujoco Control Task: HalfCheetah. In HalfCheetah,

each task’s dynamics are controlled by both the torso mass

and the failure joint, to which we cannot apply action. Our

setting is similar to the implementation in Xie et al. (2022)

but with a fixed failure joint within each episode.

7.2 Baselines

We compare our Group Distributionlly Robust training

methods (GDR) with five baselines. In G-Exact, the RL

agent is trained with the exact mixture information encoded

in a one-hot vector. The agent in DR maintains a belief dis-

tribution b(m) and utilizes distributionally robust training

over b(m). It uses the same belief updating rule as in GDR

to update b(z) at each timestep but projects b(z) to b(m)
with µz(m). DR utilizes no mixture information and helps

ablate the effect of the hierarchical latent structure. The

agent in No-Belief has no access to the context information

and generates action only based on state s. The No-Belief
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A Toy Example: Hierarchical Latent Bandit

In this section, we show the process of getting the optimal policies for different robust formulations in the Hierarchical

Latent Bandit problem as illustrated in Figure 2 (a).

The agent has two possible actions, a0 and a1. There are two possible mixtures/groups denoted as z, and two possible

MDPs denoted as m. Given the mixture, we have the conditional probability for each MDP as µ(m = 0|z = 0) = 0.8,

µ(m = 1|z = 0) = 0.2, µ(m = 0|z = 1) = 0.0, µ(m = 1|z = 1) = 1.0. We assume the same type of ambiguity set

measured by the total variance distance as in the analysis. Let the current belief over groups be b(z) = [0.5, 0.5] and the

ambiguity set size be ξ = 0.2.

We compare the optimal policies of four robust formulations, including

• our proposed GDR-MDP (shorthanded as GDR) that utilizes both the hierarchical structure and distributionally robust

formulation, and optimizes over the worst-possible beliefs over groups,

• group robust MDP (GR), which optimizes over the worst-possible groups,

• distributionally robust MDP (DR), which holds a belief over MDPs without the hierarchical task structure and opti-

mizes over the worst-possible belief distribution,

• robust MDP (R), which is a robust version of distributionally robust MDP and optimizes over the worst-possible MDP.

Optimal policy for R. R desires robustness over the worst possible MDPs. We can see that the worst possible MDP is

m1 since the reward when choosing a0 or a1 in m1 is consistently smaller than the rewards when in m0. Since the optimal

policy for m1 is selecting a1, the optimal policy for R is a1.

Optimal policy for GR. GR desires robustness over the worst-possible mixtures. The value for selecting a0 under

mixture z0 is V (a0|z0) = 22 ∗ 0.8 = 17.6. Similarly, V (a1|z0) = 5, V (a0|z1) = 0 and V (a1|z1) = 5. Assume the

agent has a stochastic policy, π(p) = [p, 1 − p], The value of the policy under mixture z0 is V (π(p), z0) = 0.8 ∗ (22p +
5 ∗ (1 − p)) + 0.2 ∗ (0 ∗ p + 5 ∗ (1 − p)) = 12.6p + 5. The value of the policy under mixture z1 is V (π(p), z1) =
0.5 ∗ (5p + 0.0 ∗ (1 − p)) + 0.5 ∗ (5p + 0 ∗ (1 − p)) = 5p. Since V (π(p), z1) < V (π(p), z0), ∀p ∈ [0, 1]. The worst

possible mixture is thus z1 and the optimal policy for GR is a1.

Optimal policy for DR. DR desires robustness over the worst possible belief distribution over MDPs. The nominal

m-level belief distribution is b(m) = [0.4, 0.6], which is mapped from current z-level belief b(z) = [0.5, 0.5]. Considering

that there always exists one deterministic policy π as the optimal policy for each belief distribution b′(m), we directly

analyze the value of the two actions with perturbed belief b̂(m). When the deterministic policy puts all mass on action

a1, perturbing belief doesn’t affect the resulting value estimates since each m has the same reward 5 when selecting a1.

Therefore the value of a1 is always 5. When the deterministic policy puts all mass on action a0, the worst possible belief

decreases the weight of m0 by ξ, which is the maximum attack the adversary can apply. In this worst case, the value

estimates of a1 is V̂ = (0.4− ξ) ∗ 22 = 4.4 < 5. Therefore the optimal policy is a1.

Similar results can be derived with the value function. Formally, given ǫ ∈ [−ξ, ξ] = [−0.2, 0.2], π(a0) = p, π(a1) = 1−p,

we want to solve the following optimization problem

max
p

min
ǫ

V (π(p), Cb(m),ξ) = max
p

min
ǫ
(0.4− ǫ)[22p+ 5(1− p)] + (0.6 + ǫ)[0p+ 5(1− p)]

= max
p

min
ǫ

−22pǫ+ 3.8p+ 5

Since ∂
∂ǫ
V (π(p), Cb(m),ξ) = −22p, p ∈ [0, 1], we have argminǫ V (π(p), Cb(m),ξ) = 0.2.

max
p

min
ǫ

V (π(p), Cb(m),ξ) = max
p

−0.6p+ 5

Therefore when p = 0, the value is maximized. It shows that the optimal policy is a1.

Optimal policy for GDR. GDR instead desires robustness over the worst possible belief distribution over contexts.

Similar to the analysis for DR, the value estimate of a1, V̂ (a1), is always equal to 5 regardless of the perturbed b̂(z). Now

we need to investigate the value when selecting deterministic policy as a0. The weight on z0 in the perturbed belief lies in

range b̂(z0) ∈ [0.5 − ξ, 0.5 + ξ] = [0.3, 0.7]. The value estimate for a0 is thus V̂ (a0) = b̂(z0) ∗ 0.8 ∗ 22 = 17.6b̂(z0) ∈
[5.28, 12.32]. Since the lower bound is larger than the value of V̂ (a1) = 5, the optimal policy for GDR is a0.
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Similarly, we can also write out the value function and the optimization problem.

max
p

min
ǫ

V (π(p), Cb(z),ξ)

=max
p

min
ǫ
(0.5− ǫ)[0.8 ∗ (22p+ 5(1− p)) + 0.2 ∗ (0p+ 5(1− p))] + (0.5 + ǫ)[0p+ 5(1− p)]

=max
p

min
ǫ

−17.6pǫ+ 3.8p+ 5

Since ∂
∂ǫ
V (π(p), Cb(z),ξ) = −17.6p, p ∈ [0, 1], we have argminǫ V (π(p), Cb(z),ξ) = 0.2.

max
p

min
ǫ

V (π(p), Cb(z),ξ) = max
p

0.28p+ 5

Therefore when p = 1, the value is maximized. It shows that the optimal policy is a0.

To sum up, the Hierarchical Latent Bandit example shows that our proposed GDR-MDP has the potential to find a less

conservative policy compared with other robust formulations.

B Additional Proofs

B.1 Proofs for Section 5.1: Convergence of GDR-MDP in Infinite-horizon Case

This section proves the convergence of GDR-MDP in the infinite-horizon case. We first prove the Bellman expectation

equation and Bellman optimality equation in Section B.1.1. We then show the contraction operator build on the Bell-

man optimality equation is a contraction operator in Section B.1.2. Finally, we show the convergence of GDR-MDP in

Section B.1.3.

B.1.1 Proofs for Proposition 1

We provide the proof for the Bellman expectation equation as follows. Starting from the definition of V π
t (bt, st), we first

separate the elements at time step t from future timesteps. We then find that the elements related to future timesteps starting

from step t+ 1 could be aggregated to the group distributionally robust value at step t+ 1.

V π
t (bt, st) = min

b̂t:T∈Cbt:T

E
b̂t:T (z)Eµz(m)E

πt:T
m

[

T
∑

n=t

γn−trn|bt, st
]

= min
b̂t:T∈Cbt:T

E
b̂t:T (z)Eµz(m)E

πt:T
m

[

{rt + γ

T
∑

n=t+1

γn−t−1rn}|bt, st
]

= min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt
m

[

{rt + γ·

min
b̂t+1:T∈Cbt+1:T

E
b̂t+1:T (z)Eµz(m)E

πt+1:T
m

[

T
∑

n=t+1

γn−t−1rn
]

}|bt, st
]

= min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt
[

{ERm
[rt] + γ ·

∑

st+1

Pm(st+1|st, at)·

min
b̂t+1:T∈Cbt+1:T

E
b̂t+1:T (z)Eµz(m)E

πt+1:T
m

[

T
∑

n=t+1

γn−t−1rn
]

}|bt, st
]

= min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt
[

ERm
[rt] + γ ·

∑

st+1

Pm(st+1|st, at)·

min
b̂t+1:T∈Cbt+1:T

E
b̂t+1:T (z)Eµz(m)E

πt+1:T
m

[

T
∑

n=t+1

γn−t−1rn|bt+1 = SE(bt, st), st+1

]

}
]

= min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt

[

ERm
[rt] + γ

∑

st+1

Pm(st+1|st, at)V
π
t+1(bt+1, st+1)

]

.
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Therefore, the Group Distributionally Robust Bellman expectation equation is

V π
t (bt, st) = min

b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt

[

ERm
[rt] + γ

∑

st+1

Pm(st+1|st, at)V
π
t+1(bt+1, st+1)

]

.

Proposition 2. The Group Distributionally Robust Bellman optimality equation is

V π⋆

t (bt, st) = max
πt

min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt

[

ERm
[rt] + γ

∑

st+1

Pm(st+1|st, at)V
π⋆

t+1(bt+1, st+1)
]

.

Following a similar process, we could also prove the Bellman optimality equation as follows.

V π⋆

t (bt, st) =max
πt:T

min
b̂t:T∈Cbt:T

E
b̂t:T (z)Eµz(m)E

πt:T
m

[

T
∑

n=t

γn−trn|bt, st
]

=max
πt:T

min
b̂t:T∈Cbt:T

E
b̂t:T (z)Eµz(m)E

πt:T
m

[

{rt + γ

T
∑

n=t+1

γn−t−1rn}|bt, st
]

=max
πt

min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt
m

[

{rt + γ·

max
πt+1:T

min
b̂t+1:T∈Cbt+1:T

E
b̂t+1:T (z)Eµz(m)E

πt+1:T
m

[

T
∑

n=t+1

γn−t−1rn
]

}|bt, st
]

=max
πt

min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt
[

{ERm
[rt] + γ ·

∑

st+1

Pm(st+1|st, at)·

max
πt+1:T

min
b̂t+1:T∈Cbt+1:T

E
b̂t+1:T (z)Eµz(m)E

πt+1:T
m

[

T
∑

n=t+1

γn−t−1rn
]

}|bt, st
]

=max
πt

min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt
[

ERm
[rt] + γ ·

∑

st+1

Pm(st+1|st, at)·

max
πt+1:T

min
b̂t+1:T∈Cbt+1:T

E
b̂t+1:T (z)Eµz(m)E

πt+1:T
m

[

T
∑

n=t+1

γn−t−1rn|bt+1 = SE(bt, st), st+1

]

}
]

=max
πt

min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt

[

ERm
[rt] + γ

∑

st+1

Pm(st+1|st, at)V
π⋆

t+1(bt+1, st+1)
]

.

Therefore, the Group Distributionally Robust Bellman optimality equation is

V π⋆

t (bt, st) = max
πt

min
b̂t∈Cbt

E
b̂t(z)

Eµz(m)E
πt

[

ERm
[rt] + γ

∑

st+1

Pm(st+1|st, at)V
π⋆

t+1(bt+1, st+1)
]

.

B.1.2 Proof for Lemma 1

Let V refer to a set of real-valued bounded functions on ∆Z−1 × S and LV (b, s) : V → V refer to the Bellman operator

defined as

LV (b, s) = max
π∈Π

min
b̂∈Cb

E
b̂(z)Eµz(m)E

π
[

ERm
[r] + γ

∑

s′

Pm(s′|s, a)V π(SE(b, s), s)
]

.

Now we start the proof to show that the Bellman operator above is a contraction operator. For notation simplicity, let

Lπ

b̂
= E

b̂(z)Eµz(m)E
π
[

ERm
[r] + γ

∑

s′

Pm(s′|s, a)V π(SE(b, s), s)
]

, and LV (b, s) = max
π∈Π

min
b̂∈Cb

Lπ

b̂
.

Given arbitrary U, V ∈ B and based on the definition of the operator LV above, LU,LV are real-valued and bounded.
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Let (bU , πU ) and (bV , πV ) be the saddle points for LU and LV , respectively.

Observe that, LπU

bU
U(b, s) ≤ LπU

bV
U(b, s) and LπV

bV
V (b, s) ≥ LπU

bV
V (b, s).

‖LU(b, s)− LV (b, s)‖∞

= ‖LπU

bU
U(b, s)− LπV

bV
V (b, s)‖∞

≤ ‖LπU

bV
U(b, s)− LπU

bV
V (b, s)‖∞

= ‖LπU

bV
(U(b, s)− V (b, s))‖∞

= ‖E
b̂(z)Eµz(m)E

π
[

γ
∑

s′

Pm(s′|s, a) · (U(SE(b, s, µ), s)− V (SE(b, s, µ), s))
]

‖∞

≤ γE
b̂(z)Eµz(m)E

π
[

∑

s′

Pm(s′|s, a) · ‖U(SE(b, s, µ), s)− V (SE(b, s, µ), s)‖∞

]

≤ γ‖U(SE(b, s, µ), s)− V (SE(b, s, µ), s)‖∞

= γ‖U(b′, s)− V (b′, s)‖∞.

Considering that 0 < γ < 1, we conclude that LV (b, s) is a contraction operator on complete metric space (V, ‖ · ‖∞).

B.1.3 Proof for Theorem 1

Since LV (b, s) is a contraction operator based on Lemma 1, we directly follow the Banach’s Fixed-Point Theorem Heyman

and Sobel (2004) to show that (a) there exist a unique solution for LV∞(b, s) = V∞(b, s), and (b) the value function

initiating from any value converge uniformly by iterative applying the Bellman update built in finite horizon case.

B.2 Proofs for Section 5.2: Robustness Guarantee for GDR-MDP

In this section, we prove the robustness guarantee of our proposed GDR-MDP. We compare the GDR-MDP’s optimal value

with three different robust formulations. We achieve the comparison by studying how maintaining beliefs over mixtures

affects the worst-possible outcome of the inner minimization problem and the resulting RL policy. We study the worst-

possible value via the relationships between ambiguity sets projected to the space of beliefs over MDPs.

B.2.1 Ambiguity Set Projection and Set Relationships

Recall that we consider a discrepancy-based ambiguity set defined based on total variance distance in Definition 4. For-

mally, the ambiguity set is

CνX ,dTV ,ξ(X) = {ν′(X) : sup
X∈X

|ν′(X)− νX (X)| ≤ ξ},

where x ∈ X is the support, νX is the nominal distribution over X , and ξ is the ambiguity set’s size.

Define a column stochastic matrix A = ((aij)) ∈ R
M×Z , i ∈ [M ], j ∈ [Z], where aij = µz=j(m = i) represents a

conditional probability equal to the i-th element of µz=j defined in GDR-MDP.

Based on the total probability theorem, the matrix A maps distributions over Z to distributions over M. Formally, ∀p(z) ∈
[0, 1]Z ,

∑

Z p(z) = 1, there exists p(m) = Ap(z),p(m) ∈ [0, 1]M ,
∑

m p(M) = 1.

We now define the operator that maps an ambiguity set over distribution for mixtures to an ambiguity set over distributions

for MDPs.

Definition 5 (Ambiguity Set Projection). The operator TA projects an ambiguity set for distributions over Z to an ambi-

guity set for distributions over M, and

TA(Cb(z),d,ξ(z)) = {p′(m) : p′(m) = Ap(z), ∀p(z) ∈ Cb(z),d,ξ(z)}.

Cb(m),d,ξ(m) is the ambiguity set for admissible distributions over supports M, where b(m) is the nominal distribution.

d is the distance metric. ξ is the set size and also the adversary’s perturbation budget around the nominal distribution.

Similarly, Cb(z),d,ξ(z) is the ambiguity set for admissible distributions over supports Z .
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With the set projection operator TA, we can derive the relationships between the projected ambiguity set TA(Cb(z),d,ξ(z))
and the ξ-ambiguity set Cb(m),d,ξ(m) which directly represents the model misspecifications over different MDPs. We state

the results in Proposision 3.

Proposition 3 (Ambiguity Set Regularization with the Hierarchical Latent Structure). Consider two adversaries with the

same attack budget ξ. One adversary perturbs the z-level distribution by selecting the worst possible distribution within

Cb(z),d,ξ(z) and the other perturbs the m-level distribution by selecting the worst possible distribution within Cb(m),d,ξ(m).
Given the nominal distribution for Z as b(z), we have the following statements hold:

1. b(m) = Ab(z).

2. TA(Cb(z),d,ξ(z)) ⊆ Cb(m),d,ξ(m). The m-level ambiguity set projected from a z-level ξ-ambiguity set is a subset of the

m-level ξ-ambiguity set when directly perturbing m-level distributions. It means the hierarchical structure imposes

extra regularization/constraints on the adversary.

The second statement in Proposition 3 shows that the hierarchical structure imposes extra regularization/constraints on the

adversary by shrinking the ambiguity set. The actual regularization reflected on the perturbed value of (b, s) is related to

the rank of the matrix A and the loss function of downstream tasks (e.g. the transition models in the group of RL). The

hierarchical latent structure in GDR-MDP can be viewed as a mixture model with random variables as m ∈ [M ] such that

Mm ∈ M, and latent variables as z ∈ [Z]. The results in Proposition 3 are applicable for general mixture models.

We now provide the proof for Proposition 3 as follows.

Proof for Proposition 3. Item (1) directly follows the definition of operator TA in Definition 5.

Define the ambiguity sets based on Definition 4, where the cost function is the cost total variance distance.

Cb(m),dTV ,ξ(m) = {p(m) : sup
M∈M

|p(m)− b(m)| ≤ ξ},

Cb(z),dTV ,ξ(z) = {p(z) : sup
Z∈Z

|p(z)− b(z)| ≤ ξ}

Consider an arbitrary p
′(m) ∈ TA(Cb(z),d,ξ(z)), there exists a distribution p(z) ∈ Cb(z),d,ξ(z), such that p′(m) = Ap(z).

Therefore,

p
′(m)− b(m) = Ap(z)− b(m) = Ap(z)−Ab(z) = A(p(z)− b(z))

Let g = p
′(m)− b(m). Denote the i-th element of g as gi, i ∈ [n]. Let ai ∈ [0, 1]

1×m
denote the i-th row of A.

Considering that elements in ai are non-negative and lie in interval [0, 1], we have

gi = aTi (p(z)− b(z))

≤ aTi (p(z)− b(z))+ ((·)+ is an operator that replaces negative elements with 0)

≤
∑

(p(z)− b(z))+ (each element in ai is in [0, 1])

= dTV (p(z), b(z))

≤ ξ, ∀i ∈ [n].

Similarly, we can prove −gi ≤ ξ, ∀i ∈ [n].

−gi = −aTi (p(z)− b(z)) = aTi (b(z)− p(z)) ≤ aTi (b(z)− p(z))+

≤
∑

(b(z)− p(z))+ = dTV (p(z), b(z))

≤ ξ, ∀i ∈ [n].
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Therefore, we have elements in g bounded by ξ: |gi| ≤ ξ, ∀i ∈ [n].

|gi| ≤ ξ, ∀i ∈ [n]

⇒|Ap(z)− b(m)| ≤ ξ, ∀z ∈ [Z] (because of the definition of gi)

⇒ sup
z∈Z

|Ap(z)− b(m)| ≤ ξ

⇒TA(CµZ ,d,ξ(z)) ⊆ CµM,d,ξ(m).

Remark. A is not a stochastic row matrix, which makes the proof different from the contraction mapping proof in tabular

RL settings where the transition matrix is a stochastic row matrix.

B.2.2 Proof for Theorem 2

With the ambiguity set relationships in Proposition 3, we are now ready to prove Theorem 2.

Recall that for notation simplicity, let Um(π) = E
π
m

[
∑T

t=1 γ
trt

]

. Let Cb(m),dTV ,ξ(m) and Cb(z),dTV ,ξ(z) denote the

ambiguity sets for beliefs over MDPs m and mixtures z, respectively. b(m) and b(z) satisfy b(m) =
∑

Z µz(m)b(z)
and are the nominal distributions. For any history-dependent policy π ∈ Π, its value function under different robust

formulations are:

VGDR(π) = min
b̂(z)∈Cb(z),dTV ,ξ(z)

E
b̂(z)Eµz(m)[Um(π)], VGR(π) = min

z∈[Z]
Eµz(m)[Um(π)],

VDR(π) = min
b̂(m)∈Cb(m),dTV ,ξ(m)

E
b̂(m)[Um(π)], VR(π) = min

m∈[M ]
[Um(π)].

Proof for Theorem 2. First prove item (1) which is VGDR(π) ≥ VGR(π) ≥ VR(π):

Given an arbitrary policy π ∈ Π, we have

VGDR(π) = min
b̂(z)∈Cb(z),dTV ,ξ(z)

E
b̂(z)Eµz(m)[Um(π)]

≥ min
b̂(z)∈∆Z

E
b̂(z)Eµz(m)[Um(π)]

= min
z∈|Z|

Eµz(m)[Um(π)]

= VGR(π)

It means that with a nontrivial ambiguity set Cb(z),dTV ,ξ(z), the distributionally robust value is more optimistic than the

group robust formulation.

VGR(π) = min
z∈|Z|

Eµz(m)[Um(π)]

≥ min
z∈[Z]

min
m∼µz(m)

[Um(π)]

≥ min
m∈[M ]

[Um(π)]

= VR(π1)

Therefore, we have VGDR(π) ≥ VGR(π) ≥ VR(π).

Remark The belief robust method with VGR is compatible with a non-adaptive robust problem, where the policy of the

decision maker is a Markov policy that only depends on the current state. In contrast, the belief distributionally robust

method with VGDR corresponds to an adaptive robust problem, where the decision maker utilizes a history-dependent

policy. In other words, it considers both the current state and the information gathered along with interactions. A similar

argument but in a non-robust version is presented as Proposition 1. in Steimle et al. (2021).

Now prove the inequality relationship in item (2) which is VGDR(π) ≥ VDR(π):
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Based on the projection operator in Definition 5, we change the minimization over belief distribution on mixtures to an

equivalent expression that has minimization over belief distribution on MDPs instead.

VGDR(π) = min
b̂(z)∈Cb(z),dTV ,ξ(z)

E
b̂(z)Eµz(m)[Um(π)]

= min
b̂(z)∈Cb(z),dTV ,ξ(z)

E
m∼

∑
z b̂(z)µz(m)[Um(π)]

= min
b̂(m)∈TA(Cb(z),d,ξ(z))

E
b̂(m)[Um(π)] (based on Definition 5)

Then with Proposition 3, which shows the set relationships, we have,

VGDR(π) = min
b̂(m)∈TA(Cb(z),d,ξ(z))

E
b̂(m)[Um(π)]

≥ min
b̂(m)∈Cb(m),dTV ,ξ(m)

E
b̂(m)[Um(π)] (because of TA(Cb(z),d,ξ(z)) ⊆ Cb(m),d,ξ(m))

= VDR(π).

It shows that, in general, distributionally robust over high-level latent variable z is more optimistic than that over low-level

latent variable m. The hierarchical mixture model structure help regularize the strength of the adversary and generate less

conservative policies than the flat model structure.

Therefore, we have the following inequalities hold: VGDR(π) ≥ VGR(π) ≥ VR(π) and VGDR(π) ≥ VDR(π).

B.2.3 Proof for Theorem 3

Based on Theorem 2, we can derive the relationships between the optimal values for different formulations.

Proof for Theorem 3. First prove that VGDR(π
⋆
GDR) ≥ VDR(π

⋆
DR).

Since π⋆
GDR is the optimal policy for GDR-MDP, we have

VGDR(π
⋆
GDR) ≥ VGDR(π

⋆
DR).

Since VGDR(π) ≥ VDR(π), ∀π, base on Theorem 2, we have

VGDR(π
⋆
DR) ≥ VDR(π

⋆
DR).

Therefore we have

VGDR(π
⋆
GDR) ≥ VDR(π

⋆
DR).

Following similar procedures, we prove that VGDR(π
⋆
GDR) ≥ VGR(π

⋆
GR) ≥ VR(π

⋆
R).

VGDR(π
⋆
GDR) ≥ VGDR(π

⋆
GR) (since π⋆

GDR is the optimal policy for GDR-MDP)

≥ VGR(π
⋆
GR) (since VGDR(π) ≥ VGR(π), ∀π in Theorem 2)

≥ VGR(π
⋆
R) (since π⋆

GR is the optimal policy for group robust MDP)

≥ VR(π
⋆
R). (since VGR(π) ≥ VR(π), ∀π in Theorem 2)

Therefore, we have shown the following inequalities hold: VGDR(π
⋆
GDR) ≥ VGR(π

⋆
GR) ≥ VR(π

⋆
R) and VGDR(π

⋆
GDR) ≥

VDR(π
⋆
DR).
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Table 2: Observation and action space in Google Research Football

Dim. Continuous Observation Space range

0-7 x, y positions of the attacking players (including the goalkeeper) [−1, 1]
8-11 x, y positions of the defending players [−1, 1]
12-19 movements of the attacking players along x, y directions [−1, 1]
20-23 movements of the defending players along x, y directions [−1, 1]
24-26 x, y, z positions of the ball [− inf, inf]
27-29 movements of the ball along x, y, z directions [−1, 1]
30-32 x, y, z rotation angles of the ball in radians [−π, π]
33-35 the one-hot encoding denoting the team controlling the ball {0, 1}
36-40 the one-hot encoding denoting the player controlling the ball {0, 1}
41-42 scores for each team (an episode terminates when any team scores) {0, 1}
43-46 the one-hot encoding denoting the active player controlled by RL {0, 1}
47-56 10-elements vectors of 0s or 1s denoting whether a sticky action is active {0, 1}

Index Discrete Action Space

0 idle

1 run to the left, sticky action

2 run to the top-left, sticky action

3 run to the top, sticky action

4 run to the top-right, sticky action

5 run to the right, sticky action

6 run to the bottom-right, sticky action

7 run to the bottom, sticky action

8 run to the bottom-left, sticky action

9 perform a long pass

10 perform a high pass

11 perform a short pass

12 perform a shot

13 start sprinting, sticky action

14 reset current movement direction

15 stop sprinting

16 perform a slide

17 start dribbling, sticky action

18 stop dribbling

Table 3: Detailed task descriptions for Google Research Football

Task Index
Parameter 1 Parameter 2

Group Index Probability
Player Type Player Capability Level

0 CM vs. CB 0.9 vs. 0.6 0 0.5
1 CM vs. CB 1.0 vs. 0.7 0 0.5

2 CB vs. CM 0.9 vs. 0.6 1 0.5
3 CB vs. CM 1.0 vs. 0.7 1 0.5
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D Implementation Details

Trajectory rollout. In both training and testing, we initialize the environment by sampling first a mixture and then an

MDP realization. The sampled mixture and MDP are fixed throughout one episode. In our environments with discrete

mixtures and MDPs, we can represent the ground truth mixture index ẑ with a one-hot vector eẑ , which is used in the

pretraining phase of all baselines and in the whole training phase of baseline G-Exact. For baselines with belief module

including GDR, G-Belief, DR, State-R, the actual mixture ẑ and MDP weights µ(m|ẑ) are unknown to the RL agent.

Instead, the RL agent is given the number of possible mixtures Z and is able to infer a belief over mixtures b(z) based on

a belief update function SE. A detailed algorithm for trajectory rollout is Algorithm 1. For baseline No-Belief, we mask

out the beliefs in the input by replacing them with zeros.

Belief update mechanism. In our implementation (Section 7), we use the Bayesian update rule to update beliefs based

on the interaction at each timestep. At the beginning of each episode, we initialize a uniform belief distribution b0(i) =
1/(|Z|), ∀i ∈ [|Z|]. At timestep t, we update the belief as follows

bt+1(j) =
bt(j)L(j)

∑

i∈[|Z|] bt(i)L(i)
, ∀j ∈ [|Z|],

where L represents the likelihood. Let ẑ denote the true mixture index for the episode. We let the likelihood L vector be a

soft version of the actual one-hot mixture encoding eẑ .

More concretely, at each time step, we first sample a noisy index j where j = ẑ with probability ǫl and j is uniformly

sampled from [Z] otherwise. The likelihood L is a vector with dimension |Z|, and ∀i ∈ [|Z|], the i-th element L(i) is

L(i) =

{

l, if i = j

(1− l)/(|Z| − 1), if i 6= j

There are lots of literature on accurate belief updates Sokota et al. (2021). In this work, we utilize a simple but controllable

belief update mechanism above, which is more suitable for robustness evaluations since we could explicitly vary the

hyperparameters. We leave a more sophisticated design of belief update mechanism for future work.

Belief noise level During robustness evaluation in Section 8, we control the belief noise level ǫẑ which affects the like-

lihood L. More concretely, we add another layer of randomness on the estimate of ẑ. Define the noisy mixture index at

test-time as ztext, we have

ztest =

{

ẑ with probability ǫẑ

a random index uniforms samples from [|Z|], otherwise

During the robust evaluation, the likelihood Ltest is calculated based on ztest. More concretely, at each time step, we first

sample a noisy index j where j = ztest with probability ǫl and j is uniformly sampled from [Z] otherwise. The likelihood

and belief updates are as follows:

Ltest(i) =

{

l, if i = j

(1− l)/(|Z| − 1), if i 6= j
, and bt+1(j) =

bt(j)Ltest(j)
∑

i∈[|Z|] bt(i)Ltest(i)
, ∀j ∈ [|Z|].

Distributionally robust training with belief distribution over MDPs (DR) DR has an agent that takes the belief

distribution b(m) and state s as inputs. DR uses the same belief updating rule as in GDR to update b(z) at each timestep

and then project b(z) to b(m) with µz(m).

This is a variant of our proposed Group Distributionally Robust DQN, which has a perturbed target taking m-level belief

distribution as part of its input. Note that in DR, we still update z-level belief b(z) based on the same belief updating

function SE as in GDR. However, in DR, for data pair d, the ambiguity set Cb′(m),dTV ,ξ is centered at b′(m) = TA(b′(z))
which is mapped from b′(z). We also modify the fast gradient sign attack over b(m) accordingly. We first sample i ∈ [M ]
and apply attacks as p(m)j = p(m)j + αb · sign(∇p(m),jV (p(m), s′)), ∀j 6= i and p(m)i = p(m)i −

∑

j 6=i p(m)j . We

iteratively apply the gradient sign attack to find badv(m) = argminp(m)∈Cb′(m),dTV ,ξ

∑

a∈A Qθ(p(m), s′, a).
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D.1 GDR-PPO

We represent the pseudo algorithm of GDR-PPO in Algorithm 3. We collect rollouts with un-perturbed beliefs and use the

online rollouts to update the value network. To enhance the robustness to belief ambiguity, we tend to down-weight the

probability of trajectories that may lead to large performance drops under the worst-possible belief within the ambiguity

set. Hence we construct a pseudo-advantage Â by subtracting the performance drop Rdrop from the actual accumulated

return. The worst-possible belief is calculated by FGSM.

Algorithm 3: Group Distributionally Robust Training for GDR-PPO

Input: Value-net Vθ(b(z), s), ambiguity set C·,dTV ,ξ, training episodes N
Initialize data buffer D ;

for n = 0 to N do

Rollout several episode with Algorithm 1 and append data pairs to D ;

if Update Actor-net parameters then

Sample batch data from D ;

for Each trajectory in the batch do
Get advantage for the data pair at timestep t

Â(bt, st) =
∑T−1

t′=t rt −
(

V (bt, st)−minp(z)∈Cbt(z),dTV ,ξ
Vθ(p(z), st)

)

− Vθ(bt, st) ;

Update Actor-net with PPO ;
Return: Actor-net

D.2 Hyperparameters

We show the hyperparameters for training Google Research Football, Lunarlander and Halfcheetah in Table 8, Table 9 and

Table 10, respectively. We select hyperparameters via grid search.

Table 8: Hyperparameters for the Google Research Football

reward decay 0.997
net hidden structure [256, 256]
net activation function Tanh
learning rate 0.00012
GAE (λ) 0.95
clipping range 0.115
entropy coefficient 0.00155
value function coefficient 0.5
number of environment steps per update 8192
epoch 10
adv budget 0.2
adv step size 0.1
adv max step 10
batch size 256

Table 9: Hyperparameters for the LunarLander task

reward decay 0.95
net hidden structure [128, 128]
net activation function ReLU
value function learning rate 0.01
value function learning rate decay 0.999
epoch 20
gradient steps per epoch 5000
adv budget 0.4
adv step size 0.02
adv max step 50
batch size 256
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