
CodeGRITS: A Research Toolkit for Developer Behavior and Eye
Tracking in IDE

Ningzhi Tang*†, Junwen An*†, Meng Chen†, Aakash Bansal†

Yu Huang‡, Collin McMillan†, Toby Jia-Jun Li†

{ntang,jan2,mchen24,abansal1,cmc,toby.j.li}@nd.edu,yu.huang@vanderbilt.edu
†University of Notre Dame, Notre Dame, IN, USA

‡Vanderbilt University, Nashville, TN, USA

ABSTRACT

Traditional methodologies for exploring programmers’ behaviors

have primarily focused on capturing their actions within the In-

tegrated Development Environment (IDE), offering limited view

into their cognitive processes. Recent emergent work started us-

ing eye-tracking techniques in software engineering (SE) research.

However, the lack of tools specifically designed for coordinated

data collection poses technical barriers and requires significant

effort from researchers who wish to combine these two comple-

mentary approaches. To address this gap, we present CodeGRITS,

a plugin specifically designed for SE researchers. CodeGRITS is

built on top of IntelliJ’s SDK, with wide compatibility with the

entire family of JetBrains IDEs to track developers’ IDE interac-

tions and eye gaze data. CodeGRITS also features various practical

features for SE research (e.g., activity labeling) and a real-time API

that provides interoperability for integration with other research

instruments and developer tools. The demo video is available at

https://youtu.be/d-YsJfW2NMI.

KEYWORDS

IDE Extension/Plugin, Developer Behavior Analysis, Eye Tracking

1 INTRODUCTION

Tracking developers’ programming behavior provides valuable in-

sights into how they engage in the software development pro-

cess [9, 14, 19], and helps evaluate and improve the usability of pro-

gramming language features and tools in software engineering (SE)

research [11, 26]. Traditional approaches focus mainly on tracking

developers’ interactions with the integrated development environ-

ment (IDE), such as keystrokes, code changes, and IDE-specific

commands [11, 27]. However, while these approaches can identify

“what a programmer did,” they are limited in explaining “why they

did it.” Previous research relies mainly on surveys and interviews

to understand what developers were thinking and why they made

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04. . . $15.00
https://doi.org/10.1145/3639478.3640037

certain decisions [15]. However, these approaches are susceptible to

recall bias and may not capture developers’ self-consciousness [7].

To bridge this gap, in recent years, researchers have started in-

vestigating the use of eye tracking to understand the cognitive

processes of developers during software development such as pro-

gram comprehension [21], debugging [25], and code review [3].

Eye tracking involves recording the developers’ eye gaze data, i.e.,

the locations on the screen that the developers are looking at, while

programming [23]. According to the “eye-mind hypothesis,” the eye

fixations (i.e., spatially stable gazes that last for 200 to 300 ms [22])

and other eye movements (e.g., saccades, blinks) are closely related

to visual attention of users and the amount of cognitive process-

ing [13]. This hypothesis has been validated in previous studies in

psychology [16] and human-computer interaction [6, 24]. Further-

more, by analyzing eye gaze data, researchers can facilitate down-

stream SE tasks, such as automated code summarization [1, 17].

Therefore, it becomes crucial for a tool that, in addition to track-

ing programmers’ IDE interactions, also tracks their eye gaze data

to understand their cognitive processes. Some tools exist to track

programmers’ eye movements [5, 12] or capture their interactions

with the IDE [11, 19, 27]. Notably, iTrace [12], focuses on tracking

eye movement data and has been implemented as plugins in several

popular IDEs, e.g., Visual Studio and Eclipse. But support for the

JetBrains IDEs (e.g., InteiiJ IDEA, PyCharm), which have increased

popularities in the industry and community12, is lacking. Moreover,

existing tools lack support to simultaneously record multiple forms

of behavioral data. This inability hampers researchers’ ability to

conduct comprehensive studies that integrate various aspects of

programmer behavior, such as eye fixations and IDE interactions,

into a unified study.

In this paper, we present CodeGRITS3, a plugin for JetBrains

IDEs (e.g., IntelliJ IDEA, PyCharm, etc.) that aims to address the

challenges discussed above. CodeGRITS is built on top of IntelliJ

Platform Plugin SDK and uses the Tobii Pro SDK to record the eye

gaze data, which could track the developers’ IDE interactions and

eye gaze data simultaneously. Similar to iTrace, CodeGRITS could

map the eye gaze data to the specific locations (i.e., line, column) and

tokens in the source code. In addition, CodeGRITS also performs an

upward traversal of the abstract syntax tree (AST) for each gaze to

understand its hierarchical structure. All collected data are stored

locally in comprehensible formats that allow for further analysis.

Compared to previous tools like iTrace, CodeGRITS provides

several extra features that cater to the specific needs of empirical

1https://survey.stackoverflow.co/2022
2https://www.jetbrains.com/lp/devecosystem-2022/java/
3CodeGRITS stands for Gaze Recording & IDE Tracking System

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Tang et al.

After receiving raw data from the eye-tracking device, Eye Tracker

in CodeGRITS would first compute the coordinates of each gaze

relative to the top-left corner of the visible code editor. Then, the

coordinates would be mapped to the specific locations in the code

file (i.e., line and column) via xyToLogicalPosition() method of

the Editor interface of IntelliJ Platform Plugin SDK. Next, the con-

crete source code tokens that the gaze points focusing on would be

computed by findElementAt() method of the PsiFile interface.

PSI stands for Program Structure Interface6, which represents the

underlying model of JetBrains IDEs to parse the AST of the code.

Finally, Eye Tracker would iteratively use the getParent()method

of the PsiElement interface to perform bottom-up traversal of AST

structures of the tokens.

3.3 Screen Recorder

We use the FFmpegFrameGrabber class in JavaCV7, a wrapper for

commonly used libraries by researchers in the field of computer

vision, to capture screenshots between fixed time intervals. Screen-

shots are encoded into a video file using the FrameRecorder class.

3.4 Real-time Data API

The core of the API is Java’s Consumer interface, which enables flex-

ibility and extensibility. The user can implement a custom function

that takes an Element object in package org.w3c.dom as input and

void as output. Whenever a new XML element is created (e.g., IDE

Tracker detected an IDE interaction), the element will be passed

into the user-created function for processing. Its full documentation

and usage are elaborated on CodeGRITS Documentation.

3.5 Support for Multiple IDEs and Languages

CodeGRITS supports major JetBrains IDEs, e.g., IntelliJ IDEA, Py-

Charm, WebStorm. Its Eye Tracker can compute the tokens and

perform upward traversal of AST of all programming languages

supported by each IDE. For example, in IntelliJ IDEA, the Java and

Kotlin IDE, Eye Tracker could understand the AST of Java, Kotlin,

Groovy, etc, while in PyCharm, the Python IDE, it could understand

the AST of Python. Besides, some languages are supported by mul-

tiple IDEs, such as HTML, CSS, JavaScript, XML, etc. CodeGRITS

can traverse the AST structure for the gaze on all of them.

4 USE CASES

4.1 Understanding Developer Behavior and

Cognition

The data collected by CodeGRITS provide a fine-grained source

of information for quantitative analysis of programmers’ software

development process. For instance, in a previous study [25], we used

an earlier version of CodeGRITS to collect data from the process of

9 programmers to debug AI-generated code. Each data collection

session lasted approximately 120 minutes, and the data was used

to understand their behavior and cognition patterns.

CodeGRITS could also be used by SE researchers to collect data

for their studies in a wide range of tasks e.g., program comprehen-

sion, software traceability, and code review.

6https://plugins.jetbrains.com/docs/intellij/psi.html
7https://github.com/bytedeco/javacv

4.2 Context-aware Programming Support

Context-aware computing is a paradigm in which the behavior of

the application is adapted to the current context of the user [8].

CodeGRITS tracks the developers’ interactions with the IDE and

the code, as well as the developers’ eye gaze data, which form a rich

source of context information about them—the developers’ current

behavior focus, and cognitive load. Inferring the developers’ states

from the tracked data lays the foundation for providing personal-

ized programming support, potentially improving productivity and

reducing their cognitive load.

Furthermore, the reduced cost and improved user-friendliness

of eye-tracking devices increase the versatility of CodeGRITS, as it

can easily be integrated into nonlaboratory settings, i.e., a natural

development environment, and facilitate various usages.

5 LIMITATION AND FUTUREWORK

There are four main limitations of CodeGRITS. First, CodeGRITS

currently only supports Tobii eye-tracking devices. However, the

source code of CodeGRITS is provided for the community to expand

its hardware support. We also plan to expand its support for other

eye-tracking hardware SDKs in the future, too.

Secondly, CodeGRITS only captures the developer behavior and

eye gaze data within the IDE, and cannot track outside activities

such as browsing websites, reading documents, or using GitHub.

We use Screen Recorder as a compensation to fill this gap.

Thirdly, Eye Tracker of CodeGRITS can only parse content

within the editor to obtain tokens or AST structures, and cannot

track other parts of the IDE, such as the menu bar or console.

Finally, CodeGRITS’s tracking of the software development pro-

cess focuses on objective syntactic information. It cannot interpret

the subjective semantic aspects, such as finishing fixing a bug or

completing writing a function. We developed the “Add Label” fea-

ture for CodeGRITS to complement this. In future work, we will

explore methods to model these semantic aspects.

6 RELATED WORK

There exist several tools for collecting eye-tracking data in devel-

opment environments [5, 12, 20], as well as eye-tracking data post-

processing tools [2] and eye movement visualization tools [4, 18].

In particular, iTrace [12, 20] served as a fundamental infrastructure

in the field, with researchers introducing several works [2, 4, 10]

that extends iTrace’s functionalities. Researchers also introduced

several IDE plugins to capture IDE interactions [11, 27] as well as

IDE interaction visualization tools [19].

Compared with the previous work described above, CodeGRITS

exhibits advances by combining several behavior trackers and pro-

vides additional features to support future research.

7 CONCLUSION

In this paper, we present CodeGRITS, a plugin that uses IDE track-

ing, eye tracking, and screen recording methods to collect data

from the software development process of developers. CodeGRITS

is compatible with most JetBrains IDEs and all their supported pro-

gramming languages. CodeGRITS also provides several additional

features to facilitate the empirical needs of researchers.

CodeGRITS: A Research Toolkit for Developer Behavior and Eye Tracking in IDE ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

8 ACKNOWLEDGEMENT

This research was supported in part by a Google Cloud Research

Credit Award, a Google Research Scholar Award, and NSF grants

CCF-2211428 and CCF-2100035. Any opinions, findings, or recom-

mendations expressed here are those of the authors and do not

necessarily reflect the views of the sponsors.

REFERENCES
[1] Aakash Bansal, Bonita Sharif, and Collin McMillan. 2023. Towards Modeling

Human Attention from Eye Movements for Neural Source Code Summarization.
ETRA (2023).

[2] Joshua Behler, Praxis Weston, Drew T. Guarnera, Bonita Sharif, and Jonathan I.
Maletic. 2023. ITrace-Toolkit: A Pipeline for Analyzing Eye-Tracking Data of
Software Engineering Studies. In Proceedings of the 45th International Conference
on Software Engineering: Companion Proceedings.

[3] Ian Bertram, Jack Hong, Yu Huang, Westley Weimer, and Zohreh Sharafi. 2020.
Trustworthiness perceptions in code review: An eye-tracking study. In Proceed-
ings of the 14th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM). 1–6.

[4] Benjamin Clark and Bonita Sharif. 2017. iTraceVis: Visualizing Eye Movement
Data Within Eclipse. In 2017 IEEE Working Conference on Software Visualization
(VISSOFT). 22–32.

[5] Andreas Costi, Marios Belk, Christos Fidas, Argyris Constantinides, and Andreas
Pitsillides. 2020. CogniKit: An Extensible Tool for Human Cognitive Modeling
Based on Eye Gaze Analysis. In Proceedings of the 25th International Conference
on Intelligent User Interfaces Companion.

[6] Daniel Kyle Davis and Feng Zhu. 2022. Analysis of software developers’ cod-
ing behavior: A survey of visualization analysis techniques using eye trackers.
Computers in Human Behavior Reports (2022).

[7] Matthew C. Davis, Emad Aghayi, Thomas D. Latoza, Xiaoyin Wang, Brad A.
Myers, and Joshua Sunshine. 2023. What’s (Not) Working in Programmer User
Studies? ACM Trans. Softw. Eng. Methodol. (2023).

[8] Anind K Dey. 2001. Understanding and using context. Personal and ubiquitous
computing 5 (2001), 4–7.

[9] Gabriele Di Rosa, Andrea Mocci, and Marco D’Ambros. 2020. Visualizing In-
teraction Data Inside Outside the IDE to Characterize Developer Productiv-
ity. In 2020 Working Conference on Software Visualization (VISSOFT). 38–48.
https://doi.org/10.1109/VISSOFT51673.2020.00009

[10] Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland, Cole S. Peterson,
Venera Arnaoudova, Bonita Sharif, and Jonathan Maletic. 2021. gazel: Supporting
Source Code Edits in Eye-Tracking Studies. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).

[11] Zhongxian Gu, Drew Schleck, Earl T. Barr, and Zhendong Su. 2014. Capturing
and Exploiting IDE Interactions. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2014). 83–94.

[12] Drew T. Guarnera, Corey A. Bryant, Ashwin Mishra, Jonathan I. Maletic, and
Bonita Sharif. 2018. ITrace: Eye Tracking Infrastructure for Development Envi-
ronments. In ETRA’ 18.

[13] Marcel Adam Just and Patricia A Carpenter. 1976. Eye fixations and cognitive
processes. Cognitive psychology 8, 4 (1976), 441–480.

[14] Roberto Minelli, Andrea Mocci and, and Michele Lanza. 2015. I Know What You
Did Last Summer: An Investigation of How Developers Spend Their Time. In Pro-
ceedings of the 2015 IEEE 23rd International Conference on Program Comprehension
(ICPC ’15).

[15] HendrikMüller, Aaron Sedley, and Elizabeth Ferrall-Nunge. 2014. Survey research
in HCI. Ways of Knowing in HCI (2014), 229–266.

[16] Rima-Maria Rahal and Susann Fiedler. 2019. Understanding cognitive and affec-
tive mechanisms in social psychology through eye-tracking. Journal of Experi-
mental Social Psychology 85 (2019), 103842.

[17] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney
D’Mello. 2014. Improving Automated Source Code Summarization via an Eye-
Tracking Study of Programmers. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014).

[18] Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2020. VITALSE: Visu-
alizing Eye Tracking and Biometric Data. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).

[19] Martin Schröer and Rainer Koschke. 2021. Recording, Visualising and Understand-
ing Developer Programming Behaviour. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER).

[20] Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Müller,
Michael Falcone, and Bonita Sharif. 2015. ITrace: Enabling Eye Tracking on
Software Artifacts within the IDE to Support Software Engineering Tasks. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.

[21] Zohreh Sharafi, Ian Bertram, Michael Flanagan, and Westley Weimer. 2022. Eyes
on Code: A Study on Developers’ Code Navigation Strategies. IEEE Transactions
on Software Engineering (2022).

[22] Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. 2015.
Eye-tracking metrics in software engineering. In 2015 Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE, 96–103.

[23] Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman
Bednarik, and Martha Crosby. 2020. A practical guide on conducting eye tracking
studies in software engineering. Empirical Software Engineering 25 (2020), 3128–
3174.

[24] Vasileios Skaramagkas, Giorgos Giannakakis, Emmanouil Ktistakis, Dimitris
Manousos, Ioannis Karatzanis, Nikolaos S Tachos, Evanthia Tripoliti, Kostas
Marias, Dimitrios I Fotiadis, and Manolis Tsiknakis. 2021. Review of eye tracking
metrics involved in emotional and cognitive processes. IEEE Reviews in Biomedical
Engineering 16 (2021), 260–277.

[25] Ningzhi Tang, Meng Chen, Zheng Ning, Aakash Bansal, Yu Huang, Collin McMil-
lan, and Toby Jia-Jun Li. 2023. An Empirical Study of Developer Behaviors for
Validating and Repairing AI-Generated Code. Plateau Workshop.

[26] Akihiro Yamamori, Anders Mikael Hagward, and Takashi Kobayashi. 2017. Can
Developers’ Interaction Data Improve Change Recommendation?. In 2017 IEEE
41st Annual Computer Software and Applications Conference (COMPSAC).

[27] YoungSeok Yoon and Brad A. Myers. 2011. Capturing and Analyzing Low-Level
Events from the Code Editor. In Proceedings of the 3rd ACM SIGPLAN Workshop
on Evaluation and Usability of Programming Languages and Tools.

