
Equation Discovery with Bayesian
Spike-and-Slab Priors and Efficient Kernels

Da Long Wei Xing Aditi S. Krishnapriyan
The University of Utah The University of Sheffield University of California, Berkeley

Robert M. Kirby Shandian Zhe∗ Michael W. Mahoney
The University of Utah The University of Utah University of California, Berkeley

Lawrence Berkeley National Laboratory
International Computer Science Institute

Abstract

Discovering governing equations from data is
important to many scientific and engineering
applications. Despite promising successes, ex-
isting methods are still challenged by data
sparsity and noise issues, both of which are
ubiquitous in practice. Moreover, state-of-
the-art methods lack uncertainty quantifica-
tion and/or are costly in training. To over-
come these limitations, we propose a novel
equation discovery method based on Kernel
learning and BAyesian Spike-and-Slab priors
(KBASS). We use kernel regression to esti-
mate the target function, which is flexible, ex-
pressive, and more robust to data sparsity and
noises. We combine it with a Bayesian spike-
and-slab prior — an ideal Bayesian sparse
distribution — for effective operator selec-
tion and uncertainty quantification. We de-
velop an expectation-propagation expectation-
maximization (EP-EM) algorithm for effi-
cient posterior inference and function esti-
mation. To overcome the computational chal-
lenge of kernel regression, we place the func-
tion values on a mesh and induce a Kronecker
product construction, and we use tensor al-
gebra to enable efficient computation and
optimization. We show the advantages of
KBASS on a list of benchmark ODE and
PDE discovery tasks. The code is available
at https://github.com/long-da/KBASS.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

Many scientific and engineering disciplines use differ-
ential equations to model systems of interest. These
equations not only allow accurate predictions (by nu-
merical solvers), but they also provide interpretation
of the mechanism, i.e., physical laws. However, for
many realistic systems, it is difficult in practice to
write down a full set of partial or ordinary differential
equations (PDEs/ODEs). Hence, using data-driven
machine learning methods to help discover underlying
physical equations is a promising approach to advance
our understanding of these systems and to develop
powerful, reliable predictive and analysis tools.

There have been several approaches for equation dis-
covery, including: Sparse Identification of Nonlinear
Dynamics (SINDy) (Brunton et al., 2016) and exten-
sions (Rudy et al., 2017; Schaeffer, 2017; Zhang and Ma,
2020; Lagergren et al., 2020); physics-informed neural
networks (PINNs) (Raissi et al., 2019) with L1 regu-
larization (Berg and Nyström, 2019; Both et al., 2021);
PINN using alternating direction optimization to iden-
tify equation operators for symbolic regression (PINN-
SR) (Chen et al., 2021b); and the recent work (Sun
et al., 2022) using Bayesian spline learning (BSL) to
estimate the target function and relevance vector ma-
chine (Tipping, 2001) to select the candidate operators.

Despite promising successes, the existing methods still
have challenges with data sparsity and noise. In addi-
tion, for practical usage, they often lack uncertainty
calibration and/or are costly in training. For example,
SINDy uses numerical differentiation to evaluate the
derivatives of candidate operators, and it can easily
fail on sparsely sampled data. While PINN-based ap-
proaches avoid numerical differentiation by using neural
networks (NNs) to approximate the target function,

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

they need a careful choice of the network architectures
and tedious tuning of many hyperparameters, and they
are susceptible to well-known failure modes (Krish-
napriyan et al., 2021). Applying differentiation oper-
ators on NNs further complicates the loss and makes
the training expensive (Krishnapriyan et al., 2021; Mo-
jgani et al., 2022). Yet PINN-based methods typi-
cally underperform in ODE discovery tasks (Sun et al.,
2022). In addition, both SINDy and PINN methods
lack uncertainty quantification of the learned equations.
Although the most recent BSL method comes with un-
certainty estimation, it is quite costly to learn the spline
coefficients, especially in higher dimensions.

To promote the performance of data-driven equation
discovery and to be more amenable for practical usage,
we propose KBASS, a novel method based on Kernel
learning and BAyesian Spike-and-Slab priors. The
major contributions of our work are as follows:

• Model. We use kernel regression to estimate the
target function and its derivatives, an approach
that is flexible, expressive, and more robust to
data sparsity and noise. We combine this with a
Bayesian spike-and-slab prior to select equation
operators and to estimate the operator weights.
As a gold standard in Bayesian sparse learning,
the spike-and-slab prior has nice theoretical prop-
erties, such as selective shrinkage (Ishwaran and
Rao, 2005). It also enables posterior inference of
selection indicators, with which we can decide the
selection results and avoid hard thresholding over
the weight values. Tuning the weight threshold
(as in existing methods) can be troublesome and
inconvenient in practice.

• Algorithm. To overcome the computational chal-
lenge of kernel learning, we place the function
values on a mesh and induce a Kronecker prod-
uct in the kernel matrices. We use Kronecker
product properties and tensor algebra methods
to enable highly efficient computation. We then
develop an expectation-propagation expectation-
maximization (EP-EM) algorithm for efficient al-
ternating posterior inference and function estima-
tion. In the E step, we perform EP to infer quickly
the posterior of the selection indicators and oper-
ator weights; while in the M step, we maximize
the expected model likelihood to solve the cur-
rent equation (identified by EP) and update the
function estimate and kernel parameters.

• Results. We examine KBASS in discovering a
number of benchmark equations, including three
ODE systems, a nonlinear diffusion-reaction equa-
tion (diffusion rate 10−4), Burgers’ equations with
small viscosity (0.1, 0.01, 0.005), and a Kuramoto-
Sivashinsky equation. We compared KBASS with

state-of-the-art data-driven equation discovery
methods. We observed that KBASS can use a
much smaller number of data points in the pres-
ence of much more noise and still recover the equa-
tions, while the competing methods failed in most
cases; and that KBASS obtained more accurate
weight estimation and provided reasonable uncer-
tainty calibration. Meanwhile, KBASS exhibits
significant advantages in computational efficiency.

2 PRELIMINARIES

Kernel Regression. Denote by Hκ the Reproducing
Kernel Hilbert Space (RKHS) induced by a Mercer
kernel function κ(·, ·), and by ∥ · ∥Hκ

its norm. Given a
training dataset D = {(x1, y1), . . . , (xN , yN)}, we use
the regularized regression framework to estimate the
target function, f∗(x) = minf∈Hκ

∑N
n=1

L(yn, f(xn))+
σ2∥f∥Hκ

, where the solution can be shown to take the

form f(x) =
∑N

n=1
αnκ(x,xn) and each αn ∈ R. The

learning is therefore equivalent to solving an optimiza-
tion problem for the coefficients α = [α1, . . . , αN]¦,
and ∥f∥Hκ

= α¦Kα, where K is an N × N ker-
nel matrix, and each [K]ij = κ(xi,xj). Denote by
f = [f(x1), . . . , f(xN)]¦ the function values at the
training inputs. Since f = Kα, we can instead model
the target function as

f(x) = κ(x,X)K−1f , (1)

where X = [x1, . . . ,xN]¦ and κ(x,X) =
[κ(x,x1), . . . , κ(x,xN)]. The learning amounts
to minimizing the following regularized loss,
argminf

∑N
n=1

L(yn, f(xn)) + σ2f¦K−1f . When
we use the squared loss, the optimum is
f∗ = K(K + σ2I)−1y, and the function esti-
mate is f∗(x) = κ(x,X)(K+ σ2I)−1y. This can also
be explained in a Gaussian process (GP) regression
framework, where f∗(x) is the posterior mean of GP
prediction (Williams and Rasmussen, 2006).

Bayesian spike-and-slab prior is a powerful
Bayesian sparse distribution to identify dominant pat-
terns or signals from data (Mitchell and Beauchamp,
1988). Take basis selection as an example for illustra-
tion. Suppose we have M basis functions, {φj(x)}

M
j=1,

and the target function is f(x) =
∑M

j=1
wjφj(x). To se-

lect dominant or relevant bases, the spike-and-slab prior
first samples a binary selection indicator sj ∈ {0, 1} for
each basis j, with which to sample the basis weight wj ,

p(sj) = Bern(sj |ρ0) = ρ
sj
0 (1− ρ0)

1−sj ,

p(wj |sj) = sjN (wj |0, σ
2
0) + (1− sj)δ(wj), (2)

where δ(·) is a Dirac-delta function. The selection indi-
cator sj decides the prior over wj . If sj is 1, meaning

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

that basis j is selected, the weight wj is sampled from a
flat Gaussian prior with variance σ2

0 , i.e., the slab com-
ponent. If sj is 0, the basis j is pruned, and the weight
wj is sampled from the spike prior that concentrates
on zero, i.e., the spike component. Via the selection
indicators {sj}, the spike-and-slab prior fulfills a selec-
tive shrinkage. For the unselected bases, the weights
are directly shrunk to zero by the Dirac-delta prior
δ(·). For the selected ones, the weights are sampled
from a flat Gaussian, which performs a mild regulariza-
tion and allows the weights to be adequately estimated
from data. Not only is the selective shrinkage observed
empirically to be better than the uniform shrinkage in
L1 regularization (Mohamed et al., 2012; Fang et al.,
2020), but it is critical for effective selection in terms
of risk misclassification (Ishwaran and Rao, 2005).

3 MODEL

We now present KBASS, our Bayesian model for equa-
tion discovery. Without loss of generality, we con-
sider a 2D dynamic system to illustrate the idea.
It is straightforward to extend the idea to higher-
dimensional problems or reduce the idea to ODE
systems. We denote the target (or solution) func-
tion by u(t, x1, x2). Given a collection of measure-
ment data, D = {(z1, y1), . . . , (zN , yN)} where each
zn = (tn, xn1, xn2), we intend to estimate u and its
PDE representation. To this end, we introduce a dictio-
nary of candidate operators O = {P1, . . . , PA}, which
includes basic differentiation operators, such as ∂x1

u,
∂x2

u, ∂x1x1
u and ∂x1x2

u, their linear/nonlinear combi-
nations, and composition with other functions: u∂x1

u,
u, u2, cos(u), sin(u), etc. We assume the dictionary
is large enough to cover all the possible operators in
the ground-truth PDE. We model the PDE with the
following form,

ut −
∑K

j=1
wjPj [u] = 0, (3)

where {Pj}
K
j=1 ¦ O, and each wj ∈ R is the weight of

the operator Pj .

To efficiently estimate u, we construct a mesh M to
cover the domain and estimate the function values at
the mesh. Note that the mesh is not necessary to be
evenly spaced. We can randomly sample or design the
locations at each input dimension, and then construct
the mesh via a Cartesian product. In doing so, we will
not only be able to compute efficiently (see Section 4
for details), but also we will be able to flexibly handle
different geometries in the domain by varying the dense
regions; see Appendix Fig. 8 for an illustration. Denote
by γj the locations at each input dimension j, and by dj
the size of γj . The mesh points are M = γ1×γ2×γ3 =
{(t′, x′

1, x
′
2)|t

′ ∈ γ1, x
′
1 ∈ γ2, x

′
2 ∈ γ3}.

Denote the function values at M by U =
{u(t′, x′

1, x
′
2)|(t

′, x′
1, x

′
2) ∈ M}. Hence, U is a d1 ×

d2 × d3 tensor. We use kernel regression to estimate
u(·), and, according to (1), the target function can be
modeled as a kernel interpolation from U ,

u(z) = κ(z,M)K−1
M,Mvec(U), (4)

where z = (t, x1, x2) is an arbitrary point in the input
domain, vec(·) is vectorization, κ(·, ·) is a kernel func-
tion, KM,M is the kernel matrix on the mesh points
M, and κ(z,M) = [κ(z,ρ1), . . . , κ(z,ρd)], where ρj

are all the points in M, 1 f j f d and d = d1d2d3.
According to (4), we can compute any derivative of u.
Since M and K−1

M,Mvec(U) are both constant to the
input z, we only need to compute the derivatives of the
kernel w.r.t the variables in z, e.g.,

∂x1x2
u(z) = ∂x1x2

κ(z,M) ·K−1
M,Mvec(U). (5)

Here ∂x1x2
κ(z,M)

∆
= [∂x1x2

κ(z,ρ1), . . . , ∂x1x2
κ(z,ρd)],

and all {ρj}
d
j=1 constitute M. In this way, given the

current function estimate (4), we can evaluate each

operator in O on mesh M. We denote them by P̂ =
{P1, . . . ,PA} where each is a d1 × d2 × d3 tensor.

Based on P̂, we propose a Bayesian sparse model to
identify the operators in the PDE and to estimate
the operator weights. Specifically, for each operator
j, we use a spike-and-slab prior to sample a selection
indicator sj and operator weight wj as in (2).

Then, conditioned on w = [w1, . . . , wA]
¦ and P̂, we

sample a virtual dataset ŷ = 0, as

p(ŷ|Φ,w) = N (ŷ|h−Φw, τI) = N (h|Φw, τI) , (6)

where Φ = [vec(P1), . . . , vec(PA)], h is ∂u
∂t

evaluated
at M and has been flattened into a vector. The equa-
tion likelihood (6) measures how consistent the selected
equation (by the spike-and-slab prior) is with the esti-
mated target function at the mesh M. Finally, we use
a Gaussian noise model to fit the measurement data,

p(ytr|U) = N (ytr|utr, vI), (7)

where utr is obtained via the kernel interpolation (4)
at the training inputs and ytr = [y1, . . . , yN]¦ are the
training outputs.

Note that a particular advantage of using the spike-
and-slab prior (2) is that we can estimate the posterior
of each selection indicator p(sj |D, ŷ), and use it to
decide if an operator should be selected, e.g., checking if
p(sj = 1|D, ŷ) > 0.5. We never need to set a threshold
over the weight values, e.g., |wj | > 10−3, as popular
methods (like SINDy and PINN-SR) do. Tuning a
weight threshold can be troublesome and inconvenient

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

in practice. A bigger threshold can miss important
operators with small weights, e.g., in Burger’s equation
with a small viscosity; a smaller one, however, can
easily select false operators. Moreover, the threshold
is often not general. When switching to a different
problem, one has to carefully tune it from scratch.

4 ALGORITHM

Given the measurement data D and the dictionary O,
the learning of our model amounts to estimating U , the
kernel parameters, and the posterior distribution of s
and w. This is challenging. First, when the number
of mesh points is large, the kernel interpolation that
requires the inverse of KM,M can be extremely costly
or even infeasible; see (4) and (5). Second, because
the spike-and-slab prior (2) mixes binary and contin-
uous random variables, the posterior distribution is
analytically intractable. To address these challenges,
we induce a Kronecker product in kernel computation,
and use tensor algebra to avoid operating on full ma-
trices. We then develop an expectation-propagation
expectation-maximization (EP-EM) algorithm. In each
iteration, our algorithm performs two steps. In the E
step, we fix U and the kernel parameters, and use
EP (Minka, 2001a) to estimate the posterior of s and
w. In the M step, we maximize the expected model
likelihood to update U and the kernel parameters. The
alternating of the E and M steps keeps mutually im-
proving equation discovery and function estimation
until convergence. See Algorithm 1 for a summary.

Specifically, thanks to the usage of a mesh for placing
the function values to be estimated, U is a d1 × d2 ×
d3 tensor, and if we use a product-kernel, κ(z, z′) =
κ(t, t′)κ(x1, x1)κ(x2, x2), where z = (t, x1, x2) and z′ =
(t′, x′

1, x
′
2), we can immediately induce a Kronekcer

product structure in the kernel matrix,

KM,M = K1 ¹K2 ¹K3, (8)

where K1 = κ(γ1,γ1), K2 = κ(γ2,γ2), and K3 =
κ(γ3,γ3) are the kernel matrices of the inputs at each
dimension of M. Note that the popular square expo-
nential (SE) kernel is a product kernel. One can also
construct a product kernel from any other kernels.

We can then leverage the nice properties of Kronecker
product (Minka, 2000) and tensor algebra (Kolda,
2006) to avoid computing the full kernel matrix
and tremendously improve the efficiency. First, to
compute (4), we can derive that u(z) = κ(t,γ1) ¹

κ(x1,γ2) ¹ κ(x2,γ3) (K1 ¹K2 ¹K3)
−1

vec(U) =(
κ(t,γ1)K

−1
1 ¹ κ(x1,γ2)K

−1
2 ¹ κ(x2,γ3)K

−1
3

)
vec(U) =

U ×1 κ(t,γ1)K
−1
1 ×2 κ(x1,γ2)K

−1
2 ×3 κ(x2,γ3)K

−1
3 ,

where ×k is the tensor-matrix product at mode
k (Kolda, 2006). Hence, we only need to compute

the inverse of each Kj (1 f j f 3), which takes time
complexity O(d31 + d32 + d33), and the tensor-matrix
product takes O(d) time complexity (d = d1d2d3) —
linear in the size of U . Hence, it is much more efficient
than the naive computation — O(d3) time complexity.

Next, to compute a derivative of u at M, we find
that, because the product kernel is decomposed over

individual input variables, the corresponding kernel dif-

ferentiation still maintains the product structure. For
example, to obtain ∂x1x2

u, we have the corresponding
kernel derivative (see (5)) as

∂x1x2
κ(z,ρj) = ∂x1x2

[κ(t, ρj1)κ(x1, ρj2)κ(x2, ρj3)]

= κ(t, ρj1) · ∂x1
κ(x1, ρj2) · ∂x2

κ(x2, ρj3). (9)

Accordingly, to compute ∂x1x2
U

∆
= {∂x1x2

u(z)|z ∈ M},
we have

vec(∂x1x2
U)

= (K1 ¹D1[K2]¹D1[K3]) (K1 ¹K2 ¹K3)
−1

vec(U)

=
(
I¹D1[K2]K

−1
2 ¹D1[K3]K

−1
3

)
vec(U),

and hence

∂x1x2
U = U ×2 D1[K2]K

−1
2 ×3 D1[K3]K

−1
3 , (10)

where D1[·] means taking the partial derivative w.r.t
the first input variable for each kernel function in-
side, D1[K2] = [∂γκ(γ, γ

′)]γ,γ′∈γ2
, and D1[K3] =

[∂γκ(γ, γ
′)]γ,γ′∈γ3

. The multilinear operation takes
time complexity O((d2+d3)d). Hence, the overall time
complexity is O(d31 + d32 + d33 + (d2 + d3)d) which again
is much more efficient than the naive computation with
O(d3) complexity. As such, we can compute the values
of all the required derivatives on M highly efficiently.

E Step. With this efficient computational method,
we perform EP-EM steps for model estimation. In
the E step, we estimate p(s,w|D, ŷ) given the current
estimate of U . The joint distribution is

p(w, s,D, ŷ) ∝ N (h|Φw, τI)· (11)
∏A

j=1
Bern(sj |ρ0)

(
sjN (wj |0, σ

2
0) + (1− sm)δ(wj)

)
.

Note that we drop the constant terms to w and s,
such as the measurement data likelihood (7). We can
see that the problem is reduced to the inference for
Bayesian linear regression with the spike-and-slab prior.
We therefore use a similar approach to (Fang et al.,
2020) to develop an efficient EP method. EP approxi-
mates each non-exponential-family factor in the joint
distribution with an exponential-family term. Then
from the approximate joint distribution, we can obtain
a closed-form posterior, since the exponential family
is closed under multiplication. EP iteratively updates

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

Algorithm 1 KBASS (D, O)

1: Learn a kernel regression model from D to obtain an
initial estimate of U and the kernel parameters θ.

2: repeat
3: E-step: Fix U and θ, run EP to estimate q(s,w) in

(12). Prune the operators with q(sj = 1) < α.
4: M-step: Fix q(s,w), run ADAM for 100 steps to

maximize (13) to update U and θ.
5: until the maximum iteration number is reached or the

relative change of U is less than a tolerance level.
6: return q(s,w), U and the kernel parameters θ.

each factor approximation until convergence. We leave
the details in Appendix Section A.1. After our EP
inference, we obtain a posterior approximation,

p(s,w|D, ŷ)

≈ q(s,w) =
∏A

j=1
Bern(sj |σ(ρ̂j)) · N (w|β,Σ), (12)

where σ(·) is the sigmoid function. We then prune
the operators according to q(s) to decide the currently
discovered equation.

M Step. In the M step, we maximize the expected
log model likelihood under q(w) over the remaining
operators to update U and the kernel parameters,

L =−
1

2
vec(U)¦K−1

MM
vec(U)−

1

2v
∥y − f∥2

−
1

2τ
Eq

[∣∣∣h− Φ̂ŵ

∥∥∥
2
]
+ const, (13)

where Φ̂ and ŵ are the evaluation and weights of the
remaining operators, respectively. Note that the first
term is the RKHS norm of the target function estimate
(4), which regularizes the learning of u(·). With the
Kronecker product and tensor algebra, the computation
of the RKHS norm is highly efficient. We can use any
gradient based optimization to maximize L.

Algorithm Complexity. The time complexity of
our model estimation algorithm is O(

∑3

j=1
d3j + (N +∑

j dj)d), where d = d1d2d3. The space complexity

is O(
∑3

j=1
d2j + d+ A2), for the storage of the kernel

matrices at each dimension, U and q(s,w).

5 RELATED WORK

The recent break-through SINDy (Brunton et al., 2016)
uses sparse linear regression to select PDE operators
from a pre-specified dictionary. The sparsity is fulfilled
by a sequential threshold ridge regression (STRidge)
method, which repeatedly conducts least-mean-square
estimation and weight truncation. While SINDy was
originally developed to discover ODEs, by augmenting
the dictionary with partial derivatives over spatial vari-
ables, SINDy can be extended for discovering PDEs for

spatial-temporal systems (Rudy et al., 2017; Schaeffer,
2017). The SINDy family of approaches use numerical
differentiation to evaluate candidate operators, and it
can suffer from scarce and noisy data. To alleviate
this issue, recent works (Berg and Nyström, 2019; Both
et al., 2021; Chen et al., 2021b) use deep NNs to approx-
imate the solution, applying automatic differentiation
to evaluate and select the operators. These methods
can therefore be viewed as instances or extension of
PINNs (Raissi et al., 2019; Krishnapriyan et al., 2021).
In (Berg and Nyström, 2019), a deep NN is first used
to fit the data, and then a sparse linear regression with
L1 regularization is applied to select the operators. In
(Both et al., 2021), the NN and sparse linear regres-
sion are jointly trained. In (Chen et al., 2021b), a
joint training strategy is also used, but it performs
an alternating optimization of the NN loss and sparse
regression, and it uses STRidge for weight truncation.
The most recent work (Sun et al., 2022) develops a
Bayesian spline learning (BSL) method, which uses
splines to approximate the solution and a student-t
prior, i.e., relevance vector machines (Tipping, 2001),
for sparse linear regression. It uses a similar alternat-
ing optimization strategy to (Chen et al., 2021b). To
quantify the uncertainty, BSL then applies Stochastic
Weight Averaging-Gaussian (SWAG) (Maddox et al.,
2019) for posterior approximation of the weights.

Our work uses kernel methods to estimate the solution
function for PDE discovery. GP or kernel methods
have been applied for solving differential equations for
a long time. For example, Graepel (2003); Raissi et al.
(2017) used GPs to solve linear PDEs with the noisy
source term measurements. The recent work (Chen
et al., 2021a) developed a general kernel method to
solve nonlinear PDEs. Fang et al. (2023) developed
a spectral mixture kernel for solving high frequency
and multi-scale PDEs. However, all these methods
assume the equations are given, and thus they cannot
discover the equations from data. GPs have also been
used to model the equation components or incorporate
the equations for better training, such as (Heinonen
et al., 2018; Alvarez et al., 2009; Barber and Wang,
2014; Macdonald et al., 2015; Wenk et al., 2019, 2020).
Long et al. (2022) proposed a general framework to
integrate PDEs/ODEs into GP training. The GP com-
munity has realized the computational advantage of
the Kronecker product (Saatcci, 2012), and there has
been work in leveraging the Kronecker product prop-
erties to improve the training speed and scalability,
such as high-dimension output regression (Zhe et al.,
2019; Li et al., 2021; Wang et al., 2021) and sparse
approximation based on inducing points (Wilson and
Nickisch, 2015). However, in typical machine learning
applications, the data are not observed at a grid and
the Kronecker product has a limited usage. By con-

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

trast, for PDE solving, it is natural to estimate the
solution values on a mesh (which is consistent with the
practice of traditional numerical methods). This opens
the possibility of using Kronecker products to enable
efficient PDE solution estimation.

6 EMPIRICAL RESULTS

For evaluation, we considered several benchmark
ODEs/PDEs in the literature of data-driven equation
discovery (Chen et al., 2021b; Sun et al., 2022). We
examined wether KBASS can recover these equations
from sparse, noisy measurements. We used the SE ker-
nel and implemented KBASS with Jax (Frostig et al.,
2018). We compared with state-of-the-art data-driven
equation discovery methods, including SINDy (Brun-
ton et al., 2016), PINN-SR (Chen et al., 2021b) and
BSL (Sun et al., 2022). For the competing methods,
we used the original implementation released by the
authors. For a fair comparison, we carefully tuned
every method to achieve the best performance (to our
best effort). We leave the details about the settings
and tuning of all the methods in Appendix Section A.2.

Van del Pol (VDP) oscillator. We first tested the
discovery of a nonlinear ODE system, xt = y, yt =
µ(1−x2)y−x where µ = 2.5 and x(0) = y(0) = 1. We
used two test settings. The first setting employed only
10 evenly-spaced training examples in [0, 8] while the
second setting used 25 such examples. For each set-
ting, we considered three noise levels: 0%, 1% and 20%.
The dictionary includes the combination of the poly-
nomials of each state variable up to 4th order, which
gives 24 candidates in total. To evaluate the discovery
performance, we followed (Sun et al., 2022) to examine
the normalized root-mean-square error (RMSE) of the
weight estimation (including the relevant and irrele-
vant operators), and the precision and the recall of the
selected operators.

Lorenz 96. We next tested on Lorenz 96, a well-known
chaotic ODE system, dxi

dt
= (xi+1−xi−2)xi−1−xi+F ,

where t ∈ [0, 5], 1 f i f n, x0 = xn, x−1 = xn−1 and
xn+1 = x1. We set n = 6 to have six state variables and
set forcing term F = 8. The initial condition is 2 for
every state. The dictionary includes the polynomials
of the state variables up to 3rd order, leading to 84
candidates in total. We performed two tests: one used
12 evenly-spaced examples, and the other used 50 such
examples in the domain.

Burger’s equation. Third, we tested on 1D Burger’s
equations,

ut + uux − νuxx = 0, (x, t) ∈ [0, 10]× [0, 8], (14)

where the initial condition is u(x, 0) = exp(−(x− 4)2).
We tested with three viscosity values, ν = 0.1, ν =

0.01, and ν = 0.005. The dictionary consists of the
polynomials and derivatives of u up to 4th order and
their combinations, which in total includes 24 candidate
operators. For ν = 0.1, we first tested with 100 training
examples on an evenly-spaced 10×10 grid in the domain.
We then tested with a densor dataset, including 400
examples at a 20 × 20 evenly-spaced grid. Next, for
ν = 0.01 and ν = 0.005, we used training examples at
a 50× 50 evenlly-spaced grid.

Kuramoto-Sivashinsky (KS) equation. Fourth,
we tested the discovery of a KS equation,

ut + uux + uxx + uxxxx = 0, (x, t) ∈ [0, 32π]× [0, 150].

We used a periodic boundary condition u(x, 0) =
cos(x/16) for data generation. The dictionary includes
polynomials and derivatives of u up to 4th order and
their combinations, which in total gives 24 candidate
operators. We used training examples at an evenly
spaced 40× 40 grid in the domain.

Allen-cahn equation. Fifth, we tested on an Allen-
cahn equation with a very small diffusion rate,

ut = 10−4uxx + 5u− 5u3, (x, t) ∈ [−1, 1]× [0, 1],

where u(x, 0) = x2 cos(πx), u(−1, t) = u(1, t) and
ux(−1, t) = ux(1, t). The dictionary consists of the
polynomials and derivatives of u up to 3rd order and
their combinations, which in total includes 16 candi-
date operators. We used training examples at a 26×101
grid in the spatial-temporal domain.

Real-world application. Finally, we ran our method
on the data of a real-world predator-prey system. The
dataset and experimental details are given in Appendix
Section A.3.

Results and discussion. We report the discovery
performance of each method in Table 1, 2, 3, and 4
and Appendix Table 6. We can see that in all the
settings, KBASS successfully recovered the equations,
and the error of the operator weight estimate is small.
As a comparison, SINDy failed to find the equations
for every case. This might be due to that the sampled
measurements (i.e., training examples) are too sparse.
We found that SINDy started to successfully recover
VDP, Lorenz 96, Burger’s (ν = 0.1), and KS equations
when we increased to 50, 250, 1.6K and 384.5K exam-
ples respectively, which takes 5x and 21x, 16x and 240x
of the sample size needed by KBASS. Nonetheless, the
accuracy of the operator weight estimation is still much
worse than KBASS; see the results in Appendix Table
7. PINN-SR failed to discover all the ODEs. This is
consistent with the observation in (Sun et al., 2022).
Though PINN-SR can exactly recover the Burger’s
equation (ν = 0.1) with 10× 10 and 20× 20 examples,
when adding a tiny amount of noise (1%), PINN-SR

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

t

x

Prediction
Truth

(a)

t

y

(b)

1.0030.986 1.020

Prediction
Truth

(c)

20.99221.009 20.976
(d)

Figure 1: Solution and weight posterior estimation for the VDP equation with 10 training examples (marked as green);
(c) and (d) show the weight posterior for terms y and x, respectively. Their posterior selection probabilities were both
estimated as 1.0.

t

x 2

Prediction
Truth

(a)

t

x 6

(b)

7.9897.679 8.300

Prediction
Truth

(c)

20.99821.007 20.990
(d)

Figure 2: Solution and weight posterior estimation for Lorenz 96 using 12 training examples; (c) and (d) show the weight
posterior for the force term F and x5. The posterior selection probabilities were estimated as 1.0.

x

t

20.4

20.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Left: truth; right: prediction

x

u

Prediction
Truth

(b) t = 1.1

(c) t = 4.0

(d) t = 7.0

Figure 3: Solution estimate for Burger’s equation with ν = 0.005 with 20% noise on the training data.

x

t

21.00

20.75

20.50

20.25

0.00

0.25

0.50

0.75

(a) Top: truth; bottom: prediction

1.0e-048.0e-05 1.2e-04
w(uxx)

Prediction
Truth

(b) q(s(uxx) = 1) = 1.0

4.9904.966 5.014
w(u)

(c) q(s(u) = 1) = 1.0

24.99025.017 24.963
w(u3)

(d) q(s(u3) = 1) = 1.0

Figure 4: Solution and weight posterior estimation on Allen-cahn equation; w(·) and s(·) denote the weight and selection
indicator of the operator. Note the ground-truth weight for uxx is 10−4.

immediately failed; see Table 3a. Similarly, BSL can
exactly recover the Burger’s equation (ν = 0.1) using
20× 20 examples, with zero or 1% noise. However, it

failed with 20% noise. Hence, it illustrates that KBASS
is much more robust to data noise. In addition, both
BSL and PINN-SR failed to find the Burger’s equation

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

Method
10 examples 25 examples

(noise) 0% 1% 20% 0% 1% 20%
SINDy F/0.5/1 F/0.5/1 F/0.5/1 F/0.75/0.6 F/0.75/0.6 F/0.75/0.75

PINN-SR F/1/0.67 F/0.5/0.13 F/0.75/0.23 F/0.25/0.33 F/0.5/0.33 F/0/0
BSL F/0.5/1 F/0.5/1 F/0.5/0.12 0/1/1 0.0029/1/1 F/0.75/1

KBASS 0.0086/1/1 0.032/1/1 0.0995/1/1 0/1/1 0.0029/1/1 0.042/1/1

Table 1: Performance of discovering VDP oscillators (t ∈ [0, 8]), with 0%, 1% and 20% noises in the training data. Each
entry is normalized RMSE/Recall/Precision and “F” means Failed.

Method
12 examples 50 examples

(noise) 0% 1% 10% 0% 1% 10%
SINDy F/0.083/0.29 F/0.125/0.38 F/0.083/0.33 F/0.17/0.8 F/0.17/0.8 F/0.083/0.5

PINN-SR F/0/0 F/0/0 F/0/0 F/0/0 F/0/0 F/0/0
BSL F/0.17/0.5 F/0.083/0.33 F/0.083/0.33 0.0011/1/1 0.0049/1/1 F/0.67/0.25

KBASS 0.0068/1/1 0.0125/1/1 0.134/1/1 0/1/1 0.0035/1/1 0.054/1/1

Table 2: Performance of discovering Lorenz 96 systems with 6 state variables and t ∈ [0, 5].

Method
10× 10 examples 20× 20 examples

(noise) 0% 1% 20% 0% 1% 20%
SINDy F/0.5/0.2 F/0.5/0.2 F/0.5/0.67 F/1/0.4 F/1/0.4 F/0/0

PINN-SR 0/1/1 F/1/0.4 F/1/0.4 0/1/1 F/1/0.4 F/1/0.13
BSL F/0.5/1 F/0/0 F/0/0 0/1/1 0/1/1 F/0/0

KBASS 0/1/1 0.0032/1/1 0.038/1/1 0/1/1 0/1/1 0.038/1/1

(a) ν = 0.1

Method
ν = 0.01 ν = 0.005

0% 10% 20% 0% 10% 20%
SINDy F/0.5/0.2 F/0.5/0.2 F/0.5/0.2 F/0.5/0.2 F/1/0.4 F/1/0.4

PINN-SR F/1/0.14 F/0.5/0.2 F/0.5/0.5 F/0.5/0.2 F/0.5/0.2 F/0/0
BSL F/0.5/0.33 F/0/0 F/0/0 F/0.5/0.25 F/0/0 F/0/0

KBASS 0.003/1/1 0.007/1/1 0.008/1/1 0.0013/1/1 0.0026/1/1 0.0047/1/1

(b) ν = 0.01 and ν = 0.005 on 50× 50 examples.

Table 3: Performance of discovering a 1D Burger’s equation, with (x, t) ∈ [0, 10]× [0, 8].

Method
KS equation Allen-cahn equation

(noise) 0% 10% 20% 0% 5% 10%
SINDy F/0.33/0.2 F/0.33/0.2 F/0.33/0.2 F/0.67/1 F/0.67/1 F/0.67/1

PINN-SR F/0/0 F/0/0 F/0.33/0.33 F/0.67/0.33 F/0.67/0.33 F/0.67/0.33
BSL F/0/0 F/0/0 F/0/0 F/0.67/0.67 F/0.67/1 F/0.67/0.5

KBASS 0.013/1/1 0.023/1/1 0.025/1/1 0.0023/1/1 0.0071/1/1 0.045/1/1

Table 4: Performance of discovering a 1D KS equation with (x, t) ∈ [0, 32π]× [0, 150], and 1D Allen-cahn equation with
(x, t) ∈ [−1, 1]× [0, 1].

with ν = 0.01 and ν = 0.005, which are more chal-
lenging; see Table 3b. So too did they for the KS and
Allen-cahn equations; see Table 4. Note that although
in (Chen et al., 2021b), PINN-SR successfully recovers
a KS equation, it uses 320 × 101 examples — 20x of
the examples used by KBASS. We were not able to
use PINN-SR to recover the KS equation tested in our
experiment even with the same amount of data. This
might relate to our usage of a much larger domain,
[0, 32π]× [0, 150] versus [0, 32π]× [0, 100].

Next, we showcased our solution prediction and poste-

rior estimate of the operator weights in Fig. 1, 2, 3, 4,
and Appendix Fig. 5, 6, 7. The shaded region in the
solution prediction indicates the predictive standard
deviation (scaled by a factor to be more clear). We
used the Laplace’s approximation (see details in Ap-
pendix Section A.4) to estimate the posterior of the
solution prediction.

We can see that the solution prediction by KBASS
is quite accurate compared to the ground-truth, even
when the training data is very sparse and noisy, e.g.,
the prediction for Burger’s equation with ν = 0.005; see

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

Fig 3. This might be (partly) due to that the accurate
discovery of the equation in our E step can simultane-
ously guide the solution learning (M step). From the
posterior estimate for the operator weights, we can see
that the posterior mean is close to the ground-truth,
while the Gaussian distribution allows us to further
quantify the uncertainty. It is particularly interesting
to see that in Fig. 4b, KBASS successfully identifies the
operator uxx that has a very small weight 10−4 and pro-
vides a Gaussian posterior approximation. Note that
the posterior selection probability q(s(uxx) = 1) = 1.0,
reflecting that KBASS has a very high confidence to
select uxx, even though the scale of the weight is very
small. Hence, KBASS does not need to use a weight
threshold for operator selection.

Computational efficiency. We examined the run-
ning time of each method. The results are given in
Appendix Section A.5. As shown in Appendix Table 8,
KBASS takes much less time than BSL. For example,
on Burger’s and KS , PINN-SR takes 9x and 20x run-
ning time but still failed to recover the KS equation.
Together this shows our method also has a significant
advantage in computational efficiency.

7 CONCLUSION

We have presented KBASS, an efficient kernel learning
method with Bayesian spike-and-slab priors for data-
driven equation discovery. Our method has higher
sample efficiency and is more resistant to data noise
than existing methods. KBASS has shown significant
advantages on a series of PDE and ODE discovery
tasks. Currently, KBASS is limited to a pre-specified
operator dictionary. In the future, we plan to develop
methods that can dynamically expand the dictionary
to further improve the accuracy and robustness.

Acknowledgements

This work has been supported by MURI AFOSR grant
FA9550-20-1-0358, NSF CAREER Award IIS-2046295
and NSF OAC-2311685.

References

Alvarez, M., Luengo, D., and Lawrence, N. D. (2009).
Latent force models. In Artificial Intelligence and
Statistics, pages 9–16.

Barber, D. and Wang, Y. (2014). Gaussian pro-
cesses for Bayesian estimation in ordinary differential
equations. In International Conference on Machine
Learning, pages 1485–1493.

Berg, J. and Nyström, K. (2019). Data-driven dis-
covery of pdes in complex datasets. Journal of
Computational Physics, 384:239–252.

Both, G.-J., Choudhury, S., Sens, P., and Kusters, R.
(2021). DeepMoD: Deep learning for model discov-
ery in noisy data. Journal of Computational Physics,
428:109985.

Brunton, S. L., Proctor, J. L., and Kutz, J. N.
(2016). Discovering governing equations from data
by sparse identification of nonlinear dynamical sys-
tems. Proceedings of the national academy of sciences,
113(15):3932–3937.

Chen, Y., Hosseini, B., Owhadi, H., and Stuart, A. M.
(2021a). Solving and learning nonlinear PDEs with
Gaussian processes. arXiv preprint arXiv:2103.12959.

Chen, Z., Liu, Y., and Sun, H. (2021b). Physics-
informed learning of governing equations from scarce
data. Nature communications, 12(1):1–13.

Fang, S., Cooley, M., Long, D., Li, S., Kirby, R., and
Zhe, S. (2023). Solving high frequency and multi-
scale pdes with gaussian processes. arXiv preprint
arXiv:2311.04465.

Fang, S., Zhe, S., Lee, K.-c., Zhang, K., and Neville, J.
(2020). Online Bayesian sparse learning with spike and
slab priors. In 2020 IEEE International Conference
on Data Mining (ICDM), pages 142–151. IEEE.

Frostig, R., Johnson, M. J., and Leary, C. (2018).
Compiling machine learning programs via high-level
tracing. Systems for Machine Learning, 4(9).

Graepel, T. (2003). Solving noisy linear operator equa-
tions by Gaussian processes: Application to ordinary
and partial differential equations. In ICML, pages
234–241.

Heinonen, M., Yildiz, C., Mannerström, H., In-
tosalmi, J., and Lähdesmäki, H. (2018). Learning
unknown ODE models with Gaussian processes. In
International Conference on Machine Learning, pages
1959–1968.

Ishwaran, H. and Rao, J. S. (2005). Spike and slab
variable selection: Frequentist and Bayesian strategies.
The Annals of statistics, 33(2):730–773.

Kolda, T. G. (2006). Multilinear operators for higher-
order decompositions. Technical report, Sandia Na-
tional Laboratories (SNL).

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R.,
and Mahoney, M. W. (2021). Characterizing possible
failure modes in physics-informed neural networks.
Advances in Neural Information Processing Systems,
34:26548–26560.

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

Lagergren, J. H., Nardini, J. T., Michael Lavigne, G.,
Rutter, E. M., and Flores, K. B. (2020). Learning
partial differential equations for biological transport
models from noisy spatio-temporal data. Proceedings
of the Royal Society A, 476(2234):20190800.

Li, S., Xing, W., Kirby, R. M., and Zhe, S.
(2021). Scalable Gaussian process regression networks.
In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on
Artificial Intelligence, pages 2456–2462.

Long, D., Wang, Z., Krishnapriyan, A., Kirby, R., Zhe,
S., and Mahoney, M. (2022). Autoip: A united frame-
work to integrate physics into gaussian processes. In
International Conference on Machine Learning, pages
14210–14222. PMLR.

Macdonald, B., Higham, C., and Husmeier, D. (2015).
Controversy in mechanistic modelling with Gaussian
processes. Proceedings of Machine Learning Research,
37:1539–1547.

MacKay, D. J. (2003). Information theory, inference
and learning algorithms. Cambridge university press.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov,
D. P., and Wilson, A. G. (2019). A simple baseline
for Bayesian uncertainty in deep learning. Advances
in neural information processing systems, 32.

Minka, T. P. (2000). Old and new matrix algebra
useful for statistics.

Minka, T. P. (2001a). Expectation propagation for ap-
proximate Bayesian inference. In Proceedings of the
Seventeenth conference on Uncertainty in artificial
intelligence, pages 362–369.

Minka, T. P. (2001b). A family of algorithms for
approximate Bayesian inference. PhD thesis, Mas-
sachusetts Institute of Technology.

Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian
variable selection in linear regression. Journal of the
american statistical association, 83(404):1023–1032.

Mohamed, S., Heller, K. A., and Ghahramani, Z.
(2012). Bayesian and l1 approaches for sparse un-
supervised learning. In Proceedings of the 29th
International Coference on International Conference
on Machine Learning, pages 683–690.

Mojgani, R., Balajewicz, M., and Hassanzadeh, P.
(2022). Lagrangian PINNs: A causality-conforming
solution to failure modes of physics-informed neural
networks. arXiv preprint arXiv:2205.02902.

Raissi, M., Perdikaris, P., and Karniadakis, G. E.
(2017). Machine learning of linear differential
equations using Gaussian processes. Journal of
Computational Physics, 348:683–693.

Raissi, M., Perdikaris, P., and Karniadakis, G. E.
(2019). Physics-informed neural networks: A deep
learning framework for solving forward and inverse
problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–
707.

Ritter, H., Botev, A., and Barber, D. (2018).
A scalable laplace approximation for neural net-
works. In 6th International Conference on
Learning Representations, ICLR 2018-Conference
Track Proceedings, volume 6. International Confer-
ence on Representation Learning.

Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz,
J. N. (2017). Data-driven discovery of partial differ-
ential equations. Science advances, 3(4):e1602614.

Saatcci, Y. (2012). Scalable inference for structured
Gaussian process models. PhD thesis, Citeseer.

Schaeffer, H. (2017). Learning partial differen-
tial equations via data discovery and sparse op-
timization. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
473(2197):20160446.

Sun, L., Huang, D., Sun, H., and Wang, J.-X. (2022).
Bayesian spline learning for equation discovery of non-
linear dynamics with quantified uncertainty. Advances
in Neural Information Processing Systems, 35:6927–
6940.

Tipping, M. E. (2001). Sparse Bayesian learning and
the relevance vector machine. Journal of machine
learning research, 1(Jun):211–244.

Wainwright, M. J., Jordan, M. I., et al. (2008). Graph-
ical models, exponential families, and variational
inference. Foundations and Trends® in Machine
Learning, 1(1–2):1–305.

Walker, A. M. (1969). On the asymptotic be-
haviour of posterior distributions. Journal of the
Royal Statistical Society: Series B (Methodological),
31(1):80–88.

Wang, Z., Xing, W., Kirby, R., and Zhe, S. (2021).
Multi-fidelity high-order Gaussian processes for phys-
ical simulation. In International Conference on
Artificial Intelligence and Statistics, pages 847–855.
PMLR.

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

Wenk, P., Abbati, G., Osborne, M. A., Schölkopf,
B., Krause, A., and Bauer, S. (2020). ODIN: ODE-
informed regression for parameter and state infer-
ence in time-continuous dynamical systems. In AAAI,
pages 6364–6371.

Wenk, P., Gotovos, A., Bauer, S., Gorbach, N. S.,
Krause, A., and Buhmann, J. M. (2019). Fast
Gaussian process based gradient matching for pa-
rameter identification in systems of nonlinear ODEs.
In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1351–1360. PMLR.

Williams, C. K. and Rasmussen, C. E. (2006).
Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA.

Wilson, A. and Nickisch, H. (2015). Kernel inter-
polation for scalable structured Gaussian processes
(KISS-GP). In International conference on machine
learning, pages 1775–1784. PMLR.

Zhang, J. and Ma, W. (2020). Data-driven discovery
of governing equations for fluid dynamics based on
molecular simulation. Journal of Fluid Mechanics,
892.

Zhe, S., Xing, W., and Kirby, R. M. (2019). Scalable
high-order Gaussian process regression. In The 22nd
International Conference on Artificial Intelligence
and Statistics, pages 2611–2620. PMLR.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. No

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Not Applicable

(b) Complete proofs of all theoretical results. Not
Applicable

(c) Clear explanations of any assumptions. Not
Applicable

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. Yes

(b) The license information of the assets, if appli-
cable. Not Applicable

(c) New assets either in the supplemental material
or as a URL, if applicable. Not Applicable

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

A APPENDIX

A.1 EP SPIKE-AND-SLAB INFERENCE

A.1.1 EP Tutorial

We first give a brief introduction to the expectation propagation (EP) framework (Minka, 2001a). Consider
a general probabilistic model with latent parameters θ. Given the observed data D = {y1, . . . ,yN}, the joint
probability distribution is

p(θ,D) = p(θ)
N∏

n=1

p(yn|θ). (15)

Our goal is to compute the posterior p(θ|D) = p(θ,D)
p(D) . However, it is usually infeasible to compute the exact

marginal distribution p(D), because the complexity of the likelihood and/or prior makes the integration or
marginalization intractable. This further makes the exact posterior distribution infeasible to compute. EP
therefore seeks to approximate each term in the joint distribution by an exponential-family term,

p(yn|θ) ≈ cnfn(θ), p(θ) ≈ c0f0(θ), (16)

where cn and c0 are constants to ensure the normalization consistency (they will get canceled in the inference, so
we do not need to calculate them), and

fn(θ) ∝ exp(λ¦
nφ(θ)) (0 f n f N),

where λn is the natural parameter and φ(θ) is sufficient statistics. For example, if we choose a Gaussian term,
fn = N (θ|µn,Σn), then the sufficient statistics is φ(θ) = {θ,θθ¦}. The moment is the expectation of the
sufficient statistics.

We therefore approximate the joint distribution with

p(θ,D) = p(θ)

N∏

n=1

p(yn|θ) ≈ f0(θ)

N∏

n=1

fn(θ) · const. (17)

Because the exponential family is closed under multiplication and division, we can immediately obtain a closed-
form approximate posterior q(θ) ≈ p(θ|D) by merging the approximation terms in the R.H.S of (17), which is
still a distribution in the exponential family.

Then the task amounts to optimizing those approximation terms {fn(θ)|0 f n f N}. EP repeatedly conducts
four steps to optimize each fn.

• Step 1. Obtain the calibrated distribution that integrates the context information of fn,

q\n(θ) ∝
q(θ)

fn(θ)
, (18)

where q(θ) is the current posterior approximation.

• Step 2. Construct a tilted distribution to combine the true likelihood,

p̃(θ) ∝ q\n(θ) · p(yn|θ). (19)

Note that if n = 0, we have p̃(θ) ∝ q\n(θ) · p(θ).

• Step 3. Project the tilted distribution back to the exponential family,

q∗(θ) = argmin
q

KL(p̃∥q), (20)

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

where KL(·∥·) is the Kullback-Leibler divergence, and q belongs to the exponential family. This can be done
by moment matching,

Eq∗ [φ(θ)] = Ep̃[φ(θ)]. (21)

That is, we compute the expected moment under p̃, with which to set the parameters of q∗. For example,
if q∗(θ) is a Gaussian distribution, then we need to compute Ep̃[θ] and Ep̃[θθ

¦], with which to obtain the
mean and covariance for q∗(θ). Accordingly, we obtain q∗(θ) = N (θ|Ep̃[θ],Ep̃[θθ

¦]− Ep̃[θ]Ep̃[θ]
¦).

• Step 4. Update the approximation term by

fn(θ) ∝
q∗(θ)

q\n(θ)
. (22)

In practice, EP often updates all the fn’s in parallel. It iteratively runs the four steps until convergence. In
essence, this is a fixed point iteration to optimize an energy function (a mini-max problem) (Minka, 2001a,b;
Wainwright et al., 2008).

A.1.2 EP Method for Our Model

We now present how we develop an EP method to estimate the posterior distribution of the spike-and-slab
variables, s and w, for our model. Let us write down the joint distribution here (see (11) of the main paper),

p(s,w,D) ∝
A∏

j=1

Bern(sj |ρ0)
(
sjN (wj |0, σ

2
0) + (1− sj)δ(wj)

)
· N (h|Φw, τI). (23)

The mixture factors in the spike-and-slab prior (23) do not belong to the exponential family, and thereby make
the posterior distribution analytically intractable. So we introduce an approximation,

sjN (wj |0, σ
2
0) + (1− sj)δ(wj) ≈ cjBern(sj |σ(ρj))N (wj |µj , vj), (24)

where σ(·) is the sigmoid function. Substituting the above into (23), we can obtain the approximate posterior,

q(s,w) =

A∏

j=1

Bern (sj |σ(ρ̂j)) · N (w|β,Σ), (25)

where

ρ̂j = σ−1(ρ0) + ρj , Σ =
(
diag−1(v) + τ−1Φ¦Φ

)−1
,

β = Σ
(µ
v

+ τ−1Φ¦h
)
, (26)

where µ = [µ1, . . . , µA]
¦ and v = [v1, . . . , vA]

¦.

We optimize the approximation factor (24) for every operator j. To this end, we first compute the calibrated
distribution (STEP 1; see (18)),

q\j(sj , wj) ∝
q(sj , wj)

Bern(sj |σ(ρj))N (wj |µj , vj)
= Bern(sj |σ(ρ

\j))N (wj |µ
\j , v\j), (27)

where according to the exponential family properties, we have

ρ\j = ρ̂j − ρj ,
(
v\j

)−1

= [Σ]−1
jj − (vj)

−1,

(
v\j

)−1

µ\j =
βj

[Σ]jj
−

µj

vj
. (28)

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

Note that βj and [Σ]jj are the marginal mean and variance of wj , respectively, under the global posterior
approximation q(s,w).

In STEP 2 (see (19)), we construct the titled distribution,

p̃(sj , wj)

∝ q\j(sj , wj) ·
(
sjN (wj |0, σ

2
0) + (1− sj)δ(wj)

)

= Bern(sj |σ(ρ
\j))N (wj |µ

\j , v\j)
(
sjN (wj |0, σ

2
0) + (1− sj)δ(wj)

)
. (29)

In STEP 3 (see (20)), we perform moment matching. That is, we compute the moment of sj and wj under p̃. To
this end, we use the following identity about the convolution of two Gaussians,

N (θ|m1,Σ1)N (θ|m2,Σ2) = N (θ|m̂, Σ̂)N (m1|m2,Σ1 +Σ2)

where
Σ̂ =

(
Σ−1

1 +Σ−1
2

)−1
, m̂ = Σ̂(Σ−1

1 m1 +Σ−1
2 m2).

It is therefore straightforward to obtain the marginal tilted distribution,

p̃(sj) ∝
(
σ(ρ\j)N (µ\j |0, v\j + σ2

0)
)
sj +

(
(1− σ(ρ\j))N (µ\j |0, v\j)

)
(1− sj). (30)

We need to normalize the coefficients to get the probabilities, so we have

p̃(sj) = Bern(sj |ρ
∗), (31)

where

ρ∗ = ρ\j + log
N (µ\j |0, v\j + σ2

0)

N (µ\j |0, v\j)
. (32)

Now, we need to compute the first and second moments of wj in (29). We first marginalize out sj ,

p̃(wj) =
1

Z

(
σ(ρ\j)N (wj |µ

\j , v\j)N (wj |0, σ
2
0) + (1− σ(ρ\j))N (wj |µ

\j , v\j)δ(wj)
)
. (33)

Look at the normalizer, it is the same as the one in (30). Then we can obtain the analytical form,

p̃(wj) = σ(ρ∗)N (wj |µ̃, ṽ) + (1− σ(ρ∗))
N (wj |µ

\j , v\j)

N (µ\j |0, v\j)
δ(wj), (34)

where

ṽ−1 = v\j
−1

+ σ−2
0 ,

ṽ−1µ̃ =
µ\j

v\j
. (35)

Now, we can compute the moments of (34), which is straightforward:

µ∗
j

∆
= Ep̃[wj] = σ(ρ∗)µ̃,

Ep̃[(wj)
2
] = σ(ρ∗)

(
ṽ + µ̃2

)
,

v∗j
∆
= covp̃(wj) = σ(ρ∗)

(
ṽ + (1− σ(ρ∗))µ̃2

)
. (36)

We obtain the global posterior approximation,

q∗(sj , wj) = Bern(sj |σ(ρ
∗))N (wj |µ

∗
j , v

∗
j). (37)

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

The approximation factor in (24) is updated by
q∗(sj ,wj)

q\j(sj ,wj)
(STEP 4; see (22)), which gives

ρj = ρ∗ − ρ\j ,

(vj)
−1

=
(
v∗j
)−1

−
(
v\j

)−1

,

µj

vj
=

µ∗
j

v∗j
−

µ\j

v\j
. (38)

In each iteration, we in parallel update the approximation factor (24) for every operator j. Initially, we set ρj = 0,
µj = 0 and vj = 106 (so at the beginning, these factors are uninformative and nearly constant one). We repeat
the EP iterations until convergence, and then return the posterior approximation (25).

A.2 EXPERIMENTAL DETAILS

SINDy. We used the PySINDy library (https://pysindy.readthedocs.io/en/latest/index.html#id4) in
the experiment. PySINDy not only includes the original implementation of SINDy with sequential threshold ridge
regression (STRidge), but it also supports other sparse promoting techniques, including L0 and L1 thresholding.
The current library includes six optimizers: STLSQ, SR3-L0, SR3-L1, SSR, SSR-residual, and FROLS. We
tried all the six optimizers and tuned the hyperparmeters to achieve the best performance with our best efforts.
Specifically, we tuned the tolerance level in the range [10−15, 10−1], regularization strength (for L0, L1 and L2)
from range [10−1, 103], normalization (on/off), the max number of iterations from range [104, 105], and threshold
for STLSQ from the range [10−5, 0.5].

PINN-SR. We used the implementation (https://github.com/isds-neu/EQDiscovery) of the authors. PINN-
SR first performs a pre-training of the NN from the training data, and then conducts alternating direction
optimization (ADO) for joint equation discovery and solution learning. We tuned the number of NN layers
from the range [3, 8], the NN width from range [20, 100], the number of iterations for ADO from range [12, 20],
regularization strength from [10−7, 10−1], L-BFGS pre-training iterations from [10K, 80K], L-BFGS ADO training
iterations from [1K, 2K], learning rate of ADAM from [10−4, 10−3], and d_tol hyper-parameter from [10−5, 5].
We varied the number of collocation points from [10K, 160K].

BSL. We used the original implementation shared by the authors. We tuned the number of knots from range [30,
300] for each input dimension. We tuned the number of collocation points per dimension from [50, 300]. The
weight value threshold was tuned from range [10−5, 0.5], and the regularization strength from range [10−6, 10−1].
We also tuned the pre-training iteration number from [104, 105] and the number of ADO iterations from [8, 20].
The d_tol hyper-parmeter was tuned from [10−5, 0.5].

KBASS. We tuned the slab variance σ2
0 from 0.5 to 5000 (very flat Gaussian slab), and the equation likelihood

variance τ from 10−4 to 1. The data likelihood variance v in (7) (of the main paper) is obtained via cross-validation
in the initial training (see the first step in Algorithm 1). In the early iterations, we employed small values of
α, typically around 0.1 or the smallest value of the current q(sj = 1) among all j, to conservatively prune the
operators. As the iteration progresses towards completion, we increased α to 0.5 to conduct an unbiased pruning
over the remaining operators, considering that our solution estimate is as optimal as possible. The performance
is not sensitive to other hyperparameters and so we fixed them. Specifically, the maximum number of EP-EM
iteration was set to 200K and the tolerance level is 10−8. We also used relative change of natural parameters less
than 10−5 as the condition to stop the EP inference at the E step. The solution estimation U was initialized as
zero. We used an evenly-spaced mesh for each testing case, and the size is summarized in Table 5.

A.3 REAL-WORLD PREDATOR-PREY DATA

We followed (Sun et al., 2022) to test the equation discovery from a real-world dataset collected from a predator-
prey system between lynx and hares. The dataset is the population of the lynx and hares from 1900 to 1920 at
Hudson Bay Company, presented in Table 11 of (Sun et al., 2022). The dataset is very noisy. The governing

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

Test equation Mesh size
VDP 200

Lorenz 96 300
Burger’s (ν = 0.1) 160× 160
Burger’s (ν = 0.01) 180× 180
Burger’s (ν = 0.005) 180× 180

KS 200× 200
Allen-cahn 200× 200

Predator-Prey 500

Table 5: The mesh size used by KBASS.

Method
21 examples

RMSE Recall Precision
SINDy F 0.75 0.6

PINN-SR F 0.25 0.5
BSL 0.0304 1 1

KBASS 0.0244 1 1

Table 6: Performance of discovering a real-world predator-prey system.

equation from mathematical analysis is given by

dx

dt
= 0.4807x− 0.0248xy,

dy

dt
= −0.9272y + 0.0276xy, (39)

which we used as the golden standard. We used the same setting as in (Sun et al., 2022) to test KBASS. The
performance of the discovery is reported in Table 6. As we can see, KBASS not only correctly discovered the
equation form, but also it achieves the smallest RMSE in the operator weight estimation. We also show the
solution prediction of KBASS in Fig. 7.

A.4 LAPLACE’S APPROXIMATION FOR POSTERIOR ESTIMATION

Given the loss L and parameters β, the Laplace’s approximation (Walker, 1969; MacKay, 2003) first minimizes
the loss function to obtain the optimal parameter estimate β∗, and then constructs a multi-variate Gaussian
posterior approximation,

q(β) = N (β|β∗,H−1), (40)

where

H =
∂2L

∂β2

∣∣∣∣
β=β∗

(41)

is the Hessian matrix at β∗. The approximation can be derived via the second-order Taylor approximation of
L at the optimum β∗. For the ODE systems, we applied the standard Laplace’s approximation to obtain the
posterior estimate of our solution prediction U . For the other equations, like Burger’s and KS equations, since
vec(U) is high-dimensional, computing the full Hessian matrix is very costly. Therefore, we use the block-diagonal
Hessian (Ritter et al., 2018). We compute the Hessian for each time slice and then approximate the posterior for
the solution at that slice.

A.5 RUNNING TIME

We examined the running time of each method on a Linux workstation with a NVIDIA GeForce RTX 3090 GPU,
with a memory size of 24576 MB. We tested on the discovery of VDP, Lorenz 96, Burger’s and KS equations.
The results are reported in Table 8. It can be seen that KBASS is consistently faster than BSL: 4.2x, 1.9x, 7.3x
and 2.7x faster in the four testing cases, respectively. Although PINN-SR is faster than KBASS in VDP and

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

x

t

23

22

21

0

1

2

3

(a) Left: truth; right: prediction

x

u

(b) t = 24.1

Prediction
Truth

(c) t = 75.4

(d) t = 128.1

Figure 5: Solution estimate for the KS equation with 20% noise on training data.

t

x 1

Prediction
Truth

t

x 2
Prediction
Truth

t

x 3

t

x 4

(a)

t

x 5

(b)

t

x 6

(c)

Figure 6: Solution estimate for the Lorenz 96 system using 12 training examples.

Lorenz 96, it failed to discover the correct equations. For KS, PINN-SR used 19.5x time and but still failed to
recover the equation. SINDy is the fastest among all the four methods. It is reasonable, because SINDy does not
estimate the solution function, and only performs sparse linear regression.

Test case Number of examples RMSE
VDP 54 0.127

Lorenz 96 250 0.229
Burger’s (ν = 0.1) 40× 40 0.0398

KS 512× 751 0.0173

Table 7: SINDy with more training data for successful discovery. Note that the data is noise free.

A.6 DISCOVERED EQUATIONS

We show the examples of discovered equations by KBASS and the competing methods in Table 9, 10, 11, 12, 13,
14, 15 and 16.

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

t

x

Prediction
Truth

Figure 7: Solution estimate for the real-world predator-prey system.

Test case KBASS BSL PINN-SR SINDy
VDP 643 2700 421 (F) 0.5 (F)

Lorenz 96 3994 7438 2086 (F) 2 (F)
Burger’s (ν = 0.1) 99 720 853 2 (F)

KS 1174 3150 (F) 22934 (F) 0.5 (F)

Table 8: Running time (in seconds) on a Linux workstation with a NVIDIA GeForce RTX 3090 GPU with 24576 MB
memory. The number of training examples used for each test case is 25, 50, 20 × 20 and 40 × 40 for VDP, Lorenz 96,
Burger’s (ν = 0.1) and KS, respectively. The noise level is zero. “F” means failed to discover the equation.

Name Equation
True xt = y

yt = 2.5y − x− 2.5x2y

SINDy xt = 0.807y

yt = −0.504x
PINN-SR xt = 0.848y + 1.23y2 + 0.424y3

yt = 1.14y − 0.531x− 0.742x2y

BSL xt = 1.236y

yt = −0.622x
KBASS xt = y

yt = 2.47y − 0.992x− 2.49x2y

(a) zero noise

Name Equation
True xt = y

yt = 2.5y − x− 2.5x2y

SINDy xt = 0.724y

yt = −0.524x
PINN-SR xt = 2.26y + 0.208y3

− 0.188y4
− 0.303x2 + ...

yt = 2.38y − 1.5x2y + 1.52y2
− 0.662y4 + ...

BSL xt = 0.505y + 0.937xy − 0.588x2y + ...

yt = 2.35xy − 0.913x2y − 0.427x3 + ...

KBASS xt = 0.961y

yt = 2.13y − 1.04x− 2.44x2y

(b) 20% noise

Table 9: Discovery result for the VDP system with 10 measurement examples.

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

(a) Regular mesh (b) Regular mesh on a special domain

(c) An example of finite element design. (d) Unevenly-spaced mesh design for KBASS.

Figure 8: An example of the mesh design. By varying the density regions of the mesh (d), our method can adapt to the
geometry of specific domains, as the traditional numerical methods do (c).

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

Name Equation
True x1t = x2x6 − x5x6 − x1 + 8 , x2t = x1x3 − x1x6 − x2 + 8

x3t = x2x4 − x1x2 − x3 + 8 , x4t = x3x5 − x2x3 − x4 + 8

x5t = x4x6 − x3x4 − x5 + 8 , x6t = x1x5 − x4x5 − x6 + 8
SINDy x1t = 0.688x1 + 0.016x2

4x5 − 0.06x3x
2

4 , x2t = 0.795x3

x3t = 0 , x4t = 0

x5t = 1.33 , x6t = 1.38x1 − 0.067x3x
2

4

PINN-SR x1t = −0.0288x1x2x6 , x2t = −0.01371x2x6

x3t = −0.0161x1x2x6 , x4t = −0.015x1x2x6

x5t = −0.0117x1x2x6 , x6t = −0.0117x1x2x6

BSL x1t = 0.944x2 , x2t = 0

x3t = −2.74− 1.76x1 + 1.24x3 + ... , x4t = 6.35

x5t = −1.8 , x6t = −4.52
KBASS x1t = x2x6 − x5x6 − 0.991x1 + 7.96 , x2t = 0.999x1x3 − 0.999x1x6 − x2 + 7.94

x3t = x2x4 − x1x2 − 0.985x3 + 7.92 , x4t = x3x5 − x2x3 − 0.995x4 + 7.98

x5t = x4x6 − x3x4 − 0.999x5 + 7.97 , x6t = 0.995x1x5 − 0.993x4x5 − 1.01x6 + 7.93

(a) zero noise

Name Equation
True x1t = x2x6 − x5x6 − x1 + 8 , x2t = x1x3 − x1x6 − x2 + 8

x3t = x2x4 − x1x2 − x3 + 8 , x4t = x3x5 − x2x3 − x4 + 8

x5t = x4x6 − x3x4 − x5 + 8 , x6t = x1x5 − x4x5 − x6 + 8
SINDy x1t = 0.169x1 + 0.714x2 − 0.053x3x

2

4 , x2t = 0

x3t = 0 , x4t = 0

x5t = 3.53− 0.041x2x
2

4 , x6t = −0.044x3x
2

4

PINN-SR x1t = 0.587x1x4 − 2.85x2x4 − 0.206x1x
2

2 + ... , x2t = 0.0997x1x5 + 0.779x2x6 + 0.209x1x
2

3 + ...

x3t = −0.157x1x5 + 1.1x2x6 + 0.0907x1x
2

2 + ... , x4t = 0.375x1x4 − 0.187x2x5 + 0.0273x2

1x2 + ...

x5t = −0.923x1x4 + 0.07x1x
2

2 + 0.263x1x
2

3 + ... , x6t = −0.923x1x4 + 0.07x1x
2

2 + 0.263x1x
2

3 + ...

BSL x1t = 10.8x2 , x2t = −18.7x6

x3t = 0.578 , x4t = 15.9x6

x5t = 2.1 , x6t = 13.8x2

KBASS x1t = 0.933x2x6 − 0.932x5x6 − 1.16x1 + 9.22 , x2t = 1.06x1x3 − 0.969x1x6 − 1.28x2 + 7.26

x3t = 0.906x2x4 − 0.988x1x2 − 0.594x3 + 6.75 , x4t = 1.1x3x5 − 1.05x2x3 − 1.26x4 + 8.37

x5t = 0.919x4x6 − 0.947x3x4 − 0.81x5 + 7.47 , x6t = 0.985x1x5 − 0.992x4x5 − 1.02x6 + 9.66

(b) 10% noise

Table 10: Discovery result for the Lorenz 96 system with 12 measurement examples.

Long, Xing, Krishnapriyan, Kirby, Zhe, and Mahoney

Name Equation
True ut = −uux + 0.1uxx

SINDy ut = −0.135ux − 0.186uux − 0.486uuxx + ...

PINN-SR ut = −uux + 0.1uxx

BSL ut = −0.218uux

KBASS ut = −uux + 0.1uxx

(a) zero noise

Name Equation
True ut = −uux + 0.1uxx

SINDy ut = −0.2ux + 0.147uxx − 0.715uux

PINN-SR ut = −1.03uux + 0.0313uxx + 0.48u3 + ...

BSL ut = −0.372ux

KBASS ut = −1.04uux + 0.0873uxx

(b) 20% noise

Table 11: Discovery result for the Burgers’ Equation (ν = 0.1) with 10× 10 measurement examples.

Name Equation
True ut = −uux + 0.01uxx

SINDy ut = −0.177ux − 1.101uux + 0.143uuxxx + ...

PINN-SR ut = −uux + 0.0593uxx − 0.0515ux + ...

BSL ut = −1.72uux + 6.023u3ux − 5.38u4ux

KBASS ut = −0.998uux + 0.01uxx

(a) zero noise.

Name Equation
True ut = −uux + 0.01uxx

SINDy ut = −0.192ux − 0.745uux + 0.064uuxxx + ...

PINN-SR ut = −0.697uux − 0.206ux

BSL ut = −0.406ux

KBASS ut = −0.992uux + 0.00963uxx

(b) 20% noise

Table 12: Discovery result for the Burgers’ Equation (ν = 0.01) with 50× 50 measurement examples.

Name Equation
True ut = −uux + 0.005uxx

SINDy ut = −0.293ux − 0.651uux + 0.077uuxxx + ...

PINN-SR ut = −0.958uux + 0.262uuxx − 1.06u2uxx + ...

BSL ut = −3.24uux + 8.77u2ux − 9.55u3ux + ...

KBASS ut = −uux + 0.00634uxx

(a) zero noise.

Name Equation
True ut = −uux + 0.005uxx

SINDy ut = −0.222ux + 0.022uxx − 0.266uux + ...

PINN-SR ut = −0.426ux

BSL ut = −9.15u2ux + 21.4u3ux − 13.7u4ux

KBASS ut = −1.0044uux + 0.0066uxx

(b) 20% noise

Table 13: Discovery result for the Burgers’ Equation (ν = 0.005) with 50× 50 measurement examples.

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels

Name Equation
True ut = −uux − uxx − uxxxx

SINDy ut = −0.068uux + 0.049uuxxx − 0.02u2uxxxx + ...

PINN-SR ut = 0.0856ux + 0.0684uuxx − 0.0566u2uxxx

BSL ut = −0.115ux

KBASS ut = −0.988uux − 0.986uxx − 0.988uxxxx

(a) zero noise

Name Equation
True ut = −uux − uxx − uxxxx

SINDy ut = −0.035u− 0.104uux + 0.024uuxxx + ...

PINN-SR ut = 0.0717uuxxx + 0.0374uuxx − 0.034uxx

BSL ut = −0.115ux

KBASS ut = −0.97uux − 0.978uxx − 0.977uxxxx

(b) 20% noise

Table 14: Discovery result for the KS Equation with 40× 40 measurement examples.

Name Equation
True ut = 0.0001uxx + 5u− 5u3

SINDy ut = 4.99u− 4.99u3

PINN-SR ut = 4.16u− 3.7u3 + 0.043u4 + ...

BSL ut = 4.53u− 4.33u3 + 0.128u2

KBASS ut = 0.0001uxx + 4.99u− 4.99u3

(a) zero noise.

Name Equation
True ut = 0.0001uxx + 5u− 5u3

SINDy ut = 3.85u− 3.49u3

PINN-SR ut = 2.94u− 2u3 + 0.063u4 + ...

BSL ut = −0.0099ux + 4.55u− 4.42u3 + ...

KBASS ut = 0.000104uxx + 4.79u− 4.76u3

(b) 10% noise

Table 15: Discovery result for the Allen-cahn Equation with 26× 101 measurement examples.

Name Equation
True xt = 0.48x− 0.0248xy

yt = −0.927y + 0.0276xy
SINDy xt = 0.581x− 0.0261xy

yt = 0.255x− 0.27y
PINN-SR xt = −13.9y

yt = −0.114y
BSL xt = 0.512x− 0.0266xy

yt = −0.926y + 0.0279xy
KBASS xt = 0.506x− 0.0255xy

yt = −0.925y + 0.0273xy

Table 16: Discovery result for the real-world predator-prey system with 21 observed examples.

