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Abstract

We prove a tight upper bound on the variance of the priority sampling method (aka sequential Poisson
sampling). Our proof is significantly shorter and simpler than the original proof given by Mario Szegedy at
STOC 2006, which resolved a conjecture by Duffield, Lund, and Thorup.

1 Background

Suppose we have a list of non-negative numbers w1, . . . , wn. A common task in streaming and distributed
algorithms is to collect a sample of this list, which can then be used to estimate arbitrary sums of a subset of
the numbers. As toy examples, we might hope to estimate

∑
i:i is odd wi or

∑
i:100≤i≤200 wi. Importantly, the

condition used to determine the subset will not be known in advance when collecting samples.
It has been observed that to obtain accurate results for subset sum estimation, it is usually important to

sample from w1, . . . , wn with “probability proportional to size”. I.e., we want to collect a subset of size k ≪ n
from this list in such a way that larger numbers are sampled with higher probability – ideally proportional to or
approximately proportional to their size. Such a subset will typically be more useful in estimating sums than a
uniform sample. We will also refer to probability proportional to size as “weighted sampling”.

1.1 Threshold Sampling One simple approach for weighted sampling is the so-called Threshold Sampling
method, also referred to as Poisson sampling [Duffield et al., 2005]. Threshold sampling is used in computer
science due to applications in sample coordination, a topic beyond the scope of this note [Flajolet, 1990,
Cohen and Kaplan, 2013]. For each item wi, we draw a uniform random variable ui ∼ Unif[0, 1]. Then, we
fix a threshold τ ≥ 0 and sample all numbers wi for which

ui

wi
≤ τ . Evidently, wi gets sampled with probability:

pi = min(1, wiτ).

The probabilities p1, . . . , pn are approximately proportional to the weights w1, . . . , wn (in fact, exactly proportional
unless wiτ > 1 for some i). The expected number of items sampled is upper bounded by

∑n
i=1 pi ≤

∑n
i=1 wiτ =

τ · W , where W =
∑n

i=1 wi. If τ = k
W , the expected number of items sampled is ≤ k. To use our samples

to estimate the sum of a subset of items I ⊆ {1, . . . , n}, a natural approach is to apply the Horvitz-Thompson
estimator: ∑

i∈I
ŵi ≈

∑
i∈I

wi where for all i ∈ 1, . . . , n, ŵi = 1

[
ui

wi
≤ τ

]
· wi

pi
.

Here 1[A] denotes the indicator random variable that evaluates to 1 if the event A is true and 0 otherwise. It is
not hard to see that E[ŵi] = wi, so

∑
i∈I ŵi is an unbiased estimate for the true subset sum. Since ŵ1, . . . , ŵn

are independent, the variance of this estimate is
∑

i∈I Var[ŵi], a quantity that depends on the unknown set I.
So, in lieu of bounding variance, a common goal is to bound the total variance,

∑n
i=1 Var[ŵi].

1 To do so, first
note that when wiτ ≥ 1 (i.e., pi = 1), we have Var[ŵi] = 0. So, we can restrict our attention to terms for which

†New York University, Tandon School of Engineering.
1Other proxy performance measures besides total variance have also been studied, like the average variance for random subsets of

a fixed size [Szegedy and Thorup, 2007].
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wiτ < 1 (i.e., pi = wiτ). Specifically, letting K be a set containing all i for which wiτ < 1, and setting τ = k
W (so

we take at most k samples in expectation), the total variance can bounded by:

n∑
i=1

Var[ŵi] =
∑
i∈K

Var[ŵi] =
∑
i∈K

w2
i

p2i
Var

[
1

[
ui

wi
≤ τ

]]
=

∑
i∈K

w2
i

p2i
pi(1− pi) ≤

∑
i∈K

w2
i

pi
=

∑
i∈K

wi

τ
≤ W

τ
=

W 2

k
.

This upper bound of W 2

k for threshold sampling is known to be optimal in the sense that any sampling scheme
generating a sequence of random variables ŵ1, . . . , ŵn such that E[ŵi] = wi cannot have a lower total variance if
the expected number of non-zero variables is ≤ k [Duffield et al., 2007].

1.2 Priority Sampling While variance optimal, a disadvantage of threshold sampling is that it only guarantees
that k samples are taken in expectation. Ideally, we want a scheme that samples exactly k items, while still sampling
with probabilities (approximately) proportional to the weights w1, . . . , wn. Many such schemes exist, including
pivotal sampling, reservoir sampling methods, and conditional Poisson sampling [Tillé, 2023]. In computer science,
one method of particular interest is Priority Sampling, which was introduced to the field by [Duffield et al., 2004],
but had been previously studied in statistics under the name “Sequential Poisson Sampling” [Ohlsson, 1998].
Similar to threshold sampling, priority sampling is often preferred in computer science over methods like pivotal
sampling due to applications in coordinated random sampling.

In fact, priority sampling is almost identical to threshold sampling. The one (major) difference is that the
threshold τ is chosen adaptively to equal the (k + 1)st smallest item in the list { u1

w1
, . . . , un

wn
}. Let S contain all

values of i such that ui

wi
< τ (i.e., the indices of the k smallest items in the list).2 We define

ŵi =

{
wi

min(1,wiτ)
i ∈ S

0 i /∈ S
.(1.1)

As before, to estimate the sum of a subset I ⊆ {1, . . . , n}, we return
∑

i∈I ŵi. Analyzing this estimator is
trickier than threshold sampling because τ is now a random number that depends on u1, . . . , un. As a result,
ŵ1, . . . , ŵn are no longer independent random variables. However, the following (surprising) fact is well known
(see [Duffield et al., 2007] or our proof in Appendix A).

Fact 1. Let ŵ1, . . . , ŵn be as defined in (1.1). For all i, E[ŵi] = wi and for all i ̸= j, E[ŵiŵj ] = wiwj. In other
words, the random variables are equal to w1, . . . , wn in expectation, and are pairwise uncorrelated.

It follows that for any subset I, E
[∑

i∈I ŵi

]
=

∑
i∈I wi. So, samples collected via priority sampling can be

used to obtain an unbiased estimate for subset sums. Additionally, since ŵ1, . . . , ŵn are pairwise uncorrelated,
we have that Var[

∑
i∈I ŵi] =

∑
i∈I Var[ŵi], as was the case for threshold sampling. So, a natural goal is still to

bound the total variance
∑n

i=1 Var[ŵi]. It was shown in [Alon et al., 2005] that
∑n

i=1 Var[ŵi] = O
(

W 2

k

)
, where

W =
∑n

i=1 wi. This matches the W 2

k bound for threshold sampling up to a constant factor. However, it was

conjectured in that work that the bound could be improved to W 2

k−1 , which is only just worse than the optimal
W 2

k . This conjecture was resolved in a 2006 paper by Szegedy:

Theorem 2 ([Szegedy, 2006]). Let ŵ1, . . . , ŵn be as defined in (1.1), let Ŵ =
∑n

i=1 ŵi, and let W =
∑n

i=1 wi.

Var[Ŵ ] =
n∑

i=1

Var[ŵi] ≤
W 2

k − 1
.

We note that such a bound is also known to hold for other related sampling methods amenable to sample
coordination, like the successive weighted sampling without replacement (PPSWOR) method [Cohen, 2015].

Szegedy’s proof of Theorem 2 is quite involved, as it is based on an explicit integral formula for the total
variance, and several pages of detailed calculations. We provide a simple alternative proof below.

2We note that some papers, including the early work in [Duffield et al., 2004], define as “priorities” w1
u1

, . . . , wn
un

and select the k

indices with the largest priority. This is of course equivalent to selecting the indices with the smallest values of ui
wi

.
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2 Main Analysis

As in prior work (e.g. [Duffield et al., 2007]) we introduce a new random variable τi for each item i. τi is equal
to the kth smallest value of

uj

wj
for j ∈ {1, . . . , n} \ {i}. Note that τi is independent from ui, and the probability

that i is included in our set of k samples S is exactly equal to Pr[ ui

wi
≤ τi] = min(1, τiwi). Moreover, conditioned

on the event that i ∈ S, we have that τ = τi. Accordingly, for i ∈ S, wi

min(1,τwi)
= wi

min(1,τiwi)
, and thus ŵi can

equivalently be written as:

ŵi =

{ wi

min(1,τiwi)
i ∈ S

0 i /∈ S

With this definition in place, we prove some intermediate claims.

Claim 3. Var [ŵi] ≤ wi · E
[

1
τi

]
Proof. We begin by analyzing E

[
ŵ2

i

]
. Conditioning on τi, we have:

E
[
ŵ2

i | τi
]
=

w2
i

min(1, τiwi)2
· Pr[i ∈ S] =

w2
i

min(1, τiwi)2
·min(1, τiwi) =

w2
i

min(1, τiwi)
= w2

i ·max

(
1,

1

τiwi

)
.

From the law of total expectation, we thus have that E
[
ŵ2

i

]
= w2

i · E
[
max

(
1, 1

τiwi

)]
. Combined with the fact

that E [ŵi]
2
= w2

i (from Fact 1) we have that Var [ŵi] = E
[
ŵ2

i

]
− E[wi]

2 equals:

Var [ŵi] = w2
i ·

(
E
[
max

(
1,

1

τiwi

)]
− 1

)
= w2

i · E
[
max

(
0,

1

τiwi
− 1

)]
= w2

i · E
[
max

(
0,

1

τiwi

)]
.

And since τi · wi is a positive value, we obtain:

Var [ŵi] ≤ w2
i · E

[
1

τiwi

]
= wi · E

[
1

τi

]
.

Claim 4. E
[
1
τ

]
≤ W

k .

Proof. Consider the random variable Ŵ =
∑n

i=1 ŵi. Note that Ŵ can be rewritten as:

Ŵ =
∑
i∈S

ŵi =
∑
i∈S

wi

min (1, τwi)
=

∑
i∈S

max

(
wi,

1

τ

)
.

Hence, Ŵ ≥
∑

i∈S
1
τ = k

τ . We also know from Fact 1 that E[Ŵ ] = W . If the random variable Ŵ is always larger

than the random variable k
τ , it holds that: E

[
k
τ

]
≤ E

[
Ŵ

]
= W. Dividing by k proves the result.

Claim 5. E
[

1
τi

]
≤ W

k−1

Proof. Simply apply Claim 4 to the setting where we collect k − 1 priority samples from the set of weights
{wj : j ∈ {1, . . . , n} \ {i}}. Note that W ′ =

∑n
j=1,j ̸=i wj is no larger than W , so W ′

k−1 ≤ W
k−1 .

We are now ready to prove the main result of [Szegedy, 2006].

Proof of Theorem 2. Applying Claim 3 and Claim 5, we have that:

n∑
i=1

Var [ŵi] ≤
n∑

i=1

wi · E
[
1

τi

]
≤

n∑
i=1

wi
W

k − 1
=

W 2

k − 1
.
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3 Discussion and Pedagogical Perspective

It is natural to ask how the proof above avoids the complexity of [Szegedy, 2006]. In fact, it is even simpler than
the proof that establishes a looser O(W 2/k) bound from [Alon et al., 2005], which invokes a bucketing argument
combined with Chernoff bounds. Where’s the magic? We do not have a fully satisfying answer, except to point
out that a key step in our proof is to reduce the problem to bounding E[1/τ ]. At first glance, this does not seem
productive: as the kth smallest value of n scaled uniform random variables, τ is a complicated random variable.
In particular, its distribution depends on each of w1, . . . , wn in an involved way. However, as we show in Claim 4,
a simple comparison argument can be used to upper bound E[1/τ ] without even writing down the probability
density function (PDF) of τ .

This analysis might be interesting from a pedagogical perspective even when all weights are uniform. In
this case, τ is the (k + 1)st smallest out of n uniform draws. Such random variables appear frequently in
course material on randomized algorithms, for example in analyzing the elegant distinct elements algorithm from
[Bar-Yossef et al., 2002] or when studying the k-minimum values (KMV) sketch. In these applications, it is
necessary to compute the expected value and variance of 1/τ , which typically involves an explicit expression for
the PDF of τ (which is beta distributed), combined with involved calculations [Beyer et al., 2007]. Our approach,
on the other hand, gives a simple argument from first principles, which we outline below.

Corollary 6. Let τ be the (k + 1)st smallest out of n uniform random variables u1, . . . , un.

E
[
1

τ

]
=

k

n
and Var

[
1

τ

]
=

n2 − nk

k2(k − 1)
.

Proof. Let S denote the set of k indices i for which ui < τ . Additionally, let τ1 equal the kth smallest out of
{u1, . . . , un} \ {u1}. There is nothing special about the choice of 1: τ1 is simply an auxilary variable used in our
analysis. We could have instead chosen the kth smallest out of {u1, . . . , un}\{ui} for any i. Consider the random
variable X defined equivalently (using the same argument as in the previous section) as:

X =

{
1
τ if 1 ∈ S
0 otherwise

=

{
1
τ1

if 1 ∈ S
0 otherwise.

From the second definition, we observe that:

E[X] = E [E [X | τ1]] = E
[
Pr[1 ∈ S | τ1] ·

1

τ1

]
= 1.

Alternatively, consider the first definition. The value of τ is independent from the event that 1 ∈ S, and by
symmetry, Pr[1 ∈ S] = k

n . So,

E[X] = E
[
1

τ

]
· Pr[1 ∈ S] = E

[
1

τ

]
· k
n
.

We conclude that in order for E
[
1
τ

]
· k
n to equal 1, it must be that

E
[
1

τ

]
=

n

k
.(3.2)

We can then compute the variance of 1/τ using a similar argument (and applying (3.2) in the last step):

E[X2] = E
[
E[X2 | τ1]

]
= E

[
Pr[1 ∈ S | τ1] ·

1

τ21

]
= E

[
τ1 ·

1

τ21

]
= E

[
1

τ1

]
=

n− 1

k − 1
.

Alternatively, again using that τ is independent from 1 [1 ∈ S], we have that E[X2] = E
[

1
τ2

]
· k
n So, we conclude

that E
[

1
τ2

]
= n(n−1)

k(k−1) . Finally, we have the bound:

Var

[
1

τ

]
= E

[
1

τ2

]
− E

[
1

τ

]2
=

n2 − nk

k2(k − 1)
.

This matches the formula given e.g., in [Beyer et al., 2007], and establishes that Var
[
1
τ

]
≤ ϵ2E

[
1
τ

]2
when

k = O(1/ϵ2), which is the bound needed to prove that the [Bar-Yossef et al., 2002] distinct elements method gives
a (1± ϵ) relative error approximation with k = O(1/ϵ2) space
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A Proof of Fact 1

For completeness, we prove the following important and well-known fact about priority sampling, following the
approach of existing proofs [Duffield et al., 2007].

Fact 1. Let ŵ1, . . . , ŵn be as defined in (1.1). For all i, E[ŵi] = wi and for all i ̸= j, E[ŵiŵj ] = wiwj. In other
words, the random variables are equal to w1, . . . , wn in expectation, and are pairwise uncorrelated.

Proof. Let τ1, . . . , τn be as defined in Section 2. Recall that ŵi can equivalently be written as:

ŵi =

{ wi

min(1,τiwi)
i ∈ S

0 i /∈ S

Then, we can compute its expectation:

E[wi] = E [E [wi | τi]] = E
[

wi

min(1, τiwi)
Pr[i ∈ S | τi]

]
= wi.

In the last step we use that Pr[i ∈ S | τi] = min(1, τiwi), which follows from noting that, for i to be in S, it must
be that ui

wi
is less than τi.

Next we show that E [ŵiŵj ] = wiwj = E [ŵi]E [ŵj ]. Let τi,j denote the (k − 1)st smallest value of ur

wr
for

r ∈ {1, . . . , n} \ {i, j}. If either i or j is absent from the S, then either ŵi or ŵj is 0. So we have:

E[ŵiŵj | τi,j ] =
wi

min(1, τi,jwi)

wj

min(1, τi,jwj)
Pr[i, j ∈ S | τi,j ]

We can thus compute the overall expectation as:

E[ŵiŵj ] = E [E [ŵiŵj | τi,j ]] = E
[

wi

min(1, τi,jwi)
· wj

min(1, τi,jwj)
Pr[i, j ∈ S | τi,j

]
= E

[
wi

min(1, τi,jwi)
· wj

min(1, τi,jwj)
min(1, τi,jwi) ·min(1, τi,jwj)

]
= wiwj .

Above we have used the fact that, for i and j to both be in s, it must be that both ui

wi
and

uj

wj
are less than τi,j ,

which happens with probability min(1, τi,jwi) ·min(1, τi,jwj).
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