
Meta-Learning with Adjoint Methods

Shibo Li1 Zheng Wang1 Akil Narayan2,3 Robert M. Kirby1,2 Shandian Zhe1

1Kahlert School of Computing, University of Utah
2Scientific Computing and Imaging (SCI) Institute, University of Utah

3Department of Mathematics, University of Utah

{shibo, wzhut, kirby, zhe}@cs.utah.edu, akil@sci.utah.edu

Abstract

Model Agnostic Meta Learning (MAML) is

widely used to find a good initialization for a

family of tasks. Despite its success, a critical chal-

lenge in MAML is to calculate the gradient w.r.t.

the initialization of a long training trajectory for

the sampled tasks, because the computation graph

can rapidly explode and the computational cost

is very expensive. To address this problem, we

propose Adjoint MAML (A-MAML). We view

gradient descent in the inner optimization as the

evolution of an Ordinary Differential Equation

(ODE). To efficiently compute the gradient of the

validation loss w.r.t. the initialization, we use the

adjoint method to construct a companion, back-

ward ODE. To obtain the gradient w.r.t. the ini-

tialization, we only need to run the standard ODE

solver twice — one is forward in time that evolves

a long trajectory of gradient flow for the sampled

task; the other is backward and solves the adjoint

ODE. We need not create or expand any interme-

diate computational graphs, adopt aggressive ap-

proximations, or impose proximal regularizers in

the training loss. Our approach is cheap, accurate,

and adaptable to different trajectory lengths. We

demonstrate the advantage of our approach in both

synthetic and real-world meta-learning tasks. The

code is available at https://github.com/

shib0li/Adjoint-MAML.

1 INTRODUCTION

Meta-learning (Schmidhuber, 1987; Thrun and Pratt, 2012)

seeks to develop methods that can quickly adapt a learning

model to new tasks or environments, like human learning.

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

A prominent example is the recent model-agnostic meta-

learning (MAML) algorithm (Finn et al., 2017), which is

successful in learning model initialization for a family of

tasks. MAML is a bi-level optimization approach. The inner

level starts from the initialization, and optimizes the training

loss of the sampled tasks via gradient descent. At the trained

model parameters, the outer-level uses back-propagation to

calculate the gradient of the validation loss w.r.t the initial-

ization, and optimizes the initialization accordingly.

While successful, a critical challenge of MAML is to back-

propagate the gradient from a long training trajectory of

the sampled tasks, because the resulting computation graph

grows rapidly, can easily explode, and is computationally ex-

pensive. To combat these issues, practical usage of MAML

performs only one or a few steps of gradient descent in the in-

ner optimization; unfortunately this propagates a trajectory

only close to the initialization, and fails to reflect the longer-

term learning performance of using that initialization. To by-

pass this issue, first-order MAML (FOMAML) (Finn et al.,

2017) and Reptile (Nichol et al., 2018) employ dropout on

the Jacobian to obtain an aggressive approximation. While

this is efficient, the approach loses accurate gradient infor-

mation. The recent iMAML approach (Rajeswaran et al.,

2019) uses an implicit method to calculate an accurate gra-

dient w.r.t the initialization. This approach is elegant and

successful, but imposes several restrictions. First, an addi-

tional regularizer that encourages proximity of the model

parameters and the initialization must be added into the

training loss. Second, the gradient is accurate only when

training reaches the optimum of the regularized loss.

In this paper, we propose A-MAML, an efficient and ac-

curate approach to differentiate long paths of the inner-

optimization in meta-learning. See Fig. 1 for an illustration.

Our method does not require additional regularizers and can

adapt to different trajectory lengths, hence it is well suited

to commonly used training strategies, such as early stopping.

Specifically, we view the inner optimization (training) as

evolving a forward ordinary differential equation (ODE)

system, where the states are the model parameters. The

standard gradient descent is equivalent to solving this ODE

Meta-Learning with Adjoint Methods

θ

u1(T)

∂J1(u1(T))

∂θ

. . .

∂Jn(un(T))

∂θ
un(T)

Figure 1: Illustration of A-MAML, where θ is the initialization,
Jn is the validation loss for task n (n = 1, 2, . . .), un are the
model parameters for task n, and also the state of the corresponding
forward ODE. A-MAML solves the forward ODE to optimize the
meta-training loss, and then solves the adjoint ODE backward to
obtain the gradient of the meta-validation loss w.r.t θ.

with the forward Euler method. To calculate the gradient

of the validation loss w.r.t the model initialization, i.e., the

initial state of the ODE, we use the adjoint method to con-

struct a companion ODE. In effect, we only need to run

the standard ODE solver twice: First, we solve the forward

ODE to evolve a long training trajectory, based on which

we compute the initial state of the adjoint ODE. Next, we

solve the adjoint ODE backward to obtain the gradient w.r.t

the model initialization. To avoid divergence when solving

backward, we use high-order solvers in the forward pass

and track the states in the trajectory, based on which we use

the modified Euler method (second-order) to solve back-

ward. Throughout the procedure, we do not create and grow

any intermediate computation graphs, nor do we apply any

gradient approximation. The memory cost is linear in the

number of model parameters. The accuracy is determined

by the numerical precision of the ODE solver, which we can

explicitly trade for speed.

For evaluation, we first examined A-MAML in two synthetic

benchmark tests, regressing Alpine and Cosine mixture func-

tions. In both task populations, we examined, starting from

the given initialization, how the prediction error of the tar-

get model varies along with the increase of training epochs.

A-MAML leads to much better prediction accuracy and

training behaviors compared against MAML, FOMAML,

Reptile, and iMAML. Meanwhile, A-MAML dramatically

reduces the memory usage and can easily scale to long

training trajectories, compared with MAML which utilizes

computation graphs. The running time of A-MAML is

comparable to FOMAML, Reptile, and iMAML. We then

applied A-MAML in three real-world applications of col-

laborative filtering and two image-classification tasks. In

several few-shot learning settings, A-MAML nearly always

provides the best initialization, which leads to smaller pre-

diction errors than the competing approaches during the

meta-tests. The improvement is often significant.

2 PRELIMINARIES

Suppose we have a family of correlated learning tasks A.

The size of A can be very large or even infinite. For each

task, we use the same machine learning modelM, which is

parameterized by u ∈ Rd, e.g., a deep neural network. Our

goal is to learn an initialization θ for u, which can well adapt

to all the tasks in A. To this end, we sample N tasks, S =
{T1, . . . , TN}, from a task distribution p on A, and for each

Tn, we collect a dataset Dn. We use the N datasets D̂ =
{D1, . . . ,DN} to meta-learn θ. We expect that given any

new task T ∗ ∈ A, after initializing u with θ, the training of

M on T ∗ can achieve better performance with the same or

fewer training epochs or iterations or examples.

A particularly successful meta-learning algorithm is model-

agnostic meta-learning (MAML) (Finn et al., 2017), which

uses a bi-level optimization approach to estimate θ. Specif-

ically, each Dn is partitioned into a meta-training dataset

Dtr
n and a meta-validation dataset Dval

n . In the inner level,

we start with θ and optimize the training loss L(u,Dtr
n)

for each task n. Let us denote the trained parameters by

ψn(θ). In the outer level, we evaluate these trained parame-

ters on the validation loss, and optimize θ accordingly, i.e.,

θ∗ = min 1
N

∑N
j=1 L(ψn(θ),D

val
n). MAML obtains the

gradient w.r.t θ via automatic differentiation, which essen-

tially computes
dψn(θ)

dθ via back-propagation on a compu-

tation graph. However, this is very challenging for long

training trajectories to obtain ψn(θ), since the computa-

tion graph can rapidly explode and become very expensive

to compute. Therefore, in practice, MAML typically only

conducts one or a few gradient descent steps in the inner op-

timization, e.g., with one step, ψn(θ) = θ − α∇L(θ,Dtr
n),

where α is the step size. However, with only one step the

obtained parameters are frequently too close to the initial-

ization, and inadequately reflect the actual longer-range

training performance.

To bypass this issue, First-Order MAML (FOMAML) (Finn

et al., 2017) drops out the Jacobian
dψn(θ)

dθ and replaces it

with the identity matrix I. In so doing, FOMAML can per-

form many gradient descent steps to obtain ψn and update

θ with

θ ← θ − η ·
1

N

∑N

n=1

∂L(ψn,D
val
n)

∂ψn

,

where η is the learning rate. With the same idea, Rep-

tile (Nichol et al., 2018) instead adjusts the updating direc-

tion to 1
N

∑N
j=1

∂L(ψn,D
val
n
)

∂ψn

− θ. Despite being efficient,

these methods lack accurate gradient information about θ.

To overcome this limitation, the recent work, iMAML (Ra-

jeswaran et al., 2019), calculates the accurate gradient via an

implicit gradient method. However, it needs to incorporate

a proximity regularizer into the training loss to bind u and

Shibo Li1, Zheng Wang1, Akil Narayan2,3, Robert M. Kirby1,2, Shandian Zhe1

θ explicitly,

L̂(u,Dtr
n) = L(u,D

tr
n) +

λ

2
‖u− θ‖2.

The accurate gradient can be obtained (only) when the train-

ing reaches the optimum, i.e., ψn = argminu L̂(u,D
tr
n),

since we can derive the implicit gradient dψn

dθ from the fact

that ∂L̂
∂ψn

= 0.

3 ADJOINT MAML

In this paper, we propose A-MAML, which can accurately

and efficiently compute the gradient of the meta loss w.r.t

the initialization for long training trajectories, without the

need for aggressive approximations or additional regular-

ization, and adapts to different trajectory lengths. Hence,

our method can be easily integrated with commonly used

training strategies, e.g., early stopping.

3.1 ODE View of Inner Optimization

Specifically, we first view the inner optimization as evolving

an ODE system. In more detail, given task n, starting from

θ, we run gradient descent for a long time to train the model.

The training procedure can be in more general viewed as

solving the following ODE,

{
un(0) = θ,
dun

dt = −
∂L(un,D

tr
n
)

∂un

,

where the state un(t) represents the model parameters at

time t. Running gradient descent with a step size α es-

sentially solves the ODE with the forward Euler method

using temporal step size α, corresponding to the update

un(t + α) ← un(t) − α
∂L(un,D

tr
n
)

∂un

. However, the ODE

view allows us to apply a variety of more efficient, high-

order solvers to fulfill the training, e.g., the Runge-Kutta

method (Dormand and Prince, 1980). Suppose we stop at

time T , then we evaluate the trained parameters un(T) on

the validation dataset via L(un(T),D
val
n). Therefore, the

meta loss is given by

J(θ) =
1

N

∑N

n=1
L(un(T),D

val
n). (1)

Note that the stopping time T is not necessarily the same

for all the tasks; it can vary for different tasks as determined,

say, by an early stopping criterion.

3.2 Efficient Back-Propagation via Solving Adjoint

ODEs

To optimize θ in (1) (in the outer loop), we need to be

able to compute the gradient of the validation loss for each

task n, i.e., dJn

dθ , where Jn = L(un(T),D
val
n). We seek to

compute this gradient efficiently for large T without creating

and growing a computation graph. To this end, we use the

adjoint method (Pontryagin, 1987). To simplify the notation,

we first define

Jn(un(T)) = L(un(T),D
val
n),

f(un,D
tr
n) = −

(
∂L(un,D

tr
n)

∂un

)>

. (2)

Note that we use the row vector representation of the gra-

dient, i.e., ∂L
∂un

is a 1 × d vector. This is consistent with

the shape of Jacobian matrix, and the chain rule can be ex-

pressed as the matrix multiplication from left to right, which

is natural and convenient. Accordingly, the ODE for un(t)
can be written as

{
un(0) = θ,
dun

dt = f(un,D
tr
n).

(3)

Next, to construct an adjoint ODE for efficient gradient

computation, we augment the validation loss,

Ĵn = Jn (un(T)) +

∫ T

0

λ(t)>
(
f(un,D

tr
n)−

dun

dt

)
dt,

(4)

where λ(t) is a Lagrange multiplier and a d × 1 vector.

According to the ODE constraint (3), the extra integral in

(4) is 0 and Ĵn = Jn. Hence, we have

dJn
dθ

=
dĴn
dθ

=
∂Jn

∂un(T)

dun

dθ
(T)

+

∫ T

0

λ>

[
∂f

∂un

dun

dθ
−

ddun

dt

dθ

]
dt. (5)

For the second term in the integral, we switch the derivative

order and apply integration by parts,

∫ T

0

λ>
ddun

dt

dθ
dt =

∫ T

0

λ>
ddun

dθ

dt
dt

= λ>
dun

dθ

∣∣∣∣
T

0

−

∫ T

0

(
dλ

dt

)>
dun

dθ
dt

= λ(T)>
dun

dθ
(T)− λ(0)>

dun

dθ
(0)

−

∫ T

0

(
dλ

dt

)>
dun

dθ
dt.

Substituting the above into (5), we obtain

dJn
dθ

=
∂Jn

∂un(T)

dun

dθ
(T)− λ(T)>

dun

dθ
(T)

+ λ(0)>
dun

dθ
(0)

+

∫ T

0

{
λ>

∂f

∂un

dun

dθ
+

(
dλ

dt

)>
dun

dθ

}
dt.

Meta-Learning with Adjoint Methods

The computationally expensive term is the Jacobian dun

dθ
(marked as blue), which we efficiently handle by construct-

ing an adjoint ODE for the Lagrange multiplier λ,



λ(T) =

(
∂Jn

∂un(T)

)>

,
(
dλ
dt

)>
= −λ(t)> ∂f

∂un

.
(6)

Note that the ODE (6) runs backward in time starting at the

terminal time T . If we can solve (6), the Jacobian terms

(blue) will cancel, and the full gradient becomes

dJn
dθ

= λ(0)>
dun

dθ
(0) = λ(0)>, (7)

where we have used dun

dθ (0) = I. We see that the gradient

is simply the state of λ at time 0. To confirm the feasibility

of solving (6), we can see from (6) and (2) that ∂f
∂un

=

H(un) = −
∂2

L(un,D
tr

n
)

∂u2
n

is the Hessian matrix of the model

parameters. While it seems extremely costly to calculate the

Hessian, when we substitute the Hessian into (6) and take

the transpose, we find,



λ(T) =

(
∂Jn

∂un(T)

)>

,

dλ
dt = −H(un)λ(t).

(8)

Now it is clear that the dynamics of λ is a Hessian-vector

product. It is known that we never need to explicitly com-

pute the Hessian matrix. We can first compute the gradient

g = ∂L
∂un

, then the dot product s = λ>g, and take the

gradient of the scalar s again, which gives exactly Hλ. The

complexity is the same as computing the gradient.

Therefore, to calculate dJn

dθ , we only need to run standard

ODE solvers twice. First, we run a solver to evolve (3)

from time 0 to time T . Note that even a small T can corre-

spond to many gradient descent steps. For example, T = 10
corresponds to running 1000 gradient descent steps where

the step size is set to 0.01 (a common choice). We can ap-

ply high-order methods, like RK45 (Dormand and Prince,

1980) to further improve the speed and accuracy. Next, at

the trained parameters u(T), we jointly solve (8) and (3)

backward (note that dynamics of λ needs un). For solv-

ing both ODEs, we never need to create and/or grow new

computation graphs. All we need is to compute the dy-

namics in (3) and (8), and the computational complexity

is the same as computing the gradient of the training loss

w.r.t the model parameters. The memory cost only involves

storage of un and λ, which is proportional to the number

of model parameters. We never need to maintain or calcu-

late any Jacobian matrix. The accuracy is determined by

the numerical precision of the ODE solvers, which have

been developed for decades, are mature, and can easily ef-

fect tradeoffs between precision and speed. Note that our

method does not need to add extra regularization into the

training loss, although our framework can be easily adjusted

to support such regularization.

Empirically, we found that back-solving can be numerically

unstable or even diverge when T is relatively large, say,

20 or 100. This is consistent with the observation in the

training of neural ODE models (Chen et al., 2018; Gholami

et al., 2019; Daulbaev et al., 2020), which also uses the

adjoint method. To promote robustness, we track the state

un in the training trajectory with a given step size during

the forward solve. This can be automatically done via the

ODE solver. Then based on the list of states {un,j}j , we

solve the adjoint ODE backward with the modified Euler

method (Ascher and Petzold, 1998) whose global accuracy

is O(h2) where h is the ODE solver step size. Specifically,

at each step j, we first calculate an intermediate value λ̃j

and then the state λj via,

λ̃j = λj+1 + hH(un,j+1)λj+1,

λj = λj+1 +
h

2

[
H(un,j+1)λj+1 +H(un,j)λ̃j

]
.

While this increases memory requirements, it is still linear

with the number of parameters, O(T
h
d), and much cheaper

than building a computational graph. While even more

memory-efficient approaches are available (Gholami et al.,

2019; Daulbaev et al., 2020), our method is simple and

convenient to implement. The experiments show that our

method has already been able to scale to long training tra-

jectories very economically (see Sec. 5.2). In the Appendix,

we examined the trade-off between the number of stored

intermediate states and the gradient accuracy (see Sec. A).

Our method is summarized in Algorithm 1.

Algorithm 1 A-MAML (p(T), T , η, G, ξ)

1: Randomly initialize θ.
2: repeat
3: Sample a mini-batch of tasks {Tn}

B
n=1 from p(T).

4: for each task Tn do
5: Calculate ∂Jn

∂θ
with Algorithm 2.

6: end for
7: θ ← θ − η · 1

B

∑B

n=1
∂Jn

∂θ
(or use ADAM).

8: until G iterations are done or the change of θ is less than ξ
9: Return θ.

Algorithm 2 Adjoint Gradient Computation (θ, Jn, T , h)

1: un(0)← θ.
2: Solve forward ODE (3) to time T with RK45, and track the

states {un,j}j in the trajectory with step size h.

3: λ(T)← ∂Jn

∂un(T)
.

4: Solve the adjoint ODE (8) to time 0 with modified Euler
method based on the state list {un,j}.

5: Return λ(0).

4 RELATED WORK

Meta-learning (Schmidhuber, 1987; Thrun and Pratt, 2012;

Naik and Mammone, 1992) can be (roughly) classified into

three categories: (1) metric-learning methods that learn a

Shibo Li1, Zheng Wang1, Akil Narayan2,3, Robert M. Kirby1,2, Shandian Zhe1

metric space (in the outer lever), where the tasks (in the in-

ner level) make predictions by simply matching the training

points, e.g., nonparametric nearest neighbors (Koch et al.,

2015; Vinyals et al., 2016; Snell et al., 2017; Oreshkin et al.,

2018; Allen et al., 2019), (2) black-box methods that train

feed-forward or recurrent NNs to take the hyperparameters

and task dataset as the input and outright predict the optimal

model parameters or parameter updating rules (Hochreiter

et al., 2001; Andrychowicz et al., 2016; Li and Malik, 2016;

Ravi and Larochelle, 2017; Santoro et al., 2016; Duan et al.,

2016; Wang et al., 2016; Munkhdalai and Yu, 2017; Mishra

et al., 2017), and (3) optimization-based methods that con-

duct a bi-level optimization, where the inner level is to

estimate the model parameters given the hyperparameters

(in each task) and the outer level is to optimize the hyper-

parameters via a meta-loss (Finn et al., 2017; Finn, 2018;

Bertinetto et al., 2018; Lee et al., 2019; Zintgraf et al., 2019;

Li et al., 2017; Finn et al., 2018; Zhou et al., 2018; Harrison

et al., 2018). There are also hybrid approaches, e.g., (Rusu

et al., 2018; Triantafillou et al., 2019).

MAML (Finn et al., 2017) is a popular optimization-based

meta-learning method. In addition to FOMAML and Rep-

tile, there are many variants, e.g., (Grant et al., 2018; Finn

et al., 2018; Song et al., 2020; Liu et al., 2019). Recently,

Denevi et al. (2020); Wang et al. (2020); Denevi et al. (2021)

proposed conditional meta learning to leverage the side in-

formation (when available) to learn task-specific initializa-

tions. The recent work of (Im et al., 2019; Xu et al., 2021)

also introduces an ODE view for MAML. However, they

use the ODE theory and methods to analyze/improve the

outer level optimization, where the inner level still performs

one step gradient descent as in standard MAML. They do

not consider long training trajectories in the inner level. Im

et al. (2019) pointed out the MAML update is a special case

of (second-order) Runge-Kutta gradients, and suggested

using more refined nodes, weights and even higher-order

updates. Xu et al. (2021) showed that if the outer-level op-

timization of MAML is considered as solving an ODE, it

enjoys a linear convergence rate for strongly convex task

losses. Based on their analysis, they proposed a bi-phase

algorithm to further reduce the cost and improve efficiency.

Our work uses the ODE view for inner-level optimization.

The adjoint method is a classical and popular framework to

estimate the parameters of ODE or dynamic control mod-

els (Chen et al., 2018; Eichmeir et al., 2021). If we use

Euler method to solve the adjoint ODE, it reduces to the

reverse mode differentiation method (Bengio, 2000; Baydin

and Pearlmutter, 2014), yet leaving first-order global accu-

racy (O(h)). Another related work is (Domke, 2012) that

provides a general bi-level optimization framework. It can

optimize explicit hyper-parameters in the inner-optimization

loss, e.g., regularization strength. However, this framework

cannot optimize the parameter initialization, since the ini-

tialization does not explicitly appear in the loss.

The most recent work (Deleu et al., 2022) (in parallel to

ours) also uses an ODE view for the inner-optimization,

but it applies the forward sensitivity framework, which con-

structs an ODE for the state Jacobian, and jointly solves the

state and its Jacobian forward. Our work constructs an ad-

joint ODE for the Lagrange multiplier and solves that ODE

backward. In general, the forward sensitivity method is

expensive for high-dimensional states, which takes O(d2p)
time and O(d2 + dp) space complexity to evolve the Jaco-

bian, where d is the state dimension and p is the dimension

of the gradient of each state element. Our adjoint method

only takes O(dp) complexity, and hence is much more scal-

able and memory efficient. Deleu et al. (2022) restricted the

task to only meta learning the initialization of linear models.

In other words, the adaptation only applies to the neural

network (NN) weights of the last layer. Thereby, it can use

the loss structure to greatly simplify the computation and

save memory. The method, however, cannot apply to more

flexible tasks, e.g., to meta learn the initialization of the

weights in the second last layer (or several layers) or the full

parameter initialization for any nonlinear model. Our ap-

proach is more general in that it does not restrict the model

type or the set of parameters. It can meta learn the initial-

ization of all (or any subset of) the parameters in any NN or

other linear/nonlinear models. By tracking the intermediate

states, our work has also addressed the numerical stability

issue when solving the adjoint ODE backward, which is one

major concern that motivates (Deleu et al., 2022).

5 EXPERIMENTS

5.1 2D regression

For evaluation, we first examined the proposed ap-

proach in two synthetic benchmark tests, namely,

meta learning of CosMixture and Alpine func-

tions (http://infinity77.net/global_

optimization/test_functions.html), both

of which are 2D regression tasks. We considered two

families of tasks. In the first family, each task aims to learn

a specific CosMixture function of the following form,

f1(x) = −0.1
∑d

i=1
A cos(ωxi + φ)−

∑d

i=1
x2
i , (9)

where x ∈ [−1, 1]2, d = 2, A ∈ [0.1, 1.0], ω ∈
[0.5π, 2.0π], and φ ∈ [3.0, 6.0]. The second family of tasks

learn instances of the Alpine function,

f2(x) =
∑d

i=1
|xi sin(xi + φi) + 0.1xi|, (10)

where x ∈ [10, 10]2, d = 2, φ1 ∈ [− 5
12π,

5
12π], and

φ2 ∈ [− 5
12π,

5
12π]. An instance of each function is shown

in Fig. 2a and 2d. The learning model for both task pop-

ulations is a neural network with two hidden layers, each

consisting of 32 neurons with Tanh activation. To conduct

Meta-Learning with Adjoint Methods

meta-learning for each task population, we randomly sam-

pled 100 tasks, where for each task, the parameters of the

target function, i.e., {A,ω, φ} in CosMixture and {φ1, φ2}
in Alpine, are uniformly sampled from their ranges. We

considered two meta-learning settings: 50shot-50val, where

we used 50 examples for meta-training and 50 another ex-

amples in meta-validation, and 100shot-100val, where both

the meta-training and meta-validation losses employed 100

examples. These examples are non-overlapping and gener-

ated by uniformly sampling from the input domain. Given

the learned initialization, we tested on 100 new tasks, where

the task training data were generated in the same way as in

the meta-training and 100 another examples were sampled

to evaluate the prediction accuracy.

Competing Methods. To examine the effectiveness of our

method A-MAML, we tested the following MAML based

approaches for an apples-to-apples comparison: (1) the

original MAML (Finn et al., 2017), (2) First-order MAML

(FOMAML) (Finn et al., 2017), which ignores the Jaco-

bian in the gradient computation and uses the gradient

w.r.t the trained parameters to update the initialization, (3)

Reptile (Nichol et al., 2018), which subtracts the gradient

w.r.t the trained parameter by the current initialization as

the updating direction, (4) Implicit MAML (iMAML) (Ra-

jeswaran et al., 2019), which introduces a proximal regular-

izer in the meta-training loss, and uses conjugate gradient

to compute the gradient w.r.t the initialization.

All the methods were implemented with Py-

Torch (Paszke et al., 2019). For MAML, we used

a high-quality open source implementation (https:

//github.com/dragen1860/MAML-Pytorch);

for iMAML, we used the implementation of

the original authors (https://github.com/

aravindr93/imaml_dev). For our approach A-

MAML, we used the Torchdiffeq library (https:

//github.com/rtqichen/torchdiffeq) to

accomplish ODE solving with RK45. In the inner optimiza-

tion, all the competing methods used the standard gradient

descent (GD) with step size α = 0.01. For iMAML,

the strength of the proximal regularizer was chosen as

λ = 1 and 5 CG steps were conducted for Newton-CG

optimization. For our method, we used the same step

size (i.e., 0.01) to run modified Euler’s method (Ascher

and Petzold, 1998) for solving the adjoint ODE. In the

outer optimization, all the methods used the ADAM

algorithm (Kingma and Ba, 2014), and the learning rate

was set to 10−3. Each time, a mini-batch of five tasks were

sampled to conduct inner-optimization, and then update the

initialization in the outer-level. We ran 5, 000 meta-epochs

for each method. For the 50shot-50val setting, we ran 200
GD steps for FOMAML, Reptile, iMAML, and for our

method A-MAML, set T = 2 (that corresponds to 200 GD

steps with α = 0.01). For the 100shot-100val setting, we

ran 500 GD steps for FOMAML, Reptile, iMAML, and set

T = 5 for A-MAML accordingly. By contrast, MAML ran

20 and 50 GD steps, respectively. Note that MAML cannot

run too many GD steps without exhausting computational

memory (see Section 5.2). We also evaluated MAML

with only one GD step (the most common choice) for

both settings; we denote such results by MAML-1. At the

adaptation stage (meta-test), we ran the same number of GD

steps with the initialization learned by every method: 200

steps for 50shot-50val and 500 steps for 100shot-100val,

with the same step size as in the meta training. We executed

all the algorithms on a Linux workstation with an NVIDIA

GeForce RTX 3090 GPU card that includes 24 GB of G6X

memory.

In Fig. 2b,c, e and f, we show that starting with the learned

initialization of each method, how the prediction error of the

NN model on the test tasks varies along with the increase of

training epochs. The prediction error for each task is com-

puted as the normalized root-mean-square error (nRMSE).

We averaged the nRMSE over the 100 test tasks and report

the standard deviation. As we can see, in all the cases, our

approach, A-MAML, always finds the initialization that

leads to the best learning progress and performance — the

NN models exhibit smaller prediction error throughout the

training, as compared with using the initialization from the

competing methods. MAML-1 is in general worse than

MAML; the discrepancy is particularly evident for learning

Alpine functions with the 100shot-100val setting (see Fig.

2f). It implies that only performing one-step GD in the inner-

optimization might not properly reflect the quality of the

initialization in training. Although FOMAML and Reptile

can run many GD steps, their performance is often worse

than MAML, especially Reptile, which is nearly always

inferior to MAML. Such relatively poor performance might

be attributed to the use of incorrect gradient information

to update the initialization in these approaches. iMAML

performed the second best at the beginning, but it was of-

ten surpassed by MAML or FOMAML after considerable

training epochs. This might be due to (1) the proximity

regularizer in the meta-training was not used in the actual

training, which introduces some inconsistency, and (2) the

inner optimization (though with 200/500 GD steps) has yet

to achieve the optimum, and so the obtained gradient w.r.t

the initialization is still inaccurate. Note that the nRMSE

for 100shot-100val seems a bit higher than 50shot-50val at

the early stage, which might because the former involves

a double quantity of examples, hence needs more epochs

to train better and exhibits slower learning progress. To-

gether these results have demonstrated the advantage of our

method in being able to accurately compute the gradient for

long inner-optimization trajectories.

5.2 Memory Consumption and Running Time

Next we examined the efficiency of our method in terms of

memory usage and computational speed. To this end, we

Shibo Li1, Zheng Wang1, Akil Narayan2,3, Robert M. Kirby1,2, Shandian Zhe1

−1

0

1

−1

0

1

−2

−1

0

1

(a) CosMixture instance

0 200 400 600 800 1000

Number of epochs

0.5

0.8

1.2

1.5

n
R

M
S

E

A-MAML

FOMAML

iMAML

MAML

MAML-1

Reptile

(b) CosMixture: 50shot-50val

0 200 400 600 800 1000

Number of epochs

0.6

1.0

1.5

2.0

n
R

M
S

E

(c) CosMixture: 100shot-100val

−1

0

1

−1

0

1

−1

0

1

2

3

4

(d) Alpine instance

0 200 400 600 800 1000

Number of epochs

0.4

0.6

0.8

1.0

n
R

M
S

E

(e) Alpine: 50shot-50val

0 200 400 600 800 1000

Number of epochs

0.5

1.0

1.2

n
R

M
S

E
(f) Alpine: 100shot-100val

Figure 2: Prediction error of the neural network in learning CosMixture and Alpine function families, starting from the initialization
provided by different meta-learning approaches. (a,d) are the instances of the two types of functions. 50shot-50val means 50 examples were
used for meta-training and another 50 examples for meta-validation. 100shot-100val means both the meta-training and meta-validation
used 100 examples. The results were averaged over 100 test tasks.

tested the 100shot-100validation setting in the meta learning

of CosMinxture functions. We varied the number of inner

GD steps (with the step size α = 0.01) for the competing ap-

proaches and the corresponding time ranges [0, T] for ODEs

in A-MAML. The average memory usage and running time

are reported in Fig. 3 and 4, respectively.

1 10 20 50 100 200 300 500

Number of GD steps

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

G
P

U
M

E
M

A-MAML

FOMAML

iMAML

MAML

Reptile

Figure 3: Normalized GPU usage in meta learning of CosMixutre
with 100shot-100validation. The dashed line indicates the capacity
of available GPU memory.

As shown in Fig. 3, MAML always occupies the most

memory. With the increase of GD steps, its memory con-

sumption grows exponentially. When MAML runs 200

inner GD steps, the memory is completely exhausted. The

result shows the creation and expansion of the computation

graphs is very costly. By contrast, A-MAML can accurately

compute the gradient in a much more economical way. A-

MAML needs to track the states in the training trajectory to

robustly solve the adjoint ODE so the memory usage also

grows with the number of GD steps, but this growth is much

slower (linear) and more affordable than MAML. A-MAML

effortlessly supports 500 steps with less than 25% memory

usage.

Fig. 4 shows that the running time of A-MAML (per update

in the outer-optimization) is comparable to iMAML, FO-

MAML and Reptile, and much smaller than MAML. This

shows that our method is computationally efficient. On the

other hand, the running time of MAML indicates that grow-

ing the computation graph for more GD steps also incurs a

dramatic increase in the computational cost.

Meta-Learning with Adjoint Methods

Jester-1 MovieLens100K MovieLens1M
10shot-15val 20shot-30val 10shot-15val 20shot-30val 10shot-15val 20shot-30val

A-MAML 0.074±0.005 0.027±0.002 0.053±0.005 0.023±0.003 0.094±0.008 0.035±0.004

iMAML 0.114±0.007 0.050±0.003 0.082±0.004 0.033±0.002 0.138±0.010 0.052±0.004

MAML 0.120±0.001 0.036±0.000 0.123±0.001 0.050±0.003 0.140±0.002 0.059±0.001

FOMAML 0.292±0.012 0.115±0.004 0.174±0.008 0.068±0.004 0.270±0.011 0.104±0.006

Reptile 0.270±0.012 0.106±0.004 0.166±0.008 0.063±0.003 0.266±0.011 0.101±0.006

Table 1: Meta-test error (nRMSE) with 50 inner GD steps (MAML used 5 GD steps). The results were averaged over 100
tasks.

Jester-1 MovieLens100K MovieLens1M
10shot-15val 20shot-30val 10shot-15val 20shot-30val 10shot-15val 20shot-30val

A-MAML 0.069±0.005 0.044±0.003 0.057±0.006 0.021±0.002 0.105±0.009 0.035±0.004

iMAML 0.190±0.010 0.103±0.005 0.168±0.007 0.046±0.002 0.130±0.007 0.045±0.004

MAML 0.154±0.001 0.061±0.002 0.123±0.001 0.050±0.002 0.197±0.002 0.083±0.001

FOMAML 0.273±0.012 0.077±0.004 0.191±0.007 0.071±0.004 0.395±0.010 0.119±0.005

Reptile 0.290±0.012 0.100±0.004 0.171±0.008 0.066±0.004 0.408±0.011 0.128±0.006

Table 2: Meta-test error (nRMSE) with 100 inner GD steps (MAML used 10 GD steps). The results were averaged over 100
tasks.

1 10 20 50 100 200 300 500

Number of GD steps

0

1

2

3

4

5

S
e
c
o
n
d
s

p
e
r

M
e
ta

-U
p
d
a
te

A-MAML

FOMAML

iMAML

MAML

Reptile

Figure 4: Running time of the inner gradient descent for CosMix-
utre.

5.3 Few-Shot Learning in Collaborative Filtering

Third, we examined our approach in three real-world

applications of collaborative filtering. To this end, we

used the following datasets. (1) Jester-1(https://

goldberg.berkeley.edu/jester-data/) (Gold-

berg et al., 2001), which are about joke ratings. There

are 100 jokes, rated by 24, 983 users. Each user has rated

at least 36 jokes. The ratings are between -10 and 10.

(2) MovieLens-100K and (3) MovieLens-1M (https://

grouplens.org/datasets/movielens/), movie

rating datasets, where the former includes 10K ratings from

1K users on 1.7K movies, and the latter one million movie

ratings from 6K users on 4K movies. The ratings are ranged

from 0 to 5. Following (Denevi et al., 2020, 2021), we con-

sidered predicting the ratings of a given user (on different

jokes or movies) as one task.

Different users correspond to different tasks. For each user,

we learned a neural network (NN) to predict the rating on a

specific joke or movie. The input to the NN is the one-hot

encoding of the joke or movie. The NN has two hidden

Method Ominiglot Mini-ImageNet

MAML 95.8± 0.3% 48.70± 1.84%

FOMAML 89.4± 0.5% 48.07± 1.75%

Reptile 89.43± 0.14% 49.97± 0.32%

iMAML-GD 94.46± 0.42% 48.96± 1.84%

iMAML-HF 96.18± 0.36% 49.30± 1.88%

A-MAML(T = 0.5) 96.36± 0.39% 49.43± 1.64%

A-MAML(T = 1.0) 96.79± 0.34% 49.47± 1.77%

Table 3: Meta-test accuracy for 20-way 1-shot on Omniglot and
5-way 1-shot on Mini-ImageNet.

layers, and each layer includes 40 neurons with Tanh ac-

tivation. We conducted meta learning on each dataset to

estimate a good initialization for the corresponding rate pre-

diction model. To prevent scarcity of the task data points, we

selected the most frequently rated 100 movies in MovieLens-

100K and MovieLens-1M, and only considered users who

had rated at least 20 of them. This gives 489 and 4,985 tasks

on MovieLens-100K and MovieLens-1M, respectively. For

Jester-1, we used all 24, 983 tasks. For each dataset, we sam-

pled 100 tasks for testing and used the remaining tasks for

meta learning. We examined two few-shot settings: 15shot-

20val, where 15 examples were used in meta-training and

20 examples in meta-validation, and 20shot-30val where

20 examples were used in meta-training and 30 example in

meta-validation. During the meta learning, when the data

points of a sampled task are less than the required meta train-

ing and validation set size, we re-sample a new task. At the

test stage, the training for each task used the same number

of examples for few-shot learning and the remaining were

used for evaluation.

For all the methods, the step size of the inner training was set

to α = 0.01, and a mini-batch of 5 tasks were sampled each

time to conduct the inner training. We tested two choices

of GD steps. First, we performed 50 GD steps for iMAML,

Shibo Li1, Zheng Wang1, Akil Narayan2,3, Robert M. Kirby1,2, Shandian Zhe1

FOMAML and Reptile, and set T = 0.5 for A-MAML to

solve the forward and adjoint ODEs (corresponding to 50
steps). Second, we performed 100 GD steps for iMAML,

FOMAML and Reptile, and accordingly set T = 1.0 for

A-MAML. In each case, we ran MAML with one tenth of

the corresponding steps, i.e., 5 and 10 steps respectively. In

the outer-level, all the methods used ADAM optimization

with learning rate 10−3. We ran 5000 meta epochs for

each method. We computed the average nRMSE and its

standard deviation of using the initialization estimated by

each method for training and then testing on new tasks.

As shown in Tables 1 and 2, A-MAML achieved the best

performance in all the cases — the learned initializations

always result in the smallest test error after training (p <

0.05), as compared with the competing methods. Consistent

with the results in synthetic data (Sec. 5.1), FOMAML

and Reptile are still worse than MAML, implying that their

updates with inaccurate gradient information do not help

improve the performance in these collaborative filtering

applications. The results further confirm the advantage of

the proposed method A-MAML.

5.4 Few-Shot Learning in Images Classification

Finally, we evaluated A-MAML on popular benchmark

datasets in few-shot image classification tasks, Mini-

ImageNet and Omniglot. We followed the standard training

and evaluation protocol as in iMAML paper and the prior

works (Santoro et al., 2016; Vinyals et al., 2016; Finn et al.,

2017), including data splits, NN architecture, etc. We tested

5-way 1-shot learning on Mini-ImageNet and 20-way 1-shot

in Omniglot, because these two settings are more challeng-

ing to all the methods. We ran A-MAML with three settings,

T = 0.5 and T = 1.0. During the adaptation stage, we ran

the same number of GD steps with iMAML. The results are

reported in Table 3. As we can see, with longer trajectory

length, i.e., T = 1.0, our method gave the best performance

on Omiglot and the second best on Mini-ImageNet. With

shorter length (T = 0.5), the performance decreases, but is

comparable to or better than the competing methods. This

is reasonable and again shows the advantage of being able

to carry out longer trajectories during the meta training.

6 CONCLUSION

We have presented A-MAML, a novel meta learning

approach of model initializations. We view the inner-

optimization as solving a forward ODE, and use the ad-

joint method to compute the gradient of the meta-loss w.r.t

the initialization in an efficient and accurate way. We plan

to extend our work to conditional meta learning (Denevi

et al., 2021; Wang et al., 2020) so as to further leverage side

information to estimate task-specific initializations.

Acknowledgments

This work has been supported by MURI AFOSR grant

FA9550-20-1-0358, NSF CAREER Award IIS-2046295 and

NSF DMS-1848508.

References

Allen, K., Shelhamer, E., Shin, H., and Tenenbaum, J.

(2019). Infinite mixture prototypes for few-shot learning.

In International Conference on Machine Learning, pages

232–241. PMLR.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,

Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N.

(2016). Learning to learn by gradient descent by gradient

descent. arXiv preprint arXiv:1606.04474.

Ascher, U. M. and Petzold, L. R. (1998). Computer

methods for ordinary differential equations and

differential-algebraic equations, volume 61. Siam.

Baydin, A. G. and Pearlmutter, B. A. (2014). Automatic

differentiation of algorithms for machine learning. arXiv

preprint arXiv:1404.7456.

Bengio, Y. (2000). Gradient-based optimization of hyperpa-

rameters. Neural computation, 12(8):1889–1900.

Bertinetto, L., Henriques, J. F., Torr, P. H., and Vedaldi, A.

(2018). Meta-learning with differentiable closed-form

solvers. arXiv preprint arXiv:1805.08136.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,

D. K. (2018). Neural ordinary differential equations.

Advances in neural information processing systems, 31.

Daulbaev, T., Katrutsa, A., Markeeva, L., Gusak, J., Ci-

chocki, A., and Oseledets, I. (2020). Interpolation tech-

nique to speed up gradients propagation in neural odes.

Advances in Neural Information Processing Systems,

33:16689–16700.

Deleu, T., Kanaa, D., Feng, L., Kerg, G., Bengio, Y., La-

joie, G., and Bacon, P.-L. (2022). Continuous-time

meta-learning with forward mode differentiation. In

International Conference on Learning Representations.

Denevi, G., Pontil, M., and Ciliberto, C. (2020). The ad-

vantage of conditional meta-learning for biased regular-

ization and fine tuning. Advances in Neural Information

Processing Systems, 33.

Denevi, G., Pontil, M., and Ciliberto, C. (2021). Conditional

meta-learning of linear representations. arXiv preprint

arXiv:2103.16277.

Domke, J. (2012). Generic methods for optimization-based

modeling. In Artificial Intelligence and Statistics, pages

318–326. PMLR.

Dormand, J. R. and Prince, P. J. (1980). A family of embed-

ded runge-kutta formulae. Journal of computational and

applied mathematics, 6(1):19–26.

Meta-Learning with Adjoint Methods

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,

I., and Abbeel, P. (2016). Rl2: Fast reinforcement

learning via slow reinforcement learning. arXiv preprint

arXiv:1611.02779.

Eichmeir, P., Lauß, T., Oberpeilsteiner, S., Nachbagauer,

K., and Steiner, W. (2021). The adjoint method for time-

optimal control problems. Journal of Computational and

Nonlinear Dynamics, 16(2).

Finn, C. (2018). Learning to learn with gradients. PhD

thesis, UC Berkeley.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic

meta-learning for fast adaptation of deep networks. In

International Conference on Machine Learning, pages

1126–1135. PMLR.

Finn, C., Xu, K., and Levine, S. (2018). Proba-

bilistic model-agnostic meta-learning. arXiv preprint

arXiv:1806.02817.

Gholami, A., Keutzer, K., and Biros, G. (2019). Anode:

unconditionally accurate memory-efficient gradients for

neural odes. In Proceedings of the 28th International

Joint Conference on Artificial Intelligence, pages 730–

736.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001).

Eigentaste: A constant time collaborative filtering algo-

rithm. information retrieval, 4(2):133–151.

Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths,

T. (2018). Recasting gradient-based meta-learning as

hierarchical Bayes. In 6th International Conference on

Learning Representations, ICLR 2018.

Harrison, J., Sharma, A., and Pavone, M. (2018). Meta-

learning priors for efficient online bayesian regression. In

International Workshop on the Algorithmic Foundations

of Robotics, pages 318–337. Springer.

Hochreiter, S., Younger, A. S., and Conwell, P. R. (2001).

Learning to learn using gradient descent. In International

Conference on Artificial Neural Networks, pages 87–94.

Springer.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey,

A. (2020). Meta-learning in neural networks: A survey.

arXiv preprint arXiv:2004.05439.

Im, D. J., Jiang, Y., and Verma, N. (2019). Model-agnostic

meta-learning using runge-kutta methods. arXiv preprint

arXiv:1910.07368.

Kingma, D. P. and Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese

neural networks for one-shot image recognition. In ICML

deep learning workshop, volume 2. Lille.

Lake, B., Salakhutdinov, R., Gross, J., and Tenenbaum,

J. (2011). One shot learning of simple visual concepts.

In Proceedings of the annual meeting of the cognitive

science society, volume 33.

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. (2019).

Meta-learning with differentiable convex optimization. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 10657–10665.

Li, K. and Malik, J. (2016). Learning to optimize. arXiv

preprint arXiv:1606.01885.

Li, Z., Zhou, F., Chen, F., and Li, H. (2017). Meta-sgd:

Learning to learn quickly for few-shot learning. arXiv

preprint arXiv:1707.09835.

Liu, H., Socher, R., and Xiong, C. (2019). Taming

maml: Efficient unbiased meta-reinforcement learning.

In International Conference on Machine Learning, pages

4061–4071. PMLR.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P.

(2017). A simple neural attentive meta-learner. arXiv

preprint arXiv:1707.03141.

Munkhdalai, T. and Yu, H. (2017). Meta networks. In

International Conference on Machine Learning, pages

2554–2563. PMLR.

Naik, D. K. and Mammone, R. J. (1992). Meta-neural

networks that learn by learning. In [Proceedings

1992] IJCNN International Joint Conference on Neural

Networks, volume 1, pages 437–442. IEEE.

Nichol, A., Achiam, J., and Schulman, J. (2018). On

first-order meta-learning algorithms. arXiv preprint

arXiv:1803.02999.

Oreshkin, B. N., Rodriguez, P., and Lacoste, A. (2018).

Tadam: Task dependent adaptive metric for improved

few-shot learning. arXiv preprint arXiv:1805.10123.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,

J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

Antiga, L., et al. (2019). Pytorch: An imperative style,

high-performance deep learning library. arXiv preprint

arXiv:1912.01703.

Pontryagin, L. S. (1987). Mathematical theory of optimal

processes. CRC press.

Rajeswaran, A., Finn, C., Kakade, S., and Levine, S. (2019).

Meta-learning with implicit gradients. Advances in

neural information processing systems.

Ravi, S. and Larochelle, H. (2017). Optimization as a model

for few-shot learning. In In International Conference on

Learning Representations (ICLR).

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pas-

canu, R., Osindero, S., and Hadsell, R. (2018). Meta-

learning with latent embedding optimization. arXiv

preprint arXiv:1807.05960.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D.,

and Lillicrap, T. (2016). Meta-learning with memory-

augmented neural networks. In International conference

on machine learning, pages 1842–1850. PMLR.

Shibo Li1, Zheng Wang1, Akil Narayan2,3, Robert M. Kirby1,2, Shandian Zhe1

Schmidhuber, J. (1987). Evolutionary principles in

self-referential learning, or on learning how to learn: the

meta-meta-... hook. PhD thesis, Technische Universität

München.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypi-

cal networks for few-shot learning. Advances in neural

information processing systems, 30.

Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano,

A., and Tang, Y. (2020). Es-maml: Simple hessian-free

meta learning. In ICLR.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and

Hospedales, T. M. (2018). Learning to compare: Re-

lation network for few-shot learning. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, pages 1199–1208.

Thrun, S. and Pratt, L. (2012). Learning to learn. Springer

Science & Business Media.

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci,

U., Xu, K., Goroshin, R., Gelada, C., Swersky, K., Man-

zagol, P.-A., et al. (2019). Meta-dataset: A dataset of

datasets for learning to learn from few examples. arXiv

preprint arXiv:1903.03096.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K.,

and Wierstra, D. (2016). Matching networks for one shot

learning. arXiv preprint arXiv:1606.04080.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,

Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and

Botvinick, M. (2016). Learning to reinforcement learn.

arXiv preprint arXiv:1611.05763.

Wang, R., Demiris, Y., and Ciliberto, C. (2020). Structured

prediction for conditional meta-learning. Advances in

Neural Information Processing Systems, 33.

Xu, R., Chen, L., and Karbasi, A. (2021). Meta learning in

the continuous time limit. In International Conference on

Artificial Intelligence and Statistics, pages 3052–3060.

PMLR.

Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., and

Ahn, S. (2018). Bayesian model-agnostic meta-learning.

In Proceedings of the 32nd International Conference on

Neural Information Processing Systems, pages 7343–

7353.

Zhou, F., Wu, B., and Li, Z. (2018). Deep meta-learning:

Learning to learn in the concept space. arXiv preprint

arXiv:1802.03596.

Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K., and White-

son, S. (2019). Fast context adaptation via meta-learning.

In International Conference on Machine Learning, pages

7693–7702. PMLR.

Meta-Learning with Adjoint Methods

A Trade-off Analysis of Backward Solving

In this section, we examined the trade-off between the number of stored intermediate states and the accuracy of meta-gradient

computation. To this end, we first considered a nonlinear ODE system, for which the gradient w.r.t the initial state has a

closed form:

dy

dt
= −2x3 − 2ty. (11)

The solution of the ODE is

y(t) = 1− t2 + ce−t
2

(12)

where c is an arbitrary number and determined by the initial state, c = y(0) − 1. We then define a synthetic objective

function,

L(y(t)) = (y(t)− 3)6. (13)

Via the chain rule, we can obtain the gradient of the objective w.r.t to the initial state y(0), i.e., the meta gradient,

dL

dy(0)
=

dL

dy(t)
·
dy(t)

dy(0)
= 6(y(t)− 3)5e−t

2

. (14)

We then examined the relative L2 error of the meta gradient calculation by our method, with different T ’s and numbers of

intermediate states tracked in the back-solving process. For comparison, we tested the automatic differentiation (Autodiff)

method based on computational graphs. To be fair, we used the same number of states to set the step size in the forward

solving with the modified Euler method, and then applied Autodiff to compute the meta gradient. We repeated the experiment

for 20 times, and each time we used a random initial state. The results are reported in Table 4. Note that our method

uses DPORI5 (Runge-Kutta of order 5 of Dormand-Prince-Shampine) for the forward solving and the modified Euler

for the backward solving. We can see that the accuracy of our method is better than or comparable to Autodiff in all the

cases. Tracking more intermediate states consistently improves the accuracy, yet bringing more memory consumption and

computational cost. Hence, it enables us to select the cost and accuracy trade-off.

Number of Intermediate States
T = 0.1 T = 0.5

Autodiff Adjoint Autodiff Adjoint

10 6.24e-7 ± 8.87e-8 1.02e-6 ± 9.21e-7 3.34e-4 ± 1.06e-7 2.67e-4 ± 1.79e-4

20 2.01e-7 ± 1.08e-7 6.34e-7 ± 7.28e-7 7.34e-5 ± 1.61e-7 6.17e-5 ± 4.07e-5

50 1.48e-7 ± 1.20e-7 6.88e-7 ± 7.49e-7 1.08e-5 ± 2.49e-7 9.35e-6 ± 5.94e-6

100 6.75e-7 ± 2.00e-7 5.87e-7 ± 5.31e-7 2.64e-6 ± 2.59e-7 2.17e-6 ± 1.33e-6

200 7.32e-7 ± 7.61e-7 4.49e-7 ± 3.62e-7 9.18e-7 ± 4.13e-7 6.73e-7 ± 4.93e-7

500 7.69e-7 ± 1.13e-6 3.01e-7 ± 1.99e-7 1.12e-6 ± 6.59e-7 7.36e-7 ± 7.44e-7

1000 7.09e-7 ± 7.82e-7 1.45e-7 ± 8.58e-8 4.55e-6 ± 1.94e-6 6.94e-7 ± 4.73e-7

(a)

Number of Intermediate States
T = 1.0 T = 2.0

Autodiff Adjoint Autodiff Adjoint

10 2.51e-3 ± 9.23e-4 2.48e-3 ± 7.28e-8 4.74e-1 ± 4.13e-3 2.92e-1 ± 1.41e-7

20 5.82e-4 ± 1.89e-4 5.04e-4 ± 1.64e-7 7.33e-2 ± 4.91e-4 4.77e-2 ± 2.00e-7

50 8.90e-5 ± 2.71e-5 7.17e-5 ± 2.14e-7 9.28e-3 ± 5.93e-5 6.10e-3 ± 2.51e-7

100 2.19e-5 ± 6.69e-6 1.73e-5 ± 3.40e-7 2.16e-3 ± 1.38e-5 1.42e-3 ± 2.88e-7

200 5.54e-6 ± 1.92e-6 4.34e-6 ± 4.82e-7 5.23e-4 ± 3.76e-6 3.44e-4 ± 5.31e-7

500 1.16e-6 ± 1.02e-6 9.91e-7 ± 5.42e-7 8.14e-5 ± 1.27e-6 5.39e-5 ± 6.10e-7

1000 1.51e-6 ± 1.51e-6 9.96e-7 ± 7.64e-7 2.01e-5 ± 1.34e-6 1.32e-5 ± 1.05e-6

(b)

Table 4: The relative L2 error of meta-gradient computation. The results were averaged over 20 random initializations.

Next, we examined the trade-off in the 2D regression problem, CosMixture (see Sec. 5.1). In this problem, we do not have the

ground-truth of the meta gradient. To evaluate the trade-off, we used the meta-gradient computed with 1, 000 intermediate

states by our method as a reference. We then examined how the computed gradients using different numbers of states are close

Shibo Li1, Zheng Wang1, Akil Narayan2,3, Robert M. Kirby1,2, Shandian Zhe1

to the reference. We varied T from {0.1, 0.3, 0.5}, and the number of intermediate steps from {10, 20, 50, 100, 200, 500}.

We computed the relative L2 error w.r.t the reference gradient. We tested on 20 random initializations. The results are

reported in Table 5. As we can see, when only using 100 or 200 states, the computed meta gradient has already been very

close to the one computed with 1,000 states. It implies that the gain of the accuracy is minor after a certain number of

intermediate states. Hence, it is unnecessary to use too many states, and we can use much fewer to improve both the memory

and computation efficiency.

Number of Intermediate States T = 0.1 T = 0.3 T = 0.5
10 7.62e-4 ± 2.04e-4 4.82e-3 ± 9.07e-4 1.17e-2 ± 2.17e-3

20 3.55e-4 ± 9.49e-5 2.26e-3 ± 4.21e-4 5.46e-3 ± 1.01e-3

50 1.33e-4 ± 3.55e-5 8.63e-4 ± 1.61e-4 2.09e-3 ± 3.85e-4

100 6.24e-5 ± 1.67e-5 4.19e-4 ± 7.79e-5 1.03e-3 ± 1.88e-4

200 2.76e-5 ± 7.34e-6 2.01e-4 ± 3.74e-5 4.99e-4 ± 9.16e-5

500 6.87e-6 ± 1.83e-6 7.16e-5 ± 1.33e-5 1.87e-4 ± 3.42e-5

Table 5: The relative L2 error w.r.t the gradient computed with 1K intermediate states on the CosMixture problem. The

results were averaged from 20 random initializations.

	INTRODUCTION
	PRELIMINARIES
	ADJOINT MAML
	ODE View of Inner Optimization
	Efficient Back-Propagation via Solving Adjoint ODEs

	RELATED WORK
	EXPERIMENTS
	2D regression
	Memory Consumption and Running Time
	Few-Shot Learning in Collaborative Filtering
	Few-Shot Learning in Images Classification

	CONCLUSION
	Trade-off Analysis of Backward Solving

